Daewoo MATIZ Service Manual page 114

Table of Contents

Advertisement

1F – 16 ENGINE CONTROLS
the obstruction of the reference air and degrade the O2S
performance.
Misfire Monitor Diagnostic Operation
The misfire monitor diagnostic is based on crankshaft
rotational velocity (reference period) variations. The En-
gine Control Module (ECM) determines crankshaft rota-
tional velocity using the Crankshaft Position (CKP)
sensor and the Camshaft Position (CMP) sensor. When
a cylinder misfires, the crankshaft slows down momen-
tarily. By monitoring the CKP and CMP sensor signals,
the ECM can calculate when a misfire occurs.
For a non-catalyst damaging misfire, the diagnostic will
be required to monitor a misfire present for between
1000–3200 engine revolutions.
For catalyst-damaging misfire, the diagnostic will re-
spond to misfire within 200 engine revolutions.
Rough roads may cause false misfire detection. A rough
road will cause torque to be applied to the drive wheels
and drive train. This torque can intermittently decrease
the crankshaft rotational velocity. This may be falsely
detected as a misfire.
A rough road sensor, or "G sensor," works together with
the misfire detection system. The rough road sensor
produces a voltage that varies along with the intensity of
road vibrations. When the ECM detects a rough road,
the misfire detection system is temporarily disabled.
Misfire Counters
Whenever a cylinder misfires, the misfire diagnostic
counts the misfire and notes the crankshaft position at
the time the misfire occurred. These "misfire counters"
are basically a file on each engine cylinder. A current
and a history misfire counter are maintained for each
cylinder. The misfire current counters (Misfire Current
#1–4) indicate the number of firing events out of the last
200 cylinder firing events which were misfires. The mis-
fire current counter will display real time data without a
misfire DTC stored. The misfire history counters (Misfire
Histtory #1–4) indicate the total number of cylinder firing
events which were misfires. The misfire history counters
will display 0 until the misfire diagnostic has failed and a
DTC P0300 is set. Once the misfire DTC P0300 is set,
the misfire history counters will be updated every 200
cylinder firing events. A misfire counter is maintained for
each cylinder.
If the misfire diagnostic reports a failure, the diagnostic
executive reviews all of the misfire counters before re-
porting a DTC. This way, the diagnostic executive re-
ports the most current information.
When crankshaft rotation is erratic, a misfire condition
will be detected. Because of this erratic condition, the
data that is collected by the diagnostic can sometimes
incorrectly identify which cylinder is misfiring.
Use diagnostic equipment to monitor misfire counter
data on EOBD compliant vehicles. Knowing which spe-
cific cylinder(s) misfired can lead to the root cause, even
when dealing with a multiple cylinder misfire. Using the
information in the misfire counters, identify which cylin-
ders are misfiring. If the counters indicate cylinders
numbers 1 and 4 misfired, look for a circuit or compo-
nent common to both cylinders number 1 and 4.
The misfire diagnostic may indicate a fault due to a tem-
porary fault not necessarily caused by a vehicle emis-
sion system malfunction. Examples include the following
items:
D Contaminated fuel.
D Low fuel.
D Fuel-fouled spark plugs.
D Basic engine fault.
Fuel Trim System Monitor Diagnostic
Operation
This system monitors the averages of short-term and
long-term fuel trim values. If these fuel trim values stay
at their limits for a calibrated period of time, a malfunc-
tion is indicated. The fuel trim diagnostic compares the
averages of short-term fuel trim values and long-term
fuel trim values to rich and lean thresholds. If either val-
ue is within the thresholds, a pass is recorded. If both
values are outside their thresholds, a rich or lean DTC
will be recorded.
The fuel trim system diagnostic also conducts an intru-
sive test. This test determines if a rich condition is being
caused by excessive fuel vapor from the controlled char-
coal canister. In order to meet EOBD requirements, the
control module uses weighted fuel trim cells to deter-
mine the need to set a fuel trim DTC. A fuel trim DTC
can only be set if fuel trim counts in the weighted fuel
trim cells exceed specifications. This means that the ve-
hicle could have a fuel trim problem which is causing a
problem under certain conditions (i.e., engine idle high
due to a small vacuum leak or rough idle due to a large
vacuum leak) while it operates fine at other times. No
fuel trim DTC would set (although an engine idle speed
DTC or HO2S DTC may set). Use a scan tool to observe
fuel trim counts while the problem is occurring.
A fuel trim DTC may be triggered by a number of vehicle
faults. Make use of all information available (other DTCs
stored, rich or lean condition, etc.) when diagnosing a
fuel trim fault.
Fuel Trim Cell Diagnostic Weights
No fuel trim DTC will set regardless of the fuel trim
counts in cell 0 unless the fuel trim counts in the
weighted cells are also outside specifications. This
means that the vehicle could have a fuel trim problem
which is causing a problem under certain conditions (i.e.
engine idle high due to a small vacuum leak or rough
due to a large vacuum leak) while it operates fine at oth-
er times. No fuel trim DTC would set (although an en-
gine idle speed DTC or HO2S DTC may set). Use a
scan tool to observe fuel trim counts while the problem is
occurring.
DAEWOO M-150 BL2

Advertisement

Table of Contents
loading

This manual is also suitable for:

My2003

Table of Contents