ABB REG650 Technical Manual

ABB REG650 Technical Manual

Generator protection
Hide thumbs Also See for REG650:
Table of Contents

Advertisement

®
Relion
650 series
Generator protection REG650 ANSI
Technical Manual

Advertisement

Table of Contents
loading

Summary of Contents for ABB REG650

  • Page 1 ® Relion 650 series Generator protection REG650 ANSI Technical Manual...
  • Page 3 Document ID: 1MRK 502 043-UUS Issued: June 2012 Revision: B Product version: 1.2 © Copyright 2012 ABB. All rights reserved...
  • Page 4 Copyright This document and parts thereof must not be reproduced or copied without written permission from ABB, and the contents thereof must not be imparted to a third party, nor used for any unauthorized purpose. The software and hardware described in this document is furnished under a license and may be used or disclosed only in accordance with the terms of such license.
  • Page 5 In case any errors are detected, the reader is kindly requested to notify the manufacturer. Other than under explicit contractual commitments, in no event shall ABB be responsible or liable for any loss or damage resulting from the use of this manual or the application of the equipment.
  • Page 6 (EMC Directive 2004/108/EC) and concerning electrical equipment for use within specified voltage limits (Low-voltage directive 2006/95/EC). This conformity is the result of tests conducted by ABB in accordance with the product standards EN 50263 and EN 60255-26 for the EMC directive, and with the product standards EN 60255-1 and EN 60255-27 for the low voltage directive.
  • Page 7: Table Of Contents

    Table of contents Table of contents Section 1 Introduction................29 This manual....................29 Intended audience..................29 Product documentation................30 Product documentation set..............30 Document revision history..............31 Related documents................32 Symbols and conventions...............32 Symbols.....................32 Document conventions..............33 Section 2 Available functions..............35 Main protection functions................35 Back-up protection functions..............35 Control and monitoring functions............36 Communication..................39 Basic IED functions.................40 Section 3 Analog inputs...............43...
  • Page 8 Table of contents Function block...................56 Signals....................56 Basic part for LED indication module............57 Identification..................57 Function block...................57 Signals....................57 Settings....................58 LCD part for HMI function keys control module........59 Identification..................59 Function block...................59 Signals....................59 Settings....................59 Operation principle..................60 Local HMI...................60 Display..................60 LEDs.....................63 Keypad..................63 LED....................65 Functionality.................65 Status LEDs..................65 Indication LEDs................65 Function keys..................74 Functionality.................74...
  • Page 9 Table of contents Elimination of zero sequence currents.........89 Restrained and unrestrained limits of the differential protection..................90 Fundamental frequency negative sequence differential currents..................93 Internal/external fault discriminator..........95 Unrestrained, and sensitive negative sequence protections..99 Instantaneous differential currents..........101 Harmonic and waveform block criteria........101 Switch onto fault feature.............102 Logic diagram................103 Technical data.................110 1Ph High impedance differential protection HZPDIF (87).....110...
  • Page 10 Table of contents Functionality..................133 Function block.................134 Signals.....................134 Settings....................135 Operation principle................136 Full scheme measurement............136 Impedance characteristic............136 Basic operation characteristics...........137 Theory of operation..............139 Technical data.................140 Loss of excitation LEXPDIS (40)............141 Identification..................141 Functionality..................141 Function block.................141 Signals.....................142 Settings....................142 Monitored data.................143 Operation principle................143 Technical data.................147 Out-of-step protection OOSPPAM (78)..........147 Identification..................147 Functionality..................148...
  • Page 11 Table of contents Signals.....................162 Settings....................162 Operation principle................163 Load encroachment..............163 Simplified logic diagrams............164 Technical data.................165 Section 8 Current protection..............167 Four step phase overcurrent protection 3-phase output OC4PTOC (51/67)....................167 Identification ...................167 Functionality..................167 Function block.................168 Signals.....................168 Settings....................169 Monitored data.................171 Operation principle................172 Technical data.................176 Four step residual overcurrent protection, zero, negative sequence direction EF4PTOC (51N/67N).............177 Identification ...................177...
  • Page 12 Table of contents Function block.................195 Signals.....................196 Settings....................196 Monitored data.................198 Operation principle .................198 Function inputs................198 Directional residual current protection measuring 3I ·cos φ..199 Directional residual power protection measuring 3I · 3V · cos φ...................202 Directional residual current protection measuring 3I and φ..203 Directional functions..............204 Non-directional ground fault current protection......204 Residual overvoltage release and protection......204...
  • Page 13 Table of contents Operation principle................221 Pole discrepancy signaling from circuit breaker......223 Unsymmetrical current detection..........224 Technical data.................224 Directional over-/under-power protection GOPPDOP/GUPPDUP (32/37)....................224 Functionality..................224 Directional overpower protection GOPPDOP (32)......225 Identification................225 Function block................225 Signals..................226 Settings..................226 Monitored data................227 Directional underpower protection GUPPDUP (37)......227 Identification................228 Function block................228 Signals..................228 Settings..................229...
  • Page 14 Table of contents Operation principle................240 Pickup sensitivity................242 Alarm function................242 Logic diagram................243 Technical data.................243 Voltage-restrained time overcurrent protection VR2PVOC(51V)..244 Identification..................244 Functionality..................244 Function block.................245 Signals.....................245 Settings....................245 Monitored data.................247 Operation principle................247 Measured quantities..............247 Base quantities................247 Overcurrent protection..............247 Logic diagram................249 Undervoltage protection.............250 Technical data.................250 Section 9 Voltage protection.............251 Two step undervoltage protection UV2PTUV (27)........251 Identification..................251...
  • Page 15 Table of contents Monitored data.................260 Operation principle................260 Measurement principle...............261 Time delay..................261 Blocking..................262 Design..................263 Technical data.................265 Two step residual overvoltage protection ROV2PTOV (59N)....265 Identification..................265 Functionality..................265 Function block.................266 Signals.....................266 Settings....................267 Monitored data.................267 Operation principle................267 Measurement principle...............268 Time delay..................268 Blocking..................269 Design..................269 Technical data.................271 Overexcitation protection OEXPVPH (24)..........271 Identification..................271 Functionality..................272...
  • Page 16 Table of contents Signals.....................283 Settings....................284 Monitored data.................285 Operation principle................285 Technical data.................290 Section 10 Frequency protection............291 Underfrequency protection SAPTUF (81)..........291 Identification..................291 Functionality..................291 Function block.................291 Signals.....................292 Settings....................292 Monitored data.................292 Operation principle................292 Measurement principle...............293 Time delay..................293 Blocking..................293 Design..................294 Technical data.................294 Overfrequency protection SAPTOF (81)..........295 Identification..................295 Functionality..................295 Function block.................295...
  • Page 17 Table of contents Measurement principle...............300 Time delay..................301 Design..................302 Technical data.................302 Section 11 Secondary system supervision..........303 Fuse failure supervision SDDRFUF............303 Identification..................303 Functionality..................303 Function block.................304 Signals.....................304 Settings....................305 Monitored data.................306 Operation principle................306 Zero and negative sequence detection........306 Delta current and delta voltage detection........307 Dead line detection..............310 Main logic...................310 Technical data.................314...
  • Page 18 Table of contents Energizing check................327 Fuse failure supervision..............327 Voltage selection................328 Voltage selection for a single circuit breaker with double busbars..................328 Voltage selection for a breaker-and-a-half circuit breaker arrangement................329 Technical data.................333 Apparatus control..................334 Functionality..................334 Bay control QCBAY.................334 Identification ................334 Functionality................334 Function block................335 Signals..................335 Settings..................335 Local remote LOCREM..............336...
  • Page 19 Table of contents Operation principle................344 Selector mini switch VSGGIO...............345 Identification..................345 Functionality..................345 Function block.................345 Signals.....................345 Settings....................346 Operation principle................346 IEC 61850 generic communication I/O functions DPGGIO....347 Identification..................347 Functionality..................347 Function block.................348 Signals.....................348 Settings....................348 Operation principle................348 Single point generic control 8 signals SPC8GGIO.......349 Identification..................349 Functionality..................349 Function block.................349 Signals.....................349...
  • Page 20 Table of contents Function commands user defined for IEC 60870-5-103 I103USRCMD..................356 Functionality..................356 Function block.................357 Signals.....................357 Settings....................357 Function commands generic for IEC 60870-5-103 I103GENCMD..358 Functionality..................358 Function block.................358 Signals.....................358 Settings....................359 IED commands with position and select for IEC 60870-5-103 I103POSCMD..................359 Functionality..................359 Function block.................359 Signals.....................359 Settings....................360 Section 13 Logic..................361...
  • Page 21 Table of contents Controllable gate function block GATE........371 Exclusive OR function block XOR..........372 Loop delay function block LOOPDELAY........373 Timer function block TIMERSET..........374 AND function block ..............375 Set-reset memory function block SRMEMORY......376 Reset-set with memory function block RSMEMORY....378 Technical data.................379 Fixed signals FXDSIGN................380 Identification..................380 Functionality..................380 Function block.................380...
  • Page 22 Table of contents Integer to boolean 16 conversion with logic node representation IB16FCVB.....................387 Identification..................387 Functionality..................387 Function block.................388 Signals.....................388 Settings....................389 Operation principle................389 Section 14 Monitoring................391 Measurements..................391 Functionality..................391 Measurements CVMMXN..............392 Identification ................392 Function block................393 Signals..................393 Settings..................394 Monitored data................397 Phase current measurement CMMXU..........398 Identification ................398 Function block................398 Signals..................398...
  • Page 23 Table of contents Settings..................407 Monitored data................408 Phase-neutral voltage measurement VNMMXU......409 Identification ................409 Function block................409 Signals..................409 Settings..................410 Monitored data................411 Operation principle................411 Measurement supervision............411 Measurements CVMMXN............415 Phase current measurement CMMXU........420 Phase-phase and phase-neutral voltage measurements VMMXU, VNMMXU..............421 Voltage and current sequence measurements VMSQI, CMSQI..................421 Technical data.................421 Event Counter CNTGGIO..............422...
  • Page 24 Table of contents Settings..................432 Analog input signals A4RADR............436 Identification................436 Function block................436 Signals..................437 Settings..................437 Binary input signals BxRBDR............441 Identification................441 Function block................441 Signals..................442 Settings..................442 Operation principle................448 Disturbance information..............450 Indications .................450 Event recorder ................450 Sequential of events ..............450 Trip value recorder ..............450 Disturbance recorder ..............450 Time tagging................451 Recording times................451 Analog signals................452...
  • Page 25 Table of contents Functionality..................459 Function block.................459 Signals.....................459 Input signals................459 Operation principle................459 Technical data.................460 Trip value recorder................460 Functionality..................460 Function block.................460 Signals.....................461 Input signals................461 Operation principle................461 Technical data.................461 Disturbance recorder................462 Functionality..................462 Function block.................462 Signals.....................462 Settings....................462 Operation principle................462 Memory and storage..............463 Technical data.................465 IEC 61850 generic communication I/O functions SPGGIO....465 Identification..................465 Functionality..................465...
  • Page 26 Table of contents Function block.................469 Signals.....................470 Settings....................470 Monitored data.................471 Operation principle................471 Measured value expander block MVEXP..........471 Identification..................471 Functionality..................471 Function block.................472 Signals.....................472 Settings....................472 Operation principle................472 Station battery supervision SPVNZBAT..........473 Identification..................473 Function block.................473 Functionality..................473 Signals.....................474 Settings....................474 Measured values................475 Monitored Data................475 Operation principle .................475 Technical data.................476 Insulation gas monitoring function SSIMG (63)........476 Identification..................476...
  • Page 27 Table of contents Settings....................481 SSIML Settings................481 Operation principle................482 Technical data.................482 Circuit breaker condition monitoring SSCBR........482 Identification..................482 Functionality..................483 Function block.................483 Signals.....................483 Settings....................484 Monitored data.................485 Operation principle................486 Circuit breaker status..............487 Circuit breaker operation monitoring..........488 Breaker contact travel time............489 Operation counter...............491 Accumulation of I t..............491 Remaining life of the circuit breaker...........493 Circuit breaker spring charged indication........494...
  • Page 28 Table of contents Signals.....................502 Settings....................502 Function status fault protection for IEC 60870-5-103 I103FLTPROT..................502 Functionality..................502 Function block.................503 Signals.....................503 Settings....................504 IED status for IEC 60870-5-103 I103IED..........505 Functionality..................505 Function block.................505 Signals.....................505 Settings....................505 Supervison status for IEC 60870-5-103 I103SUPERV......506 Functionality..................506 Function block.................506 Signals.....................506 Settings....................506 Status for user defined signals for IEC 60870-5-103 I103USRDEF..507 Functionality..................507 Function block.................507...
  • Page 29 Table of contents Monitored data.................516 Operation principle................516 Technical data.................517 Section 16 Station communication............519 DNP3 protocol..................519 IEC 61850-8-1 communication protocol ..........519 Identification..................519 Functionality..................519 Communication interfaces and protocols........520 Settings....................520 Technical data.................521 Horizontal communication via GOOSE for interlocking......521 Identification..................521 Function block.................522 Signals.....................522 Settings....................524 Goose binary receive GOOSEBINRCV..........524 Identification..................524 Function block.................525...
  • Page 30 Table of contents Functionality..................530 Function block.................530 Signals.....................531 Settings....................531 Operation principle .................531 GOOSE function block to receive a single point value GOOSESPRCV..................532 Identification..................532 Functionality..................532 Function block.................532 Signals.....................532 Settings....................533 Operation principle .................533 IEC 60870-5-103 communication protocol...........533 Functionality..................533 Settings....................534 Section 17 Basic IED functions............537 Self supervision with internal event list ..........537 Functionality..................537 Internal error signals INTERRSIG...........537...
  • Page 31 Table of contents Time system, summer time begin DSTBEGIN........545 Identification................545 Settings..................546 Time system, summer time ends DSTEND........546 Identification................546 Settings..................547 Time zone from UTC TIMEZONE............547 Identification................547 Settings..................547 Time synchronization via IRIG-B.............548 Identification................548 Settings..................548 Operation principle................548 General concepts...............548 Real-time clock (RTC) operation..........550 Synchronization alternatives............551 Technical data.................552 Parameter setting group handling............552...
  • Page 32 Table of contents Settings....................559 Operation principle................559 IED identifiers TERMINALID..............560 Identification..................560 Functionality..................560 Settings....................560 Product information ................561 Identification..................561 Functionality..................561 Settings....................561 Primary system values PRIMVAL............562 Identification..................562 Functionality..................562 Settings....................562 Signal matrix for analog inputs SMAI............562 Functionality..................562 Identification..................563 Function block.................563 Signals.....................564 Settings....................565 Operation principle .................567 Summation block 3 phase 3PHSUM............571 Identification..................571 Functionality..................571...
  • Page 33 Table of contents Functionality..................576 Function block.................576 Signals.....................576 Settings....................576 Operation principle................576 Denial of service...................577 Functionality..................577 Denial of service, frame rate control for front port DOSFRNT..577 Identification................577 Function block................577 Signals..................577 Settings..................578 Monitored data................578 Denial of service, frame rate control for LAN1 port DOSLAN1..578 Identification................578 Function block................579 Signals..................579...
  • Page 34 Table of contents Connection diagrams for REG650 B01A.........603 Connection diagrams for REG650 B05A.........612 Section 19 Technical data..............621 Dimensions...................621 Power supply..................621 Energizing inputs..................622 Binary inputs..................622 Signal outputs..................623 Power outputs..................623 Data communication interfaces............624 Enclosure class..................625 Environmental conditions and tests............626 Section 20 IED and functionality tests..........627 Electromagnetic compatibility tests............627...
  • Page 35: Section 1 Introduction

    Section 1 1MRK 502 043-UUS B Introduction Section 1 Introduction This manual The technical manual contains application and functionality descriptions and lists function blocks, logic diagrams, input and output signals, setting parameters and technical data sorted per function. The manual can be used as a technical reference during the engineering phase, installation and commissioning phase, and during normal service.
  • Page 36: Product Documentation

    Section 1 1MRK 502 043-UUS B Introduction Product documentation 1.3.1 Product documentation set Engineering manual Engineering manual Engineering manual Installation manual Installation manual Installation manual Commissioning manual Commissioning manual Commissioning manual Operation manual Operation manual Operation manual Service manual Service manual Service manual Application manual Application manual...
  • Page 37: Document Revision History

    Section 1 1MRK 502 043-UUS B Introduction during the testing phase. The manual provides procedures for checking of external circuitry and energizing the IED, parameter setting and configuration as well as verifying settings by secondary injection. The manual describes the process of testing an IED in a substation which is not in service.
  • Page 38: Related Documents

    Section 1 1MRK 502 043-UUS B Introduction 1.3.3 Related documents Documents related to REG650 Identity number Application manual 1MRK 502 042-UUS Technical manual 1MRK 502 043-UUS Commissioning manual 1MRK 502 044-UUS Product Guide 1MRK 502 045-BUS Type test certificate 1MRK 502 045-TUS...
  • Page 39: Document Conventions

    Section 1 1MRK 502 043-UUS B Introduction The information icon alerts the reader of important facts and conditions. The tip icon indicates advice on, for example, how to design your project or how to use a certain function. Although warning hazards are related to personal injury, it is necessary to understand that under certain operational conditions, operation of damaged equipment may result in degraded process performance leading to personal injury or death.
  • Page 41: Section 2 Available Functions

    Section 2 1MRK 502 043-UUS B Available functions Section 2 Available functions Main protection functions IEC 61850/ ANSI Function description Generator Function block name Differential protection T3WPDIF Transformer differential protection, three winding 0–1 HZPDIF 1Ph High impedance differential protection GENPDIF Generator differential protection 0–1 Impedance protection...
  • Page 42: Control And Monitoring Functions

    Section 2 1MRK 502 043-UUS B Available functions IEC 61850/ ANSI Function description Generator Function block name TRPTTR Thermal overload protection, two time constants 0–2 CCRBRF 50BF Breaker failure protection, 3–phase activation and output 0–1 CCRPLD 52PD Pole discordance protection 0–1 GUPPDUP Directional underpower protection...
  • Page 43 Section 2 1MRK 502 043-UUS B Available functions IEC 61850/Function ANSI Function description Generator block name LOCREM Handling of LR-switch positions LOCREMCTRL LHMI control of Permitted Source To Operate (PSTO) CBC1 Circuit breaker for 1CB 0–1 SLGGIO Logic Rotating Switch for function selection and LHMI presentation VSGGIO Selector mini switch extension...
  • Page 44 Section 2 1MRK 502 043-UUS B Available functions IEC 61850/Function ANSI Function description Generator block name B16IFCVI Boolean 16 to Integer conversion with logic node representation IB16A Integer to Boolean 16 conversion IB16FCVB Integer to Boolean 16 conversion with logic node representation Monitoring CVMMXN...
  • Page 45: Communication

    Section 2 1MRK 502 043-UUS B Available functions IEC 61850/Function ANSI Function description Generator block name I103MEAS Measurands for IEC60870-5-103 I103MEASUSR Measurands user defined signals for IEC60870-5-103 I103AR Function status auto-recloser for IEC60870-5-103 I103EF Function status ground-fault for IEC60870-5-103 I103FLTPROT Function status fault protection for IEC60870-5-103 I103IED IED status for IEC60870-5-103...
  • Page 46: Basic Ied Functions

    Section 2 1MRK 502 043-UUS B Available functions IEC 61850/Function block ANSI Function description Generator name MST2TCP DNP3.0 for TCP/IP communication protocol MST3TCP DNP3.0 for TCP/IP communication protocol MST4TCP DNP3.0 for TCP/IP communication protocol RS485GEN RS485 OPTICALPROT Operation selection for optical serial RS485PROT Operation selection for RS485 DNPFREC...
  • Page 47 Section 2 1MRK 502 043-UUS B Available functions IEC 61850/Function Function description block name ACTVGRP Parameter setting groups TESTMODE Test mode functionality CHNGLCK Change lock function TERMINALID IED identifiers PRODINF Product information SYSTEMTIME System time RUNTIME IED Runtime comp PRIMVAL Primary system values SMAI_20_1 - Signal matrix for analog inputs...
  • Page 49: Section 3 Analog Inputs

    Section 3 1MRK 502 043-UUS B Analog inputs Section 3 Analog inputs Introduction Analog input channels are already configured inside the IED. However the IED has to be set properly to get correct measurement results and correct protection operations. For power measuring and all directional and differential functions the directions of the input currents must be defined properly.
  • Page 50: Settings

    Section 3 1MRK 502 043-UUS B Analog inputs • Forward means direction into the object. • Reverse means direction out from the object. Definition of direction Definition of direction for directional functions for directional functions Reverse Forward Forward Reverse Protected Object Line , transformer , etc e.g .
  • Page 51 Section 3 1MRK 502 043-UUS B Analog inputs Table 1: AISVBAS Non group settings (basic) Name Values (Range) Unit Step Default Description PhaseAngleRef TRM - Channel 1 TRM - Channel 1 Reference channel for phase angle TRM - Channel 2 presentation TRM - Channel 3 TRM - Channel 4...
  • Page 52 Section 3 1MRK 502 043-UUS B Analog inputs Name Values (Range) Unit Step Default Description VTprim8 0.001 - 9999.999 0.001 Rated VT primary voltage VTsec9 0.001 - 999.999 0.001 110.000 Rated VT secondary voltage VTprim9 0.001 - 9999.999 0.001 132.000 Rated VT primary voltage VTsec10 0.001 - 999.999...
  • Page 53 Section 3 1MRK 502 043-UUS B Analog inputs Name Values (Range) Unit Step Default Description CTprim8 1 - 99999 1000 Rated CT primary current VTsec9 0.001 - 999.999 0.001 110.000 Rated VT secondary voltage VTprim9 0.001 - 9999.999 0.001 132.000 Rated VT primary voltage VTsec10 0.001 - 999.999...
  • Page 54 Section 3 1MRK 502 043-UUS B Analog inputs Table 5: AIM_6I_4U Non group settings (basic) Name Values (Range) Unit Step Default Description CT_WyePoint1 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec1 0.1 - 10.0 Rated CT secondary current CTprim1 1 - 99999 1000...
  • Page 55: Section 4 Binary Input And Output Modules

    Section 4 1MRK 502 043-UUS B Binary input and output modules Section 4 Binary input and output modules Binary input 4.1.1 Binary input debounce filter The debounce filter eliminates bounces and short disturbances on a binary input. A time counter is used for filtering. The time counter is increased once in a millisecond when a binary input is high, or decreased when a binary input is low.
  • Page 56: Settings

    Section 4 1MRK 502 043-UUS B Binary input and output modules 4.1.3 Settings 4.1.3.1 Setting parameters for binary input modules Table 6: BIO_9BI Non group settings (basic) Name Values (Range) Unit Step Default Description BatteryVoltage 24 - 250 Station battery voltage Table 7: BIO_9BI Non group settings (advanced) Name...
  • Page 57: Setting Parameters For Communication Module

    Section 4 1MRK 502 043-UUS B Binary input and output modules Name Values (Range) Unit Step Default Description OscillationTime6 0.000 - 600.000 0.001 0.000 Oscillation time for input 6 Threshold7 6 - 900 Threshold in percentage of station battery voltage for input 7 DebounceTime7 0.000 - 0.100 0.001...
  • Page 58 Section 4 1MRK 502 043-UUS B Binary input and output modules Name Values (Range) Unit Step Default Description OscillationCount3 0 - 255 Oscillation count for input 3 OscillationTime3 0.000 - 600.000 0.001 0.000 Oscillation time for input 3 Threshold4 6 - 900 Threshold in percentage of station battery voltage for input 4 DebounceTime4...
  • Page 59 Section 4 1MRK 502 043-UUS B Binary input and output modules Name Values (Range) Unit Step Default Description DebounceTime11 0.000 - 0.100 0.001 0.005 Debounce time for input 11 OscillationCount11 0 - 255 Oscillation count for input 11 OscillationTime11 0.000 - 600.000 0.001 0.000 Oscillation time for input 11...
  • Page 61: Section 5 Local Human-Machine-Interface Lhmi

    Section 5 1MRK 502 043-UUS B Local Human-Machine-Interface LHMI Section 5 Local Human-Machine-Interface LHMI Local HMI screen behaviour 5.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Local HMI screen behaviour SCREEN 5.1.2 Settings Table 10: SCREEN Non group settings (basic) Name Values (Range)
  • Page 62: Local Hmi Signals

    Section 5 1MRK 502 043-UUS B Local Human-Machine-Interface LHMI Local HMI signals 5.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Local HMI signals LHMICTRL 5.2.2 Function block LHMICTRL CLRLEDS HMI-ON RED-S YELLOW-S YELLOW-F CLRPULSE LEDSCLRD IEC09000320-1-en.vsd IEC09000320 V1 EN...
  • Page 63: Basic Part For Led Indication Module

    Section 5 1MRK 502 043-UUS B Local Human-Machine-Interface LHMI Basic part for LED indication module 5.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Basic part for LED indication module LEDGEN Basic part for LED indication module GRP1_LED1 - GRP1_LED15 GRP2_LED1 -...
  • Page 64: Settings

    Section 5 1MRK 502 043-UUS B Local Human-Machine-Interface LHMI Table 14: GRP1_LED1 Input signals Name Type Default Description HM1L01R BOOLEAN Red indication of LED1, local HMI alarm group 1 HM1L01Y BOOLEAN Yellow indication of LED1, local HMI alarm group 1 HM1L01G BOOLEAN Green indication of LED1, local HMI alarm group 1...
  • Page 65: Lcd Part For Hmi Function Keys Control Module

    Section 5 1MRK 502 043-UUS B Local Human-Machine-Interface LHMI LCD part for HMI function keys control module 5.4.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number LCD part for HMI Function Keys FNKEYMD1 - Control module FNKEYMD5 5.4.2 Function block...
  • Page 66: Operation Principle

    Section 5 1MRK 502 043-UUS B Local Human-Machine-Interface LHMI Table 21: FNKEYTY1 Non group settings (basic) Name Values (Range) Unit Step Default Description Type Disabled Disabled Function key type Menu shortcut Control MenuShortcut Main menu Main menu Events Measurements Diagnostics Disturbance records Clear...
  • Page 67 Section 5 1MRK 502 043-UUS B Local Human-Machine-Interface LHMI GUID-97DA85DD-DB01-449B-AD1F-EEC75A955D25 V3 EN Figure 8: Display layout 1 Path 2 Content 3 Status 4 Scroll bar (appears when needed) • The path shows the current location in the menu structure. If the path is too long to be shown, it is truncated from the beginning, and the truncation is indicated with three dots.
  • Page 68 Section 5 1MRK 502 043-UUS B Local Human-Machine-Interface LHMI GUID-1ECF507D-322A-4B94-B09C-49F6A0085384 V1 EN Figure 9: Truncated path The number before the function instance, for example 1:ETHFRNT, indicates the instance number. The function button panel shows on request what actions are possible with the function buttons.
  • Page 69: Leds

    Section 5 1MRK 502 043-UUS B Local Human-Machine-Interface LHMI GUID-D20BB1F1-FDF7-49AD-9980-F91A38B2107D V1 EN Figure 11: Alarm LED panel The function button and alarm LED panels are not visible at the same time. Each panel is shown by pressing one of the function buttons or the Multipage button. Pressing the ESC button clears the panel from the display.
  • Page 70 Section 5 1MRK 502 043-UUS B Local Human-Machine-Interface LHMI The keypad also contains programmable push-buttons that can be configured either as menu shortcut or control buttons. ANSI11000247 V1 EN Figure 12: LHMI keypad with object control, navigation and command push buttons and RJ-45 communication port 1...5 Function button Close...
  • Page 71: Led

    Section 5 1MRK 502 043-UUS B Local Human-Machine-Interface LHMI 5.5.2 5.5.2.1 Functionality The function blocks LEDGEN and GRP1_LEDx, GRP2_LEDx and GRP3_LEDx (x=1-15) controls and supplies information about the status of the indication LEDs. The input and output signals of the function blocks are configured with PCM600. The input signal for each LED is selected individually using SMT or ACT.
  • Page 72 Section 5 1MRK 502 043-UUS B Local Human-Machine-Interface LHMI Acknowledgment/reset • From local HMI • The active indications can be acknowledged/reset manually. Manual acknowledgment and manual reset have the same meaning and is a common signal for all the operating sequences and LEDs. The function is positive edge triggered, not level triggered.
  • Page 73 Section 5 1MRK 502 043-UUS B Local Human-Machine-Interface LHMI = No indication = Steady light = Flash = Green = Red = Yellow IEC09000311.vsd IEC09000311 V1 EN Figure 13: Symbols used in the sequence diagrams Sequence 1 (Follow-S) This sequence follows all the time, with a steady light, the corresponding input signals. It does not react on acknowledgment or reset.
  • Page 74 Section 5 1MRK 502 043-UUS B Local Human-Machine-Interface LHMI Sequence 3 (LatchedAck-F-S) This sequence has a latched function and works in collecting mode. Every LED is independent of the other LEDs in its operation. At the activation of the input signal, the indication starts flashing.
  • Page 75 Section 5 1MRK 502 043-UUS B Local Human-Machine-Interface LHMI Activating signal GREEN Activating signal YELLOW Activating signal RED Acknow. IEC09000314-1-en.vsd IEC09000314 V1 EN Figure 18: Operating sequence 3, three colors involved, alternative 1 If an indication with higher priority appears after acknowledgment of a lower priority indication the high priority indication will be shown as not acknowledged according to Figure Activating...
  • Page 76 Section 5 1MRK 502 043-UUS B Local Human-Machine-Interface LHMI sequence 3 and 4 is that indications that are still activated will not be affected by the reset that is, immediately after the positive edge of the reset has been executed a new reading and storing of active signals is performed.
  • Page 77 Section 5 1MRK 502 043-UUS B Local Human-Machine-Interface LHMI signals is performed. LEDs set for sequence 6 are completely independent in its operation of LEDs set for other sequences. Timing diagram for sequence 6 Figure 22 shows the timing diagram for two indications within one disturbance. Disturbance tRestart Activating...
  • Page 78 Section 5 1MRK 502 043-UUS B Local Human-Machine-Interface LHMI Disturbance Disturbance tRestart tRestart Activating signal 1 Activating signal 2 LED 1 LED 2 Automatic reset Manual reset IEC01000240_2_en.vsd IEC01000240 V2 EN Figure 23: Operating sequence 6 (LatchedReset-S), two different disturbances Figure 24 shows the timing diagram when a new indication appears after the first one has reset but before tRestart has elapsed.
  • Page 79 Section 5 1MRK 502 043-UUS B Local Human-Machine-Interface LHMI Disturbance tRestart Activating signal 1 Activating signal 2 LED 1 LED 2 Automatic reset Manual reset IEC01000241_2_en.vsd IEC01000241 V2 EN Figure 24: Operating sequence 6 (LatchedReset-S), two indications within same disturbance but with reset of activating signal between Figure 25 shows the timing diagram for manual reset.
  • Page 80: Function Keys

    Section 5 1MRK 502 043-UUS B Local Human-Machine-Interface LHMI Disturbance tRestart Activating signal 1 Activating signal 2 LED 1 LED 2 Automatic reset Manual reset IEC01000242_2_en.vsd IEC01000242 V2 EN Figure 25: Operating sequence 6 (LatchedReset-S), manual reset 5.5.3 Function keys 5.5.3.1 Functionality Local Human-Machine-Interface (LHMI) has five function buttons, directly to the left...
  • Page 81 Section 5 1MRK 502 043-UUS B Local Human-Machine-Interface LHMI FNKEYMD1 - FNKEYMD5 function block also has a number of settings and parameters that control the behavior of the function block. These settings and parameters are normally set using the PST. Operating sequence The operation mode is set individually for each output, either OFF, TOGGLE or PULSED.
  • Page 82 Section 5 1MRK 502 043-UUS B Local Human-Machine-Interface LHMI Note that the third positive edge on the input attribute does not cause a pulse, since the edge was applied during pulse output. A new pulse can only begin when the output is zero;...
  • Page 83: Section 6 Differential Protection

    ANSI05000049 V1 EN Figure 29: CT group arrangement for differential protection and other protections The available settings of this function allow the REG650 to cover various differential protection applications such as power transformers and auto-transformers with or Technical Manual...
  • Page 84: Transformer Differential Protection, Three Winding T3Wpdif

    Section 6 1MRK 502 043-UUS B Differential protection without load tap changer as well as for shunt reactors including local feeders within the station. An adaptive stabilizing feature is included to avoid misoperations during for heavy through-faults. Harmonic restraint is included for inrush currents as well as for overexcitation conditions.
  • Page 85: Signals

    Section 6 1MRK 502 043-UUS B Differential protection 6.1.2.3 Signals Table 22: T3WPDIF (87T) Input signals Name Type Default Description I3PW1CT1 GROUP Three phase current connection winding 1 (W1) CT1 SIGNAL I3PW2CT1 GROUP Three phase current connection winding 2 (W2) CT1 SIGNAL I3PW3CT1 GROUP...
  • Page 86: Settings

    Section 6 1MRK 502 043-UUS B Differential protection 6.1.2.4 Settings Table 24: T3WPDIF (87T) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disable / Enable Enabled IdMin 0.10 - 0.60 0.01 0.30 Section 1 sensitivity current, usually W1 current EndSection1 0.20 - 1.50...
  • Page 87 Section 6 1MRK 502 043-UUS B Differential protection Name Values (Range) Unit Step Default Description ConnectTypeW2 WYE (Y) WYE (Y) Connection type of winding 2: Y-wye or D-delta Delta (D) ConnectTypeW3 WYE (Y) Delta (D) Connection type of winding 3: Y-wye or D-delta Delta (D) ClockNumberW2 0 [0 deg]...
  • Page 88: Monitored Data

    Section 6 1MRK 502 043-UUS B Differential protection 6.1.2.5 Monitored data Table 26: T3WPDIF (87T) Monitored data Name Type Values (Range) Unit Description IDMAG_A REAL Magnitude of fundamental frequency differential current, phase A IDMAG_B REAL Magnitude of fundamental frequency differential current, phase B IDMAG_C REAL...
  • Page 89: Function Calculation Principles

    Section 6 1MRK 502 043-UUS B Differential protection Due to the ratio of the number of turns of the windings and the connection group of the protected transformer, the current between two windings can not be directly compared to each other. Therefore the differential protection must first correlate all currents to each other before any calculation can be performed.
  • Page 90 Section 6 1MRK 502 043-UUS B Differential protection These are internal compensation algorithms within the differential function. The protected power transformer data are always entered as they are given on the nameplate. Differential function will by it self adapt nameplate data and select proper reference windings. é...
  • Page 91 Section 6 1MRK 502 043-UUS B Differential protection I_A_W1 is the fundamental frequency phase current in phaseA on W1 side I_B_W1 is the fundamental frequency phase current in phaseB on W1 side I_C_W1 is the fundamental frequency phase current in phaseC on W1 side I_A_W2 is the fundamental frequency phase current in phaseA on W2 side I_B_W2...
  • Page 92 Section 6 1MRK 502 043-UUS B Differential protection For the phase reference, the highest voltage wye (Y) connected winding is used. For example, if the power transformer is a Yd1 power transformer, the HV winding (Y) is taken as the phase reference winding. If the power transformer is a Yy0 power transformer the HV winding (Y) is taken as the phase reference winding.
  • Page 93 Section 6 1MRK 502 043-UUS B Differential protection Matrix with Zero Sequence Matrix with Zero Sequence Reduction set to On Reduction set to Off Matrix for winding with 120° é ù é ù 0 0 1 lagging ê ú ê ú...
  • Page 94 Section 6 1MRK 502 043-UUS B Differential protection By using this table we can derive a complete calculation for all common transformer configuration. For example when considering a YNd5 power transformer the following can be concluded: HV wye (Y) connected winding will be used as reference winding and zero sequence currents shall be subtracted on that side LV winding is lagging for 150°...
  • Page 95: Differential Current Alarm

    Section 6 1MRK 502 043-UUS B Differential protection The fundamental frequency differential currents are the magnitudes which are applied in a phase segregated manner to the operate - restrain characteristic of the differential protection. The magnitudes of the differential currents can be read as service values from the function and they are available as outputs IDMAG_A, IDMAG_B, IDMAG_C from the differential protection function block.
  • Page 96: Restrained And Unrestrained Limits Of The Differential Protection

    Section 6 1MRK 502 043-UUS B Differential protection • the protected power transformer cannot transform the zero sequence currents to the other side, for any reason. • the zero sequence currents can only flow on one side of the protected power transformer.
  • Page 97 Section 6 1MRK 502 043-UUS B Differential protection IdMin (Sensitivity in section 1, multiple of trans. Reference side rated current set under the parameter IBase in GlobalbaseSelW1) EndSection1 (End of section 1, as multiple of transformer reference side rated current set under the parameter IBase in GlobalbaseSelW1) EndSection2 (End of section 2, as multiple of transformer reference side rated current set under the parameter IBase in GlobalbaseSelW1) SlopeSection2 (Slope in section 2, as multiple of transformer reference side rated...
  • Page 98 Section 6 1MRK 502 043-UUS B Differential protection operate current [ times IBase ] Operate unconditionally UnrestrainedLimit Operate conditionally Section 1 Section 2 Section 3 SlopeSection3 IdMin SlopeSection2 Restrain EndSection1 restrain current [ times IBase ] EndSection2 en05000187-2.vsd IEC05000187 V2 EN Figure 32: Description of the restrained, and the unrestrained operate characteristics...
  • Page 99: Fundamental Frequency Negative Sequence Differential Currents

    Section 6 1MRK 502 043-UUS B Differential protection changer is a typical reason for existence of the false differential currents in this section. Slope in section 1 is always zero percent. Section 2: In section 2, a certain minor slope is introduced which is supposed to cope with false differential currents due to higher than normal currents through the current transformers, such as during a transformer overloading situation.
  • Page 100 Section 6 1MRK 502 043-UUS B Differential protection é ù é ù é ù é ù é ù IDNS INS W 1 0 1 INS W ê ú ê ú ê ú ê ú ê ú Vn W × - ×...
  • Page 101: Internal/External Fault Discriminator

    Section 6 1MRK 502 043-UUS B Differential protection As marked in equation 23, the first term on the right hand side of the equation, represents the total contribution of the negative sequence current from W1 side compensated for eventual power transformer phase shift. The second term on the right hand side of the equation, represents the total contribution of the negative sequence current from W2 side compensated for eventual power transformer phase shift and transferred to the power transformer W1 side.
  • Page 102 Section 6 1MRK 502 043-UUS B Differential protection sequence current contributions, respectively, defined by expression shown in equation 23. It performs a directional comparison between these two phasors. Taking into account the phase rotation transformation the relative phase displacement between the two negative sequence current phasors is calculated.
  • Page 103 Section 6 1MRK 502 043-UUS B Differential protection above the limit, the phase angle between these two phasors is checked. If any of the negative sequence current contributions are too small (less than the set value for IminNegSeq), no directional comparison is made in order to avoid the possibility to produce a wrong decision.
  • Page 104 Section 6 1MRK 502 043-UUS B Differential protection "steady state" for HV side neg. seq. phasor 0.1 kA 0.2 kA 0.3 kA 0.4 kA "steady state" for LV side neg. seq. phasor Contribution to neg. seq. differential current from HV side Contribution to neg.
  • Page 105: Unrestrained, And Sensitive Negative Sequence Protections

    Section 6 1MRK 502 043-UUS B Differential protection Dire ctiona l Compa ris on Crite rion: Inte rna l fa ult a s s e e n from the HV s ide e xcurs ion from 0 de gre e s due to CT 35 ms s a tura tion...
  • Page 106 Section 6 1MRK 502 043-UUS B Differential protection operate region on the operate - restrain characteristic. So, this protection is not independent of the traditional restrained differential protection - it is activated after the first start signal has been placed. If the fault is positively recognized as internal, then the unrestrained negative sequence differential protection places its own trip request.
  • Page 107: Instantaneous Differential Currents

    Section 6 1MRK 502 043-UUS B Differential protection 6.1.3.10 Instantaneous differential currents The instantaneous differential currents are calculated from the instantaneous values of the input currents in order to perform the harmonic analysis and waveform analysis upon each one of them (see section "Harmonic and waveform block criteria"...
  • Page 108: Switch Onto Fault Feature

    Section 6 1MRK 502 043-UUS B Differential protection 400kV Currents Time [cycles] en05000343_ansi.vsd ANSI05000343 V1 EN Figure 36: Inrush currents to a transformer as seen by a protection IED. Typical is a high amount of the 2 harmonic, and intervals of low current, and low rate-of-change of current within each period.
  • Page 109: Logic Diagram

    Section 6 1MRK 502 043-UUS B Differential protection a transformer is energized with a more severe (minor faults cannot be discovered) internal fault (for example, forgotten grounding on transformer LV side for example, after a regular service). The feature is based on the waveform check. If a severe internal fault exists, then, during energization the magnetic density in the iron core will be low and high sinusoidal currents will flow from the very beginning.
  • Page 110 Section 6 1MRK 502 043-UUS B Differential protection Differential function Trafo Data ID_A Instantaneous (sample based) Differential current, phase A ID_B Instantaneous (sample based) Differential current, phase B ID_C Instantaneous (sample based) Differential current, phase C IDMAG_NS Negative sequence diff current &...
  • Page 111 Section 6 1MRK 502 043-UUS B Differential protection Instantaneous values of currents (samples) from HV, and LV sides for two- winding power transformers, and from the HV, the first LV, and the second LV sides for three-winding power transformers. Currents from all power transformer sides expressed as fundamental frequency phasors, with their real, and imaginary parts.
  • Page 112 Section 6 1MRK 502 043-UUS B Differential protection BLKUNRES IdUnre TRIPUNRE_A b>a IDMAG_A IBIAS PU_A BLOCK BLKRES TRIPRES_A BLK2H_A Harmonic BLK5H_A Harmonic BLKWAV_A Wave block Cross Block Cross Block to B or C phases from B or C phases CrossBlockEn=Enabled ANSI05000168_2_en.vsd ANSI05000168 V2 EN Figure 38:...
  • Page 113 Section 6 1MRK 502 043-UUS B Differential protection Internal/ EXTFAULT Neg.Seq. Diff External INTFAULT Current Fault discrimin Contributions ator TRNSSENS OpNegSeqDiff=On IBIAS b>a Constant BLKNSSEN BLKNSUNR BLOCK PU_A PU_B PU_C en05000167_ansi.vsd ANSI05000167 V1 EN Figure 39: Transformer differential protection simplified logic diagram for internal/ external fault discriminator TRIPRES_A TRIPRES_B...
  • Page 114 Section 6 1MRK 502 043-UUS B Differential protection PU_A PU_B PICKUP PU_C BLK2H_A BLK2H_B BLK2H BLK2H_C BLK5H_A BLK5H_B BLK5H BLK5H_C BLKWAV_A BLKWAV_B BLKWAV BLKWAV_C en05000279_ansi.vsd ANSI05000279 V1 EN Figure 41: Transformer differential protection internal grouping of logical signals Logic in figures 38, 39, can be summarized as follows: The three fundamental frequency differential currents are applied in a phase segregated manner to two limits.
  • Page 115 Section 6 1MRK 502 043-UUS B Differential protection common trip TRIP are issued. This feature is called the sensitive negative sequence differential protection. If a pickup signal is issued in a phase (see signal PU_A), even if the fault has been classified as an external fault, then the instantaneous differential current of that phase (see signal ID_A) is analyzed for the 2 and the 5...
  • Page 116: Technical Data

    Section 6 1MRK 502 043-UUS B Differential protection 6.1.4 Technical data Table 28: T2WPDIF, T3WPDIF (87T) technical data Function Range or value Accuracy Operating characteristic Adaptable ± 1.0% of In for I < In ± 1.0% of I for I > In Reset ratio >94% IBase on...
  • Page 117: Introduction

    Section 6 1MRK 502 043-UUS B Differential protection 6.2.2 Introduction The 1Ph High impedance differential protection (HZPDIF, 87) function can be used when the involved CTs have the same turns ratio and similar magnetizing characteristics. It utilizes an external summation of the currents in the interconnected CTs, a series resistor, and a voltage dependent resistor which are mounted externally connected to the IED.
  • Page 118: Settings

    Section 6 1MRK 502 043-UUS B Differential protection 6.2.5 Settings Table 31: HZPDIF (87) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Disable/Enable Operation Enabled AlarmPickup 2 - 500 Alarm voltage level on CT secondary tAlarm 0.000 - 60.000 0.001...
  • Page 119: Technical Data

    Section 6 1MRK 502 043-UUS B Differential protection AlarmPickup 0-tAlarm AlarmPickup 0.03s en05000301_ansi.vsd ANSI05000301 V1 EN Figure 44: Logic diagram for 1Ph High impedance differential protection HZPDIF (87) 6.2.8 Technical data Table 33: HZPDIF (87)technical data Function Range or value Accuracy Operate voltage (20-400) V...
  • Page 120: Identification

    Section 6 1MRK 502 043-UUS B Differential protection 6.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Generator differential protection GENPDIF > SYMBOL-NN V1 EN 6.3.2 Functionality Short circuit between the phases of the stator windings causes normally very large fault currents.
  • Page 121: Function Block

    Section 6 1MRK 502 043-UUS B Differential protection An open CT circuit condition creates unexpected operations for Generator differential protection under the normal load conditions. It is also possible to damage secondary equipment due to high voltage produced from open CT circuit outputs. Therefore, it may be a requirement from security and reliability points of view to have open CT detection function to block Generator differential protection function in case of open CT conditions and at the same time produce the alarm signal to the operational...
  • Page 122: Settings

    Section 6 1MRK 502 043-UUS B Differential protection Table 35: GENPDIF (87G) Output signals Name Type Description TRIP BOOLEAN General, common trip signal TRIPRES BOOLEAN Trip signal from restrained differential protection TRIPUNRE BOOLEAN Trip signal from unrestrained differential protection TRNSUNR BOOLEAN Trip signal from unrestrained negative sequence differential protection...
  • Page 123: Operation Principle

    Section 6 1MRK 502 043-UUS B Differential protection Table 37: GENPDIF (87G) Group settings (advanced) Name Values (Range) Unit Step Default Description EndSection1 0.20 - 1.50 0.01 1.25 End of section 1, multiple of generator rated current EndSection2 1.00 - 10.00 0.01 3.00 End of section 2, multiple of generator rated...
  • Page 124 Section 6 1MRK 502 043-UUS B Differential protection IEC06000430-2-en.vsd IEC06000430 V2 EN Figure 46: Position of current transformers; the recommended (default) orientation If the fault is internal, the faulty generator must be quickly tripped, that is, disconnected from the network, the field breaker tripped and the power to the prime mover interrupted.
  • Page 125: Function Calculation Principles

    Section 6 1MRK 502 043-UUS B Differential protection 6.3.6.1 Function calculation principles To make a differential protection as sensitive and stable as possible, the restrained differential characteristic is used. The protection must be provided with a proportional bias, which makes the protection operate for a certain percentage differential current related to the current through the generator stator winding.
  • Page 126 Section 6 1MRK 502 043-UUS B Differential protection Idiff ANSI0700018_3_en.vsd ANSI07000018 V3 EN Figure 47: Internal fault External fault: IAn = - IAt Idiff = 0 en07000019-2_ansi.vsd ANSI07000019 V2 EN Figure 48: External fault Generator differential protection GENPDIF (87G) function uses two mutually independent characteristics to which magnitudes of the three fundamental frequency RMS differential currents are compared at each execution of the differential protection function.
  • Page 127 Section 6 1MRK 502 043-UUS B Differential protection • the non-stabilized (instantaneous unrestrained) differential protection • the stabilized differential protection The non-stabilized (instantaneous) differential protection is used for very high differential currents, where it must be beyond any doubt, that the fault is internal. This limit, (defined by the setting UnrestrainedLimit), is a constant, not proportional dependent on the bias (restrain) current.
  • Page 128 Section 6 1MRK 502 043-UUS B Differential protection the protected machine at rated load, the restrain, bias current will be around 1 p.u., that is, equal to the machine rated current. In section 2, a certain minor slope is introduced which is supposed to cope with false differential currents proportional to higher than normal currents through the current transformers.
  • Page 129 Section 6 1MRK 502 043-UUS B Differential protection operate current [ times IBase ] Operate unconditionally UnrestrainedLimit Operate conditionally Section 1 Section 2 Section 3 SlopeSection3 TempIdMin IdMin SlopeSection2 Restrain EndSection1 restrain current [ times IBase ] EndSection2 en06000637.vsd IEC06000637 V2 EN Figure 50: Operate-restrain characteristic GENPDIF (87G) can also be temporarily ‘desensitized’...
  • Page 130: Supplementary Criteria

    Section 6 1MRK 502 043-UUS B Differential protection This DC desensitization is not active, if a disturbance has been detected and characterized as internal fault. 6.3.6.3 Supplementary criteria To relieve the burden of constructing an exact optimal operate-restrain characteristic, two special features supplement the basic stabilized differential protection function, making Generator differential protection GENPDIF (87G) a very reliable one.
  • Page 131 Section 6 1MRK 502 043-UUS B Differential protection sequence system, faults can be distinguished as internal or external, even for three- phase faults. The internal or external fault discriminator responds to the relative phase angles of the negative sequence fault currents at both ends of the stator winding. Observe that the source of the negative sequence currents at unsymmetrical faults is at the fault point.
  • Page 132 Section 6 1MRK 502 043-UUS B Differential protection 90 deg 120 deg NegSeqROA Angle could not be (Relay Operate Angle) measured. One or both currents too small Internal fault region 180 deg 0 deg IminNegSeq External fault region Internal / external fault boundary.
  • Page 133: Harmonic Restrain

    Section 6 1MRK 502 043-UUS B Differential protection protected generator. Operation of this protection is signaled on the output of the function as TRNSENS. 6.3.6.4 Harmonic restrain Harmonic restrain is the classical restrain method traditionally used with power transformer differential protections. The goal there was to prevent an unwanted trip command due to magnetizing inrush currents at switching operations, due to magnetizing currents at over-voltages, or external faults.
  • Page 134: Simplified Block Diagrams

    Section 6 1MRK 502 043-UUS B Differential protection 6.3.6.6 Simplified block diagrams The principle design of the generator differential protection is shown in figure 52. TRIP Signals Pickup Phasors IAN, IBN,ICN Magnitude phase Idiff and Ibias selective Calculation Diff.prot. Idiff and Ibias characteristic Phasors IAT, IBT,ICT PICKUP...
  • Page 135 Section 6 1MRK 502 043-UUS B Differential protection BLKUNRES IdUnre TRIPUNRE_A b>a IDMAG_A PU_A IBIAS BLOCK BLKRES TRIPRES_A 2nd and Harmonic Cross Block To B or C Cross Block from B or C OpCrossBlock=Yes ANSI07000020-3-en.vsd ANSI07000020 V3 EN Figure 53: Generator differential logic diagram 1.
  • Page 136: Technical Data

    Section 6 1MRK 502 043-UUS B Differential protection PU_A PICKUP PU_B PU_C BLKH_A BLKH BLKH_B BLKH_C en07000022_ansi.vsd ANSI07000022 V1 EN Figure 55: Generator differential logic diagram 3. TRIPRES_A TRIPRES_B TRIPRES TRIPRES_C TRIPUNRE_A TRIPUNRE TRIPUNRE_B TRIPUNRE_C TRIP TRNSSENS TRNSUNR en07000023_ansi.vsd ANSI07000023 V1 EN Figure 56: Generator differential logic diagram 4.
  • Page 137 Section 6 1MRK 502 043-UUS B Differential protection Function Range or value Accuracy Operate time, unrestrained function 20 ms typically at 0 to 5 x set level Reset time, unrestrained function 40 ms typically at 5 to 0 x set level Operate time, negative sequence 15 ms typically at 0 to unrestrained function...
  • Page 139: Underimpedance Protection For Generators And Transformers Zgcpdis (21G)

    Section 7 1MRK 502 043-UUS B Impedance protection Section 7 Impedance protection Underimpedance protection for generators and transformers ZGCPDIS (21G) 7.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Underimpedance protection for ZGCPDIS generators and transformers 7.1.2 Functionality The underimpedance protection for generators and transformers ZGCPDIS(21G), has...
  • Page 140: Function Block

    Section 7 1MRK 502 043-UUS B Impedance protection Operation area Operation area Operation area No operation area No operation area en07000117.vsd IEC07000117 V1 EN Figure 57: Load encroachment influence on the offset mho Z3 characteristic 7.1.3 Function block ZGCPDIS (21G) I3P* TRIP V3P*...
  • Page 141: Settings

    Section 7 1MRK 502 043-UUS B Impedance protection Table 41: ZGCPDIS (21G) Output signals Name Type Description TRIP BOOLEAN General trip TRZ1 BOOLEAN Trip signal Zone1 TRZ2 BOOLEAN Trip signal Zone2 TRZ3 BOOLEAN Trip signal Zone3 PICKUP BOOLEAN Pickup PU_Z1 BOOLEAN Start signal Zone1 PU_Z2...
  • Page 142: Operation Principle

    Section 7 1MRK 502 043-UUS B Impedance protection Table 44: ZGCPDIS (21G) Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 6 Selection of one of the Global Base Value groups 7.1.6 Operation principle 7.1.6.1 Full scheme measurement The execution of the different fault loops for phase-to-phase faults are executed in parallel.
  • Page 143: Basic Operation Characteristics

    Section 7 1MRK 502 043-UUS B Impedance protection Mho, zone3 Mho, zone2 Mho, zone1 IEC09000172_1_en.vsd IEC09000172 V1 EN Figure 59: Mho, offset mho characteristic Zone 3 can be equipped with a load encroachment function which cuts off a section of the characteristic when enabled.
  • Page 144 Section 7 1MRK 502 043-UUS B Impedance protection ImpedanceAng IEC10000176-2-en.vsd IEC10000176 V2 EN Figure 60: Mho, offset mho characteristic for Zone 1 with setting parameters Z1Fwd, Z1Rev and ImpedanceAng The measuring loops can be time delayed individually by setting the parameter tZx (where x is 1-3 depending on selected zone).
  • Page 145: Theory Of Operation

    Section 7 1MRK 502 043-UUS B Impedance protection 7.1.6.4 Theory of operation The mho algorithm is based on the phase comparison of a operating phasor and a polarizing phasor. When the operating phasor leads the polarizing phasor by more than 90 degrees, the function operates and gives a trip output.
  • Page 146: Technical Data

    Section 7 1MRK 502 043-UUS B Impedance protection AB· × ZxFwd Vcomp × ZxFwd ß × ZxRev Vcomp AB· × ZxRev ANSI09000174_2_en.vsd ANSI09000174 V2 EN Figure 61: Simplified offset mho characteristic and voltage vectors for phase A-to- B fault. Operation occurs if 90≤β≤270. 7.1.7 Technical data Table 45:...
  • Page 147: Loss Of Excitation Lexpdis (40)

    Section 7 1MRK 502 043-UUS B Impedance protection Loss of excitation LEXPDIS (40) 7.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Loss of excitation LEXPDIS < SYMBOL-MM V1 EN 7.2.2 Functionality There are limits for the low excitation of a synchronous machine. A reduction of the excitation current weakens the coupling between the rotor and the stator.
  • Page 148: Signals

    Section 7 1MRK 502 043-UUS B Impedance protection 7.2.4 Signals Table 46: LEXPDIS (40) Input signals Name Type Default Description GROUP Current group connection SIGNAL GROUP Voltage group connection SIGNAL BLOCK BOOLEAN Block of function BLKTRZ1 BOOLEAN Block trip of zone Z1 BLKTRZ2 BOOLEAN Block trip of zone Z2...
  • Page 149: Monitored Data

    Section 7 1MRK 502 043-UUS B Impedance protection Name Values (Range) Unit Step Default Description OperationZ2 Disabled Enabled Operation Disable/Enable zone Z2 Enabled XoffsetZ2 -1000.00 - 1000.00 0.01 -10.00 Offset of Z2 circle top point along X axis in % of Zbase Z2diameter 0.01 - 3000.00...
  • Page 150 Section 7 1MRK 502 043-UUS B Impedance protection Measured mode Measured apparent impedance posseq posseq posseq (Equation 31) EQUATION2051-ANSI V1 EN There are three characteristics in LEXPDIS (40) protection as shown in figure 63. Naimly: • Offset mho circle for Z1 •...
  • Page 151 Section 7 1MRK 502 043-UUS B Impedance protection In LEXPDIS (40) function the zone measurement is done as shown in figure 64. Offset XoffsetZ1 Z (apparent impedance) Z1 = Z - (XoffsetZ1 + Z1diameter Z1diameter/2) Z1 or Z2 en06000456-2.vsd IEC06000456 V2 EN Figure 64: Zone measurement in LEXPDIS (40) protection function The impedance Z1 is constructed from the measured apparent impedance Z and the...
  • Page 152 Section 7 1MRK 502 043-UUS B Impedance protection Underexcitation Protection Restrain area XoffsetDirLine DirAngle Z (apparent impedance) en06000457.vsd IEC06000457 V1 EN Figure 65: Impedance constructed as XoffsetDirLine in LEXPDIS (40) protection LEXPDIS (40) function is schematically described in figure 66. Technical Manual...
  • Page 153: Technical Data

    Section 7 1MRK 502 043-UUS B Impedance protection Positive pickupZ1 Z in TripZ1 sequence Z1 char. current phasor Positive Apparent pickupZ2 Z in TripZ2 sequence impedance Z2 char. voltage calculation phasor Dir. Restrain Dir.Restrain Enabled en06000458- 2_ansi.vsd ANSI06000458 V2 EN Figure 66: Simplified logic diagram of LEXPDIS (40) protection 7.2.8...
  • Page 154: Functionality

    Section 7 1MRK 502 043-UUS B Impedance protection 7.3.2 Functionality Out-of-step protection (OOSPPAM, 78) function in the IED can be used both for generator protection application as well as, line protection applications. The main purpose of the OOSPPAM, 78 function is to detect, evaluate, and take the required action during pole slipping occurrences in the power system.
  • Page 155: Oosppam Outputsignals

    Section 7 1MRK 502 043-UUS B Impedance protection 7.3.4.2 OOSPPAM OutputSignals Table 54: Output signals for the function block OOSPPAM (PSP1-) Signal Description TRIP Common trip, issued when either zone 1 or zone 2 give trip TRIPZ1 Zone 1 trip TRIPZ2 Zone 2 trip START...
  • Page 156 Section 7 1MRK 502 043-UUS B Impedance protection Table 56: Advanced general settings for the function OOSPPAM (PSP1-) Parameter Range Step Default Unit Description StartAngle 90.0 - 130.0 110.0 Angle between two rotors to get the start signal, in TripAngle 15.0 - 90.0 60.0 Maximum rotor angle to...
  • Page 157: Monitored Data

    Section 7 1MRK 502 043-UUS B Impedance protection 7.3.6 Monitored data Table 59: OOSPPAM (78) Monitored data Name Type Values (Range) Unit Description VOLTAGE REAL Magnitude of the measured positive-sequence voltage, in CURRENT REAL Magnitude of the measured positive-sequence current, in REAL Real part of measured positive-sequence impedance...
  • Page 158 Section 7 1MRK 502 043-UUS B Impedance protection ¬ trajectory of Z(R, X) to the 3rd The 2nd pole-slip X in Ohms The 1st pole slip pole slip occurred Pre-disturbance occurred normal load - - - - - - - - Z(R, X) - - - - - - - -...
  • Page 159 Section 7 1MRK 502 043-UUS B Impedance protection Rotor (power) angle δ can be thought of as the angle between the two lines, connecting point 0 in Figure 68, that is, Z(R, X) under normal load, with the points SE and RE, respectively.
  • Page 160: Lens Characteristic

    Section 7 1MRK 502 043-UUS B Impedance protection X [Ohm] Z(R,X) 20 ms fault relay after line out - - - - - - - - - - pre-fault - - - - - - - - - zone 2 - - - Z(R,X) - - -...
  • Page 161 Section 7 1MRK 502 043-UUS B Impedance protection Position of the OOS relay is the origin of - - - - - - - - - the R - X plane - - - - - - Zone 2 X-line determined Zline ®...
  • Page 162: Detecting An Out-Of-Step Condition

    Section 7 1MRK 502 043-UUS B Impedance protection Zeq(Req, Xeq), and the setting PickupAngle, for example 120 degrees. All impedances must be referred to the voltage level where the out-of-step protection relay is placed; in this case shown in Figure 72 this is the generator nominal voltage level.
  • Page 163: Maximum Slip Frequency

    Section 7 1MRK 502 043-UUS B Impedance protection results in a tendency to miss the 1st pole-slip, that one immediately after the fault has been cleared.) The above timing is used to discriminate a fault from an out-of-step condition. In Figure 68, some important points on the trajectory of Z(R, X) are designated.
  • Page 164: Taking Care Of The Circuit Breaker Safety

    Section 7 1MRK 502 043-UUS B Impedance protection PickupAngle = 130° → fsMax = 25 ⋅ 0.277 = 6.944 Hz The minimum value of fsMax is 6.994 Hz. When PickupAngle = 110degrees, fsMax = 7.777Hz. This implies, that the default PickupAngle = 110 degrees covers 90% of cases as, the typical final slip frequency is between 2 - 5Hz.
  • Page 165 Section 7 1MRK 502 043-UUS B Impedance protection The second method This method is more exact. If the break-time of the circuit breaker is known, (and specified as the setting tBreaker) than it is possible to initiate a trip (break) command almost exactly tBreaker milliseconds before the rotor (power) angle reaches 0 degrees, where the currents are at their minimum possible values.
  • Page 166: Design

    Section 7 1MRK 502 043-UUS B Impedance protection very high currents due pos. seq. current in kA to out-of-step condition trip command to CB rotor angle in radian ← after 1st pole slip fault cleared → ← 2nd current increases under fault conditions current decreases fault...
  • Page 167: Technical Data

    Section 7 1MRK 502 043-UUS B Impedance protection Calculation of Calculation of UPSRE UPSRE R and X parts R and X parts UPSIM UPSIM of the complex of the complex Z(R,X) Z(R,X) UPSMAG UPSMAG positive - positive - IPSRE IPSRE sequence sequence Z(R,X)
  • Page 168: Functionality

    Section 7 1MRK 502 043-UUS B Impedance protection 7.4.2 Functionality Heavy load transfer is common in many power networks and may make fault resistance coverage difficult to achieve. In such a case, Load encroachment (LEPDIS) function can be used to prevent operation of the of the underimpedance measuring zones during heavy loads.
  • Page 169: Operation Principle

    Section 7 1MRK 502 043-UUS B Impedance protection Table 64: LEPDIS Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 6 Selection of one of the Global Base Value groups 7.4.6 Operation principle The basic impedance algorithm for the operation of Load encroachment LEPDIS is the same as for the distance zone measuring function.
  • Page 170: Simplified Logic Diagrams

    Section 7 1MRK 502 043-UUS B Impedance protection LdAngle LdAngle LdAngle LdAngle ANSI10000144-2-en.vsd ANSI10000144 V2 EN Figure 77: Characteristic of load encroachment function The reach is limited by the minimum operation current and the distance measuring zones. 7.4.6.2 Simplified logic diagrams Figure schematically presents the creation of the phase-to-phase operating conditions.
  • Page 171: Technical Data

    Section 7 1MRK 502 043-UUS B Impedance protection Block I ³ 0.05 & & & ³ × phmax DLECND Bool to & BLOCK integer & I < 10 ms & 20 ms < × phmax ANSI10000226-2-en.vsd ANSI10000226 V2 EN Figure 78: Phase-to-phase AB operating conditions (residual current criteria) Special attention is paid to correct phase selection at evolving faults.
  • Page 173: Identification

    Section 8 1MRK 502 043-UUS B Current protection Section 8 Current protection Four step phase overcurrent protection 3-phase output OC4PTOC (51/67) 8.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Four step phase overcurrent protection OC4PTOC 51/67 3I>...
  • Page 174: Function Block

    Section 8 1MRK 502 043-UUS B Current protection 8.1.3 Function block OC4PTOC (51_67) I3P* TRIP V3P* TRST1 BLOCK TRST2 BLK1 TRST3 BLK2 TRST4 BLK3 PICKUP BLK4 PU_ST1 PU_ST2 PU_ST3 PU_ST4 PU_A PU_B PU_C 2NDHARM ANSI08000002-2-en.vsd ANSI08000002 V2 EN Figure 79: OC4PTOC (51/67) function block 8.1.4 Signals...
  • Page 175: Settings

    Section 8 1MRK 502 043-UUS B Current protection Name Type Description PU_ST1 BOOLEAN Start signal from step 1 PU_ST2 BOOLEAN Start signal from step 2 PU_ST3 BOOLEAN Start signal from step 3 PU_ST4 BOOLEAN Start signal from step 4 PU_A BOOLEAN Pickup signal from phase A PU_B...
  • Page 176 Section 8 1MRK 502 043-UUS B Current protection Name Values (Range) Unit Step Default Description DirModeSel2 Disabled Non-directional Directional mode of step 2 off / non- Non-directional directional / forward / reverse Forward Reverse Pickup2 5 - 2500 Phase current operate level for step 2 in % of IBase 0.000 - 60.000 0.001...
  • Page 177: Monitored Data

    Section 8 1MRK 502 043-UUS B Current protection Table 69: OC4PTOC (51_67) Group settings (advanced) Name Values (Range) Unit Step Default Description 2ndHarmStab 5 - 100 Pickup of second harm restraint in % of Fundamental HarmRestrain1 Disabled Disabled Enable block of step 1 from harmonic restrain Enabled HarmRestrain2 Disabled...
  • Page 178: Operation Principle

    Section 8 1MRK 502 043-UUS B Current protection 8.1.7 Operation principle The protection design can be decomposed in four parts: • The direction element • The harmonic Restraint Blocking function • The four step over current function • The mode selection If VT inputs are not available or not connected, setting parameter DirModeSelx shall be left to default value, Non-directional.
  • Page 179 Section 8 1MRK 502 043-UUS B Current protection overcurrent protection 3-phase output function OC4PTOC (51/67), it is possible to select the type of the measurement used for all overcurrent stages. It is possible to select either discrete Fourier filter (DFT) or true RMS filter (RMS). If DFT option is selected then only the RMS value of the fundamental frequency components of each phase current is derived.
  • Page 180 Section 8 1MRK 502 043-UUS B Current protection ref CA dir CA (Equation 35) ANSIEQUATION1451 V1 EN Phase-ground short circuit: dir A (Equation 36) ANSIEQUATION1452 V1 EN ref B dir B (Equation 37) ANSIEQUATION1453 V1 EN ref C dir C (Equation 38) ANSIEQUATION1454 V1 EN Technical Manual...
  • Page 181 Section 8 1MRK 502 043-UUS B Current protection ANSI09000636-1-en.vsd ANSI09000636 V1 EN Figure 81: Directional characteristic of the phase overcurrent protection 1 RCA = Relay characteristic angle 55° 2 ROA = Relay operating angle 80° 3 Reverse 4 Forward If no blockings are given the pickup signals will start the timers of the step. The time characteristic for step 1 and 4 can be chosen as definite time delay or inverse time characteristic.
  • Page 182: Technical Data

    Section 8 1MRK 502 043-UUS B Current protection Characteristx=DefTime 0-tx a>b Pickupx 0-txMin BLKSTx BLOCK Inverse Characteristx=Inverse STAGEx_DIR_Int DirModeSelx=Disabled DirModeSelx=Non-directional DirModeSelx=Forward FORWARD_Int DirModeSelx=Reverse REVERSE_Int ANSI12000008-1-en.vsd ANSI12000008-1-en.vsd ANSI12000008 V1 EN Figure 82: Simplified logic diagram for OC4PTOC 8.1.8 Technical data Table 72: OC4PTOC (51/67) technical data Function Setting range...
  • Page 183: Four Step Residual Overcurrent Protection, Zero, Negative Sequence Direction Ef4Ptoc (51N/67N)

    Section 8 1MRK 502 043-UUS B Current protection Function Setting range Accuracy Reset time, directional pickup 35 ms typically at 2 to 0 x I function Critical impulse time 10 ms typically at 0 to 2 x I Impulse margin time 15 ms typically Note: Timing accuracy only valid when 2nd harmonic blocking is turned off Four step residual overcurrent protection, zero,...
  • Page 184: Function Block

    Section 8 1MRK 502 043-UUS B Current protection Other setting combinations are possible, but not recommended. Second harmonic blocking restraint level can be set for the function and can be used to block each step individually. 8.2.3 Function block EF4PTOC (51N_67N) I3P* TRIP V3P*...
  • Page 185: Settings

    Section 8 1MRK 502 043-UUS B Current protection Table 74: EF4PTOC (51N_67N) Output signals Name Type Description TRIP BOOLEAN Common trip signal TRST1 BOOLEAN Trip signal from step 1 TRST2 BOOLEAN Trip signal from step 2 TRST3 BOOLEAN Trip signal from step 3 TRST4 BOOLEAN Trip signal from step 4...
  • Page 186 Section 8 1MRK 502 043-UUS B Current protection Name Values (Range) Unit Step Default Description DirModeSel1 Disabled Non-directional Directional mode of step 1 (off, non- Non-directional directional, forward, reverse) Forward Reverse Characterist1 ANSI Ext. inv. ANSI Def. Time Time delay curve type for step 1 ANSI Very inv.
  • Page 187 Section 8 1MRK 502 043-UUS B Current protection Name Values (Range) Unit Step Default Description HarmRestrain3 Disabled Enabled Enable block of step 3 from harmonic restrain Enabled DirModeSel4 Disabled Non-directional Directional mode of step 4 (off, non- Non-directional directional, forward, reverse) Forward Reverse Characterist4...
  • Page 188: Monitored Data

    Section 8 1MRK 502 043-UUS B Current protection 8.2.6 Monitored data Table 77: EF4PTOC (51N_67N) Monitored data Name Type Values (Range) Unit Description STDIR INTEGER 0=No direction Fault direction coded as 1=Forward integer 2=Reverse 3=Both REAL Operating current level VPol REAL Polarizing voltage level IPol...
  • Page 189: Internal Polarizing

    Section 8 1MRK 502 043-UUS B Current protection • parallel connection of current instrument transformers in all three phases (Holm-Green connection). • one single core balance, current instrument transformer (cable CT). • one single current instrument transformer located between power system WYE point and ground (that is, current transformer located in the neutral grounding of a WYE connected transformer winding).
  • Page 190 Section 8 1MRK 502 043-UUS B Current protection Voltage polarizing When voltage polarizing is selected the protection will use either the residual voltage or the negative sequence voltage V as polarizing quantity V3P. The residual voltage can be: directly measured (when a dedicated VT input of the IED is connected in PCM600 to the fourth analog input of the pre-processing block connected to EF4PTOC (51N/ 67N) function input V3P).
  • Page 191 Section 8 1MRK 502 043-UUS B Current protection The polarizing phasor is used together with the phasor of the operating directional current, in order to determine the direction to the ground fault (Forward/Reverse). In order to enable voltage polarizing the magnitude of polarizing voltage shall be bigger than a minimum level defined by setting parameter VpolMin.
  • Page 192: Operating Directional Quantity Within The Function

    Section 8 1MRK 502 043-UUS B Current protection × × Ipol = (IA+alpha IB+alpha IC)/3 (Equation 44) ANSIEQUATION2406 V2 EN where: IA, IB and IC are fundamental frequency phasors of three individual phase currents. alpha phasor with an angle of 120 degrees. The polarizing current is pre-processed by a discrete fourier filter.
  • Page 193: External Polarizing For Ground-Fault Function

    Section 8 1MRK 502 043-UUS B Current protection point and ground (current transformer located in the WYE point of a WYE connected transformer winding). • For some special line protection applications this dedicated IED CT input can be connected to parallel connection of current transformers in all three phases (Holm-Green connection).
  • Page 194: Base Quantities Within The Protection

    Section 8 1MRK 502 043-UUS B Current protection Distance protection directional function. Negative sequence based overcurrent function. 8.2.7.5 Base quantities within the protection The base quantities are entered as global settings for all functions in the IED. Base current (IBase) shall be entered as rated phase current of the protected object in primary amperes.
  • Page 195: Directional Supervision Element With Integrated Directional Comparison Function

    Section 8 1MRK 502 043-UUS B Current protection available. For the complete list of available inverse curves please refer to section "Inverse time characteristics". • Time delay related settings. By these parameter settings the properties like definite time delay, minimum operating time for inverse curves and reset time delay are defined.
  • Page 196 Section 8 1MRK 502 043-UUS B Current protection setting polMethod. The polarizing quantity will be selected by the function in one of the following three ways: When polMethod = Voltage, VPol will be used as polarizing quantity. When polMethod = Current, IPol will be used as polarizing quantity. WhenpolMethod = Dual, VPol + IPol ·...
  • Page 197 Section 8 1MRK 502 043-UUS B Current protection BLKTR Characteristx=DefTime 0-tx a>b Pickupx PU_STx 0-txMin BLKx BLOCK Inverse Characteristx=Inverse STAGEx_DIR_Int DirModeSelx=Disabled DirModeSelx=Non-directional DirModeSelx=Forward FORWARD_Int DirModeSelx=Reverse REVERSE_Int ANSI11000281-1-en.vsd ANSI11000281-1-en.vsd ANSI11000281 V1 EN Figure 86: Operating characteristic for ground-fault directional element using the zero sequence components Technical Manual...
  • Page 198 Section 8 1MRK 502 043-UUS B Current protection Operating area PUREV 0.6 * IDirPU Characteristic for reverse release of measuring steps -RCA -85 deg Characteristic for PUREV 40% of RCA +85 deg IDIR 65 deg pol = - -RCA +85 deg RCA -85 deg Characteristic for forward release of measuring steps...
  • Page 199 Section 8 1MRK 502 043-UUS B Current protection PUFW=1 when operating quantity magnitude Iop x cos(φ - AngleRCA) is bigger than setting parameter IDirPU and directional supervision element detects fault in forward direction. PUREV=1 when operating quantity magnitude Iop x cos(φ - AngleRCA) is bigger than 60% of setting parameter IDirPU and directional supervision element detects fault in reverse direction.
  • Page 200: Technical Data

    Section 8 1MRK 502 043-UUS B Current protection 8.2.8 Technical data Table 78: EF4PTOC (51N/67N) technical data Function Range or value Accuracy lBase Operate current (1-2500)% of ± 1.0% of I at I < I ± 1.0% of I at I > I Reset ratio >...
  • Page 201: Sensitive Directional Residual Overcurrent And Power Protection Sdepsde (67N)

    Section 8 1MRK 502 043-UUS B Current protection Sensitive directional residual overcurrent and power protection SDEPSDE (67N) 8.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Sensitive directional residual over SDEPSDE current and power protection 8.3.2 Functionality In isolated networks or in networks with high impedance grounding, the ground fault...
  • Page 202: Signals

    Section 8 1MRK 502 043-UUS B Current protection 8.3.4 Signals Table 79: SDEPSDE (67N) Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function BLKVN BOOLEAN...
  • Page 203 Section 8 1MRK 502 043-UUS B Current protection Name Values (Range) Unit Step Default Description RCADir -179 - 180 Relay characteristic angle RCA RCAComp -10.0 - 10.0 Relay characteristic angle compensation ROADir 0 - 90 Relay open angle ROA used as release in phase mode INCosPhiPU 0.25 - 200.00...
  • Page 204: Monitored Data

    Section 8 1MRK 502 043-UUS B Current protection Name Values (Range) Unit Step Default Description 0.000 - 60.000 0.001 0.100 Time delay for non-directional residual overvoltage INRelPU 0.25 - 200.00 0.01 1.00 Residual release current for all directional modes, in % of IBase VNRelPU 1.00 - 300.00 0.01...
  • Page 205 Section 8 1MRK 502 043-UUS B Current protection 8.3.7.2 Directional residual current protection measuring 3I ·cos φ φ is defined as the angle between the residual current 3I and the reference voltage. jRCADir Vref = -3V , that is -3V rotated by the set characteristic angle RCADir (φ=ang(3I )-ang(V...
  • Page 206 Section 8 1MRK 502 043-UUS B Current protection RCA = -90°, ROA = 90° = ang(3I ) – ang(V en06000649_ansi.vsd ANSI06000649 V1 EN Figure 91: RCADir set to -90° For trip, both the residual current 3I ·cos φ and the release voltage 3V , must be larger than the set levels: INCosPhiPU and VNRelPU.
  • Page 207 Section 8 1MRK 502 043-UUS B Current protection Operate area RCA = 0° ANSI06000650-2- en06000650_ansi.vsd ANSI06000650 V2 EN Figure 92: Characteristic with ROADir restriction The function indicates forward/reverse direction to the fault. Reverse direction is defined as 3I ·cos (φ + 180°) ≥ the set value. It is also possible to tilt the characteristic to compensate for current transformer angle error with a setting RCAComp as shown in the figure 93: Technical Manual...
  • Page 208 Section 8 1MRK 502 043-UUS B Current protection Operate area RCA = 0° Instrument transformer RCAcomp angle error Characteristic after angle compensation (to prot) (prim) en06000651_ansi.vsd ANSI06000651 V1 EN Figure 93: Explanation of RCAComp 8.3.7.3 Directional residual power protection measuring 3I ·...
  • Page 209 Section 8 1MRK 502 043-UUS B Current protection This sub-function has the possibility of choice between definite time delay and inverse time delay. The inverse time delay is defined as: TDSN cos ( reference ϕ ⋅ ⋅ ⋅ cos ( measured ϕ...
  • Page 210: Directional Functions

    Section 8 1MRK 502 043-UUS B Current protection The function indicate forward/reverse direction to the fault. Reverse direction is defined as φ is within the angle sector: RCADir + 180° ± ROADir This sub-function has definite time delay. 8.3.7.5 Directional functions For all the directional functions there are directional pickup signals PUFW: fault in the forward direction, and PUREV: Pickup in the reverse direction.
  • Page 211 Section 8 1MRK 502 043-UUS B Current protection When the function is activated binary output signal PUVN is activated. If the output signals are active after the set delay tVNNonDir TRIP and TRUN are activated. A simplified logical diagram of the total function is shown in figure 95. PUNDIN INNonDirPU 0 - t...
  • Page 212: Technical Data

    Section 8 1MRK 502 043-UUS B Current protection 8.3.8 Technical data Table 84: SDEPSDE (67N) technical data Function Range or value Accuracy lBase Operate level for 3I ·cosj (0.25-200.00)% of ± 1.0% of I at I £ I directional residual ±...
  • Page 213: Thermal Overload Protection, Two Time Constants Trpttr (49)

    Section 8 1MRK 502 043-UUS B Current protection Function Range or value Accuracy Operate time, non-directional 70 ms typically at 0.8 to 1.5 x U residual overvoltage Reset time, non-directional 120 ms typically at 1.2 to 0.8 x U residual overvoltage Operate time, directional 260 ms typically at 0.5 to 2 x I residual over current...
  • Page 214: Function Block

    Section 8 1MRK 502 043-UUS B Current protection Two warning pickup levels are available. This enables actions in the power system to be done before dangerous temperatures are reached. If the temperature continues to increase to the trip value, the protection initiates a trip of the protected transformer/ generator.
  • Page 215: Settings

    Section 8 1MRK 502 043-UUS B Current protection 8.4.5 Settings Table 87: TRPTTR (49) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Disable/Enable Operation Enabled IRef 10.0 - 1000.0 100.0 Reference current in % of IBase IBase1 30.0 - 250.0 100.0...
  • Page 216: Monitored Data

    Section 8 1MRK 502 043-UUS B Current protection 8.4.6 Monitored data Table 89: TRPTTR (49) Monitored data Name Type Values (Range) Unit Description TTRIP REAL Estimated time to trip (in min) TTRIPCAL INTEGER Calculated time status to trip: not active/long time/active TRESCAL INTEGER Calculated time status to...
  • Page 217 Section 8 1MRK 502 043-UUS B Current protection > Q final (Equation 51) EQUATION1172 V1 EN æ ö Q = Q × ç ÷ final è ø (Equation 52) EQUATION1173 V1 EN < Q final (Equation 53) EQUATION1174 V1 EN Q = Q ×...
  • Page 218 Section 8 1MRK 502 043-UUS B Current protection After a trip, caused by the thermal overload protection, there can be a lockout to reconnect the tripped circuit. The output lockout signal LOCKOUT is activated when the temperature of the object is above the set lockout release temperature setting ResLo. The time to lockout release is calculated, That is, a calculation of the cooling time to a set value.
  • Page 219 Section 8 1MRK 502 043-UUS B Current protection Final Temp PICKUP > TripTemp actual heat comtent Calculation of heat content Calculation of final temperature ALARM1 Actual Temp > Alarm1,Alarm2 ALARM2 Temp Current base used TRIP Actual Temp > TripTemp Binary input: LOCKOUT Forced cooling Enabled/...
  • Page 220: Technical Data

    Section 8 1MRK 502 043-UUS B Current protection 8.4.8 Technical data Table 90: TRPTTR (49) technical data Function Range or value Accuracy IBase Base current 1 and 2 (30–250)% of ± 1.0% of I Operate time: = load current before overload IEC 60255–8, ±5% + 200 ms occurs æ...
  • Page 221: Function Block

    Section 8 1MRK 502 043-UUS B Current protection Current check with extremely short reset time is used as check criterion to achieve high security against unnecessary operation. Contact check criteria can be used where the fault current through the breaker is small. Breaker failure protection, 3-phase activation and output (CCRBRF, 50BF) current criteria can be fulfilled by one or two phase currents the residual current, or one phase current plus residual current.
  • Page 222: Settings

    Section 8 1MRK 502 043-UUS B Current protection 8.5.5 Settings Table 93: CCRBRF (50BF) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Disable/Enable Operation Enabled FunctionMode Current Current Detection principle for back-up trip Contact Current&Contact BuTripMode 2 out of 4 1 out of 3...
  • Page 223: Operation Principle

    Section 8 1MRK 502 043-UUS B Current protection 8.5.7 Operation principle Breaker failure protection, 3-phase activation and output CCRBRF (50BF) is initiated from protection trip command, either from protection functions within the IED or from external protection devices. The initiate signal is general for all three phases. A re-trip attempt can be made after a set time delay.
  • Page 224: Technical Data

    Section 8 1MRK 502 043-UUS B Current protection Pickup_PH a>b FunctionMode Current Reset A Contact Time out A Current and Contact Current High A CB Closed A BFP Started A a>b Pickup_BlkCont 52a_A Contact Closed A ANSI09000977-1-en.vsd ANSI09000977 V1 EN Figure 99: Simplified logic scheme of the CCRBRF (50BF), CB position evaluation TRRET_C...
  • Page 225: Pole Discrepancy Protection Ccrpld (52Pd)

    Section 8 1MRK 502 043-UUS B Current protection Function Range or value Accuracy lBase Phase current pickup for (5-200)% of ± 1.0% of I at I £ I blocking of contact ± 1.0% of I at I > I function Reset ratio >...
  • Page 226: Function Block

    Section 8 1MRK 502 043-UUS B Current protection 8.6.3 Function block CCRPLD (52PD) I3P* TRIP BLOCK PICKUP CLOSECMD OPENCMD EXTPDIND ANSI08000041-1-en.vsd ANSI08000041 V1 EN Figure 101: CCRPLD (52PD) function block 8.6.4 Signals Table 98: CCRPLD (52PD) Input signals Name Type Default Description GROUP...
  • Page 227: Monitored Data

    Section 8 1MRK 502 043-UUS B Current protection Name Values (Range) Unit Step Default Description CurrentSel Disabled Disabled Current function selection CB oper monitor Continuous monitor CurrUnsymPU 0 - 100 Unsym magn of lowest phase current compared to the highest. CurrRelPU 0 - 100 Current magnitude for release of the function...
  • Page 228 Section 8 1MRK 502 043-UUS B Current protection C.B. poleDiscrepancy Signal from C.B. ANSI_en05000287.vsd ANSI05000287 V1 EN Figure 102: Pole discrepancy external detection logic This binary signal is connected to a binary input of the IED. The appearance of this signal will start a timer that will give a trip signal after the set time delay.
  • Page 229: Pole Discrepancy Signaling From Circuit Breaker

    Section 8 1MRK 502 043-UUS B Current protection PD Signal from CB EXTPDIND 150 ms 0-Trip CLOSECMD tTrip+200 ms OPENCMD CB oper monitor Unsymmetrical current detection ANSI08000014-2-en.vsd ANSI08000014 V2 EN Figure 103: Simplified block diagram of pole discrepancy function - contact and current based The pole discrepancy protection is blocked if the input signal BLOCK is high.
  • Page 230: Unsymmetrical Current Detection

    Section 8 1MRK 502 043-UUS B Current protection 8.6.7.2 Unsymmetrical current detection Unsymmetrical current indicated if: • any phase current is lower than CurrUnsymPU of the highest current in the three phases. • the highest phase current is greater than CurrRelPU of IBase. If these conditions are true, an unsymmetrical condition is detected.
  • Page 231: Directional Overpower Protection Goppdop (32)

    Section 8 1MRK 502 043-UUS B Current protection reactive power flow in the power system. There are a number of applications where such functionality is needed. Some of them are: • detection of reversed active power flow • detection of high reactive power flow Each function has two steps with definite time delay.
  • Page 232: Signals

    Section 8 1MRK 502 043-UUS B Current protection 8.7.2.3 Signals Table 104: GOPPDOP (32) Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function BLK1 BOOLEAN...
  • Page 233: Monitored Data

    Section 8 1MRK 502 043-UUS B Current protection Name Values (Range) Unit Step Default Description Power2 0.0 - 500.0 Power setting for stage 2 in % of calculated power base value Angle2 -180.0 - 180.0 Characteristic angle for stage 2 TripDelay2 0.010 - 6000.000 0.001...
  • Page 234: Identification

    Section 8 1MRK 502 043-UUS B Current protection 8.7.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Directional underpower protection GUPPDUP P < SYMBOL-LL V1 EN 8.7.3.2 Function block GUPPDUP (37) I3P* TRIP V3P* TRIP1 BLOCK TRIP2 BLK1...
  • Page 235: Settings

    Section 8 1MRK 502 043-UUS B Current protection Name Type Description PICKUP1 BOOLEAN Pickup signal from stage 1 PICKUP2 BOOLEAN Pickup signal from stage 2 REAL Active Power PPERCENT REAL Active power in % of calculated power base value REAL Reactive power QPERCENT REAL...
  • Page 236: Monitored Data

    Section 8 1MRK 502 043-UUS B Current protection Table 114: GUPPDUP (37) Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 6 Selection of one of the Global Base Value groups Mode A, B, C Pos Seq Mode of measurement for current and voltage Arone...
  • Page 237 Section 8 1MRK 502 043-UUS B Current protection Chosen current phasors Derivation of Complex S( angle) S( angle) < TRIP 1 S( composant) power Chosen voltage Power1 calculation in Char angle phasors PICKUP1 S( angle) < TRIP2 Power2 PICKUP2 P = POWRE Q = POWIM ANSI06000438-2-en.vsd ANSI06000438 V2 EN...
  • Page 238: Low Pass Filtering

    Section 8 1MRK 502 043-UUS B Current protection Mode Set value: Formula used for complex power calculation × (Equation 63) EQUATION2060-ANSI V1 EN = × × (Equation 64) EQUATION2061-ANSI V1 EN = × × (Equation 65) EQUATION2062-ANSI V1 EN = × ×...
  • Page 239: Technical Data

    Section 8 1MRK 502 043-UUS B Current protection will make slower measurement response to the step changes in the measured quantity. Filtering is performed in accordance with the following recursive formula: S TD S TD S ⋅ − ⋅ Calculated (Equation 67) EQUATION1959-ANSI V1 EN Where...
  • Page 240: Functionality

    Section 8 1MRK 502 043-UUS B Current protection 8.8.2 Functionality Inadvertent or accidental energizing of off-line generators has occurred often enough due to operating errors, breaker head flashovers, control circuit malfunctions, or a combination of these causes. Inadvertently energized generator operates as induction motor drawing a large current from the system.
  • Page 241: Settings

    Section 8 1MRK 502 043-UUS B Current protection 8.8.5 Settings Table 120: AEGGAPC (50AE) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Disable/Enable Operation Enabled IPickup 2 - 900 Phase current pickup in % of IBase 0.000 - 60.000 0.001 0.030...
  • Page 242: Technical Data

    Section 8 1MRK 502 043-UUS B Current protection three phases is larger than IPickup for the period tOC then the TRIP signal becomes activated. Also PICKUP signal becomes activated when overcurrent is detected. When the maximum phase-to-phase voltage is larger than 59_Drop_out for the period tDisarm, it is ensured generator is on line.
  • Page 243: Negative-Sequence Time Overcurrent Protection For Machines Ns2Ptoc (46I2)

    Section 8 1MRK 502 043-UUS B Current protection Function Range or value Accuracy Impulse margin time, 15 ms typically overcurrent Operate value, (2-200)% of VBase ± 0.5% of V at V<V undervoltage ± 0.5% of V at V>V Critical impulse time, 10 ms typically at 2 to 0 x V undervoltage Impulse margin time,...
  • Page 244: Function Block

    Section 8 1MRK 502 043-UUS B Current protection To provide an effective protection for the generator for external unbalanced conditions, NS2PTOC (46I2) is able to directly measure the negative sequence current. NS2PTOC (46I2) also has a time delay characteristic which matches the heating characteristic of the generator as defined in standard IEEE C50.13.
  • Page 245: Settings

    Section 8 1MRK 502 043-UUS B Current protection Table 125: NS2PTOC (46I2) Output signals Name Type Description TRIP BOOLEAN Common trip signal TRST1 BOOLEAN Trip signal for step 1 TRST2 BOOLEAN Trip sognal for step 2 PICKUP BOOLEAN Common start signal PU_ST1 BOOLEAN Pickup signal for step 1...
  • Page 246: Monitored Data

    Section 8 1MRK 502 043-UUS B Current protection Table 127: NS2PTOC (46I2) Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 6 Selection of one of the Global Base Value groups 8.9.6 Monitored data Table 128: NS2PTOC (46I2) Monitored data Name Type...
  • Page 247 Section 8 1MRK 502 043-UUS B Current protection When the parameter CurveType1 is set to Inverse, an inverse curve is selected according to selected value for parameter K1. The minimum trip time setting of parameter t1Min and reset time parameter ResetMultip1 also influence step operation. However, to match the heating characteristics of the generator, the reset time is depending on the setting of parameter K1, which must be set according to the generators negative sequence current capacity.
  • Page 248: Pickup Sensitivity

    Section 8 1MRK 502 043-UUS B Current protection       ResetMultip ⋅ ResetTime s K K 1        −        Pickup (Equation 68) ANSIEQUATION2111 V1 EN Where is the measured negative sequence current is the desired pickup level in pu of rated generator current...
  • Page 249: Logic Diagram

    Section 8 1MRK 502 043-UUS B Current protection 8.9.7.3 Logic diagram DT time 0-t1 selected TRST1 Negative sequence current a>b PU_ST1 I2-1> Inverse Operation=Enabled Inverse time selected BLK1 BLOCK ANSI08000466-3-en.vsd ANSI08000466 V3 EN Figure 111: Simplified logic diagram for step 1 of Negative sequence time overcurrent protection for machines (NS2PTOC, 46I2) Step 2 for Negative sequence time overcurrent protection for machines (NS2PTOC, 46I2) is similar to step 1 above except that it lacks the inverse characteristic.
  • Page 250: Voltage-Restrained Time Overcurrent Protection Vr2Pvoc(51V)

    Section 8 1MRK 502 043-UUS B Current protection Function Range or value Accuracy Time characteristics Definite or Inverse Inverse time K=1.0-99.0 ± 3% or ± 40 ms characteristic step 1, 1 ≤ K ≤ 20 Reset time, inverse K=0.01-20.00 ± 10% or ± 50 ms characteristic step 1, 1 ≤...
  • Page 251: Function Block

    Section 8 1MRK 502 043-UUS B Current protection 8.10.3 Function block VR2PVOC (51V) I3P* TRIP V3P* TROC BLOCK 27 Trip BLKOC PICKUP BLKUV PU_OC 27 PU IMAX VUmin ANSI10000118-1-en.vsd ANSI10000118 V2 EN Figure 113: VR2PVOC(51V) function block 8.10.4 Signals Table 130: Input signals for the function block VR2PVOC (VRC1-) Signal Description...
  • Page 252 Section 8 1MRK 502 043-UUS B Current protection Table 133: Basic parameter group settings for the function VR2PVOC (VRC1-) Parameter Range Step Default Unit Description Operation Operation Off / On StartCurr 2.0 - 5000.0 120.0 Start current level in % of IBase Characterist ANSI Ext.
  • Page 253: Monitored Data

    Section 8 1MRK 502 043-UUS B Current protection 8.10.6 Monitored data Table 135: VR2PVOC(51V) Monitored data Name Type Values (Range) Unit Description IMAX REAL Maximum phase current magnitude VUmin REAL Minimum ph-to-ph voltage magnitude 8.10.7 Operation principle 8.10.7.1 Measured quantities The voltage-restrained time overcurrent protection (VR2PVOC, 51V) function is always connected to three-phase current and three-phase voltage input in the configuration tool (ACT), but it will always measure the maximum of the three-phase...
  • Page 254 Section 8 1MRK 502 043-UUS B Current protection Current Pickup Level PickupCurr VDepFact * PickupCurr 0,25 VHighLimit VBase ANSI10000123-1-en.vsd ANSI10000123 V1 EN Figure 114: Example for current pickup level variation as function of measured voltage magnitude in Slope mode of operation •...
  • Page 255: Logic Diagram

    Section 8 1MRK 502 043-UUS B Current protection current value for the calculation of operate times for IDMT curves (the overcurrent with IDMT curve operates faster during low voltage conditions). 8.10.7.4 Logic diagram DEF time 0-tDef_OC selected TROC MaxPhCurr PU_OC a>b PickupCurr Inverse...
  • Page 256: Undervoltage Protection

    Section 8 1MRK 502 043-UUS B Current protection 8.10.7.5 Undervoltage protection The undervoltage step simply compares the magnitude of the measured voltage quantity with the set pickup level. The undervoltage step picks up if the magnitude of the measured voltage quantity is smaller than the set level. The pickup signal starts a definite time delay.
  • Page 257: Two Step Undervoltage Protection Uv2Ptuv (27)

    Section 9 1MRK 502 043-UUS B Voltage protection Section 9 Voltage protection Two step undervoltage protection UV2PTUV (27) 9.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Two step undervoltage protection UV2PTUV 2U< SYMBOL-R-2U-GREATER-THAN V1 EN 9.1.2 Functionality Undervoltages can occur in the power system during faults or abnormal conditions.
  • Page 258: Signals

    Section 9 1MRK 502 043-UUS B Voltage protection 9.1.4 Signals Table 137: UV2PTUV (27) Input signals Name Type Default Description GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function BLK1 BOOLEAN Block of step 1 BLK2 BOOLEAN Block of step 2...
  • Page 259: Monitored Data

    Section 9 1MRK 502 043-UUS B Voltage protection Name Values (Range) Unit Step Default Description t1Min 0.000 - 60.000 0.001 5.000 Minimum operate time for inverse curves for step 1 0.05 - 1.10 0.01 0.05 Time multiplier for the inverse time delay for step 1 OperationStep2 Disabled...
  • Page 260: Measurement Principle

    Section 9 1MRK 502 043-UUS B Voltage protection settable for step 1 and can be either definite or inverse time delayed. Step 2 is always definite time delayed. UV2PTUV (27) can be set to measure phase-to-ground fundamental value, phase-to- phase fundamental value, phase-to-ground true RMS value or phase-to-phase true RMS value.
  • Page 261: Blocking

    Section 9 1MRK 502 043-UUS B Voltage protection < - Vpickup < Vpickup (Equation 71) ANSIEQUATION1431 V1 EN The type B curve is described as: × 0.055 æ ö Vpickup < -V × ç ÷ è ø < Vpickup (Equation 72) EQUATION1608 V1 EN The lowest voltage is always used for the inverse time delay integration.
  • Page 262 Section 9 1MRK 502 043-UUS B Voltage protection VA or VAB Comparator PU_ST1_A Phase A V < Pickup1 Voltage Phase Selector PU_ST1_B VB or VBC OpMode1 Comparator Phase B V < Pickup1 1 out of 3 PU_ST1_C 2 out of 3 Pickup Phase C VC or VCA...
  • Page 263: Technical Data

    Section 9 1MRK 502 043-UUS B Voltage protection 9.1.8 Technical data Table 142: UV2PTUV (27) technical data Function Range or value Accuracy VBase Operate voltage, low and (1–100)% of ± 0.5% of V high step Reset ratio <105% Inverse time See table characteristics for low and high step, see...
  • Page 264: Function Block

    Section 9 1MRK 502 043-UUS B Voltage protection OV2PTOV (59) has two voltage steps, where step 1 can be set as inverse or definite time delayed. Step 2 is always definite time delayed. OV2PTOV (59) has an extremely high reset ratio to allow settings close to system service voltage.
  • Page 265: Settings

    Section 9 1MRK 502 043-UUS B Voltage protection 9.2.5 Settings Table 145: OV2PTOV (59) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Disable/Enable Operation Enabled OperationStep1 Disabled Enabled Enable execution of step 1 Enabled Characterist1 Definite time Definite time Selection of time delay curve type for step 1...
  • Page 266: Monitored Data

    Section 9 1MRK 502 043-UUS B Voltage protection 9.2.6 Monitored data Table 147: OV2PTOV (59) Monitored data Name Type Values (Range) Unit Description REAL Voltage in phase A REAL Voltage in phase B REAL Voltage in phase C 9.2.7 Operation principle Two step overvoltage protection OV2PTOV (59) is used to detect high power system voltage.
  • Page 267: Measurement Principle

    Section 9 1MRK 502 043-UUS B Voltage protection When phase-to-ground voltage measurement is selected the function automatically introduces division of the base value by the square root of three. 9.2.7.1 Measurement principle All the three voltages are measured continuously, and compared with the set values, Pickup1 and Pickup2.
  • Page 268: Blocking

    Section 9 1MRK 502 043-UUS B Voltage protection The highest phase (or phase-to-phase) voltage is always used for the inverse time delay integration, see Figure 121. The details of the different inverse time characteristics are shown in section "Inverse time characteristics" Voltage Inverse Time Voltage Time...
  • Page 269: Design

    Section 9 1MRK 502 043-UUS B Voltage protection 9.2.7.4 Design The voltage measuring elements continuously measure the three phase-to-ground voltages or the three phase-to-phase voltages. Recursive Fourier filters filter the input voltage signals. The phase voltages are individually compared to the set value, and the highest voltage is used for the inverse time characteristic integration.
  • Page 270 Section 9 1MRK 502 043-UUS B Voltage protection Comparator PU_ST1_A VA or VAB V > Pickup1 Phase A Voltage Phase Selector PU_ST1_B Comparator OpMode1 VB or VBC Phase B V > Pickup1 1 out of 3 PU_ST1_C 2 outof 3 Pickup Phase C 3 out of 3...
  • Page 271: Technical Data

    Section 9 1MRK 502 043-UUS B Voltage protection 9.2.8 Technical data Table 148: OV2PTOV (59) technical data Function Range or value Accuracy VBase Operate voltage, low and (1-200)% of ± 0.5% of V at V < V high step ± 0.5% of V at V > V Reset ratio >95% Inverse time...
  • Page 272: Function Block

    Section 9 1MRK 502 043-UUS B Voltage protection Two step residual overvoltage protection ROV2PTOV (59N) function calculates the residual voltage from the three-phase voltage input transformers or measures it from a single voltage input transformer fed from a broken delta or neutral point voltage transformer.
  • Page 273: Settings

    Section 9 1MRK 502 043-UUS B Voltage protection 9.3.5 Settings Table 151: ROV2PTOV (59N) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Disable/Enable Operation Enabled OperationStep1 Disabled Enabled Enable execution of step 1 Enabled Characterist1 Definite time Definite time Selection of time delay curve type for step 1...
  • Page 274: Measurement Principle

    Section 9 1MRK 502 043-UUS B Voltage protection adding the input phase voltages. 3V may also be input single phase by either measuring directly from a voltage transformer in the neutral of a power transformer, or from a secondary broken delta connection of a transformer with a wye-grounded primary.
  • Page 275: Blocking

    Section 9 1MRK 502 043-UUS B Voltage protection ⋅ 0 035 V Vpickup − > ⋅ − Vpickup > (Equation 80) ANSIEQUATION2288 V2 EN The details of the different inverse time characteristics are shown in section "Inverse time characteristics". TRIP signal issuing requires that the residual overvoltage condition continues for at least the user set time delay.
  • Page 276 Section 9 1MRK 502 043-UUS B Voltage protection Comparator Phase 1 PU_ST1 VN > Pickup1 TRST1 Pickup PICKUP & Trip Output Time integrator Logic TRIP Step 1 PU_ST2 Comparator Phase 1 TRST2 VN > Pickup2 Pickup PICKUP & Trip PICKUP Output Logic Timer...
  • Page 277: Technical Data

    Section 9 1MRK 502 043-UUS B Voltage protection 9.3.8 Technical data Table 154: ROV2PTOV (59N) technical data Function Range or value Accuracy VBase Operate voltage, step 1 (1-200)% of ± 0.5% of V at V < V ± 0.5% of V at V > V Operate voltage, step 2 (1–100)% of VBase...
  • Page 278: Functionality

    Section 9 1MRK 502 043-UUS B Voltage protection 9.4.2 Functionality When the laminated core of a power transformer or generator is subjected to a magnetic flux density beyond its design limits, stray flux will flow into non-laminated components not designed to carry flux and cause eddy currents to flow. The eddy currents can cause excessive heating and severe damage to insulation and adjacent parts in a relatively short time.
  • Page 279: Settings

    Section 9 1MRK 502 043-UUS B Voltage protection 9.4.5 Settings Table 157: OEXPVPH (24) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disable / Enable Enabled Pickup1 100.0 - 180.0 %VB/f 110.0 Operate level of V/Hz at no load and rated freq in % of (Vbase/frated) Pickup2 100.0 - 200.0...
  • Page 280: Operation Principle

    Section 9 1MRK 502 043-UUS B Voltage protection 9.4.7 Operation principle The importance of Overexcitation protection (OEXPVPH, 24) function is growing as the power transformers as well as other power system elements today operate most of the time near their designated limits. Modern design transformers are more sensitive to overexcitation than earlier types.
  • Page 281 Section 9 1MRK 502 043-UUS B Voltage protection step-up transformer), and if this fails, or if this is not possible, the TRIP signal will disconnect the transformer from the source after a delay ranging from seconds to minutes, typically 5-10 seconds. Overexcitation protection may be of particular concern on directly connected generator unit transformers.
  • Page 282: Measured Voltage

    Section 9 1MRK 502 043-UUS B Voltage protection overexcited as long as the relative excitation is M ≤ Pickup1, Pickup1 expressed in % of Vn/fn. It is assumed that overexcitation is a symmetrical phenomenon, caused by events such as loss-of-load, etc. It will be observed that a high phase-to-ground voltage does not mean overexcitation.
  • Page 283 Section 9 1MRK 502 043-UUS B Voltage protection × × 0.18 0.18 æ ö overexcitation ç ÷ è ø PUV Hz (Equation 86) ANSIEQUATION2298 V2 EN where: the relative excitation Pickup1 Operate level of over-excitation function at no load in % of (/f rated is time multiplier for inverse time functions, see figure 127.
  • Page 284 Section 9 1MRK 502 043-UUS B Voltage protection be allowed. In case the inverse delay is longer than 1800 seconds, OEXPVPH (24) trips t_MaxTripDelay, see figure 126. A definite minimum time, t_MinTripDelay, can be used to limit the operate time at high degrees of overexcitation for Pickup1.
  • Page 285: Cooling

    Section 9 1MRK 502 043-UUS B Voltage protection Pickup2 f 1.40 Vn/fn (Equation 88) ANSIEQUATION2286 V1 EN 9.4.7.3 Cooling Overexcitation protection function (OEXPVPH, 24) is basically a thermal protection; therefore a cooling process has been introduced. Exponential cooling process is applied, with a default time constant of 20 minutes.
  • Page 286: Overexcitation Alarm

    Section 9 1MRK 502 043-UUS B Voltage protection at low degrees of overexcitation, the very long delay is limited by 30 minutes, then the TRIP output signal of OEXPVPH (24) will be set to 1 and TMTOTRIP will reach 0 seconds before THERMSTA reaches 100%.
  • Page 287: Technical Data

    Section 9 1MRK 502 043-UUS B Voltage protection 9.4.8 Technical data Table 160: OEXPVPH (24) technical data Function Range or value Accuracy VBase /f Pickup value, pickup (100–180)% of ( ± 0.5% of V Pickup value, alarm (50–120)% of pickup level ±...
  • Page 288 Section 9 1MRK 502 043-UUS B Voltage protection In normal non-faulted operation of the generating unit the neutral point voltage is close to zero, and there is no zero sequence current flow in the generator. When a phase-to- ground fault occurs the neutral point voltage will increase and there will be a current flow through the neutral point resistor.
  • Page 289: Function Block

    Section 9 1MRK 502 043-UUS B Voltage protection 9.5.3 Function block STEFPHIZ (59THD) NEUTVOLT* TRIP TERMVOLT* TRIP3H TRIP_VN BLOCK PICKUP BLOCK3RD PU_3H BLOCKVN PU_VN ANSI07000033 -3-en.vsd ANSI07000033 V3 EN Figure 130: STEFPHIZ (59THD) function block 9.5.4 Signals Table 161: STEFPHIZ (59THD) Input signals Name Type Default...
  • Page 290: Settings

    Section 9 1MRK 502 043-UUS B Voltage protection 9.5.5 Settings Table 163: STEFPHIZ (59THD) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Disable/Enable Operation Enabled Beta 0.50 - 10.00 0.01 3.00 Portion of 3rd harm voltage in neutral point used as bias CBexists Defines if generator CB exists (between Gen...
  • Page 291: Monitored Data

    Section 9 1MRK 502 043-UUS B Voltage protection 9.5.6 Monitored data Table 165: STEFPHIZ (59THD) Monitored data Name Type Values (Range) Unit Description REAL Mag. of 3rd harm. voltage at generator terminal side REAL Mag. of 3rd harm. voltage at generator neutral side REAL Total induced stator 3rd...
  • Page 292 Section 9 1MRK 502 043-UUS B Voltage protection - DV 3T,A 3T,B 3T,C en06000448_ansi.vsd ANSI06000448 V1 EN Figure 131: Generator 3 harmonic voltage characteristic at normal operation The generator is modeled as parts of a winding where a 3 harmonic voltage is induced along the winding, represented by the end voltages V (voltage drop across resistor) and V...
  • Page 293 Section 9 1MRK 502 043-UUS B Voltage protection ³ Beta (Equation 91) EQUATION2359-ANSI V1 EN , and V are third harmonic phasors with real and imaginary parts. The factor Beta must be set not to risk operation under non-faulted conditions. The voltage V is measured via a voltage transformer between the generator neutral point and ground.
  • Page 294 Section 9 1MRK 502 043-UUS B Voltage protection Samples: Generator TRIP terminal harmonic Stator Complex VT3 voltage Fourier Ground filtering Fault TRIP3H giving VT3 detection TRIPVN harmonic Pickup based Pickup and trip logic PU3H Samples: Generator PU_VN neutral point harmonic Complex VN3 voltage Fourier...
  • Page 295 Section 9 1MRK 502 043-UUS B Voltage protection Beta ç V3N ç b ³ a ç V3N+V3T ç PU3H TRIP3H VT3BlkLevel a ³ b ç V3T ç PICKUP TRIP VNFundPU PU_VN b ³ a TRIPVN ANSI07000001-2-en.vsd ANSI07000001 V2 EN Figure 133: Simplified Pickup and Trip logical diagram of the STEFPHIZ (59THD) protection There are two different cases of generator block configuration;...
  • Page 296: Technical Data

    Section 9 1MRK 502 043-UUS B Voltage protection With the circuit breaker open, the total capacitance will be smaller compared to normal operating conditions. This means that the neutral point 3 harmonic voltage will be reduced compared to the normal operating condition. Therefore, there is a possibility to reduce the sensitivity of the protection when the generator circuit breaker is open.
  • Page 297: Underfrequency Protection Saptuf (81)

    Section 10 1MRK 502 043-UUS B Frequency protection Section 10 Frequency protection 10.1 Underfrequency protection SAPTUF (81) 10.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Underfrequency protection SAPTUF f < SYMBOL-P V1 EN 10.1.2 Functionality Underfrequency occurs as a result of a lack of sufficient generation in the network.
  • Page 298: Signals

    Section 10 1MRK 502 043-UUS B Frequency protection 10.1.4 Signals Table 167: SAPTUF (81) Input signals Name Type Default Description GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function Table 168: SAPTUF (81) Output signals Name Type Description...
  • Page 299: Measurement Principle

    Section 10 1MRK 502 043-UUS B Frequency protection the set time delay the TRIP signal is issued. To avoid an unwanted trip due to uncertain frequency measurement at low voltage magnitude, a voltage controlled blocking of the function is available from the preprocessing function, that is, if the voltage is lower than the set blocking voltage in the preprocessing function, the function is blocked and no PICKUP or TRIP signal is issued.
  • Page 300: Design

    Section 10 1MRK 502 043-UUS B Frequency protection 10.1.7.4 Design The design of underfrequency protection SAPTUF (81) is schematically described in figure 136. BLOCK BLKDMAGN BLOCK freqNotValid Pickup PICKUP & PICKUP DefiniteTimeDelay Trip Frequency Comparator Output f < PUFrequency TimeDlyOperate Logic TRIP TRIP...
  • Page 301: Overfrequency Protection Saptof (81)

    Section 10 1MRK 502 043-UUS B Frequency protection 10.2 Overfrequency protection SAPTOF (81) 10.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Overfrequency protection SAPTOF f > SYMBOL-O V1 EN 10.2.2 Functionality Overfrequency protection function SAPTOF (81) is applicable in all situations, where reliable detection of high fundamental power system frequency is needed.
  • Page 302: Settings

    Section 10 1MRK 502 043-UUS B Frequency protection Table 173: SAPTOF (81) Output signals Name Type Description TRIP BOOLEAN Common trip signal BOOLEAN General pickup signal BLKDMAGN BOOLEAN Measurement blocked due to low amplitude 10.2.5 Settings Table 174: SAPTOF (81) Group settings (basic) Name Values (Range) Unit...
  • Page 303: Time Delay

    Section 10 1MRK 502 043-UUS B Frequency protection preprocessing function, which is discussed in the Basic IED Functions chapter and is set as a percentage of a global base voltage parameter VBase, SAPTOF (81) is blocked, and the output BLKDMAGN is issued. All voltage settings are made in percent of the global parameter VBase.
  • Page 304: Technical Data

    Section 10 1MRK 502 043-UUS B Frequency protection BLOCK BLOCK BLKDMAGN freqNotValid Pickup & Trip Output Logic PICKUP PICKUP Definite Time Delay Frequency Comparator f > PUFrequency TimeDlyOperate TRIP TRIP ANSI09000033-1-en.vsd ANSI09000033 V1 EN Figure 138: Schematic design of overfrequency protection SAPTOF (81) 10.2.8 Technical data Table 176:...
  • Page 305: Identification

    Section 10 1MRK 502 043-UUS B Frequency protection 10.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Rate-of-change frequency protection SAPFRC df/dt > < SYMBOL-N V1 EN 10.3.2 Functionality Rate-of-change frequency protection function (SAPFRC,81) gives an early indication of a main disturbance in the system.
  • Page 306: Settings

    Section 10 1MRK 502 043-UUS B Frequency protection Table 178: SAPFRC (81) Output signals Name Type Description TRIP BOOLEAN Operate/trip signal for frequency gradient PICKUP BOOLEAN Start/pick-up signal for frequency gradient RESTORE BOOLEAN Restore signal for load restoring purposes BLKDMAGN BOOLEAN Blocking indication due to low magnitude 10.3.5...
  • Page 307: Time Delay

    Section 10 1MRK 502 043-UUS B Frequency protection negative value, and a trip signal has been issued, then a 100 ms pulse is issued on the RESTORE output, when the frequency recovers to a value higher than the setting RestoreFreq. A positive setting of PUFreqGrad, sets SAPFRC (81) to PICKUP and TRIP for frequency increases.
  • Page 308: Design

    Section 10 1MRK 502 043-UUS B Frequency protection 10.3.6.3 Design BLOCK BLOCK BLKDMAGN freqNotValid Pickup Rate-of-Change & Comparator of Frequency Trip Output Definite Time Delay PICKUP [PUFreqGrad<0 PICKUP Logic tTrip df/dt < PUFreqGrad] [PUFreqGrad>0 TRIP df/dt > PUFreqGrad] Then PICKUP 100 ms Frequency Comparator...
  • Page 309: Fuse Failure Supervision Sddrfuf

    Section 11 1MRK 502 043-UUS B Secondary system supervision Section 11 Secondary system supervision 11.1 Fuse failure supervision SDDRFUF 11.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Fuse failure supervision SDDRFUF 11.1.2 Functionality The aim of the fuse failure supervision function (SDDRFUF) is to block voltage measuring functions at failures in the secondary circuits between the voltage transformer and the IED in order to avoid unwanted operations that otherwise might occur.
  • Page 310: Function Block

    Section 11 1MRK 502 043-UUS B Secondary system supervision A criterion based on delta current and delta voltage measurements can be added to the fuse failure supervision function in order to detect a three phase fuse failure, which in practice is more associated with voltage transformer switching during station operations. 11.1.3 Function block SDDRFUF...
  • Page 311: Settings

    Section 11 1MRK 502 043-UUS B Secondary system supervision 11.1.5 Settings Table 183: SDDRFUF Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Enabled Disable/Enable Operation Enabled OpModeSel Disabled V0I0 Operating mode selection V2I2 V0I0 V0I0 OR V2I2 V0I0 AND V2I2 OptimZsNs 3V0PU...
  • Page 312: Monitored Data

    Section 11 1MRK 502 043-UUS B Secondary system supervision 11.1.6 Monitored data Table 185: SDDRFUF Monitored data Name Type Values (Range) Unit Description REAL Magnitude of zero sequence current REAL Magnitude of negative sequence current REAL Magnitude of zero sequence voltage REAL Magnitude of negative...
  • Page 313: Delta Current And Delta Voltage Detection

    Section 11 1MRK 502 043-UUS B Secondary system supervision Sequence Detection 3I0PU CurrZeroSeq Zero sequence filter CurrNegSeq a>b 100 ms Negative sequence filter FuseFailDetZeroSeq a>b 100 ms 3I2PU FuseFailDetNegSeq 3V0PU VoltZeroSeq Zero sequence a>b filter VoltNegSeq Negative sequence a>b filter 3V2PU ANSI10000036-2-en.vsd ANSI10000036 V2 EN...
  • Page 314 Section 11 1MRK 502 043-UUS B Secondary system supervision • The magnitude of the phase-ground voltage has been above VPPU for more than 1.5 cycle • The magnitude of DV is higher than the setting DVPU • The magnitude of DI is below the setting DIPU and at least one of the following conditions are fulfilled: •...
  • Page 315 Section 11 1MRK 502 043-UUS B Secondary system supervision DVDI Detection DVDI detection Phase 1 One cycle delay |DI| a>b DIPU One cycle delay |DV| a>b DVPU a>b 20 ms 1.5 cycle VPPU DVDI detection Phase 2 Same logic as for phase 1 DVDI detection Phase 3 Same logic as for phase 1 a<b...
  • Page 316: Dead Line Detection

    Section 11 1MRK 502 043-UUS B Secondary system supervision 11.1.7.3 Dead line detection A simplified diagram for the functionality is found in figure 144. A dead phase condition is indicated if both the voltage and the current in one phase is below their respective setting values VDLDPU and IDLDPU.
  • Page 317 Section 11 1MRK 502 043-UUS B Secondary system supervision • V0I0 OR V2I2; Both negative and zero sequence is activated and working in parallel in an OR-condition • V0I0 AND V2I2; Both negative and zero sequence is activated and working in series (AND-condition for operation) •...
  • Page 318 Section 11 1MRK 502 043-UUS B Secondary system supervision prolongs the presence of MCBOP signal to prevent the unwanted operation of voltage dependent function due to non simultaneous closing of the main contacts of the miniature circuit breaker. The input signal 89b is supposed to be connected via a terminal binary input to the N.C.
  • Page 319 Section 11 1MRK 502 043-UUS B Secondary system supervision Fuse failure detection Main logic TEST TEST ACTIVE BlocFuse = Yes intBlock BLOCK All VP < VSealInPU SealIn = Enabled Any VP < VsealInPU FuseFailDetDVDI OpDVDI = Enabled 5 sec FuseFailDetZeroSeq FuseFailDetNegSeq V2I2 V0I0...
  • Page 320: Technical Data

    Section 11 1MRK 502 043-UUS B Secondary system supervision Figure 145: Simplified logic diagram for fuse failure supervision function, Main logic 11.1.8 Technical data Table 186: SDDRFUF technical data Function Range or value Accuracy Operate voltage, zero sequence (1-100)% of VBase ±...
  • Page 321: Function Block

    Section 11 1MRK 502 043-UUS B Secondary system supervision 11.2.3 Function block GUID-6F85BD70-4D18-4A00-A410-313233025F3A V2 EN Figure 146: Function block 11.2.4 Signals Table 187: TCSSCBR Input signals Name Type Default Description TCS_STATE BOOLEAN Trip circuit fail indication from I/O-card BLOCK BOOLEAN Block of function Table 188: TCSSCBR Output signals...
  • Page 322: Technical Data

    Section 11 1MRK 502 043-UUS B Secondary system supervision TCS_STATE status Timer ALARM BLOCK ANSI11000289 V1 EN Figure 147: Functional module diagram Trip circuit supervision generates a current of approximately 1.0 mA through the supervised circuit. It must be ensured that this current will not cause a latch up of the controlled object.
  • Page 323: Synchronism Check, Energizing Check, And Synchronizing Sesrsyn (25)

    Section 12 1MRK 502 043-UUS B Control Section 12 Control 12.1 Synchronism check, energizing check, and synchronizing SESRSYN (25) 12.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Synchrocheck, energizing check, and SESRSYN synchronizing sc/vc SYMBOL-M V1 EN 12.1.2 Functionality...
  • Page 324: Function Block

    Section 12 1MRK 502 043-UUS B Control 12.1.3 Function block SESRSYN (25) V3PB1* SYNOK V3PB2* AUTOSYOK V3PL1* AUTOENOK V3PL2* MANSYOK BLOCK MANENOK BLKSYNCH TSTSYNOK BLKSC TSTAUTSY BLKENERG TSTMANSY BUS1_OP TSTENOK BUS1_CL VSELFAIL BUS2_OP B1SEL BUS2_CL B2SEL LINE1_OP L1SEL LINE1_CL L2SEL LINE2_OP SYNPROGR LINE2_CL...
  • Page 325 Section 12 1MRK 502 043-UUS B Control Name Type Default Description BUS1_OP BOOLEAN Open status for CB or disconnector connected to bus1 BUS1_CL BOOLEAN Close status for CB and disconnector connected to bus1 BUS2_OP BOOLEAN Open status for CB or disconnector connected to bus2 BUS2_CL BOOLEAN Close status for CB and disconnector connected to bus2...
  • Page 326: Settings

    Section 12 1MRK 502 043-UUS B Control Name Type Description B2SEL BOOLEAN Bus2 selected L1SEL BOOLEAN Line1 selected L2SEL BOOLEAN Line2 selected SYNPROGR BOOLEAN Synchronizing in progress SYNFAIL BOOLEAN Synchronizing failed FRDIFSYN BOOLEAN Frequency difference out of limit for synchronizing FRDERIVA BOOLEAN Frequency derivative out of limit for synchronizing...
  • Page 327 Section 12 1MRK 502 043-UUS B Control Name Values (Range) Unit Step Default Description OperationSynch Disabled Disabled Operation for synchronizing function Off/On Enabled FreqDiffMin 0.003 - 0.250 0.001 0.010 Minimum frequency difference limit for synchronizing FreqDiffMax 0.050 - 0.500 0.001 0.200 Maximum frequency difference limit for synchronizing...
  • Page 328: Monitored Data

    Section 12 1MRK 502 043-UUS B Control Table 194: SESRSYN (25) Non group settings (basic) Name Values (Range) Unit Step Default Description GblBaseSelBus 1 - 6 Selection of one of the Global Base Value groups, Bus GblBaseSelLine 1 - 6 Selection of one of the Global Base Value groups, Line SelPhaseBus1...
  • Page 329: Operation Principle

    Section 12 1MRK 502 043-UUS B Control 12.1.7 Operation principle 12.1.7.1 Basic functionality The synchronism check function measures the conditions across the circuit breaker and compares them to set limits. The output is only given when all measured quantities are simultaneously within their set limits.
  • Page 330 Section 12 1MRK 502 043-UUS B Control If both sides are higher than the set values, the measured values are compared with the set values for acceptable frequency, phase angle and voltage difference: FreqDiff, PhaseDiffand VDiffSC. If a compensation factor is set due to the use of different voltages on the bus and line, the factor is deducted from the line voltage before the comparison of the phase angle values.
  • Page 331: Synchronizing

    Section 12 1MRK 502 043-UUS B Control Note! Similar logic for Manual Synchrocheck. OperationSC = Enabled TSTSC BLKSC BLOCK AUTOSYOK 0-tSCA VDiffSC 50 ms Bus voltage >80% of GblBaseSelBus VOKSC Line voltage >80% of GblBaseSelLine VDIFFSC FRDIFFA FreqDiffA PHDIFFA PhaseDiffA VDIFFME voltageDifferenceValue FRDIFFME...
  • Page 332 Section 12 1MRK 502 043-UUS B Control difference between bus and line is acceptable, the measured values are also compared with the set values for acceptable frequency FreqDiffMax and FreqDiffMin, rate of change of frequency FreqRateChange and phase angle, which has to be smaller than the internally preset value of 15 degrees.
  • Page 333: Energizing Check

    Section 12 1MRK 502 043-UUS B Control 12.1.7.4 Energizing check Voltage values are measured in the IED centrally and are available for evaluation by the Synchronism check function. The function measures voltages on the busbar and the line to verify whether they are live or dead.
  • Page 334: Voltage Selection

    Section 12 1MRK 502 043-UUS B Control 12.1.7.6 Voltage selection The voltage selection module including supervision of included voltage transformer fuses for the different arrangements is a basic part of the SESRSYN (25) function and determines the parameters fed to the Synchronizing, Synchrocheck and Energizing check functions.
  • Page 335: Voltage Selection For A Breaker-And-A-Half Circuit Breaker Arrangement

    Section 12 1MRK 502 043-UUS B Control BUS1_OP B1SEL BUS1_CL BUS2_OP B2SEL BUS2_CL invalidSelection bus1Voltage busVoltage bus2Voltage VB1OK VB1FF selectedFuseOK VB2OK VB2FF VSELFAIL VL1OK VL1FF BLOCK en05000779_ansi.vsd ANSI05000779 V1 EN Figure 151: Logic diagram for the voltage selection function of a single circuit breaker with double busbars 12.1.7.8 Voltage selection for a breaker-and-a-half circuit breaker arrangement Note that with breaker-and-a-half schemes two Synchronism check functions must be...
  • Page 336 Section 12 1MRK 502 043-UUS B Control The fuse supervision is connected to VL1OK-VL1FF, VL2OK-VL2FF and with alternative Healthy or Failing fuse signals depending on what is available from each fuse (MCB). The tie circuit breaker is connected either to bus 1 or line 1 on one side and the other side is connected either to bus 2 or line 2.
  • Page 337 Section 12 1MRK 502 043-UUS B Control LINE1_OP L1SEL LINE1_CL BUS1_OP L2SEL BUS1_CL B2SEL LINE2_OP LINE2_CL invalidSelection BUS2_OP BUS2_CL line1Voltage lineVoltage line2Voltage bus2Voltage VB1OK VB1FF VB2OK selectedFuseOK VB2FF VSELFAIL VL1OK VL1FF VL2OK VL2FF BLOCK en05000780_ansi.vsd ANSI05000780 V1 EN Figure 152: Simplified logic diagram for the voltage selection function for a bus circuit breaker in a breaker-and- a-half arrangement Technical Manual...
  • Page 338 Section 12 1MRK 502 043-UUS B Control LINE1_OP L1SEL LINE1_CL B1SEL BUS1_OP BUS1_CL line1Voltage busVoltage bus1Voltage LINE2_OP L2SEL LINE2_CL B2SEL invalidSelection BUS2_OP BUS2_CL line2Voltage lineVoltage bus2Voltage VB1OK VB1FF VB2OK selectedFuseOK VB2FF VSELFAIL VL1OK VL1FF VL2OK VL2FF BLOCK en05000781_ansi.vsd ANSI05000781 V1 EN Figure 153: Simplified logic diagram for the voltage selection function for the tie circuit breaker in breaker-and-a- half arrangement.
  • Page 339: Technical Data

    Section 12 1MRK 502 043-UUS B Control 12.1.8 Technical data Table 196: SESRSYN (25) technical data Function Range or value Accuracy Phase shift, j (-180 to 180) degrees line Voltage ratio, V 0.500 - 2.000 line Reset ratio, synchronism check >...
  • Page 340: Apparatus Control

    Section 12 1MRK 502 043-UUS B Control Function Range or value Accuracy Operate time for energizing 80 ms typically function Minimum time to accept (0.000-60.000) s ± 0.5% ± 10 ms synchronizing conditions Maximum allowed frequency rate (0.000-0.500) Hz/s ± 10.0 mHz/s of change 12.2 Apparatus control...
  • Page 341: Function Block

    Section 12 1MRK 502 043-UUS B Control 12.2.2.3 Function block QCBAY LR_OFF PSTO LR_LOC UPD_BLKD LR_REM CMD_BLKD LR_VALID BL_UPD BL_CMD IEC09000080_1_en.vsd IEC09000080 V1 EN Figure 154: QCBAY function block 12.2.2.4 Signals Table 197: QCBAY Input signals Name Type Default Description LR_OFF BOOLEAN External Local/Remote switch is in Off position...
  • Page 342: Local Remote Locrem

    Section 12 1MRK 502 043-UUS B Control 12.2.3 Local remote LOCREM 12.2.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Local remote LOCREM 12.2.3.2 Functionality The signals from the local HMI or from an external local/remote switch are applied via the function blocks LOCREM and LOCREMCTRL to the Bay control (QCBAY) function block.
  • Page 343: Settings

    Section 12 1MRK 502 043-UUS B Control 12.2.3.5 Settings Table 202: LOCREM Non group settings (basic) Name Values (Range) Unit Step Default Description ControlMode Internal LR-switch Internal LR-switch Control mode for internal/external LR-switch External LR-switch 12.2.4 Local remote control LOCREMCTRL 12.2.4.1 Identification Function description...
  • Page 344: Signals

    Section 12 1MRK 502 043-UUS B Control 12.2.4.4 Signals Table 203: LOCREMCTRL Input signals Name Type Default Description PSTO1 INTEGER PSTO input channel 1 PSTO2 INTEGER PSTO input channel 2 PSTO3 INTEGER PSTO input channel 3 PSTO4 INTEGER PSTO input channel 4 PSTO5 INTEGER PSTO input channel 5...
  • Page 345: Operation Principle

    Section 12 1MRK 502 043-UUS B Control 12.2.5 Operation principle 12.2.5.1 Bay control QCBAY The functionality of the Bay control (QCBAY) function is not defined in the IEC 61850– 8–1 standard, which means that the function is a vendor specific logical node. The function sends information about the Permitted Source To Operate (PSTO) and blocking conditions to other functions within the bay for example, switch control functions, voltage control functions and measurement functions.
  • Page 346: Local Remote/Local Remote Control Locrem Locremctrl

    Section 12 1MRK 502 043-UUS B Control Table 205: PSTO values for different Local panel switch positions Local panel switch PSTO value AllPSTOValid Possible locations that shall be able to positions (configuration operate parameter) 0 = Off Not possible to operate 1 = Local FALSE Local Panel...
  • Page 347: Logic Rotating Switch For Function Selection And Lhmi Presentation Slggio

    Section 12 1MRK 502 043-UUS B Control LOCREM QCBAY CTRLOFF LR_ OFF PSTO LOCCTRL LOCAL LR_ LOC UPD_ BLKD REMCTRL REMOTE LR_ REM CMD_ BLKD LHMICTRL VALID LR_ VALID BL_ UPD BL_ CMD LOCREMCTRL PSTO1 HMICTR1 PSTO2 HMICTR2 PSTO3 HMICTR3 PSTO4 HMICTR4 PSTO5...
  • Page 348: Functionality

    Section 12 1MRK 502 043-UUS B Control 12.3.2 Functionality The logic rotating switch for function selection and LHMI presentation (SLGGIO) (or the selector switch function block) is used to get a selector switch functionality similar to the one provided by a hardware selector switch. Hardware selector switches are used extensively by utilities, in order to have different functions operating on pre-set values.
  • Page 349 Section 12 1MRK 502 043-UUS B Control Table 207: SLGGIO Output signals Name Type Description BOOLEAN Selector switch position 1 BOOLEAN Selector switch position 2 BOOLEAN Selector switch position 3 BOOLEAN Selector switch position 4 BOOLEAN Selector switch position 5 BOOLEAN Selector switch position 6 BOOLEAN...
  • Page 350: Settings

    Section 12 1MRK 502 043-UUS B Control 12.3.5 Settings Table 208: SLGGIO Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Enable/Disable Enabled NrPos 2 - 32 Number of positions in the switch OutType Pulsed Steady Output type, steady or pulse...
  • Page 351: Selector Mini Switch Vsggio

    Section 12 1MRK 502 043-UUS B Control through the PSTO input. If any operation is allowed the signal INTONE from the Fixed signal function block can be connected. SLGGIO function block has also an integer value output, that generates the actual position number. The positions and the block names are fully settable by the user.
  • Page 352: Settings

    Section 12 1MRK 502 043-UUS B Control Table 211: VSGGIO Output signals Name Type Description BLOCKED BOOLEAN The function is active but the functionality is blocked POSITION INTEGER Position indication, integer POS1 BOOLEAN Position 1 indication, logical signal POS2 BOOLEAN Position 2 indication, logical signal CMDPOS12 BOOLEAN...
  • Page 353: Iec 61850 Generic Communication I/O Functions Dpggio

    Section 12 1MRK 502 043-UUS B Control It is important for indication in the SLD that the a symbol is associated with a controllable object, otherwise the symbol won't be displayed on the screen. A symbol is created and configured in GDE tool in PCM600. The PSTO input is connected to the Local remote switch to have a selection of operators place, operation from local HMI (Local) or through IEC 61850 (Remote).
  • Page 354: Function Block

    Section 12 1MRK 502 043-UUS B Control 12.5.3 Function block DPGGIO OPEN POSITION CLOSE VALID IEC09000075_1_en.vsd IEC09000075 V1 EN Figure 159: DPGGIO function block 12.5.4 Signals Table 213: DPGGIO Input signals Name Type Default Description OPEN BOOLEAN Open indication CLOSE BOOLEAN Close indication VALID...
  • Page 355: Single Point Generic Control 8 Signals Spc8Ggio

    Section 12 1MRK 502 043-UUS B Control 12.6 Single point generic control 8 signals SPC8GGIO 12.6.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Single point generic control 8 signals SPC8GGIO 12.6.2 Functionality The Single point generic control 8 signals (SPC8GGIO) function block is a collection of 8 single point commands, designed to bring in commands from REMOTE (SCADA) to those parts of the logic configuration that do not need extensive command receiving functionality (for example, SCSWI).
  • Page 356: Settings

    Section 12 1MRK 502 043-UUS B Control Table 216: SPC8GGIO Output signals Name Type Description OUT1 BOOLEAN Output 1 OUT2 BOOLEAN Output2 OUT3 BOOLEAN Output3 OUT4 BOOLEAN Output4 OUT5 BOOLEAN Output5 OUT6 BOOLEAN Output6 OUT7 BOOLEAN Output7 OUT8 BOOLEAN Output8 12.6.5 Settings Table 217:...
  • Page 357: Operation Principle

    Section 12 1MRK 502 043-UUS B Control 12.6.6 Operation principle The PSTO input selects the operator place (LOCAL, REMOTE or ALL). One of the eight outputs is activated based on the command sent from the operator place selected. The settings Latchedx and tPulsex (where x is the respective output) will determine if the signal will be pulsed (and how long the pulse is) or latched (steady).
  • Page 358: Function Block

    Section 12 1MRK 502 043-UUS B Control 12.7.3 Function block AUTOBITS BLOCK ^CMDBIT1 PSTO ^CMDBIT2 ^CMDBIT3 ^CMDBIT4 ^CMDBIT5 ^CMDBIT6 ^CMDBIT7 ^CMDBIT8 ^CMDBIT9 ^CMDBIT10 ^CMDBIT11 ^CMDBIT12 ^CMDBIT13 ^CMDBIT14 ^CMDBIT15 ^CMDBIT16 ^CMDBIT17 ^CMDBIT18 ^CMDBIT19 ^CMDBIT20 ^CMDBIT21 ^CMDBIT22 ^CMDBIT23 ^CMDBIT24 ^CMDBIT25 ^CMDBIT26 ^CMDBIT27 ^CMDBIT28 ^CMDBIT29 ^CMDBIT30...
  • Page 359: Settings

    Section 12 1MRK 502 043-UUS B Control Name Type Description CMDBIT4 BOOLEAN Command out bit 4 CMDBIT5 BOOLEAN Command out bit 5 CMDBIT6 BOOLEAN Command out bit 6 CMDBIT7 BOOLEAN Command out bit 7 CMDBIT8 BOOLEAN Command out bit 8 CMDBIT9 BOOLEAN Command out bit 9...
  • Page 360: Operation Principle

    Section 12 1MRK 502 043-UUS B Control 12.7.6 Operation principle Automation bits function (AUTOBITS) has 32 individual outputs which each can be mapped as a Binary Output point in DNP3. The output is operated by a "Object 12" in DNP3. This object contains parameters for control-code, count, on-time and off-time. To operate an AUTOBITS output point, send a control-code of latch-On, latch-Off, pulse- On, pulse-Off, Trip or Close.
  • Page 361: Signals

    Section 12 1MRK 502 043-UUS B Control 12.8.3 Signals Table 221: I103CMD Input signals Name Type Default Description BLOCK BOOLEAN Block of commands Table 222: I103CMD Output signals Name Type Description 16-AR BOOLEAN Information number 16, block of autorecloser 17-DIFF BOOLEAN Information number 17, block of differential protection 18-PROT...
  • Page 362: Signals

    Section 12 1MRK 502 043-UUS B Control 12.9.3 Signals Table 224: I103IEDCMD Input signals Name Type Default Description BLOCK BOOLEAN Block of commands Table 225: I103IEDCMD Output signals Name Type Description 19-LEDRS BOOLEAN Information number 19, reset LEDs 23-GRP1 BOOLEAN Information number 23, activate setting group 1 24-GRP2 BOOLEAN...
  • Page 363: Function Block

    Section 12 1MRK 502 043-UUS B Control 12.10.2 Function block I103USRCMD BLOCK ^OUTPUT1 ^OUTPUT2 ^OUTPUT3 ^OUTPUT4 ^OUTPUT5 ^OUTPUT6 ^OUTPUT7 ^OUTPUT8 IEC10000284-1-en.vsd IEC10000284 V1 EN Figure 164: I103USRCMD function block 12.10.3 Signals Table 227: I103USRCMD Input signals Name Type Default Description BLOCK BOOLEAN Block of commands...
  • Page 364: Function Commands Generic For Iec 60870-5-103 I103Gencmd

    Section 12 1MRK 502 043-UUS B Control Name Values (Range) Unit Step Default Description InfNo_2 1 - 255 Information number for output 2 (1-255) InfNo_3 1 - 255 Information number for output 3 (1-255) InfNo_4 1 - 255 Information number for output 4 (1-255) InfNo_5 1 - 255 Information number for output 5 (1-255)
  • Page 365: Settings

    Section 12 1MRK 502 043-UUS B Control 12.11.4 Settings Table 232: I103GENCMD Non group settings (basic) Name Values (Range) Unit Step Default Description FunctionType 1 - 127 Function type (1-255) PulseLength 0.000 - 60.000 0.001 0.400 Pulse length InfNo 32 - 239 Information number for command output (1-255) 12.12...
  • Page 366: Settings

    Section 12 1MRK 502 043-UUS B Control 12.12.4 Settings Table 234: I103POSCMD Non group settings (basic) Name Values (Range) Unit Step Default Description FunctionType 1 - 255 Fucntion type (1-255) InfNo 160 - 196 Information number for command output (1-255) Technical Manual...
  • Page 367: Tripping Logic Common 3-Phase Output Smpptrc (94)

    Section 13 1MRK 502 043-UUS B Logic Section 13 Logic 13.1 Tripping logic common 3-phase output SMPPTRC (94) 13.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Tripping logic common 3-phase output SMPPTRC I->O SYMBOL-K V1 EN 13.1.2 Functionality A function block for protection tripping is provided for each circuit breaker involved in...
  • Page 368: Signals

    Section 13 1MRK 502 043-UUS B Logic 13.1.4 Signals Table 235: SMPPTRC (94) Input signals Name Type Default Description BLOCK BOOLEAN Block of function TRINP_3P BOOLEAN Trip all phases SETLKOUT BOOLEAN Input for setting the circuit breaker lockout function RSTLKOUT BOOLEAN Input for resetting the circuit breaker lockout function Table 236:...
  • Page 369: Technical Data

    Section 13 1MRK 502 043-UUS B Logic binary inputs, are routed. It has a single trip output (TRIP) for connection to one or more of the IEDs binary outputs, as well as to other functions within the IED requiring this signal. ANSI05000789 V2 EN Figure 168: Simplified logic diagram for three pole trip...
  • Page 370: Functionality

    Section 13 1MRK 502 043-UUS B Logic 13.2.2 Functionality The Trip matrix logic TMAGGIO function is used to route trip signals and other logical output signals to the tripping logics SMPPTRC and SPTPTRC or to different output contacts on the IED. TMAGGIO output signals and the physical outputs allows the user to adapt the signals to the physical tripping outputs according to the specific application needs.
  • Page 371: Signals

    Section 13 1MRK 502 043-UUS B Logic 13.2.4 Signals Table 240: TMAGGIO Input signals Name Type Default Description INPUT1 BOOLEAN Binary input 1 INPUT2 BOOLEAN Binary input 2 INPUT3 BOOLEAN Binary input 3 INPUT4 BOOLEAN Binary input 4 INPUT5 BOOLEAN Binary input 5 INPUT6 BOOLEAN...
  • Page 372: Settings

    Section 13 1MRK 502 043-UUS B Logic Table 241: TMAGGIO Output signals Name Type Description OUTPUT1 BOOLEAN OR function betweeen inputs 1 to 16 OUTPUT2 BOOLEAN OR function between inputs 17 to 32 OUTPUT3 BOOLEAN OR function between inputs 1 to 32 13.2.5 Settings Table 242:...
  • Page 373 Section 13 1MRK 502 043-UUS B Logic always active and will delay the input to output transition by the set time. The ModeOutput for respective output decides whether the output shall be steady with an drop-off delay as set by OffDelay or if it shall give a pulse with duration set by PulseTime.
  • Page 374: Configurable Logic Blocks

    Section 13 1MRK 502 043-UUS B Logic 13.3 Configurable logic blocks 13.3.1 Standard configurable logic blocks 13.3.1.1 Functionality A number of logic blocks and timers are available for the user to adapt the configuration to the specific application needs. • OR function block.
  • Page 375: Or Function Block

    Section 13 1MRK 502 043-UUS B Logic 13.3.1.2 OR function block Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number OR Function block Functionality The OR function is used to form general combinatory expressions with boolean variables.
  • Page 376: Inverter Function Block Inverter

    Section 13 1MRK 502 043-UUS B Logic Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600). 13.3.1.3 Inverter function block INVERTER Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number...
  • Page 377: Controllable Gate Function Block Gate

    Section 13 1MRK 502 043-UUS B Logic Functionality The pulse function can be used, for example for pulse extensions or limiting of operation of outputs. The PULSETIMER has a settable length. Function block PULSETIMER INPUT IEC09000291-1-en.vsd IEC09000291 V1 EN Figure 173: PULSETIMER function block Signals Table 247:...
  • Page 378: Exclusive Or Function Block Xor

    Section 13 1MRK 502 043-UUS B Logic Function block GATE INPUT IEC09000295-1-en.vsd IEC09000295 V1 EN Figure 174: GATE function block Signals Table 250: GATE Input signals Name Type Default Description INPUT BOOLEAN Input signal Table 251: GATE Output signals Name Type Description BOOLEAN...
  • Page 379: Loop Delay Function Block Loopdelay

    Section 13 1MRK 502 043-UUS B Logic Function block INPUT1 INPUT2 NOUT IEC09000292-1-en.vsd IEC09000292 V1 EN Figure 175: XOR function block Signals Table 253: XOR Input signals Name Type Default Description INPUT1 BOOLEAN Input signal 1 INPUT2 BOOLEAN Input signal 2 Table 254: XOR Output signals Name...
  • Page 380: Timer Function Block Timerset

    Section 13 1MRK 502 043-UUS B Logic Signals Table 255: LOOPDELAY Input signals Name Type Default Description INPUT BOOLEAN Input signal Table 256: LOOPDELAY Output signals Name Type Description BOOLEAN Output signal, signal is delayed one execution cycle Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600).
  • Page 381: And Function Block

    Section 13 1MRK 502 043-UUS B Logic Function block TIMERSET INPUT IEC09000290-1-en.vsd IEC09000290 V1 EN Figure 178: TIMERSET function block Signals Table 257: TIMERSET Input signals Name Type Default Description INPUT BOOLEAN Input signal Table 258: TIMERSET Output signals Name Type Description BOOLEAN...
  • Page 382: Set-Reset Memory Function Block Srmemory

    Section 13 1MRK 502 043-UUS B Logic Default value on all four inputs are logical 1 which makes it possible for the user to just use the required number of inputs and leave the rest un-connected. The output OUT has a default value 0 initially, which suppresses one cycle pulse if the function has been put in the wrong execution order.
  • Page 383 Section 13 1MRK 502 043-UUS B Logic Functionality The Set-Reset function SRMEMORY is a flip-flop with memory that can set or reset an output from two inputs respectively. Each SRMEMORY function block has two outputs, where one is inverted. The memory setting controls if the flip-flop after a power interruption will return the state it had before or if it will be reset.
  • Page 384: Reset-Set With Memory Function Block Rsmemory

    Section 13 1MRK 502 043-UUS B Logic Settings Table 265: SRMEMORY Group settings (basic) Name Values (Range) Unit Step Default Description Memory Operating mode of the memory function 13.3.1.11 Reset-set with memory function block RSMEMORY Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification...
  • Page 385: Technical Data

    Section 13 1MRK 502 043-UUS B Logic Signals Table 267: RSMEMORY Input signals Name Type Default Description BOOLEAN Input signal to set RESET BOOLEAN Input signal to reset Table 268: RSMEMORY Output signals Name Type Description BOOLEAN Output signal NOUT BOOLEAN Inverted output signal Settings...
  • Page 386: Fixed Signals Fxdsign

    Section 13 1MRK 502 043-UUS B Logic 13.4 Fixed signals FXDSIGN 13.4.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Fixed signals FXDSIGN 13.4.2 Functionality The Fixed signals function (FXDSIGN) generates a number of pre-set (fixed) signals that can be used in the configuration of an IED, either for forcing the unused inputs in other function blocks to a certain level/value, or for creating certain logic.
  • Page 387: Settings

    Section 13 1MRK 502 043-UUS B Logic Name Type Description STRNULL STRING String signal with no characters ZEROSMPL GROUP SIGNAL Channel id for zero sample GRP_OFF GROUP SIGNAL Group signal fixed off 13.4.5 Settings The function does not have any settings available in Local HMI or Protection and Control IED Manager (PCM600).
  • Page 388: Function Block

    Section 13 1MRK 502 043-UUS B Logic 13.5.3 Function block B16I BLOCK IN10 IN11 IN12 IN13 IN14 IN15 IN16 IEC09000035-1-en.vsd IEC09000035 V1 EN Figure 183: B16I function block 13.5.4 Signals Table 272: B16I Input signals Name Type Default Description BLOCK BOOLEAN Block of function BOOLEAN...
  • Page 389: Settings

    Section 13 1MRK 502 043-UUS B Logic Table 273: B16I Output signals Name Type Description INTEGER Output value 13.5.5 Settings The function does not have any parameters available in local HMI or Protection and Control IED Manager (PCM600) 13.5.6 Monitored data Table 274: B16I Monitored data Name...
  • Page 390: Function Block

    Section 13 1MRK 502 043-UUS B Logic 13.6.3 Function block B16IFCVI BLOCK IN10 IN11 IN12 IN13 IN14 IN15 IN16 IEC09000624-1-en.vsd IEC09000624 V1 EN Figure 184: B16IFCVI function block 13.6.4 Signals Table 275: B16IFCVI Input signals Name Type Default Description BLOCK BOOLEAN Block of function BOOLEAN...
  • Page 391: Settings

    Section 13 1MRK 502 043-UUS B Logic Table 276: B16IFCVI Output signals Name Type Description INTEGER Output value 13.6.5 Settings The function does not have any parameters available in local HMI or Protection and Control IED Manager (PCM600) 13.6.6 Monitored data Table 277: B16IFCVI Monitored data Name...
  • Page 392: Function Block

    Section 13 1MRK 502 043-UUS B Logic 13.7.3 Function block IB16A BLOCK OUT1 OUT2 OUT3 OUT4 OUT5 OUT6 OUT7 OUT8 OUT9 OUT10 OUT11 OUT12 OUT13 OUT14 OUT15 OUT16 IEC09000036-1-en.vsd IEC09000036 V1 EN Figure 185: IB16A function block 13.7.4 Signals Table 278: IB16A Input signals Name Type...
  • Page 393: Settings

    Section 13 1MRK 502 043-UUS B Logic Name Type Description OUT14 BOOLEAN Output 14 OUT15 BOOLEAN Output 15 OUT16 BOOLEAN Output 16 13.7.5 Settings The function does not have any parameters available in local HMI or Protection and Control IED Manager (PCM600) 13.7.6 Operation principle Integer to boolean 16 conversion function (IB16A) is used to transform an integer into...
  • Page 394: Function Block

    Section 13 1MRK 502 043-UUS B Logic 13.8.3 Function block IB16FCVB BLOCK OUT1 PSTO OUT2 OUT3 OUT4 OUT5 OUT6 OUT7 OUT8 OUT9 OUT10 OUT11 OUT12 OUT13 OUT14 OUT15 OUT16 IEC09000399-1-en.vsd IEC09000399 V1 EN Figure 186: IB16FCVB function block 13.8.4 Signals Table 280: IB16FCVB Input signals Name...
  • Page 395: Settings

    Section 13 1MRK 502 043-UUS B Logic Name Type Description OUT13 BOOLEAN Output 13 OUT14 BOOLEAN Output 14 OUT15 BOOLEAN Output 15 OUT16 BOOLEAN Output 16 13.8.5 Settings The function does not have any parameters available in local HMI or Protection and Control IED Manager (PCM600) 13.8.6 Operation principle...
  • Page 397: Measurements

    Section 14 1MRK 502 043-UUS B Monitoring Section 14 Monitoring 14.1 Measurements 14.1.1 Functionality Measurement functions is used for power system measurement, supervision and reporting to the local HMI, monitoring tool within PCM600 or to station level for example, via IEC 61850. The possibility to continuously monitor measured values of active power, reactive power, currents, voltages, frequency, power factor etc.
  • Page 398: Measurements Cvmmxn

    Section 14 1MRK 502 043-UUS B Monitoring • P, Q and S: three phase active, reactive and apparent power • PF: power factor • V: phase-to-phase voltage magnitude • I: phase current magnitude • F: power system frequency The output values are displayed in the local HMI under Main menu/Tests/Function status/Monitoring/CVMMXN/Outputs The measuring functions CMMXU, VNMMXU and VMMXU provide physical quantities:...
  • Page 399: Function Block

    Section 14 1MRK 502 043-UUS B Monitoring 14.1.2.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600. CVMMXN I3P* V3P* S_RANGE P_INST P_RANGE Q_INST Q_RANGE PF_RANGE ILAG ILEAD V_RANGE...
  • Page 400: Settings

    Section 14 1MRK 502 043-UUS B Monitoring Name Type Description REAL Power factor magnitude of deadband value PF_RANGE INTEGER Power factor range ILAG BOOLEAN Current is lagging voltage ILEAD BOOLEAN Current is leading voltage REAL Calculated voltage magnitude of deadband value V_RANGE INTEGER Calcuated voltage range...
  • Page 401 Section 14 1MRK 502 043-UUS B Monitoring Name Values (Range) Unit Step Default Description PMax -2000.0 - 2000.0 200.0 Maximum value in % of SBase PRepTyp Cyclic Cyclic Reporting type Dead band Int deadband QMin -2000.0 - 2000.0 -200.0 Minimum value in % of SBase QMax -2000.0 - 2000.0 200.0...
  • Page 402 Section 14 1MRK 502 043-UUS B Monitoring Name Values (Range) Unit Step Default Description PDbRepInt 1 - 300 Type Cycl: Report interval (s), Db: In % of range, Int Db: In %s PZeroDb 0 - 100000 Zero point clamping PHiLim -2000.0 - 2000.0 120.0 High limit in % of SBase...
  • Page 403: Monitored Data

    Section 14 1MRK 502 043-UUS B Monitoring Name Values (Range) Unit Step Default Description ILowLim 0.0 - 500.0 80.0 Low limit in % of IBase ILowLowLim 0.0 - 500.0 60.0 Low Low limit in % of IBase ILimHyst 0.000 - 100.000 0.001 5.000 Hysteresis value in % of range (common for...
  • Page 404: Phase Current Measurement Cmmxu

    Section 14 1MRK 502 043-UUS B Monitoring Name Type Values (Range) Unit Description REAL Calculated voltage magnitude of deadband value REAL Calculated current magnitude of deadband value REAL System frequency magnitude of deadband value 14.1.3 Phase current measurement CMMXU 14.1.3.1 Identification Function description IEC 61850...
  • Page 405: Settings

    Section 14 1MRK 502 043-UUS B Monitoring Table 288: CMMXU Output signals Name Type Description REAL IA Amplitude IA_RANGE INTEGER Phase A current magnitude range IA_ANGL REAL IA Angle REAL IB Amplitude IB_RANGE INTEGER Phase B current magnitude range IB_ANGL REAL IB Angle REAL...
  • Page 406: Monitored Data

    Section 14 1MRK 502 043-UUS B Monitoring Name Values (Range) Unit Step Default Description IMagComp5 -10.000 - 10.000 0.001 0.000 Magnitude factor to calibrate current at 5% of IMagComp30 -10.000 - 10.000 0.001 0.000 Magnitude factor to calibrate current at 30% of In IMagComp100 -10.000 - 10.000...
  • Page 407: Signals

    Section 14 1MRK 502 043-UUS B Monitoring VMMXU V3P* V_AB VAB_RANG VAB_ANGL V_BC VBC_RANG VBC_ANGL V_CA VCA_RANG VCA_ANGL ANSI08000223-1-en.vsd ANSI08000223 V1 EN Figure 189: VMMXU function block 14.1.4.3 Signals Table 292: VMMXU Input signals Name Type Default Description GROUP Three phase group signal for voltage inputs SIGNAL Table 293: VMMXU Output signals...
  • Page 408: Settings

    Section 14 1MRK 502 043-UUS B Monitoring 14.1.4.4 Settings Table 294: VMMXU Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disable / Enable Enabled GlobalBaseSel 1 - 6 Selection of one of the Global Base Value groups VLDbRepInt 1 - 300...
  • Page 409: Current Sequence Component Measurement Cmsqi

    Section 14 1MRK 502 043-UUS B Monitoring 14.1.5 Current sequence component measurement CMSQI 14.1.5.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Current sequence component CMSQI measurement I1, I2, I0 SYMBOL-VV V1 EN 14.1.5.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600.
  • Page 410: Settings

    Section 14 1MRK 502 043-UUS B Monitoring Name Type Description I1RANG INTEGER I1Amplitude range I1ANGL REAL I1 Angle REAL I2 Amplitude I2RANG INTEGER I2 Magnitude range I2ANGL REAL I2Angle 14.1.5.4 Settings Table 299: CMSQI Non group settings (basic) Name Values (Range) Unit Step Default...
  • Page 411: Monitored Data

    Section 14 1MRK 502 043-UUS B Monitoring Table 300: CMSQI Non group settings (advanced) Name Values (Range) Unit Step Default Description 3I0ZeroDb 0 - 100000 Zero point clamping 3I0HiHiLim 0 - 500000 3600 High High limit (physical value) 3I0HiLim 0 - 500000 3300 High limit (physical value) 3I0LowLim...
  • Page 412: Voltage Sequence Measurement Vmsqi

    Section 14 1MRK 502 043-UUS B Monitoring 14.1.6 Voltage sequence measurement VMSQI 14.1.6.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Voltage sequence measurement VMSQI U1, U2, U0 SYMBOL-TT V1 EN 14.1.6.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600.
  • Page 413: Settings

    Section 14 1MRK 502 043-UUS B Monitoring Name Type Description V1RANG INTEGER V1 Magnitude range V1ANGL REAL U1 Angle REAL U2 Amplitude V2RANG INTEGER V2 Magnitude range V2ANGL REAL U2 Angle 14.1.6.4 Settings Table 304: VMSQI Non group settings (basic) Name Values (Range) Unit...
  • Page 414: Monitored Data

    Section 14 1MRK 502 043-UUS B Monitoring Table 305: VMSQI Non group settings (advanced) Name Values (Range) Unit Step Default Description 3V0ZeroDb 0 - 100000 Zero point clamping 3V0HiHiLim 0 - 2000000 288000 High High limit (physical value) 3V0HiLim 0 - 2000000 258000 High limit (physical value) 3V0LowLim...
  • Page 415: Phase-Neutral Voltage Measurement Vnmmxu

    Section 14 1MRK 502 043-UUS B Monitoring 14.1.7 Phase-neutral voltage measurement VNMMXU 14.1.7.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Phase-neutral voltage measurement VNMMXU SYMBOL-UU V1 EN 14.1.7.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600.
  • Page 416: Settings

    Section 14 1MRK 502 043-UUS B Monitoring Name Type Description VB_RANGE INTEGER V_B Amplitude range VB_ANGL REAL V_B Angle, magnitude of reported value REAL V_C Amplitude, magnitude of reported value VC_RANGE INTEGER V_C Amplitude range VC_ANGL REAL VC Angle, magnitude of reported value 14.1.7.4 Settings Table 309:...
  • Page 417: Monitored Data

    Section 14 1MRK 502 043-UUS B Monitoring 14.1.7.5 Monitored data Table 311: VNMMXU Monitored data Name Type Values (Range) Unit Description REAL V_A Amplitude, magnitude of reported value VA_ANGL REAL V_A Angle, magnitude of reported value REAL V_B Amplitude, magnitude of reported value VB_ANGL REAL...
  • Page 418 Section 14 1MRK 502 043-UUS B Monitoring zero point clamping might be overridden by the zero point clamping used for the measurement values within CVMMXN. Continuous monitoring of the measured quantity Users can continuously monitor the measured quantity available in each function block by means of four defined operating thresholds, see figure 193.
  • Page 419 Section 14 1MRK 502 043-UUS B Monitoring Actual value of the measured quantity The actual value of the measured quantity is available locally and remotely. The measurement is continuous for each measured quantity separately, but the reporting of the value to the higher levels depends on the selected reporting mode. The following basic reporting modes are available: •...
  • Page 420 Section 14 1MRK 502 043-UUS B Monitoring Magnitude dead-band supervision If a measuring value is changed, compared to the last reported value, and the change is larger than the ±ΔY pre-defined limits that are set by user (XZeroDb), then the measuring channel reports the new value to a higher level, if this is detected by a new measured value.
  • Page 421: Measurements Cvmmxn

    Section 14 1MRK 502 043-UUS B Monitoring absolute values of these integral values are added until the pre-set value is exceeded. This occurs with the value Y2 that is reported and set as a new base for the following measurements (as well as for the values Y3, Y4 and Y5). The integral dead-band supervision is particularly suitable for monitoring signals with small variations that can last for relatively long periods.
  • Page 422 Section 14 1MRK 502 043-UUS B Monitoring Set value for Formula used for complex, three- Formula used for voltage and Comment parameter phase power calculation current magnitude calculation “Mode” A, B, C Used when three × × × phase-to-ground voltages are EQUATION1561 V1 EN available EQUATION1562 V1 EN...
  • Page 423 Section 14 1MRK 502 043-UUS B Monitoring Set value for Formula used for complex, three- Formula used for voltage and Comment parameter phase power calculation current magnitude calculation “Mode” Used when only × = × × phase-to- ground voltage is available (Equation 104) EQUATION1575 V1 EN...
  • Page 424 Section 14 1MRK 502 043-UUS B Monitoring Each analog output has a corresponding supervision level output (X_RANGE). The output signal is an integer in the interval 0-4, see section "Measurement supervision". Calibration of analog inputs Measured currents and voltages used in the CVMMXN function can be calibrated to get class 0.5 measuring accuracy.
  • Page 425 Section 14 1MRK 502 043-UUS B Monitoring the measured quantity. Filtering is performed in accordance with the following recursive formula: = × × Calculated (Equation 112) EQUATION1407 V1 EN where: is a new measured value (that is P, Q, S, V, I or PF) to be given out from the function is the measured value given from the measurement function in previous execution cycle is the new calculated value in the present execution cycle Calculated...
  • Page 426: Phase Current Measurement Cmmxu

    Section 14 1MRK 502 043-UUS B Monitoring Directionality CTStartPoint defines if the CTs grounding point is located towards or from the protected object under observation. If everything is properly set power is always measured towards protection object. Busbar Protected Object ANSI05000373_2_en.vsd ANSI05000373 V2 EN Figure 198:...
  • Page 427: Phase-Phase And Phase-Neutral Voltage Measurements Vmmxu, Vnmmxu

    Section 14 1MRK 502 043-UUS B Monitoring outputs and IEC 61850. This is achieved by magnitude and angle compensation at 5, 30 and 100% of rated current. The compensation below 5% and above 100% is constant and linear in between, see figure 197. Phase currents (magnitude and angle) are available on the outputs and each magnitude output has a corresponding supervision level output (Ix_RANGE).
  • Page 428: Event Counter Cntggio

    Section 14 1MRK 502 043-UUS B Monitoring Function Range or value Accuracy Reactive power, Q 0.1 x V < V < 1.5 x V ± 1.0% of S at S ≤ S 0.2 x I < I < 4.0 x I ±...
  • Page 429: Signals

    Section 14 1MRK 502 043-UUS B Monitoring 14.2.4 Signals Table 313: CNTGGIO Input signals Name Type Default Description BLOCK BOOLEAN Block of function COUNTER1 BOOLEAN Input for counter 1 COUNTER2 BOOLEAN Input for counter 2 COUNTER3 BOOLEAN Input for counter 3 COUNTER4 BOOLEAN Input for counter 4...
  • Page 430: Operation Principle

    Section 14 1MRK 502 043-UUS B Monitoring Name Type Values (Range) Unit Description VALUE4 INTEGER Output of counter 4 VALUE5 INTEGER Output of counter 5 VALUE6 INTEGER Output of counter 6 14.2.7 Operation principle Event counter (CNTGGIO) has six counter inputs. CNTGGIO stores how many times each of the inputs has been activated.
  • Page 431: Disturbance Report

    Section 14 1MRK 502 043-UUS B Monitoring 14.3 Disturbance report 14.3.1 Functionality Complete and reliable information about disturbances in the primary and/or in the secondary system together with continuous event-logging is accomplished by the disturbance report functionality. Disturbance report DRPRDRE, always included in the IED, acquires sampled data of all selected analog input and binary signals connected to the function block with a, maximum of 40 analog and 96 binary signals.
  • Page 432: Function Block

    Section 14 1MRK 502 043-UUS B Monitoring 14.3.2.2 Function block DRPRDRE DRPOFF RECSTART RECMADE CLEARED MEMUSED IEC09000346-1-en.vsd IEC09000346 V1 EN Figure 200: DRPRDRE function block 14.3.2.3 Signals Table 318: DRPRDRE Output signals Name Type Description DRPOFF BOOLEAN Disturbance report function turned off RECSTART BOOLEAN Disturbance recording started...
  • Page 433: Monitored Data

    Section 14 1MRK 502 043-UUS B Monitoring 14.3.2.5 Monitored data Table 320: DRPRDRE Monitored data Name Type Values (Range) Unit Description MemoryUsed INTEGER Memory usage (0-100%) UnTrigStatCh1 BOOLEAN Under level trig for analog channel 1 activated OvTrigStatCh1 BOOLEAN Over level trig for analog channel 1 activated UnTrigStatCh2 BOOLEAN...
  • Page 434 Section 14 1MRK 502 043-UUS B Monitoring Name Type Values (Range) Unit Description UnTrigStatCh11 BOOLEAN Under level trig for analog channel 11 activated OvTrigStatCh11 BOOLEAN Over level trig for analog channel 11 activated UnTrigStatCh12 BOOLEAN Under level trig for analog channel 12 activated OvTrigStatCh12 BOOLEAN...
  • Page 435 Section 14 1MRK 502 043-UUS B Monitoring Name Type Values (Range) Unit Description UnTrigStatCh22 BOOLEAN Under level trig for analog channel 22 activated OvTrigStatCh22 BOOLEAN Over level trig for analog channel 22 activated UnTrigStatCh23 BOOLEAN Under level trig for analog channel 23 activated OvTrigStatCh23 BOOLEAN...
  • Page 436: Measured Values

    Section 14 1MRK 502 043-UUS B Monitoring Name Type Values (Range) Unit Description UnTrigStatCh33 BOOLEAN Under level trig for analog channel 33 activated OvTrigStatCh33 BOOLEAN Over level trig for analog channel 33 activated UnTrigStatCh34 BOOLEAN Under level trig for analog channel 34 activated OvTrigStatCh34 BOOLEAN...
  • Page 437: Analog Input Signals Axradr

    Section 14 1MRK 502 043-UUS B Monitoring 14.3.3 Analog input signals AxRADR 14.3.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Analog input signals A1RADR Analog input signals A2RADR Analog input signals A3RADR 14.3.3.2 Function block A1RADR ^GRPINPUT1 ^GRPINPUT2...
  • Page 438: Settings

    Section 14 1MRK 502 043-UUS B Monitoring Table 322: A1RADR Input signals Name Type Default Description GRPINPUT1 GROUP Group signal for input 1 SIGNAL GRPINPUT2 GROUP Group signal for input 2 SIGNAL GRPINPUT3 GROUP Group signal for input 3 SIGNAL GRPINPUT4 GROUP Group signal for input 4...
  • Page 439 Section 14 1MRK 502 043-UUS B Monitoring Name Values (Range) Unit Step Default Description Operation05 Disabled Disabled Operation On/Off Enabled Operation06 Disabled Disabled Operation On/Off Enabled Operation07 Disabled Disabled Operation On/Off Enabled Operation08 Disabled Disabled Operation On/Off Enabled Operation09 Disabled Disabled Operation On/Off Enabled...
  • Page 440 Section 14 1MRK 502 043-UUS B Monitoring Name Values (Range) Unit Step Default Description FunType9 0 - 255 Function type for analog channel 9 (IEC-60870-5-103) InfNo9 0 - 255 Information number for analog channel 9 (IEC-60870-5-103) FunType10 0 - 255 Function type for analog channel 10 (IEC-60870-5-103) InfNo10...
  • Page 441 Section 14 1MRK 502 043-UUS B Monitoring Name Values (Range) Unit Step Default Description OverTrigOp04 Disabled Disabled Use over level trigger for analog channel 4 Enabled (on) or not (off) OverTrigLe04 0 - 5000 Over trigger level for analog channel 4 in % of signal NomValue05 0.0 - 999999.9...
  • Page 442: Analog Input Signals A4Radr

    Section 14 1MRK 502 043-UUS B Monitoring Name Values (Range) Unit Step Default Description UnderTrigLe09 0 - 200 Under trigger level for analog channel 9 in % of signal OverTrigOp09 Disabled Disabled Use over level trigger for analog channel 9 Enabled (on) or not (off) OverTrigLe09...
  • Page 443: Signals

    Section 14 1MRK 502 043-UUS B Monitoring 14.3.4.3 Signals Table 325: A4RADR Input signals Name Type Default Description INPUT31 REAL Analog channel 31 INPUT32 REAL Analog channel 32 INPUT33 REAL Analog channel 33 INPUT34 REAL Analog channel 34 INPUT35 REAL Analog channel 35 INPUT36 REAL...
  • Page 444 Section 14 1MRK 502 043-UUS B Monitoring Name Values (Range) Unit Step Default Description InfNo31 0 - 255 Information number for analog channel 31 (IEC-60870-5-103) FunType32 0 - 255 Function type for analog channel 32 (IEC-60870-5-103) InfNo32 0 - 255 Information number for analog channel 32 (IEC-60870-5-103) FunType33...
  • Page 445 Section 14 1MRK 502 043-UUS B Monitoring Table 327: A4RADR Non group settings (advanced) Name Values (Range) Unit Step Default Description NomValue31 0.0 - 999999.9 Nominal value for analog channel 31 UnderTrigOp31 Disabled Disabled Use under level trigger for analog channel 31 Enabled (on) or not (off) UnderTrigLe31...
  • Page 446 Section 14 1MRK 502 043-UUS B Monitoring Name Values (Range) Unit Step Default Description OverTrigOp35 Disabled Disabled Use over level trigger for analog channel 35 Enabled (on) or not (off) OverTrigLe35 0 - 5000 Over trigger level for analog channel 35 in % of signal NomValue36 0.0 - 999999.9...
  • Page 447: Binary Input Signals Bxrbdr

    Section 14 1MRK 502 043-UUS B Monitoring Name Values (Range) Unit Step Default Description UnderTrigLe40 0 - 200 Under trigger level for analog channel 40 in % of signal OverTrigOp40 Disabled Disabled Use over level trigger for analog channel 40 Enabled (on) or not (off) OverTrigLe40...
  • Page 448: Signals

    Section 14 1MRK 502 043-UUS B Monitoring 14.3.5.3 Signals B1RBDR - B6RBDR Input signals Tables for input signals for B1RBDR - B6RBDR are all similar except for INPUT and description number. • B1RBDR, INPUT1 - INPUT16 • B2RBDR, INPUT17 - INPUT32 •...
  • Page 449 Section 14 1MRK 502 043-UUS B Monitoring • B4RBDR, channel49 - channel64 • B5RBDR, channel65 - channel80 • B6RBDR, channel81 - channel96 Table 329: B1RBDR Non group settings (basic) Name Values (Range) Unit Step Default Description TrigDR01 Disabled Disabled Trigger operation On/Off Enabled SetLED01 Disabled...
  • Page 450 Section 14 1MRK 502 043-UUS B Monitoring Name Values (Range) Unit Step Default Description TrigDR08 Disabled Disabled Trigger operation On/Off Enabled SetLED08 Disabled Disabled Set LED on HMI for binary channel 8 Start Trip Pick up and trip TrigDR09 Disabled Disabled Trigger operation On/Off Enabled...
  • Page 451 Section 14 1MRK 502 043-UUS B Monitoring Name Values (Range) Unit Step Default Description TrigDR16 Disabled Disabled Trigger operation On/Off Enabled SetLED16 Disabled Disabled Set LED on HMI for binary channel 16 Start Trip Pick up and trip FunType1 0 - 255 Function type for binary channel 1 (IEC -60870-5-103) InfNo1...
  • Page 452 Section 14 1MRK 502 043-UUS B Monitoring Name Values (Range) Unit Step Default Description FunType11 0 - 255 Function type for binary channel 11 (IEC -60870-5-103) InfNo11 0 - 255 Information number for binary channel 11 (IEC -60870-5-103) FunType12 0 - 255 Function type for binary channel 12 (IEC -60870-5-103) InfNo12...
  • Page 453 Section 14 1MRK 502 043-UUS B Monitoring Name Values (Range) Unit Step Default Description TrigLevel05 Trig on 0 Trig on 1 Trigger on positive (1) or negative (0) slope Trig on 1 for binary input 5 IndicationMa05 Hide Hide Indication mask for binary channel 5 Show TrigLevel06 Trig on 0...
  • Page 454: Operation Principle

    Section 14 1MRK 502 043-UUS B Monitoring Name Values (Range) Unit Step Default Description IndicationMa15 Hide Hide Indication mask for binary channel 15 Show TrigLevel16 Trig on 0 Trig on 1 Trigger on positive (1) or negative (0) slope Trig on 1 for binary input 16 IndicationMa16 Hide...
  • Page 455 Section 14 1MRK 502 043-UUS B Monitoring A1-4RADR Disturbance Report A4RADR DRPRDRE Analog signals Trip value rec B1-6RBDR Disturbance recorder Binary signals B6RBDR Sequential of events Event recorder Indications ANSI09000337-1-en.vsd ANSI09000337 V1 EN Figure 204: Disturbance report functions and related function blocks The whole disturbance report can contain information for a number of recordings, each with the data coming from all the parts mentioned above.
  • Page 456: Disturbance Information

    Section 14 1MRK 502 043-UUS B Monitoring The IED flash disk should NOT be used to store any user files. This might cause disturbance recordings to be deleted due to lack of disk space. 14.3.6.1 Disturbance information Date and time of the disturbance, the indications, events, fault location and the trip values are available on the local HMI.
  • Page 457: Time Tagging

    Section 14 1MRK 502 043-UUS B Monitoring 14.3.6.7 Time tagging The IED has a built-in real-time calendar and clock. This function is used for all time tagging within the disturbance report 14.3.6.8 Recording times Disturbance report DRPRDRE records information about a disturbance during a settable time frame.
  • Page 458: Analog Signals

    Section 14 1MRK 502 043-UUS B Monitoring 14.3.6.9 Analog signals Up to 40 analog signals can be selected for recording by the Disturbance recorder and triggering of the Disturbance report function. Out of these 40, 30 are reserved for external analog signals from analog input modules via preprocessing function blocks (SMAI) and summation block (3PHSUM).
  • Page 459: Binary Signals

    Section 14 1MRK 502 043-UUS B Monitoring The preprocessor function block (SMAI) calculates the residual quantities in cases where only the three phases are connected (AI4-input not used). SMAI makes the information available as a group signal output, phase outputs and calculated residual output (AIN-output).
  • Page 460: Post Retrigger

    Section 14 1MRK 502 043-UUS B Monitoring fulfilled, there is no disturbance report, no indications, and so on. This implies the importance of choosing the right signals as trigger conditions. A trigger can be of type: • Manual trigger • Binary-signal trigger •...
  • Page 461: Technical Data

    Section 14 1MRK 502 043-UUS B Monitoring under certain circumstances the fault condition may reoccur during the post-fault recording, for instance by automatic reclosing to a still faulty power line. In order to capture the new disturbance it is possible to allow retriggering (PostRetrig = Enabled) during the post-fault time.
  • Page 462: Indications

    Section 14 1MRK 502 043-UUS B Monitoring 14.4 Indications 14.4.1 Functionality To get fast, condensed and reliable information about disturbances in the primary and/ or in the secondary system it is important to know, for example binary signals that have changed status during a disturbance. This information is used in the short perspective to get information via the local HMI in a straightforward way.
  • Page 463: Technical Data

    Section 14 1MRK 502 043-UUS B Monitoring Function controlled by SetLEDn setting in Disturbance report function. Indication list: The possible indication signals are the same as the ones chosen for the disturbance report function and disturbance recorder. The indication function tracks 0 to 1 changes of binary signals during the recording period of the collection window.
  • Page 464: Function Block

    Section 14 1MRK 502 043-UUS B Monitoring The event recorder logs all selected binary input signals connected to the Disturbance report function. Each recording can contain up to 150 time-tagged events. The event recorder information is available for the disturbances locally in the IED. The event recording information is an integrated part of the disturbance record (Comtrade file).
  • Page 465: Technical Data

    Section 14 1MRK 502 043-UUS B Monitoring 14.5.5 Technical data Table 333: DRPRDRE technical data Function Value Buffer capacity Maximum number of events in disturbance report Maximum number of disturbance reports Resolution 1 ms Accuracy Depending on time synchronizing 14.6 Sequential of events 14.6.1 Functionality...
  • Page 466: Technical Data

    Section 14 1MRK 502 043-UUS B Monitoring The list can be configured to show oldest or newest events first with a setting on the local HMI. The sequential of events function runs continuously, in contrast to the event recorder function, which is only active during a disturbance, and each event record is an integral part of its associated DR.
  • Page 467: Signals

    Section 14 1MRK 502 043-UUS B Monitoring 14.7.3 Signals 14.7.3.1 Input signals The trip value recorder function uses analog input signals connected to A1RADR to A3RADR (not A4RADR). 14.7.4 Operation principle Trip value recorder calculates and presents both fault and pre-fault magnitudes as well as the phase angles of all the selected analog input signals.
  • Page 468: Disturbance Recorder

    Section 14 1MRK 502 043-UUS B Monitoring 14.8 Disturbance recorder 14.8.1 Functionality The Disturbance recorder function supplies fast, complete and reliable information about disturbances in the power system. It facilitates understanding system behavior and related primary and secondary equipment during and after a disturbance. Recorded information is used for different purposes in the short perspective (for example corrective actions) and long perspective (for example functional analysis).
  • Page 469: Memory And Storage

    Section 14 1MRK 502 043-UUS B Monitoring Disturbance recorder collects analog values and binary signals continuously, in a cyclic buffer. The pre-fault buffer operates according to the FIFO principle; old data will continuously be overwritten as new data arrives when the buffer is full. The size of this buffer is determined by the set pre-fault recording time.
  • Page 470 Section 14 1MRK 502 043-UUS B Monitoring The header file (optional in the standard) contains basic information about the disturbance, that is, information from the Disturbance report sub-functions. The Disturbance handling tool use this information and present the recording in a user- friendly way.
  • Page 471: Technical Data

    Section 14 1MRK 502 043-UUS B Monitoring 14.8.6 Technical data Table 336: DRPRDRE technical data Function Value Buffer capacity Maximum number of analog inputs Maximum number of binary inputs Maximum number of disturbance reports Maximum total recording time (3.4 s recording time and maximum number 340 seconds (100 of channels, typical value) recordings) at 50 Hz...
  • Page 472: Signals

    Section 14 1MRK 502 043-UUS B Monitoring 14.9.4 Signals Table 337: SPGGIO Input signals Name Type Default Description BLOCK BOOLEAN Block of function BOOLEAN Input status 14.9.5 Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600).
  • Page 473: Function Block

    Section 14 1MRK 502 043-UUS B Monitoring 14.10.3 Function block SP16GGIO BLOCK ^IN1 ^IN2 ^IN3 ^IN4 ^IN5 ^IN6 ^IN7 ^IN8 ^IN9 ^IN10 ^IN11 ^IN12 ^IN13 ^IN14 ^IN15 ^IN16 IEC09000238_en_1.vsd IEC09000238 V1 EN Figure 208: SP16GGIO function block 14.10.4 Signals Table 338: SP16GGIO Input signals Name Type...
  • Page 474: Settings

    Section 14 1MRK 502 043-UUS B Monitoring 14.10.5 Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600). 14.10.6 MonitoredData Table 339: SP16GGIO Monitored data Name Type Values (Range) Unit Description OUT1 GROUP Output 1 status...
  • Page 475: Operation Principle

    Section 14 1MRK 502 043-UUS B Monitoring 14.10.7 Operation principle Upon receiving signals at its inputs, IEC 61850 generic communication I/O functions 16 inputs (SP16GGIO) function will send the signals over IEC 61850-8-1 to the equipment or system that requests this signals. To be able to get the signal, one must use other tools, described in the Engineering manual and define which function block in which equipment or system should receive this information.
  • Page 476: Signals

    Section 14 1MRK 502 043-UUS B Monitoring 14.11.4 Signals Table 340: MVGGIO Input signals Name Type Default Description BLOCK BOOLEAN Block of function REAL Analog input value Table 341: MVGGIO Output signals Name Type Description VALUE REAL Magnitude of deadband value RANGE INTEGER Range...
  • Page 477: Monitored Data

    Section 14 1MRK 502 043-UUS B Monitoring 14.11.6 Monitored data Table 343: MVGGIO Monitored data Name Type Values (Range) Unit Description VALUE REAL Magnitude of deadband value RANGE INTEGER 0=Normal Range 1=High 2=Low 3=High-High 4=Low-Low 14.11.7 Operation principle Upon receiving an analog signal at its input, IEC61850 generic communication I/O functions (MVGGIO) will give the instantaneous value of the signal and the range, as output values.
  • Page 478: Function Block

    Section 14 1MRK 502 043-UUS B Monitoring 14.12.3 Function block MVEXP RANGE* HIGHHIGH HIGH NORMAL LOWLOW IEC09000215-1-en.vsd IEC09000215 V1 EN Figure 209: MVEXP function block 14.12.4 Signals Table 344: MVEXP Input signals Name Type Default Description RANGE INTEGER Measured value range Table 345: MVEXP Output signals Name...
  • Page 479: Station Battery Supervision Spvnzbat

    Section 14 1MRK 502 043-UUS B Monitoring Table 346: Input integer value converted to binary output signals Measured supervised below low-low between low‐ between low between high- above high-high value is: limit low and low and high limit high and high limit limit limit...
  • Page 480: Signals

    Section 14 1MRK 502 043-UUS B Monitoring In the definite time (DT) mode, SPVNZBAT operates after a predefined operate time and resets when the battery undervoltage or overvoltage condition disappears after reset time. 14.13.4 Signals Table 347: SPVNZBAT Input signals Name Type Default...
  • Page 481: Measured Values

    Section 14 1MRK 502 043-UUS B Monitoring 14.13.6 Measured values Table 350: SPVNZBAT Measured values Name Type Default Description V_BATT REAL 0.00 Battery terminal voltage that has to be supervised BLOCK BOOLEAN Blocks all the output signals of the function 14.13.7 Monitored Data Table 351:...
  • Page 482: Technical Data

    Section 14 1MRK 502 043-UUS B Monitoring It is possible to block the function outputs by the BLOCK input. Low level detector The level detector compares the battery voltage V_BATT with the set value of the BattVoltLowLim setting. If the value of the V_BATT input drops below the set value of the BattVoltLowLim setting, the pickup signal PU_VLOW is activated.
  • Page 483: Functionality

    Section 14 1MRK 502 043-UUS B Monitoring 14.14.2 Functionality Insulation gas monitoring function SSIMG (63) is used for monitoring the circuit breaker condition. Binary information based on the gas pressure in the circuit breaker is used as input signals to the function. In addition, the function generates alarms based on received information.
  • Page 484: Ssimg Outputsignals

    Section 14 1MRK 502 043-UUS B Monitoring 14.14.4.2 SSIMG OutputSignals Table 354: Output signals for the function block SSIMG (GM01-) Signal Description PRESSURE Pressure service value PRES_ALM Pressure below alarm level PRES_LO Pressure below lockout level TEMP Temperature of the insulation medium TEMP_ALM Temperature above alarm level TEMP_LO...
  • Page 485: Operation Principle

    Section 14 1MRK 502 043-UUS B Monitoring 14.14.6 Operation principle Insulation gas monitoring function SSIMG (63) is used to monitor gas pressure in the circuit breaker. Two binary output signals are used from the circuit breaker to initiate alarm signals, pressure below alarm level and pressure below lockout level. If the input signal PRES_ALM is high, which indicate that the gas pressure in the circuit breaker is below alarm level, the function initiates output signal PRES_ALM, pressure below alarm level, after a set time delay and indicate that maintenance of the circuit breaker is...
  • Page 486: Functionality

    Section 14 1MRK 502 043-UUS B Monitoring 14.15.2 Functionality Insulation liquid monitoring function SSIML (71) is used for monitoring the circuit breaker condition. Binary information based on the oil level in the circuit breaker is used as input signals to the function. In addition, the function generates alarms based on received information.
  • Page 487: Ssiml Outputsignals

    Section 14 1MRK 502 043-UUS B Monitoring 14.15.4.2 SSIML OutputSignals Table 358: Output signals for the function block SSIML (LM1-) Signal Description LEVEL Level service value LVL_ALM Level below alarm level LVL_LO Level below lockout level TEMP Temperature of the insulation medium TEMP_ALM Temperature above alarm level TEMP_LO...
  • Page 488: Operation Principle

    Section 14 1MRK 502 043-UUS B Monitoring 14.15.6 Operation principle Insulation liquid monitoring function SSIML (71) is used to monitor oil level in the circuit breaker. Two binary output signals are used from the circuit breaker to initiate alarm signals, level below alarm level and level below lockout level. If the input signal LVL_ALM is high, which indicate that the oil level in the circuit breaker is below alarm level, the output signal LVL_ALM, level below alarm level, will be initiated after a set time delay and indicate that maintenance of the circuit breaker is required.
  • Page 489: Functionality

    Section 14 1MRK 502 043-UUS B Monitoring 14.16.2 Functionality The circuit breaker condition monitoring function SSCBR is used to monitor different parameters of the circuit breaker. The breaker requires maintenance when the number of operations has reached a predefined value. For proper functioning of the circuit breaker, it is essential to monitor the circuit breaker operation, spring charge indication, breaker wear, travel time, number of operation cycles and accumulated energy.
  • Page 490: Settings

    Section 14 1MRK 502 043-UUS B Monitoring Name Type Default Description SPRCHRGN BOOLEAN CB spring charging started input SPRCHRGD BOOLEAN CB spring charged input CBCNTRST BOOLEAN Reset input for CB remaining life and operation counter IACCRST BOOLEAN Reset accumulated currents power SPCHTRST BOOLEAN Reset spring charge time...
  • Page 491: Monitored Data

    Section 14 1MRK 502 043-UUS B Monitoring Name Values (Range) Unit Step Default Description AccCurrAlmLvl 0.00 - 20000.00 0.01 2500.00 Setting of alarm level for accumulated currents power AccCurrLO 0.00 - 20000.00 0.01 2500.00 Lockout limit setting for accumulated currents power DirCoef -3.00 - -0.50...
  • Page 492: Operation Principle

    Section 14 1MRK 502 043-UUS B Monitoring Name Type Values (Range) Unit Description NOOPRDAY INTEGER The number of days CB has been inactive CBLIFE_A INTEGER CB Remaining life phase A CBLIFE_B INTEGER CB Remaining life phase B CBLIFE_C INTEGER CB Remaining life phase C IACC_A REAL Accumulated currents power...
  • Page 493: Circuit Breaker Status

    Section 14 1MRK 502 043-UUS B Monitoring CBOPEN POSCLOSE Circuit POSOPEN breaker CBINVPOS status Operation NOOPRALM monitoring BLK_ALM BLOCK TRVTOAL Breaker contact travel time TRVTCAL TRVTRST OPRALM Operation counter OPRLOALM IACCALM Accumula- ted energy IACCLOAL IACCRST Breaker CBLIFEAL life time CBCNTRST Spring SPRCHRGN...
  • Page 494: Circuit Breaker Operation Monitoring

    Section 14 1MRK 502 043-UUS B Monitoring the breaker status monitoring can be described by using a module diagram. All the modules in the diagram are explained in the next sections. POSCLOSE CBOPEN Contact POSOPEN position CBINVPOS indicator Phase current check GUID-60ADC120-4B5A-40D8-B1C5-475E4634214B-ANSI V1 EN Figure 216:...
  • Page 495: Breaker Contact Travel Time

    Section 14 1MRK 502 043-UUS B Monitoring GUID-82C88B52-1812-477F-8B1A-3011A300547A V1 EN Figure 217: Functional module diagram for calculating inactive days and alarm for circuit breaker operation monitoring Inactivity timer The module calculates the number of days the circuit breaker has remained inactive, that is, has stayed in the same open or closed state.
  • Page 496 Section 14 1MRK 502 043-UUS B Monitoring Traveling time calculator The contact travel time of the breaker is calculated from the time between auxiliary contacts' state change. The open travel time is measured between the opening of the POSCLOSE auxiliary contact and the closing of the POSOPEN auxiliary contact. Travel time is also measured between the opening of the POSOPEN auxiliary contact and the closing of the POSCLOSE auxiliary contact.
  • Page 497: Operation Counter

    Section 14 1MRK 502 043-UUS B Monitoring 14.16.7.4 Operation counter The operation counter subfunction calculates the number of breaker operation cycles. Both open and close operations are included in one operation cycle. The operation counter value is updated after each open operation. The operation of the subfunction can be described by using a module diagram.
  • Page 498 Section 14 1MRK 502 043-UUS B Monitoring IACCLOAL Accumula- Alarm limit ted energy check calculator IACCALM POSCLOSE IACCRST BLOCK BLK_ALM GUID-DAC3746F-DFBF-4186-A99D-1D972578D32A-ANSI V1 EN Figure 220: Functional module diagram for calculating accumulative energy and alarm Accumulated energy calculator This module calculates the accumulated energy I t [(kA) s].
  • Page 499: Remaining Life Of The Circuit Breaker

    Section 14 1MRK 502 043-UUS B Monitoring can be reset by setting the Clear accum. breaking curr setting to true in the clear menu from LHMI. Alarm limit check The IACCALM alarm is activated when the accumulated energy exceeds the value set with the AccCurrAlmLvl threshold setting.
  • Page 500: Circuit Breaker Spring Charged Indication

    Section 14 1MRK 502 043-UUS B Monitoring of operations the breaker can perform at the rated current and at the rated fault current, respectively. The remaining life is calculated separately for all three phases and it is available as a monitored data value CBLIFE_A (_B, _C).
  • Page 501: Gas Pressure Supervision

    Section 14 1MRK 502 043-UUS B Monitoring Spring charge time measurement Two binary inputs, SPRCHRGN and SPRCHRGD, indicate spring charging started and spring charged, respectively. The spring charging time is calculated from the difference of these two signal timings. The spring charging time SPRCHRT is available through the Monitored data view . Alarm limit check If the time taken by the spring to charge is more than the value set with the tSprngChrgAlm setting, the subfunction generates the SPRCHRAL alarm.
  • Page 502: Technical Data

    Section 14 1MRK 502 043-UUS B Monitoring The binary input BLOCK can be used to block the function. The activation of the BLOCK input deactivates all outputs and resets internal timers. The alarm signals from the function can be blocked by activating the binary input BLK_ALM. 14.16.8 Technical data Table 365:...
  • Page 503: Function Block

    Section 14 1MRK 502 043-UUS B Monitoring GUID-B8A3A04C-430D-4488-9F72-8529FAB0B17D V1 EN Figure 225: Settings for CMMXU: 1 All input signals to IEC 60870-5-103 I103MEAS must be connected in application configuration. Connect an input signals on IEC 60870-5-103 I103MEAS that is not connected to the corresponding output on MMXU function, to outputs on the fixed signal function block.
  • Page 504: Signals

    Section 14 1MRK 502 043-UUS B Monitoring 14.17.3 Signals Table 366: I103MEAS Input signals Name Type Default Description BLOCK BOOLEAN Block of service value reporting REAL Service value for current phase A REAL Service value for current phase B REAL Service value for current phase C REAL Service value for residual current IN...
  • Page 505: I103Measusr

    Section 14 1MRK 502 043-UUS B Monitoring 14.18 Measurands user defined signals for IEC 60870-5-103 I103MEASUSR 14.18.1 Functionality I103MEASUSR is a function block with user defined input measurands in monitor direction. These function blocks include the FunctionType parameter for each block in the private range, and the Information number parameter for each block.
  • Page 506: Settings

    Section 14 1MRK 502 043-UUS B Monitoring 14.18.4 Settings Table 369: I103MEASUSR Non group settings (basic) Name Values (Range) Unit Step Default Description FunctionType 1 - 255 Function type (1-255) InfNo 1 - 255 Information number for measurands (1-255) MaxMeasur1 0.05 - 0.05 1000.00...
  • Page 507: Function Block

    Section 14 1MRK 502 043-UUS B Monitoring 14.19.2 Function block I103AR BLOCK 16_ARACT 128_CBON 130_UNSU IEC10000289-1-en.vsd IEC10000289 V1 EN Figure 228: I103AR function block 14.19.3 Signals Table 370: I103AR Input signals Name Type Default Description BLOCK BOOLEAN Block of status reporting 16_ARACT BOOLEAN Information number 16, auto-recloser active...
  • Page 508: Function Block

    Section 14 1MRK 502 043-UUS B Monitoring 14.20.2 Function block I103EF BLOCK 51_EFFW 52_EFREV IEC10000290-1-en.vsd IEC10000290 V1 EN Figure 229: I103EF function block 14.20.3 Signals Table 372: I103EF Input signals Name Type Default Description BLOCK BOOLEAN Block of status reporting 51_EFFW BOOLEAN Information number 51, ground-fault forward...
  • Page 509: Function Block

    Section 14 1MRK 502 043-UUS B Monitoring 14.21.2 Function block I103FLTPROT BLOCK 64_PU_A 65_PU_B 66_PU_C 67_STIN 68_TRGEN 69_TR_A 70_TR_B 71_TR_C 72_TRBKUP 73_SCL 74_FW 75_REV 76_TRANS 77_RECEV 78_ZONE1 79_ZONE2 80_ZONE3 81_ZONE4 82_ZONE5 84_STGEN 85_BFP 86_MTR_A 87_MTR_B 88_MTR_C 89_MTRN 90_IOC 91_IOC 92_IEF 93_IEF ARINPROG FLTLOC...
  • Page 510: Settings

    Section 14 1MRK 502 043-UUS B Monitoring Name Type Default Description 73_SCL REAL Information number 73, fault location in ohm 74_FW BOOLEAN Information number 74, forward/line 75_REV BOOLEAN Information number 75, reverse/busbar 76_TRANS BOOLEAN Information number 76, signal transmitted 77_RECEV BOOLEAN Information number 77, signal received 78_ZONE1...
  • Page 511: Ied Status For Iec 60870-5-103 I103Ied

    Section 14 1MRK 502 043-UUS B Monitoring 14.22 IED status for IEC 60870-5-103 I103IED 14.22.1 Functionality I103IED is a function block with defined IED functions in monitor direction. This block uses parameter as FunctionType, and information number parameter is defined for each input signal.
  • Page 512: Supervison Status For Iec 60870-5-103 I103Superv

    Section 14 1MRK 502 043-UUS B Monitoring 14.23 Supervison status for IEC 60870-5-103 I103SUPERV 14.23.1 Functionality I103SUPERV is a function block with defined functions for supervision indications in monitor direction. This block includes the FunctionType parameter, and the information number parameter is defined for each output signal. 14.23.2 Function block I103SUPERV...
  • Page 513: Status For User Defined Signals For Iec 60870-5-103 I103Usrdef

    Section 14 1MRK 502 043-UUS B Monitoring 14.24 Status for user defined signals for IEC 60870-5-103 I103USRDEF 14.24.1 Functionality I103USRDEF is a function blocks with user defined input signals in monitor direction. These function blocks include the FunctionType parameter for each block in the private range, and the information number parameter for each input signal.
  • Page 514: Signals

    Section 14 1MRK 502 043-UUS B Monitoring 14.24.3 Signals Table 380: I103USRDEF Input signals Name Type Default Description BLOCK BOOLEAN Block of status reporting INPUT1 BOOLEAN Binary signal Input 1 INPUT2 BOOLEAN Binary signal input 2 INPUT3 BOOLEAN Binary signal input 3 INPUT4 BOOLEAN Binary signal input 4...
  • Page 515: Pulse Counter Pcggio

    Section 15 1MRK 502 043-UUS B Metering Section 15 Metering 15.1 Pulse counter PCGGIO 15.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Pulse counter PCGGIO S00947 V1 EN 15.1.2 Functionality Pulse counter (PCGGIO) function counts externally generated binary pulses, for instance pulses coming from an external energy meter, for calculation of energy consumption values.
  • Page 516: Signals

    Section 15 1MRK 502 043-UUS B Metering 15.1.4 Signals Table 382: PCGGIO Input signals Name Type Default Description BLOCK BOOLEAN Block of function READ_VAL BOOLEAN Initiates an additional pulse counter reading BI_PULSE BOOLEAN Connect binary input channel for metering RS_CNT BOOLEAN Resets pulse counter value Table 383:...
  • Page 517: Monitored Data

    Section 15 1MRK 502 043-UUS B Metering 15.1.6 Monitored data Table 385: PCGGIO Monitored data Name Type Values (Range) Unit Description CNT_VAL INTEGER Actual pulse counter value SCAL_VAL REAL Scaled value with time and status information 15.1.7 Operation principle The registration of pulses is done according to setting of CountCriteria parameter on one of the 9 binary input channels located on the BIO module.
  • Page 518: Technical Data

    Section 15 1MRK 502 043-UUS B Metering READ_VAL performs readings according to the setting of parameter CountCriteria. The signal must be a pulse with a length >1 second. The BI_PULSE input is connected to the used input of the function block for the binary input output module (BIO).
  • Page 519: Energy Calculation And Demand Handling Etpmmtr

    Section 15 1MRK 502 043-UUS B Metering 15.2 Energy calculation and demand handling ETPMMTR 15.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Energy calculation and demand ETPMMTR handling IEC10000169 V1 EN 15.2.2 Functionality Outputs from the Measurements (CVMMXN) function can be used to calculate energy consumption.
  • Page 520: Signals

    Section 15 1MRK 502 043-UUS B Metering 15.2.4 Signals Table 387: ETPMMTR Input signals Name Type Default Description REAL Measured active power REAL Measured reactive power STACC BOOLEAN Start to accumulate energy values RSTACC BOOLEAN Reset of accumulated enery reading RSTDMD BOOLEAN Reset of maximum demand reading...
  • Page 521: Settings

    Section 15 1MRK 502 043-UUS B Metering 15.2.5 Settings Table 389: ETPMMTR Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Enable/Disable Enabled StartAcc Disabled Disabled Activate the accumulation of energy values Enabled tEnergy 1 Minute 1 Minute Time interval for energy calculation...
  • Page 522: Monitored Data

    Section 15 1MRK 502 043-UUS B Metering 15.2.6 Monitored data Table 391: ETPMMTR Monitored data Name Type Values (Range) Unit Description EAFACC REAL Accumulated forward active energy value EARACC REAL Accumulated reverse active energy value ERFACC REAL MVArh Accumulated forward reactive energy value ERRACC REAL...
  • Page 523: Technical Data

    Section 15 1MRK 502 043-UUS B Metering ETPMMTR CVMMXN P_INST Q_INST STACC TRUE RSTACC FALSE RSTDMD FALSE IEC09000106.vsd IEC09000106 V1 EN Figure 237: Connection of Energy calculation and demand handling function (ETPMMTR) to the Measurements function (CVMMXN) 15.2.8 Technical data Table 392: ETPMMTR technical data Function...
  • Page 525: Dnp3 Protocol

    Section 16 1MRK 502 043-UUS B Station communication Section 16 Station communication 16.1 DNP3 protocol DNP3 (Distributed Network Protocol) is a set of communications protocols used to communicate data between components in process automation systems. For a detailed description of the DNP3 protocol, see the DNP3 Communication protocol manual. 16.2 IEC 61850-8-1 communication protocol 16.2.1...
  • Page 526: Communication Interfaces And Protocols

    Section 16 1MRK 502 043-UUS B Station communication interoperates with other IEC 61850-compliant IEDs, tools, and systems and simultaneously reports events to five different clients on the IEC 61850 station bus. The event system has a rate limiter to reduce CPU load. The event channel has a quota of 10 events/second.
  • Page 527: Technical Data

    Section 16 1MRK 502 043-UUS B Station communication 16.2.5 Technical data Table 395: Communication protocol Function Value Protocol TCP/IP Ethernet Communication speed for the IEDs 100 Mbit/s Protocol IEC 61850–8–1 Communication speed for the IEDs 100BASE-FX Protocol DNP3.0/TCP Communication speed for the IEDs 100BASE-FX Protocol, serial IEC 60870–5–103...
  • Page 528: Function Block

    Section 16 1MRK 502 043-UUS B Station communication 16.3.2 Function block GOOSEINTLKRCV BLOCK ^RESREQ ^RESGRANT ^APP1_OP ^APP1_CL APP1VAL ^APP2_OP ^APP2_CL APP2VAL ^APP3_OP ^APP3_CL APP3VAL ^APP4_OP ^APP4_CL APP4VAL ^APP5_OP ^APP5_CL APP5VAL ^APP6_OP ^APP6_CL APP6VAL ^APP7_OP ^APP7_CL APP7VAL ^APP8_OP ^APP8_CL APP8VAL ^APP9_OP ^APP9_CL APP9VAL ^APP10_OP...
  • Page 529 Section 16 1MRK 502 043-UUS B Station communication Table 397: GOOSEINTLKRCV Output signals Name Type Description RESREQ BOOLEAN Reservation request RESGRANT BOOLEAN Reservation granted APP1_OP BOOLEAN Apparatus 1 position is open APP1_CL BOOLEAN Apparatus 1 position is closed APP1VAL BOOLEAN Apparatus 1 position is valid APP2_OP BOOLEAN...
  • Page 530: Settings

    Section 16 1MRK 502 043-UUS B Station communication Name Type Description APP12_OP BOOLEAN Apparatus 12 position is open APP12_CL BOOLEAN Apparatus 12 position is closed APP12VAL BOOLEAN Apparatus 12 position is valid APP13_OP BOOLEAN Apparatus 13 position is open APP13_CL BOOLEAN Apparatus 13 position is closed APP13VAL...
  • Page 531: Function Block

    Section 16 1MRK 502 043-UUS B Station communication 16.4.2 Function block GOOSEBINRCV BLOCK ^OUT1 OUT1VAL ^OUT2 OUT2VAL ^OUT3 OUT3VAL ^OUT4 OUT4VAL ^OUT5 OUT5VAL ^OUT6 OUT6VAL ^OUT7 OUT7VAL ^OUT8 OUT8VAL ^OUT9 OUT9VAL ^OUT10 OUT10VAL ^OUT11 OUT11VAL ^OUT12 OUT12VAL ^OUT13 OUT13VAL ^OUT14 OUT14VAL ^OUT15 OUT15VAL...
  • Page 532: Settings

    Section 16 1MRK 502 043-UUS B Station communication Name Type Description OUT3 BOOLEAN Binary output 3 OUT3VAL BOOLEAN Valid data on binary output 3 OUT4 BOOLEAN Binary output 4 OUT4VAL BOOLEAN Valid data on binary output 4 OUT5 BOOLEAN Binary output 5 OUT5VAL BOOLEAN Valid data on binary output 5...
  • Page 533: Goose Function Block To Receive A Double Point Value Goosedprcv

    Section 16 1MRK 502 043-UUS B Station communication 16.5 GOOSE function block to receive a double point value GOOSEDPRCV 16.5.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number GOOSE function block to receive a GOOSEDPRCV double point value 16.5.2 Functionality...
  • Page 534: Settings

    Section 16 1MRK 502 043-UUS B Station communication 16.5.5 Settings Table 404: GOOSEDPRCV Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Enable/Disable Enabled 16.5.6 Operation principle The DATAVALID output will be HIGH if the incoming message is with valid data. The COMMVALID output will become LOW when the sending IED is under total failure condition and the GOOSE transmission from the sending IED does not happen.
  • Page 535: Functionality

    Section 16 1MRK 502 043-UUS B Station communication 16.6.2 Functionality GOOSEINTRCV is used to receive an integer value using IEC61850 protocol via GOOSE. 16.6.3 Function block GOOSEINTRCV BLOCK ^INTOUT DATAVALID COMMVALID TEST IEC10000250-1-en.vsd IEC10000250 V1 EN Figure 241: GOOSEINTRCV function block 16.6.4 Signals Table 405:...
  • Page 536: Goose Function Block To Receive A Measurand Value Goosemvrcv

    Section 16 1MRK 502 043-UUS B Station communication The COMMVALID output will become LOW when the sending IED is under total failure condition and the GOOSE transmission from the sending IED does not happen. The TEST output will go HIGH if the sending IED is in test mode. The input of this GOOSE block must be linked in SMT by means of a cross to receive the integer values.
  • Page 537: Signals

    Section 16 1MRK 502 043-UUS B Station communication 16.7.4 Signals Table 408: GOOSEMVRCV Input signals Name Type Default Description BLOCK BOOLEAN Block of function Table 409: GOOSEMVRCV Output signals Name Type Description MVOUT REAL Measurand value output DATAVALID BOOLEAN Data valid for measurand value output COMMVALID BOOLEAN Communication valid for measurand value output...
  • Page 538: Goose Function Block To Receive A Single Point Value Goosesprcv

    Section 16 1MRK 502 043-UUS B Station communication 16.8 GOOSE function block to receive a single point value GOOSESPRCV 16.8.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number GOOSE function block to receive a GOOSESPRCV single point value 16.8.2 Functionality...
  • Page 539: Settings

    Section 16 1MRK 502 043-UUS B Station communication 16.8.5 Settings Table 413: GOOSESPRCV Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Off/On Enabled 16.8.6 Operation principle The DATAVALID output will be HIGH if the incoming message is with valid data. The COMMVALID output will become LOW when the sending IED is under total failure condition and the GOOSE transmission from the sending IED does not happen.
  • Page 540: Settings

    Section 16 1MRK 502 043-UUS B Station communication IEC 60870-5-103 protocol can be configured to use either the optical serial or RS485 serial communication interface on the COM05 communication module. The functions Operation selection for optical serial (OPTICALPROT) and Operation selection for RS485 (RS485PROT) are used to select the communication interface.
  • Page 541 Section 16 1MRK 502 043-UUS B Station communication Name Values (Range) Unit Step Default Description MasterTimeDomain Master time domain Local Local with DST TimeSyncMode IEDTime IEDTime Time synchronization mode LinMastTime IEDTimeSkew EvalTimeAccuracy Disabled Evaluate time accuracy for invalid time 10ms 20ms 40ms EventRepMode...
  • Page 543: Self Supervision With Internal Event List

    Section 17 1MRK 502 043-UUS B Basic IED functions Section 17 Basic IED functions 17.1 Self supervision with internal event list 17.1.1 Functionality The Self supervision with internal event list (INTERRSIG and SELFSUPEVLST) function reacts to internal system events generated by the different built-in self- supervision elements.
  • Page 544: Signals

    Section 17 1MRK 502 043-UUS B Basic IED functions 17.1.2.3 Signals Table 416: INTERRSIG Output signals Name Type Description FAIL BOOLEAN Internal fail WARNING BOOLEAN Internal warning TSYNCERR BOOLEAN Time synchronization error RTCERR BOOLEAN Real time clock error DISABLE BOOLEAN Application Disable 17.1.2.4 Settings...
  • Page 545 Section 17 1MRK 502 043-UUS B Basic IED functions menu/Diagnostics/Internal events or Main menu/Diagnostics/IED status/General. The information from the self-supervision function is also available in the Event Viewer in PCM600. Both events from the Event list and the internal events are listed in time consecutive order in the Event Viewer.
  • Page 546 Section 17 1MRK 502 043-UUS B Basic IED functions LIODEV FAIL LIODEV STOPPED e.g. BIO1- ERROR LIODEV STARTED IOM2- ERROR SW Watchdog Error Internal Fail WDOG STARVED Runtime Exec Error RTE FATAL ERROR File System Error FTF FATAL ERROR RTE APP FAILED Runtime App Error RTE ALL APPS OK GENTS RTC ERROR...
  • Page 547: Internal Signals

    Section 17 1MRK 502 043-UUS B Basic IED functions 17.1.4.1 Internal signals SELFSUPEVLST function provides several status signals, that tells about the condition of the IED. As they provide information about the internal status of the IED, they are also called internal signals. The internal signals can be divided into two groups. •...
  • Page 548: Run-Time Model

    Section 17 1MRK 502 043-UUS B Basic IED functions Table 419: Explanations of internal signals Name of signal Reasons for activation Internal Fail This signal will be active if one or more of the following internal signals are active; Real Time Clock Error, Runtime App Error, Runtime Exec Error, SW Watchdog Error, File System Error Internal Warning This signal will be active if one or more of the following internal...
  • Page 549: Technical Data

    Section 17 1MRK 502 043-UUS B Basic IED functions ADx_Low Controller ADx_High IEC05000296-3-en.vsd IEC05000296 V3 EN Figure 247: Simplified drawing of A/D converter for the IED. The technique to split the analog input signal into two A/D converter(s) with different amplification makes it possible to supervise the A/D converters under normal conditions where the signals from the two A/D converters should be identical.
  • Page 550: Time Synchronization

    Section 17 1MRK 502 043-UUS B Basic IED functions 17.2 Time synchronization 17.2.1 Functionality The time synchronization source selector is used to select a common source of absolute time for the IED when it is a part of a protection system. This makes it possible to compare event and disturbance data between all IEDs in a station automation system.
  • Page 551: Settings

    Section 17 1MRK 502 043-UUS B Basic IED functions 17.2.3.2 Settings Table 422: SNTP Non group settings (basic) Name Values (Range) Unit Step Default Description ServerIP-Add 0 - 255 0.0.0.0 Server IP-address Address RedServIP-Add 0 - 255 0.0.0.0 Redundant server IP-address Address 17.2.4 Time system, summer time begin DSTBEGIN...
  • Page 552: Settings

    Section 17 1MRK 502 043-UUS B Basic IED functions 17.2.4.2 Settings Table 423: DSTBEGIN Non group settings (basic) Name Values (Range) Unit Step Default Description MonthInYear January March Month in year when daylight time starts February March April June July August September October...
  • Page 553: Settings

    Section 17 1MRK 502 043-UUS B Basic IED functions 17.2.5.2 Settings Table 424: DSTEND Non group settings (basic) Name Values (Range) Unit Step Default Description MonthInYear January October Month in year when daylight time ends February March April June July August September October...
  • Page 554: Time Synchronization Via Irig-B

    Section 17 1MRK 502 043-UUS B Basic IED functions 17.2.7 Time synchronization via IRIG-B 17.2.7.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Time synchronization via IRIG-B IRIG-B 17.2.7.2 Settings Table 426: IRIG-B Non group settings (basic) Name Values (Range) Unit...
  • Page 555 Section 17 1MRK 502 043-UUS B Basic IED functions Design of the time system (clock synchronization) External Time tagging and general synchronization synchronization sources Protection Commu Events and control Disabled - nication functions SNTP Time- IRIG-B regulator SW- time IEC60870-5-103 ANSI09000210-1-en.vsd ANSI09000210 V1 EN Figure 248:...
  • Page 556: Real-Time Clock (Rtc) Operation

    Section 17 1MRK 502 043-UUS B Basic IED functions • The maximum error of the last used synchronization message • The time since the last used synchronization message • The rate accuracy of the internal clock in the function. 17.2.8.2 Real-time clock (RTC) operation The IED has a built-in real-time clock (RTC) with a resolution of one second.
  • Page 557: Synchronization Alternatives

    Section 17 1MRK 502 043-UUS B Basic IED functions Rate accuracy In the IED, the rate accuracy at cold start is 100 ppm but if the IED is synchronized for a while, the rate accuracy is approximately 1 ppm if the surrounding temperature is constant.
  • Page 558: Technical Data

    Section 17 1MRK 502 043-UUS B Basic IED functions If the x in 00x is 4, 5, 6 or 7, the time message from IRIG-B contains information of the year. If x is 0, 1, 2 or 3, the information contains only the time within the year, and year information has to come from the tool or local HMI.
  • Page 559: Setting Group Handling Setgrps

    Section 17 1MRK 502 043-UUS B Basic IED functions 17.3.2 Setting group handling SETGRPS 17.3.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Setting group handling SETGRPS 17.3.2.2 Settings Table 428: SETGRPS Non group settings (basic) Name Values (Range) Unit...
  • Page 560: Signals

    Section 17 1MRK 502 043-UUS B Basic IED functions 17.3.3.3 Signals Table 429: ACTVGRP Input signals Name Type Default Description ACTGRP1 BOOLEAN Selects setting group 1 as active ACTGRP2 BOOLEAN Selects setting group 2 as active ACTGRP3 BOOLEAN Selects setting group 3 as active ACTGRP4 BOOLEAN Selects setting group 4 as active...
  • Page 561: Test Mode Functionality Testmode

    Section 17 1MRK 502 043-UUS B Basic IED functions More than one input may be activated at the same time. In such cases the lower order setting group has priority. This means that if for example both group four and group two are set to activate, group two will be the one activated.
  • Page 562: Functionality

    Section 17 1MRK 502 043-UUS B Basic IED functions 17.4.2 Functionality When the Test mode functionality TESTMODE is activated, all the functions in the IED are automatically blocked. It is then possible to unblock every function(s) individually from the local HMI to perform required tests. When leaving TESTMODE, all blockings are removed and the IED resumes normal operation.
  • Page 563: Settings

    Section 17 1MRK 502 043-UUS B Basic IED functions 17.4.5 Settings Table 433: TESTMODE Non group settings (basic) Name Values (Range) Unit Step Default Description TestMode Disabled Disabled Test mode in operation (Enabled) or not Enabled (Disabled) EventDisable Disabled Disabled Event disable during testmode Enabled CmdTestBit...
  • Page 564: Change Lock Function Chnglck

    CHNGLCK input, that logic must be designed so that it cannot permanently issue a logical one to the CHNGLCK input. If such a situation would occur in spite of these precautions, then please contact the local ABB representative for remedial action. Technical Manual...
  • Page 565: Function Block

    Section 17 1MRK 502 043-UUS B Basic IED functions 17.5.3 Function block CHNGLCK LOCK* ACTIVE OVERRIDE IEC09000062-1-en.vsd IEC09000062 V1 EN Figure 253: CHNGLCK function block 17.5.4 Signals Table 434: CHNGLCK Input signals Name Type Default Description LOCK BOOLEAN Activate change lock Table 435: CHNGLCK Output signals Name...
  • Page 566: Ied Identifiers Terminalid

    Section 17 1MRK 502 043-UUS B Basic IED functions • Set system time • Enter and exit from test mode • Change of active setting group The binary input signal LOCK controlling the function is defined in ACT or SMT: Binary input Function Activated...
  • Page 567: Product Information

    Section 17 1MRK 502 043-UUS B Basic IED functions Name Values (Range) Unit Step Default Description UnitName 0 - 18 Unit name Unit name UnitNumber 0 - 99999 Unit number TechnicalKey 0 - 18 AA0J0Q0A0 Technical key 17.7 Product information 17.7.1 Identification Function description...
  • Page 568: Primary System Values Primval

    Section 17 1MRK 502 043-UUS B Basic IED functions 17.8 Primary system values PRIMVAL 17.8.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Primary system values PRIMVAL 17.8.2 Functionality The rated system frequency and phasor rotation are set under Main menu/ Configuration/ Power system/ Primary values/PRIMVAL in the local HMI and PCM600 parameter setting tree.
  • Page 569: Identification

    Section 17 1MRK 502 043-UUS B Basic IED functions to a SMAI function block shall always have the same cycle time as the SMAI block. 17.9.2 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Signal matrix for analog inputs SMAI_20_x 17.9.3 Function block...
  • Page 570: Signals

    Section 17 1MRK 502 043-UUS B Basic IED functions 17.9.4 Signals Table 438: SMAI_20_1 Input signals Name Type Default Description BLOCK BOOLEAN Block group 1 DFTSPFC REAL 20.0 Number of samples per fundamental cycle used for DFT calculation REVROT BOOLEAN Reverse rotation group 1 GRP1_A STRING...
  • Page 571: Settings

    Section 17 1MRK 502 043-UUS B Basic IED functions Table 441: SMAI_20_12 Output signals Name Type Description AI3P GROUP SIGNAL Grouped three phase signal containing data from inputs 1-4 GROUP SIGNAL Quantity connected to the first analog input GROUP SIGNAL Quantity connected to the second analog input GROUP SIGNAL Quantity connected to the third analog input...
  • Page 572 Section 17 1MRK 502 043-UUS B Basic IED functions Table 443: SMAI_20_1 Non group settings (advanced) Name Values (Range) Unit Step Default Description Negation Disabled Disabled Negation NegateN Negate3Ph Negate3Ph+N MinValFreqMeas 5 - 200 Limit for frequency calculation in % of VBase Even if the AnalogInputType setting of a SMAI block is set to Current, the MinValFreqMeas setting is still visible.
  • Page 573: Operation Principle

    Section 17 1MRK 502 043-UUS B Basic IED functions Even if the AnalogInputType setting of a SMAI block is set to Current, the MinValFreqMeas setting is still visible. This means that the minimum level for current amplitude is based on VBase. For example, if VBase is 20000, the minimum amplitude for current is 20000 * 10% = 2000.
  • Page 574 Section 17 1MRK 502 043-UUS B Basic IED functions • It is not mandatory to connect all the inputs of SMAI function. However, it is very important that same set of three phase analog signals should be connected to one SMAI function.
  • Page 575 Section 17 1MRK 502 043-UUS B Basic IED functions based on the set system frequency. DFTReference set to DFTRefGrpX uses DFT reference from the selected group block, when own group selected adaptive DFT reference will be used based on the calculated signal frequency from own group. DFTReference set to External DFT Ref will use reference based on input signal DFTSPFC.
  • Page 576 Section 17 1MRK 502 043-UUS B Basic IED functions Task time group 1 Task time group 2 (5ms) (20ms) SMAI_20_1 SMAI_20_1 BLOCK SPFCOUT BLOCK SPFCOUT DFTSPFC AI3P DFTSPFC AI3P REVROT REVROT ^GRP1_A ^GRP1_A ^GRP1_B ^GRP1_B ^GRP1_C ^GRP1_C ^GRP1_N ^GRP1_N Task time group 1 (5ms) Task time group 2 (20ms) SMAI instance 3 phase group SMAI instance 3 phase group...
  • Page 577: Summation Block 3 Phase 3Phsum

    Section 17 1MRK 502 043-UUS B Basic IED functions For SMAI_20_1:2 to SMAI_20_12:2 DFTReference set to External DFT ref to use DFTSPFC input as reference. 17.10 Summation block 3 phase 3PHSUM 17.10.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number...
  • Page 578: Settings

    Section 17 1MRK 502 043-UUS B Basic IED functions Table 447: 3PHSUM Output signals Name Type Description AI3P GROUP SIGNAL Linear combination of two connected three phase inputs GROUP SIGNAL Linear combination of input 1 signals from both SMAI blocks GROUP SIGNAL Linear combination of input 2 signals from both SMAI blocks...
  • Page 579: Identification

    Section 17 1MRK 502 043-UUS B Basic IED functions 17.11.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Global base values GBASVAL 17.11.2 Functionality Global base values function (GBASVAL) is used to provide global values, common for all applicable functions within the IED.
  • Page 580: Functionality

    Section 17 1MRK 502 043-UUS B Basic IED functions 17.12.2 Functionality To safeguard the interests of our customers, both the IED and the tools that are accessing the IED are protected, by means of authorization handling. The authorization handling of the IED and the PCM600 is implemented at both access points to the IED: •...
  • Page 581: Authorization Handling In The Ied

    Section 17 1MRK 502 043-UUS B Basic IED functions 17.12.4.1 Authorization handling in the IED At delivery the default user is the SuperUser. No Log on is required to operate the IED until a user has been created with the IED User Management.. Once a user is created and written to the IED, that user can perform a Log on, using the password assigned in the tool.
  • Page 582: Functionality

    Section 17 1MRK 502 043-UUS B Basic IED functions 17.13.2 Functionality Authority status (ATHSTAT) function is an indication function block for user log-on activity. 17.13.3 Function block ATHSTAT USRBLKED LOGGEDON IEC09000235_en_1.vsd IEC09000235 V1 EN Figure 258: ATHSTAT function block 17.13.4 Signals Table 452: ATHSTAT Output signals...
  • Page 583: Denial Of Service

    Section 17 1MRK 502 043-UUS B Basic IED functions 17.14 Denial of service 17.14.1 Functionality The Denial of service functions (DOSLAN1 and DOSFRNT) are designed to limit overload on the IED produced by heavy Ethernet network traffic. The communication facilities must not be allowed to compromise the primary functionality of the device. All inbound network traffic will be quota controlled so that too heavy network loads can be controlled.
  • Page 584: Settings

    Section 17 1MRK 502 043-UUS B Basic IED functions 17.14.2.4 Settings The function does not have any parameters available in the local HMI or PCM600. 17.14.2.5 Monitored data Table 454: DOSFRNT Monitored data Name Type Values (Range) Unit Description State INTEGER 0=Off Frame rate control state...
  • Page 585: Function Block

    Section 17 1MRK 502 043-UUS B Basic IED functions 17.14.3.2 Function block DOSLAN1 LINKUP WARNING ALARM IEC09000134-1-en.vsd IEC09000134 V1 EN Figure 260: DOSLAN1 function block 17.14.3.3 Signals Table 455: DOSLAN1 Output signals Name Type Description LINKUP BOOLEAN Ethernet link status WARNING BOOLEAN Frame rate is higher than normal state...
  • Page 586: Operation Principle

    Section 17 1MRK 502 043-UUS B Basic IED functions Name Type Values (Range) Unit Description NonIPPackRecNorm INTEGER Number of non IP packets received in normal mode NonIPPackRecPoll INTEGER Number of non IP packets received in polled mode NonIPPackDisc INTEGER Number of non IP packets discarded 17.14.4 Operation principle...
  • Page 587: Protective Ground Connections

    Section 18 1MRK 502 043-UUS B IED physical connections Section 18 IED physical connections 18.1 Protective ground connections The IED shall be grounded with a 6 Gauge flat copper cable. The ground lead should be as short as possible, less than 59.06 inches (1500 mm).
  • Page 588: Inputs

    Section 18 1MRK 502 043-UUS B IED physical connections 18.2 Inputs 18.2.1 Measuring inputs Table 457: Analog input modules Terminal 6I + 4U 8I + 2U 4I + 1I + 5U 4I + 6U 6I + 4U 4I + 1I + 5U X101-1, 2 1/5A 1/5A...
  • Page 589: Binary Inputs

    Section 18 1MRK 502 043-UUS B IED physical connections Table 459: Auxiliary voltage supply of 48-125 V DC Case Terminal Description 3U full 19” X420-1 - Input X420-2 + Input 18.2.3 Binary inputs The binary inputs can be used, for example, to generate a blocking signal, to unlatch output contacts, to trigger the digital fault recorder or for remote control of IED settings.
  • Page 590 Section 18 1MRK 502 043-UUS B IED physical connections Table 461: Binary inputs X324, 3U full 19” Terminal Description PCM600 info Hardware module Hardware channel instance X324-1 - for input 1 BIO_3 X324-2 Binary input 1 + BIO_3 X324-3 X324-4 Common - for inputs 2-3 X324-5 Binary input 2 +...
  • Page 591 Section 18 1MRK 502 043-UUS B IED physical connections Terminal Description PCM600 info Hardware module Hardware channel instance X329-12 Common - for inputs 6-7 X329-13 Binary input 6 + BIO_4 X329-14 Binary input 7 + BIO_4 X329-15 X329-16 Common - for inputs 8-9 X329-17 Binary input 8 + BIO_4...
  • Page 592: Outputs

    Section 18 1MRK 502 043-UUS B IED physical connections Table 464: Binary inputs X339, 3U full 19” Terminal Description PCM600 info Hardware module Hardware channel instance X339-1 - for input 1 BIO_6 X339-2 Binary input 1 + BIO_6 X339-3 X339-4 Common - for inputs 2-3 X339-5 Binary input 2 +...
  • Page 593 Section 18 1MRK 502 043-UUS B IED physical connections Table 465: Terminal Description PCM600 info Hardware module Hardware channel instance Power output 1, normally open (TCM) X317-1 PSM_102 BO1_PO_TCM X317-2 Power output 2, normally open (TCM) X317-3 PSM_102 BO2_PO_TCM X317-4 Power output 3, normally open (TCM) X317-5 PSM_102...
  • Page 594: Outputs For Signalling

    Section 18 1MRK 502 043-UUS B IED physical connections Terminal Description PCM600 info Hardware module Hardware channel instance X326-4 X326-5 Power output 3, normally open BIO_4 BO3_PO X326-6 Table 468: Output contacts X331, 3U full 19” Terminal Description PCM600 info Hardware module Hardware channel instance...
  • Page 595 Section 18 1MRK 502 043-UUS B IED physical connections Table 470: Output contacts X317, 3U full 19” Terminal Description PCM600 info Hardware module Hardware channel instance X317-13 Signal output 1, normally open PSM_102 BO7_SO X317-14 X317-15 Signal output 2, normally open PSM_102 BO8_SO X317-16...
  • Page 596 Section 18 1MRK 502 043-UUS B IED physical connections Terminal Description PCM600 info Hardware module Hardware channel instance X326-14 Signal output 5, normally open BIO_4 BO8_SO X326-15 Signal outputs 4 and 5, common X326-16 Signal output 6, normally closed BIO_4 BO9_SO X326-17 Signal output 6, normally open...
  • Page 597: Communication Connections

    Section 18 1MRK 502 043-UUS B IED physical connections Terminal Description PCM600 info Hardware module Hardware channel instance X336-16 Signal output 6, normally closed BIO_6 BO9_SO X336-17 Signal output 6, normally open X336-18 Signal output 6, common 18.3.3 The IRF contact functions as a change-over output contact for the self-supervision system of the IED.
  • Page 598: Station Communication Rear Connection

    Section 18 1MRK 502 043-UUS B IED physical connections PC has to be configured in a way that it obtains the IP address automatically if the DHCPServer is enabled in LHMI. There is a DHCP server inside IED for the front interface only.
  • Page 599: Communication Interfaces And Protocols

    ● ● ● IEC 60870-5-103 ● ● ● = Supported 18.4.6 Recommended industrial Ethernet switches ABB recommends three third-party industrial Ethernet switches. • RuggedCom RS900 • RuggedCom RS1600 • RuggedCom RSG2100 18.5 Connection diagrams The 6U casing is not included in this release of the 650 series.
  • Page 600: Connection Diagrams For 650 Series

    Section 18 1MRK 502 043-UUS B IED physical connections 18.5.1 Connection diagrams for 650 series IEC12000584 V1 EN Technical Manual...
  • Page 601 Section 18 1MRK 502 043-UUS B IED physical connections IEC12000585 V1 EN Technical Manual...
  • Page 602 Section 18 1MRK 502 043-UUS B IED physical connections IEC12000586 V1 EN Technical Manual...
  • Page 603 Section 18 1MRK 502 043-UUS B IED physical connections IEC12000587 V1 EN Technical Manual...
  • Page 604 Section 18 1MRK 502 043-UUS B IED physical connections IEC12000588 V1 EN Technical Manual...
  • Page 605 Section 18 1MRK 502 043-UUS B IED physical connections IEC12000589 V1 EN Technical Manual...
  • Page 606 Section 18 1MRK 502 043-UUS B IED physical connections IEC12000590 V1 EN Technical Manual...
  • Page 607 Section 18 1MRK 502 043-UUS B IED physical connections IEC12000591 V1 EN Technical Manual...
  • Page 608 Section 18 1MRK 502 043-UUS B IED physical connections IEC12000592 V1 EN Technical Manual...
  • Page 609: Connection Diagrams For Reg650 B01A

    Section 18 1MRK 502 043-UUS B IED physical connections 18.5.2 Connection diagrams for REG650 B01A 1MRK006502-NC-1-1.2-ANSI V1 EN Technical Manual...
  • Page 610 Section 18 1MRK 502 043-UUS B IED physical connections 1MRK006502-NC-2-1.2-ANSI V1 EN Technical Manual...
  • Page 611 Section 18 1MRK 502 043-UUS B IED physical connections 1MRK006502-NC-3-1.2-ANSI V1 EN Technical Manual...
  • Page 612 Section 18 1MRK 502 043-UUS B IED physical connections 1MRK006502-NC-4-1.2-ANSI V1 EN Technical Manual...
  • Page 613 Section 18 1MRK 502 043-UUS B IED physical connections 1MRK006502-NC-5-1.2-ANSI V1 EN Technical Manual...
  • Page 614 Section 18 1MRK 502 043-UUS B IED physical connections 1MRK006502-NC-6-1.2-ANSI V1 EN Technical Manual...
  • Page 615 Section 18 1MRK 502 043-UUS B IED physical connections 1MRK006502-NC-7-1.2-ANSI V1 EN Technical Manual...
  • Page 616 Section 18 1MRK 502 043-UUS B IED physical connections 1MRK006502-NC-8-1.2-ANSI V1 EN Technical Manual...
  • Page 617 Section 18 1MRK 502 043-UUS B IED physical connections 1MRK006502-NC-9-1.2-ANSI V1 EN Technical Manual...
  • Page 618: Connection Diagrams For Reg650 B05A

    Section 18 1MRK 502 043-UUS B IED physical connections 18.5.3 Connection diagrams for REG650 B05A 1MRK006502-PC-1-1.2-ANSI V1 EN Technical Manual...
  • Page 619 Section 18 1MRK 502 043-UUS B IED physical connections 1MRK006502-PC-2-1.2-ANSI V1 EN Technical Manual...
  • Page 620 Section 18 1MRK 502 043-UUS B IED physical connections 1MRK006502-PC-3-1.2-ANSI V1 EN Technical Manual...
  • Page 621 Section 18 1MRK 502 043-UUS B IED physical connections 1MRK006502-PC-4-1.2-ANSI V1 EN Technical Manual...
  • Page 622 Section 18 1MRK 502 043-UUS B IED physical connections 1MRK006502-PC-5-1.2-ANSI V1 EN Technical Manual...
  • Page 623 Section 18 1MRK 502 043-UUS B IED physical connections 1MRK006502-PC-6-1.2-ANSI V1 EN Technical Manual...
  • Page 624 Section 18 1MRK 502 043-UUS B IED physical connections 1MRK006502-PC-7-1.2-ANSI V1 EN Technical Manual...
  • Page 625 Section 18 1MRK 502 043-UUS B IED physical connections 1MRK006502-PC-8-1.2-ANSI V1 EN Technical Manual...
  • Page 626 Section 18 1MRK 502 043-UUS B IED physical connections 1MRK006502-PC-9-1.2-ANSI V1 EN Technical Manual...
  • Page 627: Section 19 Technical Data

    Section 19 1MRK 502 043-UUS B Technical data Section 19 Technical data 19.1 Dimensions Table 478: Dimensions of the IED - 3U full 19" rack Description Value Width 17.40 inches (442 mm) Height 5.20 inches (132 mm), 3U Depth 9.82 inches (249.5 mm) Weight box <22.04 lbs (10 kg) Weight LHMI...
  • Page 628: Energizing Inputs

    Section 19 1MRK 502 043-UUS B Technical data 19.3 Energizing inputs Table 480: Energizing inputs Description Value Rated frequency 50/60 Hz Operating range Rated frequency ± 5 Hz Current inputs Rated current, I 0.1/0.5 A 1/5 A Thermal withstand capability: •...
  • Page 629: Signal Outputs

    Section 19 1MRK 502 043-UUS B Technical data 19.5 Signal outputs Table 482: Signal output and IRF output Description Value Rated voltage 250 V AC/DC Continuous contact carry Make and carry for 3.0 s 10 A Make and carry 0.5 s 30 A Breaking capacity when the control-circuit time ≤0.5 A/≤0.1 A/≤0.04 A...
  • Page 630: Data Communication Interfaces

    Section 19 1MRK 502 043-UUS B Technical data 19.7 Data communication interfaces Table 485: Ethernet interfaces Ethernet interface Protocol Cable Data transfer rate 100BASE-TX CAT 6 S/FTP or better 100 MBits/s 100BASE-FX TCP/IP protocol Fibre-optic cable with 100 MBits/s LC connector Table 486: Fibre-optic communication link Wave length...
  • Page 631: Enclosure Class

    Section 19 1MRK 502 043-UUS B Technical data Table 489: EIA-485 interface Type Value Conditions Minimum differential 1.5 V — driver output voltage Maximum output current 60 mA — Minimum differential 0.2 V — receiver input voltage Supported bit rates 300, 600, 1200, 2400, —...
  • Page 632: Environmental Conditions And Tests

    Section 19 1MRK 502 043-UUS B Technical data 19.9 Environmental conditions and tests Table 494: Environmental conditions Description Value Operating temperature range -25...+55ºC (continuous) Short-time service temperature range -40...+70ºC (<16h) Note: Degradation in MTBF and HMI performance outside the temperature range of -25...+55ºC Relative humidity <93%, non-condensing Atmospheric pressure...
  • Page 633: Section 20 Ied And Functionality Tests

    Section 20 1MRK 502 043-UUS B IED and functionality tests Section 20 IED and functionality tests 20.1 Electromagnetic compatibility tests Table 496: Electromagnetic compatibility tests Description Type test value Reference 100 kHz and 1 MHz burst IEC 61000-4-18, level 3 disturbance test IEC 60255-22-1 ANSI C37.90.1-2002...
  • Page 634 Section 20 1MRK 502 043-UUS B IED and functionality tests Description Type test value Reference • 1000 A/m • Continuous 100 A/m Pulse magnetic field immunity 1000A/m IEC 61000–4–9, level 5 test Power frequency immunity test IEC 60255-22-7, class A IEC 61000-4-16 •...
  • Page 635: Insulation Tests

    Section 20 1MRK 502 043-UUS B IED and functionality tests 20.2 Insulation tests Table 497: Insulation tests Description Type test value Reference Dielectric tests: IEC 60255-5 ANSI C37.90-2005 • Test voltage 2 kV, 50 Hz, 1 min 1 kV, 50 Hz, 1 min, communication Impulse voltage test: IEC 60255-5...
  • Page 636: Emc Compliance

    Section 20 1MRK 502 043-UUS B IED and functionality tests Table 499: Product safety Description Reference LV directive 2006/95/EC Standard EN 60255-27 (2005) 20.5 EMC compliance Table 500: EMC compliance Description Reference EMC directive 2004/108/EC Standard EN 50263 (2000) EN 60255-26 (2007) Technical Manual...
  • Page 637: Section 21 Time Inverse Characteristics

    Section 21 1MRK 502 043-UUS B Time inverse characteristics Section 21 Time inverse characteristics 21.1 Application In order to assure time selectivity between different overcurrent protections in different points in the network different time delays for the different relays are normally used. The simplest way to do this is to use definite time delay.
  • Page 638 Section 21 1MRK 502 043-UUS B Time inverse characteristics Time Fault point position en05000131.vsd IEC05000131 V1 EN Figure 264: Inverse time overcurrent characteristics with inst. function The inverse time characteristic makes it possible to minimize the fault clearance time and still assure the selectivity between protections. To assure selectivity between protections there must be a time margin between the operation time of the protections.
  • Page 639 Section 21 1MRK 502 043-UUS B Time inverse characteristics Feeder Time axis en05000132_ansi.vsd ANSI05000132 V1 EN Figure 265: Selectivity steps for a fault on feeder B1 where: is The fault occurs is Protection B1 trips is Breaker at B1 opens is Protection A1 resets In the case protection B1 shall operate without any intentional delay (instantaneous).
  • Page 640: Operation Principle

    Section 21 1MRK 502 043-UUS B Time inverse characteristics • If there is a risk of intermittent faults. If the current relay, close to the faults, picks up and resets there is a risk of unselective trip from other protections in the system. •...
  • Page 641 Section 21 1MRK 502 043-UUS B Time inverse characteristics For inverse time characteristics a time will be initiated when the current reaches the set pickup level. From the general expression of the characteristic the following can be seen: æ ö æ...
  • Page 642 Section 21 1MRK 502 043-UUS B Time inverse characteristics For the IEC curves there is also a setting of the minimum time-lag of operation, see figure 266. Operate time tMin Current IMin IEC05000133-3-en.vsd IEC05000133 V2 EN Figure 266: Minimum time-lag operation for the IEC curves In order to fully comply with IEC curves definition setting parameter tMin shall be set to the value which is equal to the operating time of the selected IEC inverse time curve for measured current of twenty times the set current pickup value.
  • Page 643: Inverse Time Characteristics

    Section 21 1MRK 502 043-UUS B Time inverse characteristics æ ö ç ÷ ç ÷ Pickupn ç ÷ ç ÷ × 0.339 0.235 è ø (Equation 118) EQUATION1647 V1 EN where: Pickupn is the set pickup current for step n is set time multiplier for step n is the measured current The RD inverse curve gives a logarithmic delay, as used in the Combiflex protection...
  • Page 644 Section 21 1MRK 502 043-UUS B Time inverse characteristics Table 501: ANSI Inverse time characteristics Function Range or value Accuracy Operating characteristic: td = (0.05-999) in steps of 0.01 æ ö ç ÷ × ç ÷ è ø EQUATION1651 V1 EN I = I measured ANSI Extremely Inverse...
  • Page 645 Section 21 1MRK 502 043-UUS B Time inverse characteristics Table 503: RI and RD type inverse time characteristics Function Range or value Accuracy RI type inverse characteristic td = (0.05-999) in steps of 0.01 × 0.236 0.339 EQUATION1656 V1 EN I = I measured RD type logarithmic inverse characteristic...
  • Page 646 Section 21 1MRK 502 043-UUS B Time inverse characteristics Table 505: Inverse time characteristics for undervoltage protection Function Range or value Accuracy Type A curve: td = (0.05-1.10) in steps ±5% +60 ms of 0.01 æ ö VPickup V ç ÷...
  • Page 647 Section 21 1MRK 502 043-UUS B Time inverse characteristics A070750 V2 EN Figure 267: ANSI Extremely inverse time characteristics Technical Manual...
  • Page 648 Section 21 1MRK 502 043-UUS B Time inverse characteristics A070751 V2 EN Figure 268: ANSI Very inverse time characteristics Technical Manual...
  • Page 649 Section 21 1MRK 502 043-UUS B Time inverse characteristics A070752 V2 EN Figure 269: ANSI Normal inverse time characteristics Technical Manual...
  • Page 650 Section 21 1MRK 502 043-UUS B Time inverse characteristics A070753 V2 EN Figure 270: ANSI Moderately inverse time characteristics Technical Manual...
  • Page 651 Section 21 1MRK 502 043-UUS B Time inverse characteristics A070817 V2 EN Figure 271: ANSI Long time extremely inverse time characteristics Technical Manual...
  • Page 652 Section 21 1MRK 502 043-UUS B Time inverse characteristics A070818 V2 EN Figure 272: ANSI Long time very inverse time characteristics Technical Manual...
  • Page 653 Section 21 1MRK 502 043-UUS B Time inverse characteristics A070819 V2 EN Figure 273: ANSI Long time inverse time characteristics Technical Manual...
  • Page 654 Section 21 1MRK 502 043-UUS B Time inverse characteristics A070820 V2 EN Figure 274: IEC Normal inverse time characteristics Technical Manual...
  • Page 655 Section 21 1MRK 502 043-UUS B Time inverse characteristics A070821 V2 EN Figure 275: IEC Very inverse time characteristics Technical Manual...
  • Page 656 Section 21 1MRK 502 043-UUS B Time inverse characteristics A070822 V2 EN Figure 276: IEC Inverse time characteristics Technical Manual...
  • Page 657 Section 21 1MRK 502 043-UUS B Time inverse characteristics A070823 V2 EN Figure 277: IEC Extremely inverse time characteristics Technical Manual...
  • Page 658 Section 21 1MRK 502 043-UUS B Time inverse characteristics A070824 V2 EN Figure 278: IEC Short time inverse time characteristics Technical Manual...
  • Page 659 Section 21 1MRK 502 043-UUS B Time inverse characteristics A070825 V2 EN Figure 279: IEC Long time inverse time characteristics Technical Manual...
  • Page 660 Section 21 1MRK 502 043-UUS B Time inverse characteristics A070826 V2 EN Figure 280: RI-type inverse time characteristics Technical Manual...
  • Page 661 Section 21 1MRK 502 043-UUS B Time inverse characteristics A070827 V2 EN Figure 281: RD-type inverse time characteristics Technical Manual...
  • Page 662 Section 21 1MRK 502 043-UUS B Time inverse characteristics GUID-ACF4044C-052E-4CBD-8247-C6ABE3796FA6 V1 EN Figure 282: Inverse curve A characteristic of overvoltage protection Technical Manual...
  • Page 663 Section 21 1MRK 502 043-UUS B Time inverse characteristics GUID-F5E0E1C2-48C8-4DC7-A84B-174544C09142 V1 EN Figure 283: Inverse curve B characteristic of overvoltage protection Technical Manual...
  • Page 664 Section 21 1MRK 502 043-UUS B Time inverse characteristics GUID-A9898DB7-90A3-47F2-AEF9-45FF148CB679 V1 EN Figure 284: Inverse curve C characteristic of overvoltage protection Technical Manual...
  • Page 665 Section 21 1MRK 502 043-UUS B Time inverse characteristics GUID-35F40C3B-B483-40E6-9767-69C1536E3CBC V1 EN Figure 285: Inverse curve A characteristic of undervoltage protection Technical Manual...
  • Page 666 Section 21 1MRK 502 043-UUS B Time inverse characteristics GUID-B55D0F5F-9265-4D9A-A7C0-E274AA3A6BB1 V1 EN Figure 286: Inverse curve B characteristic of undervoltage protection Technical Manual...
  • Page 667: Section 22 Glossary

    Section 22 1MRK 502 043-UUS B Glossary Section 22 Glossary Alternating current Application configuration tool within PCM600 A/D converter Analog-to-digital converter ADBS Amplitude deadband supervision Analog input ANSI American National Standards Institute Autoreclosing ASCT Auxiliary summation current transformer Adaptive signal detection American Wire Gauge standard Binary input Binary outputs status...
  • Page 668 Section 22 1MRK 502 043-UUS B Glossary COMTRADE Standard Common Format for Transient Data Exchange format for Disturbance recorder according to IEEE/ANSI C37.111, 1999 / IEC60255-24 Contra-directional Way of transmitting G.703 over a balanced line. Involves four twisted pairs, two of which are used for transmitting data in both directions and two for transmitting clock signals Central processor unit Carrier receive...
  • Page 669 Section 22 1MRK 502 043-UUS B Glossary Electromagnetic compatibility (Electric Motive Force) Electromagnetic interference EnFP End fault protection Enhanced performance architecture Electrostatic discharge Flow control bit; Frame count bit FOX 20 Modular 20 channel telecommunication system for speech, data and protection signals FOX 512/515 Access multiplexer FOX 6Plus...
  • Page 670 Section 22 1MRK 502 043-UUS B Glossary IEC 61850 Substation automation communication standard IEC 61850–8–1 Communication protocol standard IEEE Institute of Electrical and Electronics Engineers IEEE 802.12 A network technology standard that provides 100 Mbits/s on twisted-pair or optical fiber cable IEEE P1386.1 PCI Mezzanine Card (PMC) standard for local bus modules.
  • Page 671 Section 22 1MRK 502 043-UUS B Glossary Local area network LIB 520 High-voltage software module Liquid crystal display Local detection device Light-emitting diode Miniature circuit breaker Mezzanine carrier module Multifunction vehicle bus. Standardized serial bus originally developed for use in trains. National Control Centre OCO cycle Open-close-open cycle...
  • Page 672 Section 22 1MRK 502 043-UUS B Glossary Relay characteristic angle RFPP Resistance for phase-to-phase faults Resistance for phase-to-ground faults RISC Reduced instruction set computer RMS value Root mean square value RS422 A balanced serial interface for the transmission of digital data in point-to-point connections RS485 Serial link according to EIA standard RS485...
  • Page 673 Section 22 1MRK 502 043-UUS B Glossary TCP/IP Transmission control protocol over Internet Protocol. The de facto standard Ethernet protocols incorporated into 4.2BSD Unix. TCP/IP was developed by DARPA for Internet working and encompasses both network layer and transport layer protocols.
  • Page 674 Section 22 1MRK 502 043-UUS B Glossary Three times the zero sequence voltage. Often referred to as the residual voltage or the neutral point voltage Technical Manual...
  • Page 676 ABB Inc. 3450 Harvester Road Burlington, ON L7N 3W5, Canada Phone Toll Free: 1-800-HELP-365, menu option #8 ABB Mexico S.A. de C.V. Paseo de las Americas No. 31 Lomas Verdes 3a secc. 53125, Naucalpan, Estado De Mexico, MEXICO Phone (+1) 440-585-7804, menu...

Table of Contents