ABB REG650 Technical Manual

Generator protection
Hide thumbs Also See for REG650:
Table of Contents

Advertisement

®
Relion
650 series
Generator protection REG650
Technical manual

Advertisement

Table of Contents
loading

Summary of Contents for ABB REG650

  • Page 1 ® Relion 650 series Generator protection REG650 Technical manual...
  • Page 3 Document ID: 1MRK 502 048-UEN Issued: October 2016 Revision: A Product version: 1.3 © Copyright 2013 ABB. All rights reserved...
  • Page 4 Copyright This document and parts thereof must not be reproduced or copied without written permission from ABB, and the contents thereof must not be imparted to a third party, nor used for any unauthorized purpose. The software and hardware described in this document is furnished under a license and may be used or disclosed only in accordance with the terms of such license.
  • Page 5 In case any errors are detected, the reader is kindly requested to notify the manufacturer. Other than under explicit contractual commitments, in no event shall ABB be responsible or liable for any loss or damage resulting from the use of this manual or the application of the equipment.
  • Page 6 (EMC Directive 2004/108/EC) and concerning electrical equipment for use within specified voltage limits (Low-voltage directive 2006/95/EC). This conformity is the result of tests conducted by ABB in accordance with the product standards EN 50263 and EN 60255-26 for the EMC directive, and with the product standards EN 60255-1 and EN 60255-27 for the low voltage directive.
  • Page 7: Table Of Contents

    Table of contents Table of contents Section 1 Introduction..............31 This manual..................31 Intended audience................31 Product documentation..............32 Product documentation set............32 Document revision history............33 Related documents..............33 Symbols and conventions..............34 Symbols..................34 Document conventions..............35 Section 2 Available functions............37 Main protection functions..............37 Back-up protection functions............
  • Page 8 Table of contents Basic part for LED indication module..........60 Identification................60 Function block................60 Signals..................61 Settings..................62 LCD part for HMI function keys control module........62 Identification................62 Function block................62 Signals..................63 Settings..................63 Operation principle................64 Local HMI..................64 Display..................64 LEDs..................67 Keypad...................
  • Page 9 Table of contents Instantaneous differential currents........102 Harmonic and waveform block criteria......... 102 Switch onto fault feature............103 Logic diagram...............104 Technical data................109 Restricted earth-fault protection, low impedance REFPDIF ..109 Identification................109 Functionality................110 Function block................110 Signals..................110 Settings..................111 Monitored data................111 Operation principle..............
  • Page 10 Table of contents Technical data................137 Section 7 Impedance protection...........139 Power swing detection ZMRPSB ...........139 Identification................139 Functionality................139 Function block................139 Signals..................140 Settings..................140 Operation principle..............141 Resistive reach in forward direction........142 Resistive reach in reverse direction........143 Reactive reach in forward and reverse direction....144 Basic detection logic.............144 Operating and inhibit conditions...........
  • Page 11 Table of contents Monitored data................163 Operation principle..............163 Lens characteristic............... 166 Detecting an out-of-step condition........168 Maximum slip frequency............169 Taking care of the circuit breaker soundness.......170 Design.................. 172 Technical data................172 Load encroachment LEPDIS ............173 Identification................173 Functionality................173 Function block................173 Signals..................173 Settings..................174 Operation principle..............
  • Page 12 Table of contents Internal earth-fault protection structure........ 196 Four residual overcurrent steps..........196 Directional supervision element with integrated directional comparison function..........197 Second harmonic blocking element...........201 Technical data................202 Sensitive directional residual overcurrent and power protection SDEPSDE ..................203 Identification................203 Functionality................203 Function block................
  • Page 13 Table of contents Identification ................227 Functionality................227 Function block................227 Signals..................228 Settings..................228 Monitored data................229 Operation principle..............229 Pole discordance signaling from circuit breaker....230 Unsymmetrical current detection..........230 Technical data................231 Directional over-/under-power protection GOPPDOP/GUPPDUP. 231 Functionality................231 Directional overpower protection GOPPDOP ......232 Identification.................
  • Page 14 Table of contents Monitored data................246 Operation principle..............246 Start sensitivity..............248 Alarm function..............248 Logic diagram...............248 Technical data................249 Voltage-restrained time overcurrent protection VRPVOC....249 Identification................249 Functionality................249 Function block................250 Signals..................250 Settings..................251 Monitored data................252 Operation principle..............252 Measured quantities............. 252 Base quantities..............252 Overcurrent protection............252 Logic diagram...............254...
  • Page 15 Table of contents Time delay................267 Blocking................268 Design.................. 268 Technical data................270 Two step residual overvoltage protection ROV2PTOV ....270 Identification................270 Functionality................270 Function block................271 Signals..................271 Settings..................271 Monitored data................272 Operation principle..............272 Measurement principle............273 Time delay................273 Blocking................273 Design.................. 273 Technical data................
  • Page 16 Table of contents Identification................295 Functionality................295 Function block................295 Signals..................296 Settings..................296 Monitored data................296 Operation principle..............296 Measurement principle............297 Time delay................297 Blocking................298 Design.................. 298 Technical data................298 Overfrequency protection SAPTOF ..........298 Identification................299 Functionality................299 Function block................299 Signals..................299 Settings..................300 Monitored data................300 Operation principle..............
  • Page 17 Table of contents Monitored data................310 Operation principle..............310 Zero and negative sequence detection........ 310 Delta current and delta voltage detection......311 Dead line detection...............314 Main logic................314 Technical data................318 Breaker close/trip circuit monitoring TCSSCBR......318 Identification................318 Functionality................318 Function block................318 Signals..................319 Settings..................319 Operation principle..............
  • Page 18 Table of contents Signals..................340 Settings................341 Circuit switch SXSWI..............341 Signals..................341 Settings................342 Bay control QCBAY..............343 Identification ................ 343 Functionality................. 343 Function block..............343 Signals..................343 Settings................344 Local remote LOCREM............. 344 Identification ................ 344 Functionality................. 344 Function block..............344 Signals..................344 Settings................
  • Page 19 Table of contents Identification................. 357 Functionality................. 357 Function block..............357 Logic diagram...............357 Signals..................358 Settings................358 Interlocking for bus-section breaker A1A2_BS......358 Identification................. 358 Functionality................. 358 Function block..............359 Logic diagram...............360 Signals..................361 Settings................363 Interlocking for bus-section disconnector A1A2_DC ....363 Identification.................
  • Page 20 Table of contents Functionality................. 394 Function block..............396 Logic diagram...............397 Signals..................402 Settings................404 Interlocking for transformer bay AB_TRAFO ......404 Identification................. 405 Functionality................. 405 Function block..............406 Logic diagram...............406 Signals..................408 Settings................409 Position evaluation POS_EVAL..........410 Identification................. 410 Functionality................. 410 Function block..............410 Logic diagram...............410 Signals..................411 Settings................
  • Page 21 Table of contents Single point generic control 8 signals SPC8GGIO......421 Identification................421 Functionality................421 Function block................421 Signals..................422 Settings..................422 Operation principle..............423 Automation bits AUTOBITS............423 Identification................423 Functionality................423 Function block................424 Signals..................424 Settings..................425 Operation principle..............425 Function commands for IEC 60870-5-103 I103CMD..... 426 Functionality................
  • Page 22 Table of contents Identification................433 Functionality................433 Function block................433 Signals..................434 Settings..................434 Operation principle..............434 Technical data................435 Trip matrix logic TMAGGIO............435 Identification................435 Functionality................435 Function block................436 Signals..................436 Settings..................437 Operation principle..............438 Configurable logic blocks..............439 Standard configurable logic blocks..........439 Functionality.................
  • Page 23 Table of contents Boolean 16 to integer conversion with logic node representation B16IFCVI..................457 Identification................457 Functionality................457 Function block................458 Signals..................458 Settings..................459 Monitored data................459 Operation principle..............459 Integer to boolean 16 conversion IB16A........460 Identification................460 Functionality................460 Function block................460 Signals..................461 Settings..................461 Operation principle..............
  • Page 24 Table of contents Monitored data..............477 Phase current measurement CMMXU........477 Identification ................ 477 Function block..............478 Signals..................478 Settings................478 Monitored data..............479 Phase-phase voltage measurement VMMXU......480 Identification ................ 480 Function block..............480 Signals..................480 Settings................481 Monitored data..............481 Current sequence component measurement CMSQI....482 Identification ................
  • Page 25 Table of contents Signals..................501 Settings..................502 Monitored data................502 Operation principle..............502 Reporting................503 Technical data................503 Function description............... 503 Limit counter L4UFCNT.............503 Introduction................503 Principle of operation..............504 Design.................. 504 Reporting................505 Function block................505 Signals..................506 Settings..................506 Monitored data................507 Technical data................507 Disturbance report................507 Functionality................
  • Page 26 Table of contents Event recorder ..............530 Event list ................530 Trip value recorder .............. 530 Disturbance recorder ............530 Time tagging.................530 Recording times..............530 Analog signals..............531 Binary signals............... 533 Trigger signals..............533 Post Retrigger..............534 Technical data................535 Indications..................535 Functionality................535 Function block................
  • Page 27 Table of contents Settings..................541 Operation principle..............542 Memory and storage............542 Technical data................544 IEC 61850 generic communication I/O functions SPGGIO.... 544 Identification................544 Functionality................544 Function block................544 Signals..................544 Settings..................545 Operation principle..............545 IEC 61850 generic communication I/O functions 16 inputs SP16GGIO..................
  • Page 28 Table of contents Operation principle ..............553 Technical data................554 Insulation gas monitoring function SSIMG........554 Identification................554 Functionality................555 Function block................555 Signals..................555 Settings..................556 Operation principle..............556 Technical data................557 Insulation liquid monitoring function SSIML........557 Identification................557 Functionality................557 Function block................
  • Page 29 Table of contents Function block................576 Signals..................576 Settings..................577 Function status auto-recloser for IEC 60870-5-103 I103AR...577 Functionality................577 Function block................577 Signals..................578 Settings..................578 Function status earth-fault for IEC 60870-5-103 I103EF....578 Functionality................578 Function block................578 Signals..................578 Settings..................579 Function status fault protection for IEC 60870-5-103 I103FLTPROT................
  • Page 30 Table of contents Technical data................590 Energy calculation and demand handling ETPMMTR....590 Identification................590 Functionality................590 Function block................591 Signals..................591 Settings..................592 Monitored data................593 Operation principle..............593 Technical data................594 Section 16 Station communication..........595 DNP3 protocol................595 IEC 61850-8-1 communication protocol ........595 Identification................
  • Page 31 Table of contents Settings..................605 Operation principle ..............605 GOOSE function block to receive a measurand value GOOSEMVRCV................606 Identification................606 Functionality................606 Function block................606 Signals..................606 Settings..................607 Operation principle ..............607 GOOSE function block to receive a single point value GOOSESPRCV................
  • Page 32 Table of contents Internal event list SELFSUPEVLST...........616 Identification................. 616 Settings................616 Operation principle..............616 Internal signals..............618 Run-time model..............620 Technical data................621 Time synchronization..............622 Functionality................622 Time synchronization TIMESYNCHGEN........622 Identification................. 622 Settings................622 Time synchronization via SNTP..........622 Identification................. 622 Settings................
  • Page 33 Table of contents Test mode functionality TESTMODE..........632 Identification................632 Functionality................632 Function block................632 Signals..................632 Settings..................633 Operation principle..............633 Change lock function CHNGLCK ..........634 Identification................634 Functionality................634 Function block................635 Signals..................635 Settings..................635 Operation principle..............635 IED identifiers TERMINALID............636 Identification................
  • Page 34 Table of contents Settings..................648 Authority check ATHCHCK.............648 Identification................648 Functionality................648 Settings..................649 Operation principle..............649 Authorization handling in the IED......... 650 Authority management AUTHMAN..........651 Identification................651 AUTHMAN.................651 Settings..................651 FTP access with password FTPACCS........... 652 Identification................652 FTP access with SSL FTPACCS..........652 Settings..................652 Authority status ATHSTAT.............
  • Page 35 Table of contents Outputs................... 664 Outputs for tripping, controlling and signalling......664 Outputs for signalling..............666 IRF.....................669 Communication connections............669 Ethernet RJ-45 front connection..........669 Station communication rear connection........670 Optical serial rear connection............ 670 EIA-485 serial rear connection..........670 Communication interfaces and protocols........671 Recommended industrial Ethernet switches......
  • Page 37: Section 1 Introduction

    Section 1 1MRK 502 048-UEN A Introduction Section 1 Introduction This manual The technical manual contains application and functionality descriptions and lists function blocks, logic diagrams, input and output signals, setting parameters and technical data, sorted per function. The manual can be used as a technical reference during the engineering phase, installation and commissioning phase, and during normal service.
  • Page 38: Product Documentation

    Section 1 1MRK 502 048-UEN A Introduction Product documentation 1.3.1 Product documentation set Engineering manual Installation manual Commissioning manual Operation manual Application manual Technical manual Communication protocol manual IEC07000220-3-en.vsd IEC07000220 V3 EN Figure 1: The intended use of manuals throughout the product lifecycle The engineering manual contains instructions on how to engineer the IEDs using the various tools available within the PCM600 software.
  • Page 39: Document Revision History

    Document revision history Document revision/date History -/March 2013 First release A/October 2016 Minor corrections made 1.3.3 Related documents Documents related to REG650 Identity number Application manual 1MRK 502 047-UEN Technical manual 1MRK 502 048-UEN Commissioning manual 1MRK 502 049-UEN Product Guide...
  • Page 40: Symbols And Conventions

    Section 1 1MRK 502 048-UEN A Introduction 650 series manuals Identity number Communication protocol manual, DNP 3.0 1MRK 511 280-UEN Communication protocol manual, IEC 61850–8–1 1MRK 511 281-UEN Communication protocol manual, IEC 60870-5-103 1MRK 511 282-UEN Cyber Security deployment guidelines 1MRK 511 285-UEN Point list manual, DNP 3.0 1MRK 511 283-UEN...
  • Page 41: Document Conventions

    Section 1 1MRK 502 048-UEN A Introduction in degraded process performance leading to personal injury or death. It is important that the user fully complies with all warning and cautionary notices. 1.4.2 Document conventions • Abbreviations and acronyms in this manual are spelled out in the glossary. The glossary also contains definitions of important terms.
  • Page 43: Section 2 Available Functions

    Section 2 1MRK 502 048-UEN A Available functions Section 2 Available functions Main protection functions IEC 61850 or ANSI Function description Generator Function name Differential protection T3WPDIF Transformer differential protection, three winding 0–1 REFPDIF Restricted earth fault protection, low impedance 0–1 HZPDIF 1Ph High impedance differential protection...
  • Page 44: Control And Monitoring Functions

    Section 2 1MRK 502 048-UEN A Available functions IEC 61850 or ANSI Function description Generator Function name GUPPDUP Directional underpower protection 0–1 GOPPDOP Directional overpower protection 0–2 AEGGAPC 50AE Accidental energizing protection for synchronous generator NS2PTOC 46I2 Negative-sequence time overcurrent protection for machines VRPVOC Voltage-restrained time overcurrent protection...
  • Page 45 Section 2 1MRK 502 048-UEN A Available functions IEC 61850 or Function ANSI Function description Generator name I103USRCMD Function commands user defined for IEC60870-5-103 I103GENCMD Function commands generic for IEC60870-5-103 I103POSCMD IED commands with position and select for IEC60870-5-103 Apparatus control and Interlocking APC8 Apparatus control for single bay, max 8 app.
  • Page 46 Section 2 1MRK 502 048-UEN A Available functions IEC 61850 or Function ANSI Function description Generator name Configurable logic blocks LOOPDELAY Configurable logic blocks TIMERSET Configurable logic blocks Configurable logic blocks SRMEMORY Configurable logic blocks RSMEMORY Configurable logic blocks Configurable logic blocks Q/T 0–1 ANDQT Configurable logic blocks Q/T...
  • Page 47 Section 2 1MRK 502 048-UEN A Available functions IEC 61850 or Function ANSI Function description Generator name TM_P_P2 Function block for service values presentation of primary analog inputs 600TRM AM_P_P4 Function block for service values presentation of primary analog inputs 600AIM TM_S_P2 Function block for service values presentation of secondary analog inputs 600TRM...
  • Page 48: Station Communication

    Section 2 1MRK 502 048-UEN A Available functions Station communication IEC 61850 or Function ANSI Function description Generator name Station communication IEC61850-8-1 IEC 61850 communication protocol DNPGEN DNP3.0 communication general protocol RS485DNP DNP3.0 for RS-485 communication protocol CH1TCP DNP3.0 for TCP/IP communication protocol CH2TCP DNP3.0 for TCP/IP communication protocol CH3TCP...
  • Page 49: Basic Ied Functions

    Section 2 1MRK 502 048-UEN A Available functions IEC 61850 or Function ANSI Function description Generator name GOOSEINTRCV GOOSE function block to receive an integer value GOOSEMVRCV GOOSE function block to receive a measurand value GOOSESPRCV GOOSE function block to receive a single point value Basic IED functions IEC 61850/Function Function description...
  • Page 51: Section 3 Analog Inputs

    Section 3 1MRK 502 048-UEN A Analog inputs Section 3 Analog inputs Introduction Analog input channels in the IED must be set properly in order to get correct measurement results and correct protection operations. For power measuring and all directional and differential functions the directions of the input currents must be defined in order to reflect the way the current transformers are installed/connected in the field ( primary and secondary connections ).
  • Page 52: Presumptions For Technical Data

    Section 3 1MRK 502 048-UEN A Analog inputs Definition of direction Definition of direction for directional functions for directional functions Reverse Forward Forward Reverse Protected Object Line, transformer, etc e.g. P, Q, I e.g. P, Q, I Measured quantity is Measured quantity is positive when flowing positive when flowing...
  • Page 53: Settings

    Section 3 1MRK 502 048-UEN A Analog inputs Settings Dependent on ordered IED type. Table 1: AISVBAS Non group settings (basic) Name Values (Range) Unit Step Default Description PhaseAngleRef TRM - Channel 1 TRM - Channel 1 Reference channel for phase angle TRM - Channel 2 presentation TRM - Channel 3...
  • Page 54 Section 3 1MRK 502 048-UEN A Analog inputs Name Values (Range) Unit Step Default Description CTStarPoint6 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec6 0.1 - 10.0 Rated CT secondary current CTprim6 1 - 99999 1000 Rated CT primary current VTsec7 0.001 - 999.999 0.001...
  • Page 55 Section 3 1MRK 502 048-UEN A Analog inputs Name Values (Range) Unit Step Default Description CTprim7 1 - 99999 1000 Rated CT primary current CTStarPoint8 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec8 0.1 - 10.0 Rated CT secondary current CTprim8 1 - 99999 1000...
  • Page 56 Section 3 1MRK 502 048-UEN A Analog inputs Table 5: TRM_4I_6U Non group settings (basic) Name Values (Range) Unit Step Default Description CTStarPoint1 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec1 0.1 - 10.0 Rated CT secondary current CTprim1 1 - 99999 1000...
  • Page 57 Section 3 1MRK 502 048-UEN A Analog inputs Name Values (Range) Unit Step Default Description CTStarPoint3 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec3 0.1 - 10.0 Rated CT secondary current CTprim3 1 - 99999 1000 Rated CT primary current CTStarPoint4 FromObject ToObject...
  • Page 58 Section 3 1MRK 502 048-UEN A Analog inputs Name Values (Range) Unit Step Default Description CTprim4 1 - 99999 1000 Rated CT primary current CTStarPoint5 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec5 0.1 - 10.0 Rated CT secondary current CTprim5 1 - 99999 1000...
  • Page 59: Section 4 Binary Input And Output Modules

    Section 4 1MRK 502 048-UEN A Binary input and output modules Section 4 Binary input and output modules Binary input 4.1.1 Binary input debounce filter The debounce filter eliminates bounces and short disturbances on a binary input. A time counter is used for filtering. The time counter is increased once in a millisecond when a binary input is high, or decreased when a binary input is low.
  • Page 60: Settings

    Section 4 1MRK 502 048-UEN A Binary input and output modules Each binary input has an oscillation count parameter OscillationCountx and an oscillation time parameter OscillationTimex, where x is the number of the binary input of the module in question. 4.1.3 Settings 4.1.3.1...
  • Page 61: Setting Parameters For Communication Module

    Section 4 1MRK 502 048-UEN A Binary input and output modules Name Values (Range) Unit Step Default Description OscillationTime6 0.000 - 600.000 0.001 0.000 Oscillation time for input 6 Threshold7 6 - 900 Threshold in percentage of station battery voltage for input 7 DebounceTime7 0.000 - 0.100 0.001...
  • Page 62 Section 4 1MRK 502 048-UEN A Binary input and output modules Name Values (Range) Unit Step Default Description Threshold4 6 - 900 Threshold in percentage of station battery voltage for input 4 DebounceTime4 0.000 - 0.100 0.001 0.005 Debounce time for input 4 OscillationCount4 0 - 255 Oscillation count for input 4...
  • Page 63 Section 4 1MRK 502 048-UEN A Binary input and output modules Name Values (Range) Unit Step Default Description DebounceTime12 0.000 - 0.100 0.001 0.005 Debounce time for input 12 OscillationCount12 0 - 255 Oscillation count for input 12 OscillationTime12 0.000 - 600.000 0.001 0.000 Oscillation time for input 12...
  • Page 65: Section 5 Local Human-Machine-Interface Lhmi

    Section 5 1MRK 502 048-UEN A Local Human-Machine-Interface LHMI Section 5 Local Human-Machine-Interface LHMI Local HMI screen behaviour 5.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Local HMI screen behaviour SCREEN 5.1.2 Settings Table 12: SCREEN Non group settings (basic) Name Values (Range)
  • Page 66: Signals

    Section 5 1MRK 502 048-UEN A Local Human-Machine-Interface LHMI LHMICTRL CLRLEDS HMI-ON RED-S YELLOW-S YELLOW-F CLRPULSE LEDSCLRD IEC09000320-1-en.vsd IEC09000320 V1 EN Figure 3: LHMICTRL function block 5.2.3 Signals Table 13: LHMICTRL Input signals Name Type Default Description CLRLEDS BOOLEAN Input to clear the LCD-HMI LEDs Table 14: LHMICTRL Output signals Name...
  • Page 67: Signals

    Section 5 1MRK 502 048-UEN A Local Human-Machine-Interface LHMI LEDGEN BLOCK NEWIND RESET IEC09000321-1-en.vsd IEC09000321 V1 EN Figure 4: LEDGEN function block GRP1_LED1 ^HM1L01R ^HM1L01Y ^HM1L01G IEC09000322 V1 EN Figure 5: GRP1_LED1 function block The GRP1_LED1 function block is an example, all 15 LED in each of group 1 - 3 has a similar function block.
  • Page 68: Settings

    Section 5 1MRK 502 048-UEN A Local Human-Machine-Interface LHMI 5.3.4 Settings Table 18: LEDGEN Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off/On tRestart 0.0 - 100.0 Defines the disturbance length tMax 0.0 - 100.0 Maximum time for the definition of a disturbance Table 19:...
  • Page 69: Signals

    Section 5 1MRK 502 048-UEN A Local Human-Machine-Interface LHMI 5.4.3 Signals Table 20: FNKEYMD1 Input signals Name Type Default Description LEDCTL1 BOOLEAN LED control input for function key Table 21: FNKEYMD1 Output signals Name Type Description FKEYOUT1 BOOLEAN Output controlled by function key 5.4.4 Settings Table 22:...
  • Page 70: Operation Principle

    Section 5 1MRK 502 048-UEN A Local Human-Machine-Interface LHMI Operation principle 5.5.1 Local HMI IEC12000175 V1 EN Figure 7: Local human-machine interface The LHMI of the IED contains the following elements: • Display (LCD) • Buttons • LED indicators • Communication port for PCM600 The LHMI is used for setting, monitoring and controlling.
  • Page 71 Section 5 1MRK 502 048-UEN A Local Human-Machine-Interface LHMI IEC13000063-1-en.vsd IEC13000063 V1 EN Figure 8: Display layout 1 Path 2 Content 3 Status 4 Scroll bar (appears when needed) • The path shows the current location in the menu structure. If the path is too long to be shown, it is truncated from the beginning, and the truncation is indicated with three dots.
  • Page 72 Section 5 1MRK 502 048-UEN A Local Human-Machine-Interface LHMI IEC13000045-1-en.vsd IEC13000045 V1 EN Figure 9: Truncated path The number before the function instance, for example ETHFRNT:1, indicates the instance number. The function button panel shows on request what actions are possible with the function buttons.
  • Page 73: Leds

    Section 5 1MRK 502 048-UEN A Local Human-Machine-Interface LHMI GUID-D20BB1F1-FDF7-49AD-9980-F91A38B2107D V1 EN Figure 11: Alarm LED panel The function button and alarm LED panels are not visible at the same time. Each panel is shown by pressing one of the function buttons or the Multipage button. Pressing the ESC button clears the panel from the display.
  • Page 74: Led

    Section 5 1MRK 502 048-UEN A Local Human-Machine-Interface LHMI IEC11000247 V2 EN Figure 12: LHMI keypad with object control, navigation and command push- buttons and RJ-45 communication port 1...5 Function button Close Open Escape Left Down Right User Log on Enter Remote/Local Uplink LED...
  • Page 75: Status Leds

    Section 5 1MRK 502 048-UEN A Local Human-Machine-Interface LHMI Each indication LED on local HMI can be set individually to operate in 6 different sequences; two as follow type and four as latch type. Two of the latching sequence types are intended to be used as a protection indication system, either in collecting or restarting mode, with reset functionality.
  • Page 76 Section 5 1MRK 502 048-UEN A Local Human-Machine-Interface LHMI • From function input • The active indications can also be acknowledged/reset from an input, ACK_RST, to the function. This input can for example be configured to a binary input operated from an external push button. The function is positive edge triggered, not level triggered.
  • Page 77 Section 5 1MRK 502 048-UEN A Local Human-Machine-Interface LHMI Activating signal IEC01000228_2_en.vsd IEC01000228 V2 EN Figure 14: Operating Sequence 1 (Follow-S) If inputs for two or more colors are active at the same time to one LED the priority is as described above.
  • Page 78 Section 5 1MRK 502 048-UEN A Local Human-Machine-Interface LHMI Activating signal Acknow. en01000231.vsd IEC01000231 V1 EN Figure 16: Operating Sequence 3 LatchedAck-F-S When an acknowledgment is performed, all indications that appear before the indication with higher priority has been reset, will be acknowledged, independent of if the low priority indication appeared before or after acknowledgment.
  • Page 79 Section 5 1MRK 502 048-UEN A Local Human-Machine-Interface LHMI Activating signal GREEN Activating signal YELLOW Activating signal RED Acknow. IEC09000314-1-en.vsd IEC09000314 V1 EN Figure 18: Operating sequence 3, three colors involved, alternative 1 If an indication with higher priority appears after acknowledgment of a lower priority indication the high priority indication will be shown as not acknowledged according Figure Activating...
  • Page 80 Section 5 1MRK 502 048-UEN A Local Human-Machine-Interface LHMI Activating signal Reset IEC01000235_2_en.vsd IEC01000235 V2 EN Figure 20: Operating Sequence 5 LatchedColl-S That means if an indication with higher priority has reset while an indication with lower priority still is active at the time of reset, the LED will change color according to Figure Activating signal GREEN...
  • Page 81 Section 5 1MRK 502 048-UEN A Local Human-Machine-Interface LHMI Disturbance tRestart Activating signal 1 Activating signal 2 LED 1 LED 2 Automatic reset Manual reset IEC01000239_2-en.vsd IEC01000239 V2 EN Figure 22: Operating sequence 6 (LatchedReset-S), two indications within same disturbance Figure 23 shows the timing diagram for a new indication after tRestart time has elapsed.
  • Page 82 Section 5 1MRK 502 048-UEN A Local Human-Machine-Interface LHMI Figure 24 shows the timing diagram when a new indication appears after the first one has reset but before tRestart has elapsed. Disturbance tRestart Activating signal 1 Activating signal 2 LED 1 LED 2 Automatic reset...
  • Page 83: Function Keys

    Section 5 1MRK 502 048-UEN A Local Human-Machine-Interface LHMI Disturbance tRestart Activating signal 1 Activating signal 2 LED 1 LED 2 Automatic reset Manual reset IEC01000242_2_en.vsd IEC01000242 V2 EN Figure 25: Operating sequence 6 (LatchedReset-S), manual reset 5.5.3 Function keys 5.5.3.1 Functionality Local Human-Machine-Interface (LHMI) has five function buttons, directly to the left...
  • Page 84 Section 5 1MRK 502 048-UEN A Local Human-Machine-Interface LHMI Operating sequence The operation mode is set individually for each output, either OFF, TOGGLE or PULSED. Setting OFF This mode always gives the output the value. A change of the input value does not affect the output value.
  • Page 85 Section 5 1MRK 502 048-UEN A Local Human-Machine-Interface LHMI Input value Output value pulse pulse IEC09000332_1_en.vsd IEC09000332 V1 EN Figure 28: Sequence diagram for setting PULSED Input function All inputs work the same way: When the LHMI is configured so that a certain function button is of type CONTROL, then the corresponding input on this function block becomes active, and will light the yellow function button LED when high.
  • Page 87: Section 6 Differential Protection

    Section 6 1MRK 502 048-UEN A Differential protection Section 6 Differential protection Transformer differential protection 6.1.1 Functionality Transformer differential protection, three-winding T3WPDIF is provided with internal CT ratio matching and vector group compensation and settable zero sequence current elimination. The function can be provided with -phase sets of current inputs. All current inputs are provided with percentage bias restraint features, making the IED suitable for two- or three-winding transformer arrangements.
  • Page 88: Transformer Differential Protection, Three Winding T3Wpdif

    Section 6 1MRK 502 048-UEN A Differential protection Included is an innovative sensitive differential protection element based on the theory of symmetrical components. This element offers the best possible coverage of power transformer windings turn to turn faults. 6.1.2 Transformer differential protection, three winding T3WPDIF 6.1.2.1 Identification Function description...
  • Page 89: Settings

    Section 6 1MRK 502 048-UEN A Differential protection Table 25: T3WPDIF Output signals Name Type Description TRIP BOOLEAN General trip signal TRIPRES BOOLEAN Start signal from restrained differential protection TRIPUNRE BOOLEAN Start signal from unrestrained differential protection TRNSUNR BOOLEAN Start signal from unrestrained negative sequence differential protection TRNSSENS BOOLEAN...
  • Page 90 Section 6 1MRK 502 048-UEN A Differential protection Name Values (Range) Unit Step Default Description IdUnre 1.00 - 50.00 0.01 10.00 Unrestrained protection limit, multiple of W1 rated current I2/I1Ratio 5.0 - 100.0 15.0 Maximum ratio of 2nd harmonic to fundamental harmonic differential current I5/I1Ratio 5.0 - 100.0...
  • Page 91: Monitored Data

    Section 6 1MRK 502 048-UEN A Differential protection Name Values (Range) Unit Step Default Description ClockNumberW3 0 [0 deg] 5 [150 deg lag] Phase displacement between W3 & 1 [30 deg lag] W1=HV winding, hour notation 2 [60 deg lag] 3 [90 deg lag] 4 [120 deg lag] 5 [150 deg lag]...
  • Page 92: Function Calculation Principles

    Section 6 1MRK 502 048-UEN A Differential protection The main CTs are normally supposed to be star connected and can be earthed in any direction (that is, either "ToObject" or "FromObject"). Internally the IED will always measure the currents on all sides of the power transformer with the same reference direction towards the power transformer windings as shown in figure 31.
  • Page 93: Fundamental Frequency Differential Currents

    Section 6 1MRK 502 048-UEN A Differential protection 6.1.3.2 Fundamental frequency differential currents The fundamental frequency differential current is a vectorial sum (sum of fundamental frequency phasors) of the individual phase currents from the different sides of the protected power transformer. Before any differential current can be calculated, the power transformer phase shift, and its transformation ratio, must be accounted for.
  • Page 94 Section 6 1MRK 502 048-UEN A Differential protection é ù é ù é ù é ù 1_ 1 Un W Un W ê ú ê ú ê ú ê ú × × × × × A IL 2 _ 1 ê...
  • Page 95 Section 6 1MRK 502 048-UEN A Differential protection When the end user enters all these parameters, transformer differential function automatically determines the matrix coefficients based on the following rules: For the phase reference, the highest voltage star (Y) connected winding is used. For example, if the power transformer is a Yd1 power transformer, the HV winding (Y) is taken as the phase reference winding.
  • Page 96 Section 6 1MRK 502 048-UEN A Differential protection Matrix with Zero Sequence Matrix with Zero Sequence Reduction set to On Reduction set to Off Matrix for winding with 120° é ù é ù 0 0 1 lagging ê ú ê ú...
  • Page 97 Section 6 1MRK 502 048-UEN A Differential protection HV star (Y) connected winding will be used as reference winding and zero sequence currents shall be subtracted on that side The LV winding is lagging for 150° With the help of table 29, the following matrix equation can be written for this power transformer: é...
  • Page 98: Differential Current Alarm

    Section 6 1MRK 502 048-UEN A Differential protection 6.1.3.3 Differential current alarm The fundamental frequency differential current level is monitored at all times within the differential function. As soon as all three fundamental frequency differential currents are set above the set alarm level (IDiffAlarm), the pickup timer is started. When the pre-set time, defined by setting parameter tAlarmDelay, has expired a differential current alarm is generated and the output signal IDALARM is set to logical value one.
  • Page 99: Restrained And Unrestrained Limits Of The Differential Protection

    Section 6 1MRK 502 048-UEN A Differential protection in false differential currents - consisting exclusively of the zero sequence currents. If high enough, these false differential currents can cause an unwanted disconnection of the healthy power transformer. They must therefore be subtracted from the fundamental frequency differential currents if an unwanted trip is to be avoided.
  • Page 100 Section 6 1MRK 502 048-UEN A Differential protection operate current [ times IBase ] Operate unconditionally UnrestrainedLimit Operate conditionally Section 1 Section 2 Section 3 SlopeSection3 IdMin SlopeSection2 Restrain EndSection1 restrain current [ times IBase ] EndSection2 en05000187-2.vsd IEC05000187 V2 EN Figure 32: Description of the restrained, and the unrestrained operate characteristics...
  • Page 101: Fundamental Frequency Negative Sequence Differential Currents

    Section 6 1MRK 502 048-UEN A Differential protection Section 2: In section 2, a certain minor slope is introduced which is supposed to cope with false differential currents due to higher than normal currents through the current transformers, such as during a transformer overloading situation. Section 3: The more pronounced slope in section 3 is designed to result in a higher tolerance to substantial current transformer saturation at high through-fault currents, which may be expected in this section.
  • Page 102 Section 6 1MRK 502 048-UEN A Differential protection é ù é ù é ù é ù é ù INS W INS W ê ú ê ú ê ú ê ú ê ú Ur W × × × × × × ×...
  • Page 103: Internal/External Fault Discriminator

    Section 6 1MRK 502 048-UEN A Differential protection current from the W2 side compensated for eventual power transformer phase shift and transferred to the power transformer W1 side. These negative sequence current contributions are phasors, which are further used in directional comparisons, to characterize a fault as internal or external.
  • Page 104 Section 6 1MRK 502 048-UEN A Differential protection IMinNegSeq NegSeqROA 90 deg 120 deg If one or the Internal/external other of fault boundary currents is too low, then no measurement NegSeqROA is done, and (Relay 120 degrees Operate is mapped Angle) 180 deg 0 deg...
  • Page 105 Section 6 1MRK 502 048-UEN A Differential protection • If the negative sequence current contributions from the W1 and the W2 sides are in phase, the fault is internal • If the negative sequence currents contributions from W1 and W2 sides are 180 degrees out of phase, the fault is external For example, for any unsymmetrical external fault, ideally the respective negative sequence current contributions from the W1 and W2 power transformer sides will be...
  • Page 106: Unrestrained, And Sensitive Negative Sequence Protections

    Section 6 1MRK 502 048-UEN A Differential protection zero value. However, during heavy faults, CT saturation might cause the measured phase angle to differ from 180 degrees for an external, and from 0 degrees for an internal fault. See figure for an example of a heavy internal fault with transient CT saturation.
  • Page 107 Section 6 1MRK 502 048-UEN A Differential protection because one or more of the fundamental frequency differential currents entered the operate region on the operate - restrain characteristic. So, this protection is not independent of the traditional restrained differential protection - it is activated after the first start signal has been placed.
  • Page 108: Instantaneous Differential Currents

    Section 6 1MRK 502 048-UEN A Differential protection 6.1.3.10 Instantaneous differential currents The instantaneous differential currents are calculated from the instantaneous values of the input currents in order to perform the harmonic analysis and waveform analysis upon each one of them (see section "Harmonic and waveform block criteria"...
  • Page 109: Switch Onto Fault Feature

    Section 6 1MRK 502 048-UEN A Differential protection IEC05000343 V1 EN Figure 36: Inrush currents to a transformer as seen by a protection IED. Typical is a high amount of the 2 harmonic, and intervals of low current, and low rate-of-change of current within each period. Cross-blocking between phases With the cross-blocking function, one of the three phases can block operation of the other two phases due to the harmonic pollution of the differential current in that phase...
  • Page 110: Logic Diagram

    Section 6 1MRK 502 048-UEN A Differential protection sinusoidal currents will flow from the very beginning. In this case the waveform block algorithm removes all its three block signals in a very short interval of time. This quick reset of the waveblock criterion will temporarily disable the second harmonic blocking feature of the differential protection function.
  • Page 111 Section 6 1MRK 502 048-UEN A Differential protection The following currents are inputs to the power transformer differential protection function. They must all be expressed in power system (primary) A. Instantaneous values of currents (samples) from the HV, and LV sides for two- winding power transformers, and from the HV, the first LV, and the second LV side for three-winding power transformers.
  • Page 112 Section 6 1MRK 502 048-UEN A Differential protection BLKUNRES IdUnre TRIPUNREL1 b>a IDL1MAG IBIAS STL1 BLOCK BLKRES TRIPRESL1 IDL1 BLK2HL1 Harmonic Wave BLKWAVL1 block BLK5HL1 Harmonic Cross Block Cross Block to L2 or L3 from L2 or L3 OpCrossBlock=On en06000545.vsd IEC06000545 V1 EN Figure 38: Transformer differential protection simplified logic diagram for Phase...
  • Page 113 Section 6 1MRK 502 048-UEN A Differential protection TRIPRESL1 TRIPRESL2 TRIPRES TRIPRESL3 TRIPUNREL1 TRIPUNREL2 TRIPUNRE TRIPUNREL3 TRIP TRNSSENS TRNSUNR en05000278.vsd IEC05000278 V1 EN Figure 40: Transformer differential protection internal grouping of tripping signals IEC05000279-TIFF V1 EN Figure 41: Transformer differential protection internal grouping of logical signals Logic in figures 38, 39, can be summarized as follows: The three fundamental frequency differential currents are applied in a phase...
  • Page 114 Section 6 1MRK 502 048-UEN A Differential protection all phases with set start signal are free of their respective block signals, a restrained trip TRIPRES and common trip TRIP are issued If a start signal is issued in a phase, and the fault has been classified as internal, then any eventual block signals are overridden and a unrestrained negative- sequence trip TRNSUNR and common trip TRIP are issued without any further delay.
  • Page 115: Technical Data

    Section 6 1MRK 502 048-UEN A Differential protection 6.1.4 Technical data Table 30: T2WPDIF, T3WPDIF technical data Function Range or value Accuracy Operating characteristic Adaptable ± 1.0% of Ir for I < Ir ± 1.0% of I for I > Ir Reset ratio >94% IBase on...
  • Page 116: Functionality

    Section 6 1MRK 502 048-UEN A Differential protection 6.2.2 Functionality Restricted earth-fault protection, low-impedance function REFPDIF can be used on all directly or low-impedance earthed windings. The REFPDIF function provides high sensitivity and high speed tripping as it protects each winding separately and thus does not need inrush stabilization.
  • Page 117: Settings

    Section 6 1MRK 502 048-UEN A Differential protection Signal Description IDIFF Magnitude of fundamental frequency differential current ANGLE Direction angle from zero sequence feature I2RATIO Second harmonic ratio 6.2.5 Settings Table 33: Basic general settings for the function REFPDIF (REF1-) Parameter Range Step...
  • Page 118: Operation Principle

    Section 6 1MRK 502 048-UEN A Differential protection 6.2.7 Operation principle 6.2.7.1 Fundamental principles of the restricted earth-fault protection Restricted earth-fault protection, low impedance function (REFPDIF) detects earth faults on earthed power transformer windings, most often an earthed star winding. REFPDIF is a winding protection of the differential type.
  • Page 119 CT sides of the current transformers, they will be approximately in phase if the current transformers are oriented as in figure 2, which is by ABB recommended orientation. The magnitudes of the two currents may be different, dependent on the magnitudes of zero sequence impedances of both sides.
  • Page 120: Operate And Restrain Characteristic

    Section 6 1MRK 502 048-UEN A Differential protection REFPDIF is a differential protection where the line zero sequence (residual) current is calculated from 3 line (terminal) currents, a bias quantity must give stability against false operations due to high through fault currents. To stabilize REFPDIF at external faults, a fixed bias characteristic is implemented.
  • Page 121: Calculation Of Differential Current And Bias Current

    Section 6 1MRK 502 048-UEN A Differential protection Zero- sequence diff. current in per unit Characteristic if IdMin = 1.0 pu operate slope = ----------------* 100 % restrain Operate conditionally IdMin range: 0.04 –1.00 IBase Slope 100% Reset Ratio in all sections: Section 3 0.95 (a constant) Section 1...
  • Page 122: Detection Of External Earth Faults

    Section 6 1MRK 502 048-UEN A Differential protection If there are two feeders included in the zone of protection of REFPDIF, then the respective bias current is found as the relatively highest of the following currents, that is, those which are connected in an application: ×...
  • Page 123: Algorithm Of The Restricted Earth-Fault Protection

    Section 6 1MRK 502 048-UEN A Differential protection (REFPDIF) must remain stable during an external fault, and immediately after the fault has been cleared by some other protection. For an external earth faults with no CT saturation, the residual current in the lines ) and the neutral current (I in figure 44) are theoretically equal in magnitude and are 180 degrees out-of-phase.
  • Page 124: Technical Data

    Section 6 1MRK 502 048-UEN A Differential protection calculated. If it is found to be above 60% the trip request counter is reset and TRIP remains zero. Finally, a check is made if the trip request counter is equal to or higher than 2. If it is and that at the same instance of time t , the actual bias current at this REFtrip...
  • Page 125: Introduction

    Section 6 1MRK 502 048-UEN A Differential protection 6.3.2 Introduction The 1Ph High impedance differential protection HZPDIF functions can be used when the involved CT cores have the same turns ratio and similar magnetizing characteristics. Each utilizes an external summation of the currents in the interconnected CTs, a series resistor, and a voltage dependent resistor which are mounted externally connected to the IED.
  • Page 126: Settings

    Section 6 1MRK 502 048-UEN A Differential protection 6.3.5 Settings Table 41: HZPDIF Group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On U>Alarm 2 - 500 Alarm voltage level in volts on CT secondary side tAlarm 0.000 - 60.000 0.001...
  • Page 127: Technical Data

    Section 6 1MRK 502 048-UEN A Differential protection IEC05000301 V1 EN Figure 48: Logic diagram for 1Ph High impedance differential protection HZPDIF 6.3.8 Technical data Table 43: HZPDIF technical data Function Range or value Accuracy Operate voltage (20-400) V ± 1.0% of I I=U/R Reset ratio >95%...
  • Page 128: Functionality

    Section 6 1MRK 502 048-UEN A Differential protection 6.4.2 Functionality Short circuit between the phases of the stator windings causes normally very large fault currents. The short circuit gives risk of damages on insulation, windings and stator iron core. The large short circuit currents cause large forces, which can cause damage even to other components in the power plant, such as turbine and generator- turbine shaft.
  • Page 129: Function Block

    Section 6 1MRK 502 048-UEN A Differential protection 6.4.3 Function block GENPDIF I3PNCT* TRIP I3PTCT* TRIPRES BLOCK TRIPUNRE BLKRES TRNSUNR BLKUNRES TRNSSENS BLKNSUNR START BLKNSSEN BLKH DESENSIT OPENCT OPENCTAL IDL1MAG IDL2MAG IDL3MAG IDNSMAG IBIAS IEC07000025_2_en.vsd IEC07000025 V2 EN Figure 49: GENPDIF function block 6.4.4 Signals...
  • Page 130: Settings

    Section 6 1MRK 502 048-UEN A Differential protection Name Type Description OPENCTAL BOOLEAN Open CT Alarm output signal. Issued after a delay ... IDL1MAG REAL Fund. freq. differential current, phase L1; in primary IDL2MAG REAL Fund. freq. differential current, phase L2; in primary IDL3MAG REAL Fund.
  • Page 131: Operation Principle

    Section 6 1MRK 502 048-UEN A Differential protection Name Values (Range) Unit Step Default Description OperDCBiasing Operation DC biasing On / Off OpenCTEnable Open CT detection feature Off/On tOCTAlarmDelay 0.100 - 10.000 0.001 1.000 Open CT: time to alarm if an open CT is detected, in sec tOCTResetDelay 0.100 - 10.000...
  • Page 132: Function Calculation Principles

    Section 6 1MRK 502 048-UEN A Differential protection firmware of a numerical IED, it is no more difficult to calculate negative-sequence components than it is to calculate zero-sequence components. Diversity of operation principles integrated in the same protection function enhances the overall performance without a significant increase in cost.
  • Page 133 Section 6 1MRK 502 048-UEN A Differential protection One common fundamental frequency bias current is used. The bias current is the magnitude of the highest measured current in the protected circuit. The bias current is not allowed to drop instantaneously, instead, it decays exponentially with a predefined time constant.
  • Page 134 Section 6 1MRK 502 048-UEN A Differential protection Generator differential protection GENPDIF function uses two mutually independent characteristics to which magnitudes of the three fundamental frequency RMS differential currents are compared at each execution of the differential protection function. These two characteristics divide, each of them independently, the operate current –...
  • Page 135 Section 6 1MRK 502 048-UEN A Differential protection currents in this section can be tolerances of the current transformers used on both sides of the protected generator. Slope in section 1 is always zero percent. Normally, with the protected machine at rated load, the restrain, bias current will be around 1 p.u., that is, equal to the machine rated current.
  • Page 136 Section 6 1MRK 502 048-UEN A Differential protection operate current [ times IBase ] Operate unconditionally UnrestrainedLimit Operate conditionally Section 1 Section 2 Section 3 SlopeSection3 TempIdMin IdMin SlopeSection2 Restrain EndSection1 restrain current [ times IBase ] EndSection2 en06000637.vsd IEC06000637 V2 EN Figure 54: Operate-restrain characteristic GENPDIF can also be temporarily ‘desensitized’...
  • Page 137: Supplementary Criteria

    Section 6 1MRK 502 048-UEN A Differential protection 6.4.6.3 Supplementary criteria To relieve the burden of constructing an exact optimal operate-restrain characteristic, two special features supplement the basic stabilized differential protection function, making Generator differential protection GENPDIF a very reliable one. The supplementary criteria are: •...
  • Page 138 Section 6 1MRK 502 048-UEN A Differential protection If the two negative sequence currents flow in opposite directions, the fault is external. • Under external fault condition, the relative angle is theoretically equal to 180°. Under internal fault condition, the angle is ideally 0°, but due to possible different negative-sequence impedance angles on both sides of the internal fault, it may differ somewhat from 0°.
  • Page 139 Section 6 1MRK 502 048-UEN A Differential protection 90 deg 120 deg NegSeqROA Angle could not be (Relay Operate Angle) measured. One or both currents too small Internal fault region 180 deg 0 deg IminNegSeq External fault region Internal / external fault boundary.
  • Page 140: Harmonic Restrain

    Section 6 1MRK 502 048-UEN A Differential protection 6.4.6.4 Harmonic restrain Harmonic restrain is the classical restrain method traditionally used with power transformer differential protections. The goal there was to prevent an unwanted trip command due to magnetizing inrush currents at switching operations, due to magnetizing currents at over-voltages, or external faults.
  • Page 141 Section 6 1MRK 502 048-UEN A Differential protection TRIP Signals Start Phasors IL1N, IL2N,IL3N Magnitude phase Idiff and Ibias Diff.prot. selective Calculation characteristic Idiff and Ibias Phasors IL1T, IL2T,IL3T START Signals BLOCK Signals Samples IL1N, IL2N,IL3N Harm. INTFAULT Hamonic Calculation Samples Idiff Block Start and...
  • Page 142 Section 6 1MRK 502 048-UEN A Differential protection BLKUNRES IdUnre TRIPUNREL1 b>a IDL1MAG IBIAS STL1 BLOCK BLKRES INTFAULT TRIPRESL1 2nd and Harmonic Cross Block from L2 or L3 OpCrossBlock=On en07000020.vsd IEC07000020 V2 EN Figure 57: Generator differential logic diagram 1. Internal/ Neg.Seq.
  • Page 143: Technical Data

    Section 6 1MRK 502 048-UEN A Differential protection STL1 STL2 START STL3 BLKHL1 BLKHL2 BLKH BLKHL3 en07000022.vsd IEC07000022 V1 EN Figure 59: Generator differential logic diagram 3. TRIPRESL1 TRIPRESL2 TRIPRES TRIPRESL3 TRIPUNREL1 TRIPUNREL2 TRIPUNRE TRIPUNREL3 TRIP TRNSSENS TRNSUNR en07000023.vsd IEC07000023 V1 EN Figure 60: Generator differential logic diagram 4.
  • Page 144 Section 6 1MRK 502 048-UEN A Differential protection Function Range or value Accuracy Reset time, unrestrained function 40 ms typically at 5 to 0 x set level Operate time, negative sequence 15 ms typically at 0 to 5 unrestrained function x set level Critical impulse time, unrestrained function 3 ms typically at 0 to 5 x...
  • Page 145: Section 7 Impedance Protection

    Section 7 1MRK 502 048-UEN A Impedance protection Section 7 Impedance protection Power swing detection ZMRPSB 7.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Power swing detection ZMRPSB Zpsb SYMBOL-EE V1 EN 7.1.2 Functionality Power swings may occur after disconnection of heavy loads or trip of big generation plants.
  • Page 146: Signals

    Section 7 1MRK 502 048-UEN A Impedance protection 7.1.4 Signals Table 50: ZMRPSB Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function BLKI01 BOOLEAN Block inhibit of start output for slow swing condition...
  • Page 147: Operation Principle

    Section 7 1MRK 502 048-UEN A Impedance protection Name Values (Range) Unit Step Default Description kLdRFw 0.50 - 0.90 Mult 0.01 0.75 Multiplication factor for inner resistive load boundary, forward kLdRRv 0.50 - 0.90 Mult 0.01 0.75 Multiplication factor for inner resistive load boundary, reverse IMinOpPE 5 - 30...
  • Page 148: Resistive Reach In Forward Direction

    Section 7 1MRK 502 048-UEN A Impedance protection R1LIn X1OutFw X1InFw R1FInRv R1FInFw ArgLd ArgLd RLdInRv RLdInFw RLdOutFw RLdOutRv X1InRv X1OutRv IEC09000222_1_en.vsd IEC09000222 V1 EN Figure 62: Operating characteristic for ZMRPSB function (setting parameters in italic) The impedance measurement within ZMRPSB function is performed by solving equation and equation (n = 1, 2, 3 for each corresponding phase L1, L2 and L3).
  • Page 149: Resistive Reach In Reverse Direction

    Section 7 1MRK 502 048-UEN A Impedance protection RLdInFw = kLdRFw·RLdOutFw (Equation 36) EQUATION1185 V2 EN where: kLdRFw is a settable multiplication factor less than 1 The slope of the load encroachment inner and outer boundary is defined by setting the parameter ArgLd.
  • Page 150: Reactive Reach In Forward And Reverse Direction

    Section 7 1MRK 502 048-UEN A Impedance protection argument of the tilted lines outside the load encroachment is the same as the tilted lines in the first quadrant. The distance between the inner and outer boundary is the same as for the load encroachment in reverse direction, that is DRv. 7.1.6.3 Reactive reach in forward and reverse direction The inner characteristic for the reactive reach in forward direction correspond to the...
  • Page 151 Section 7 1MRK 502 048-UEN A Impedance protection ZOUTL1 0-tP1 ZINL1 -loop -loop 0-tP2 DET-L1 ZOUTL2 ZOUTL3 detected 0-tW IEC05000113-2-en.vsd IEC05000113 V2 EN Figure 63: Detection of power swing in phase L1 ZOUTL1 ZOUT ZOUTL2 ZINL1 ZOUTL3 ZINL2 ZINL3 I0CHECK 10 ms BLKI02 INHIBIT...
  • Page 152: Operating And Inhibit Conditions

    Section 7 1MRK 502 048-UEN A Impedance protection 7.1.6.5 Operating and inhibit conditions Figure presents a simplified logic diagram for the Power swing detection function ZMRPSB. The load encroachment characteristic can be switched off by setting the parameter OperationLdCh = Off, but notice that the DFw and DRv will still be calculated from RLdOutFw and RLdOutRv.
  • Page 153: Functionality

    Section 7 1MRK 502 048-UEN A Impedance protection 7.2.2 Functionality The underimpedance protection for generators and transformers ZGCPDIS, has the offset mho characteristic as a three zone back-up protection for detection of phase-to- phase short circuits in transformers and generators. The full scheme three zones have independent measuring phase-to-phase loops and settings that gives high flexibility for all types of applications.
  • Page 154: Signals

    Section 7 1MRK 502 048-UEN A Impedance protection 7.2.4 Signals Table 56: ZGCPDIS Input signals Name Type Default Description GROUP Three phase group signal for current SIGNAL GROUP Three phase group signal for voltage SIGNAL BLOCK BOOLEAN Block of function BLKZ BOOLEAN Block due to Fuse Fail...
  • Page 155: Operation Principle

    Section 7 1MRK 502 048-UEN A Impedance protection Name Values (Range) Unit Step Default Description OpModeZ3 Disable-Zone Disable-Zone Operation mode of Zone 3 Enable-Zone Z3Fwd 0.005 - 3000.000 ohm/p 0.001 30.000 Forward reach setting for Zone 3 Z3Rev 0.005 - 3000.000 ohm/p 0.001 30.000...
  • Page 156: Basic Operation Characteristics

    Section 7 1MRK 502 048-UEN A Impedance protection Mho, zone3 Mho, zone2 Mho, zone1 IEC09000172_1_en.vsd IEC09000172 V1 EN Figure 67: Mho, offset mho characteristic Zone 3 can be equipped with a load encroachment function which cuts off a section of the characteristic when enabled.
  • Page 157: Theory Of Operation

    Section 7 1MRK 502 048-UEN A Impedance protection ImpedanceAng IEC10000176-2-en.vsd IEC10000176 V2 EN Figure 68: Mho, offset mho characteristic for Zone 1 with setting parameters Z1Fwd, Z1Rev and ImpedanceAng The three impedance zones can be time delayed individually by setting the parameter tZx (where x is 1-3 depending on selected zone).
  • Page 158 Section 7 1MRK 502 048-UEN A Impedance protection The characteristic for offset mho is a circle where two points on the circle are the setting parameters ZxFwd and ZxRev. The vector ZxFwd in the impedance plane has the settable angle ImpedanceAng and the angle for ZxRev is ImpedanceAng+180°. The condition for operation at phase-to-phase fault is that the angle β...
  • Page 159: Technical Data

    Section 7 1MRK 502 048-UEN A Impedance protection 7.2.7 Technical data Table 61: ZGCPDIS technical data Function Range or value Accuracy Number of zones Forward positive sequence impedance (0.005-3000.000) Ω/ ± 2.0% static accuracy phase Conditions: • Voltage range: (0.1-1.1) x U •...
  • Page 160: Function Block

    Section 7 1MRK 502 048-UEN A Impedance protection The impedance measurement is used for LEXPDIS function. Its operating characteristic is designed as two zone, offset mho circles and a directional element restrain line. 7.3.3 Function block LEXPDIS I3P* TRIP U3P* TRZ1 BLOCK TRZ2...
  • Page 161: Settings

    Section 7 1MRK 502 048-UEN A Impedance protection 7.3.5 Settings Table 64: LEXPDIS Group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On OperationZ1 Operation Off/On zone Z1 XoffsetZ1 -1000.00 - 1000.00 0.01 -10.00 Offset of Z1 circle top point along X axis in % of Zbase Z1diameter 0.01 - 3000.00...
  • Page 162: Monitored Data

    Section 7 1MRK 502 048-UEN A Impedance protection 7.3.6 Monitored data Table 68: LEXPDIS Monitored data Name Type Values (Range) Unit Description XOHM REAL Reactance in Primary Ohms XPERCENT REAL Reactance in percent of Zbase ROHM REAL Resistance in Primary Ohms RPERCENT REAL...
  • Page 163 Section 7 1MRK 502 048-UEN A Impedance protection Underexitation protection Underexcitation Protection Restrain area Restrain area Directional blinder Z1, Fast zone Z2, Slow zone IEC06000455-2-en.vsd IEC06000455 V2 EN Figure 71: Three characteristics in LEXPDIS protection When the apparent impedance reaches the zone Z1 this zone will operate, normally with a short delay.
  • Page 164 Section 7 1MRK 502 048-UEN A Impedance protection Offset XoffsetZ1 Z (apparent impedance) Z1 = Z - (XoffsetZ1 + Z1diameter Z1diameter/2) Z1 or Z2 en06000456-2.vsd IEC06000456 V2 EN Figure 72: Zone measurement in LEXPDIS protection function The impedance Z1 is constructed from the measured apparent impedance Z and the impedance corresponding to the centre point of the impedance characteristic (Z1 or Z2).
  • Page 165 Section 7 1MRK 502 048-UEN A Impedance protection Underexcitation Protection Restrain area XoffsetDirLine DirAngle Z (apparent impedance) en06000457.vsd IEC06000457 V1 EN Figure 73: Impedance constructed as XoffsetDirLine in LEXPDIS protection LEXPDIS function is schematically described in figure 74. Positive Z in startZ1 TripZ1 sequence...
  • Page 166: Technical Data

    Section 7 1MRK 502 048-UEN A Impedance protection 7.3.8 Technical data Table 69: LEXPDIS technical data Function Range or value Accuracy X offset of Mho top point (–1000.00–1000.00)% of Z ± 2.0% of U Base Diameter of Mho circle (0.01–3000.00)% of Z ±...
  • Page 167: Function Block

    Section 7 1MRK 502 048-UEN A Impedance protection 7.4.3 Function block OOSPPAM I3P* TRIP U3P* TRIPZ1 BLOCK TRIPZ2 BLKGEN START BLKMOT GENMODE EXTZONE1 MOTMODE IEC16000501-1-en.vsd IEC16000501 V1 EN Figure 75: OOSPPAM function block 7.4.4 Signals Table 70: OOSPPAM Input signals Name Type Default...
  • Page 168: Settings

    Section 7 1MRK 502 048-UEN A Impedance protection 7.4.5 Settings Table 72: OOSPPAM Group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation On / Off OperationZ1 Operation Zone1 On / Off ReachZ1 1.00 - 100.00 0.01 50.00 Percentage part of total forward impedance;...
  • Page 169: Monitored Data

    Section 7 1MRK 502 048-UEN A Impedance protection 7.4.6 Monitored data Table 76: OOSPPAM Monitored data Name Type Values (Range) Unit Description VOLTAGE REAL Magnitude of the measured positive- sequence voltage, in V CURRENT REAL Magnitude of the measured positive- sequence current, in A REAL Real part of measured...
  • Page 170 Section 7 1MRK 502 048-UEN A Impedance protection ← trajectory of Z(R, X) to the 3rd The 2nd pole-slip X in Ohms The 1st pole slip pole slip occurred Pre-disturbance occurred normal load - - - - - - - - Z(R, X) - - - - - - - -...
  • Page 171 Section 7 1MRK 502 048-UEN A Impedance protection degrees. It can be observed in Figure 77 that the angle reaches 180 degrees when the complex impedance Z(R, X) crosses the impedance line SE – RE. It then changes the sign, and continues from -180 degrees to 0 degrees, and so on. Figure 77 shows the rotor (power) angle and the magnitude of Z(R, X) against time for the case from...
  • Page 172: Lens Characteristic

    Section 7 1MRK 502 048-UEN A Impedance protection X [Ohm] Z(R,X) 20 ms fault relay after line out - - - - - - - - - - pre-fault - - - - - - - - - zone 2 - - - Z(R,X) - - -...
  • Page 173 Section 7 1MRK 502 048-UEN A Impedance protection Position of the OOS relay is the origin of - - - - - - - - - the R - X plane - - - - - - Zone 2 X-line determined Zline by the...
  • Page 174: Detecting An Out-Of-Step Condition

    Section 7 1MRK 502 048-UEN A Impedance protection voltage and current level. The impedances from the position of the out-of-step protection in the direction of the normal load flow can be taken as forward. The out-of-step relay, as in Figure 80 looks into the system and the impedances in that direction are forward impedances: •...
  • Page 175: Maximum Slip Frequency

    Section 7 1MRK 502 048-UEN A Impedance protection measured Z from point 1 to point 2 takes approximately 20 ms, due to Fourier filters. The complex impedance then travels in the direction from the right to the left, and exits the lens on the opposite side.
  • Page 176: Taking Care Of The Circuit Breaker Soundness

    Section 7 1MRK 502 048-UEN A Impedance protection value of slipsPerSecond (SLIPFREQ) is equal to the average slip-frequency of the machine between the last two successive pole-slips. 7.4.7.4 Taking care of the circuit breaker soundness Although out-of-step events are relatively rare, the out-of-step protection should take care of the circuit breaker soundness.
  • Page 177 Section 7 1MRK 502 048-UEN A Impedance protection X[Ohm] RE - Receiving End (infinite bus) trip region loci of Z(R, X) no trip region here rotor here angle rotor angle no trip is -90° is +90° rotor angle region = ±180° no trip relay region...
  • Page 178: Design

    Section 7 1MRK 502 048-UEN A Impedance protection 7.4.7.5 Design When the complex impedance Z(R, X) enters the limit-of-reach region, the algorithm determines the direction impedance Z moves, that is, the direction the lens is traversed and measures the time taken to traverse the lens from one side to the other. If the traverse time is more than the limit 40 or 50 ms, a pole-slip is declared.
  • Page 179: Load Encroachment Lepdis

    Section 7 1MRK 502 048-UEN A Impedance protection Load encroachment LEPDIS 7.5.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Load encroachment LEPDIS 7.5.2 Functionality Heavy load transfer is common in many power networks and may make fault resistance coverage difficult to achieve.
  • Page 180: Settings

    Section 7 1MRK 502 048-UEN A Impedance protection 7.5.5 Settings Table 80: LEPDIS Group settings (basic) Name Values (Range) Unit Step Default Description 0.05 - 3000.00 ohm/p 0.01 1.00 Load resistive reach in ohm/phase ArgLd 5 - 85 Load encroachment inclination of load angular sector Table 81: LEPDIS Non group settings (basic)
  • Page 181: Simplified Logic Diagrams

    Section 7 1MRK 502 048-UEN A Impedance protection ArgLd ArgLd ArgLd ArgLd IEC10000144-1-en.vsd IEC10000144 V2 EN Figure 85: Characteristic of load encroachment function The reach is limited by the minimum operation current and the distance measuring zones. 7.5.6.2 Simplified logic diagrams Figure schematically presents the creation of the phase-to-phase operating conditions.
  • Page 182: Technical Data

    Section 7 1MRK 502 048-UEN A Impedance protection L1L2 Block I ³ 0.05 & & & ³ × phmax STCNDLE Bool to & BLOCK integer & I < 20 ms 10 ms & < × phmax IEC10000226-1-en.vsd IEC10000226 V1 EN Figure 86: Phase-to-phase L1L2 operating conditions (residual current criteria) Special attention is paid to correct phase selection at evolving faults.
  • Page 183: Section 8 Current Protection

    Section 8 1MRK 502 048-UEN A Current protection Section 8 Current protection Four step phase overcurrent protection 3-phase output OC4PTOC 8.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Four step phase overcurrent protection OC4PTOC 51/67 3I>...
  • Page 184: Function Block

    Section 8 1MRK 502 048-UEN A Current protection 8.1.3 Function block OC4PTOC I3P* TRIP U3P* BLOCK BLKST1 BLKST2 BLKST3 START BLKST4 STL1 STL2 STL3 2NDHARM IEC08000002-2-en.vsd IEC08000002 V2 EN Figure 87: OC4PTOC function block 8.1.4 Signals Table 83: OC4PTOC Input signals Name Type Default...
  • Page 185: Settings

    Section 8 1MRK 502 048-UEN A Current protection Name Type Description STL1 BOOLEAN Start signal from phase L1 STL2 BOOLEAN Start signal from phase L2 STL3 BOOLEAN Start signal from phase L3 ST2NDHRM BOOLEAN Second harmonic detected 8.1.5 Settings Table 85: OC4PTOC Group settings (basic) Name Values (Range)
  • Page 186 Section 8 1MRK 502 048-UEN A Current protection Name Values (Range) Unit Step Default Description DirMode3 Non-directional Directional mode of step 3 off / non- Non-directional directional / forward / reverse Forward Reverse I3> 5 - 2500 Phase current operate level for step3 in % of IBase 0.000 - 60.000 0.001...
  • Page 187: Monitored Data

    Section 8 1MRK 502 048-UEN A Current protection Table 87: OC4PTOC Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 6 Selection of one of the Global Base Value groups MeasType Selection between DFT and RMS measurement 8.1.6 Monitored data...
  • Page 188 Section 8 1MRK 502 048-UEN A Current protection 4 step over current element faultState dirPh1Flt Direction faultState One element for each Element dirPh2Flt step START dirPh3Flt TRIP Harmonic harmRestrBlock Restraint Element enableDir Mode Selection enableStep1-4 DirectionalMode1-4 en05000740-2-en.vsd IEC05000740 V2 EN Figure 88: Functional overview of OC4PTOC The sampled analogue phase currents are processed in a pre-processing function...
  • Page 189 Section 8 1MRK 502 048-UEN A Current protection signal is common for all three phases and all steps. It shall be noted that the selection of measured value (DFT or RMS) do not influence the operation of directional part of OC4PTOC.
  • Page 190 Section 8 1MRK 502 048-UEN A Current protection IEC09000636_1_vsd IEC09000636 V1 EN Figure 89: Directional characteristic of the phase overcurrent protection 1 RCA = Relay characteristic angle 55° 2 ROA = Relay operating angle 80° 3 Reverse 4 Forward If no blockings are given the start signals will start the timers of the step. The time characteristic for step 1 and 4 can be chosen as definite time delay or inverse time characteristic.
  • Page 191: Second Harmonic Blocking Element

    Section 8 1MRK 502 048-UEN A Current protection Characteristx=DefTime a>b Ix> BLKSTx BLOCK Inverse Characteristx=Inverse STAGEx_DIR_Int DirModex=Off DirModex=Non-directional DirModex=Forward FORWARD_Int DirModex=Reverse REVERSE_Int IEC12000008.vsd IEC12000008.vsd IEC12000008 V2 EN Figure 90: Simplified logic diagram for OC4PTOC 8.1.8 Second harmonic blocking element A harmonic restrain of the Four step overcurrent protection function OC4PTOC can be chosen.
  • Page 192: Technical Data

    Section 8 1MRK 502 048-UEN A Current protection 8.1.9 Technical data Table 89: OC4PTOC technical data Function Setting range Accuracy lBase Operate current (5-2500)% of ± 1.0% of I at I ≤ I ± 1.0% of I at I > I lBase Reset ratio >...
  • Page 193: Functionality

    Section 8 1MRK 502 048-UEN A Current protection 8.2.2 Functionality The four step residual overcurrent protection, zero or negative sequence direction (EF4PTOC) has a settable inverse or definite time delay independent for step 1 and 4 separately. Step 2 and 3 are always definite time delayed. All IEC and ANSI inverse time characteristics are available.
  • Page 194: Signals

    Section 8 1MRK 502 048-UEN A Current protection 8.2.4 Signals Table 90: EF4PTOC Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL GROUP Three phase group signal for polarizing voltage SIGNAL inputs I3PPOL GROUP Three phase group signal for polarizing current SIGNAL inputs...
  • Page 195: Settings

    Section 8 1MRK 502 048-UEN A Current protection 8.2.5 Settings Table 92: EF4PTOC Group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On EnaDir Disable Enable Enabling the Directional calculation Enable AngleRCA -180 - 180 Relay characteristic angle (RCA) polMethod Voltage...
  • Page 196 Section 8 1MRK 502 048-UEN A Current protection Name Values (Range) Unit Step Default Description t1Min 0.000 - 60.000 0.001 0.000 Minimum operate time for inverse curves for step 1 HarmRestrain1 Enable block of step 1 from harmonic restrain DirMode2 Non-directional Directional mode of step 2 (off, non- Non-directional...
  • Page 197: Monitored Data

    Section 8 1MRK 502 048-UEN A Current protection Name Values (Range) Unit Step Default Description IMin4 1 - 10000 Minimum operate current for step 4 in % of IBase t4Min 0.000 - 60.000 0.001 0.000 Minimum operate time in inverse curves step 4 HarmRestrain4 Enable block of step 4 from harmonic...
  • Page 198: Operating Quantity Within The Function

    Section 8 1MRK 502 048-UEN A Current protection I3P, input used for “Operating Quantity”. U3P, input used for “Voltage Polarizing Quantity”. I3PPOL, input used for “Current Polarizing Quantity”. I3PDIR, input used for “Operating Directional Quantity”. These inputs are connected from the corresponding pre-processing function blocks in the Configuration Tool within PCM600.
  • Page 199: Internal Polarizing

    Section 8 1MRK 502 048-UEN A Current protection larger than the set operation current and the step is used in non-directional mode a signal from the comparator for this step is set to true. This signal will, without delay, activate the output signal STx (x=step 1-4) for this step and a common START signal. 8.2.7.2 Internal polarizing A polarizing quantity is used within the protection in order to determine the direction...
  • Page 200 Section 8 1MRK 502 048-UEN A Current protection where: UL1, UL2 and UL3 are fundamental frequency phasors of three individual phase voltages. alpha unit phasor with an angle of 120 degrees. The polarizing phasor is used together with the phasor of the operating directional current, in order to determine the direction to the earth fault (Forward/Reverse).
  • Page 201: External Polarizing For Earth-Fault Function

    Section 8 1MRK 502 048-UEN A Current protection × × I2 = (IL1+alpha IL2+alpha IL3)/3 (Equation 52) IECEQUATION2406 V1 EN where: IL1, IL2 and IL3 are fundamental frequency phasors of three individual phase currents. alpha phasor with an angle of 120 degrees. The polarizing current is pre-processed by a discrete fourier filter.
  • Page 202: Base Quantities Within The Protection

    Section 8 1MRK 502 048-UEN A Current protection 8.2.7.4 Base quantities within the protection The base quantities are entered as global settings for all functions in the IED. Base current (IBase) shall be entered as rated phase current of the protected object in primary amperes.
  • Page 203: Directional Supervision Element With Integrated Directional Comparison Function

    Section 8 1MRK 502 048-UEN A Current protection Characteristn=DefTime TRINx a>b INx> STINx BLKSTx BLOCK Inverse 2ndH_BLOCK_Int Characteristn=Inverse HarmRestrainx=Disabled Characteristn= Inverse will be valid STEPx_DIR_Int DirModex=Off for n = 1 and 4 DirModex=Non-directional DirModex=Forward FORWARD_Int DirModex=Reverse REVERSE_Int IEC09000638_3_en.vsd IEC09000638 V3 EN Figure 93: Simplified logic diagram for residual overcurrent The protection can be completely blocked from the binary input BLOCK.
  • Page 204 Section 8 1MRK 502 048-UEN A Current protection Operating area STRV 0.6 * IN>DIR Characteristic for reverse release of measuring steps -RCA -85 deg Characteristic for STRV 40% of IN>DIR RCA +85 deg = -3U 65° -RCA +85 deg RCA -85 deg Characteristic for forward release of measuring steps IN>DIR...
  • Page 205 Section 8 1MRK 502 048-UEN A Current protection BLKTR Characteristx=DefTime a>b Ix> BLKSTx BLOCK Inverse Characteristx=Inverse STAGEx_DIR_Int DirModex=Off DirModex=Non-directional DirModex=Forward FORWARD_Int DirModex=Reverse REVERSE_Int SimplifiedlogicdiagramforresidualOC IEC11000281-1-en.vsd stagex-IEC11000281.vsd IEC11000281 V1 EN Figure 95: Operating characteristic for earth-fault directional element using the zero sequence components Technical manual...
  • Page 206 Section 8 1MRK 502 048-UEN A Current protection Operating area STRV 0.6 * I>DIR Characteristic for reverse release of measuring steps -RCA -85 deg Characteristic for STRV 40% of RCA +85 deg I>DIR = -U 65 deg -RCA +85 deg RCA -85 deg Characteristic for forward release of measuring steps...
  • Page 207: Second Harmonic Blocking Element

    Section 8 1MRK 502 048-UEN A Current protection These signals shall be used for communication based earth-fault teleprotection communication schemes (permissive or blocking). Simplified logic diagram for directional supervision element with integrated directional comparison step is shown in figure 97: IopDir STRV a>b...
  • Page 208: Technical Data

    Section 8 1MRK 502 048-UEN A Current protection BLOCK a>b 0.07*IBase a>b Extract second harmonic current a>b component Extract fundamental current component 2ndHarmStab t=70ms 2ndH_BLOCK_Int BlkParTransf=On a>b UseStartValue IN1> IN2> IN3> IN4> IEC13000015-1-en.vsd IEC13000015 V1 EN Figure 98: Second harmonic blocking 8.2.9 Technical data Table 95:...
  • Page 209: Sensitive Directional Residual Overcurrent And Power Protection Sdepsde

    Section 8 1MRK 502 048-UEN A Current protection Function Range or value Accuracy UBase Minimum polarizing voltage, Zero (1–100)% of ± 0.5% of U sequence UBase Minimum polarizing voltage, (1–100)% of ± 0.5% of U Negative sequence IBase Minimum polarizing current, Zero (2–100)% of ±1.0% of I sequence...
  • Page 210: Function Block

    Section 8 1MRK 502 048-UEN A Current protection 8.3.3 Function block SDEPSDE I3P* TRIP U3P* TRDIRIN BLOCK TRNDIN BLKUN TRUN START STDIRIN STNDIN STUN STFW STRV STDIR UNREL IEC08000036 V1 EN Figure 99: SDEPSDE function block 8.3.4 Signals Table 96: SDEPSDE Input signals Name Type...
  • Page 211: Settings

    Section 8 1MRK 502 048-UEN A Current protection 8.3.5 Settings Table 98: SDEPSDE Group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On OpMode 3I0Cosfi 3I0Cosfi Selection of operation mode for protection 3I03U0Cosfi 3I0 and fi DirMode Forward Forward...
  • Page 212: Monitored Data

    Section 8 1MRK 502 048-UEN A Current protection Name Values (Range) Unit Step Default Description 0.00 - 2.00 0.01 1.00 IDMT time multiplier for non-directional residual overcurrent OpUN> Operation of non-directional residual overvoltage UN> 1.00 - 300.00 0.01 20.00 Set level for non-dir residual voltage, % of UBase 0.000 - 60.000 0.001...
  • Page 213: Directional Residual Current Protection Measuring 3I ·Cos

    Section 8 1MRK 502 048-UEN A Current protection 8.3.7.2 Directional residual current protection measuring 3I ·cos φ φ is defined as the angle between the residual current 3I and the reference voltage. jRCADir Uref = -3U , that is -3U rotated by the set characteristic angle RCADir (φ=ang(3I )-ang(U...
  • Page 214 Section 8 1MRK 502 048-UEN A Current protection For trip, both the residual current 3I ·cos φ and the release voltage 3U , must be larger than the set levels: INCosPhi> and UNRel>. When the function is activated binary output signals START and STDIRIN are activated.
  • Page 215: Cos Φ

    Section 8 1MRK 502 048-UEN A Current protection RCADir = 0º Operate area Instrument transformer RCAcomp angle error Characteristic after angle compensation (to prot) (prim) en06000651.vsd IEC06000651 V2 EN Figure 103: Explanation of RCAComp 8.3.7.3 Directional residual power protection measuring 3I ·...
  • Page 216: Directional Residual Current Protection Measuring 3I And Φ

    Section 8 1MRK 502 048-UEN A Current protection The inverse time delay is defined as: × × × kSN (3I 3U cos (reference)) × × 3I 3U cos (measured) (Equation 55) EQUATION1942 V2 EN 8.3.7.4 Directional residual current protection measuring 3I and φ...
  • Page 217: Directional Functions

    Section 8 1MRK 502 048-UEN A Current protection 8.3.7.5 Directional functions For all the directional functions there are directional start signals STFW: fault in the forward direction, and STRV: start in the reverse direction. Even if the directional function is set to operate for faults in the forward direction a fault in the reverse direction will give the start signal STRV.
  • Page 218 Section 8 1MRK 502 048-UEN A Current protection STNDIN INNonDir> TRNDIN STUN UN> TRUN OpMODE=3I0cosfi IN> & INcosPhi> OpMODE=3I03U0cosfi STARTDIRIN & & INUNcosPhi> TRDIRIN & Phi in RCA +- ROA TimeChar = InvTime & OpMODE=3I0 and fi & TimeChar = DefTime DirMode = Forward &...
  • Page 219: Technical Data

    Section 8 1MRK 502 048-UEN A Current protection 8.3.8 Technical data Table 101: SDEPSDE technical data Function Range or value Accuracy lBase Operate level for 3I ·cosj (0.25-200.00)% of ± 1.0% of I at I £ I directional residual ± 1.0% of I at I > I overcurrent At low setting: (0.25-1.00)% of I...
  • Page 220: Thermal Overload Protection, Two Time Constants Trpttr

    Section 8 1MRK 502 048-UEN A Current protection Function Range or value Accuracy Operate time, non-directional 45 ms typically at 0.8 to 1.5 x 45 ms typically at 0.8 to 1.5 x U residual overvoltage Reset time, non-directional 85 ms typically at 1.2 to 0.8 x 85 ms typically at 1.2 to 0.8 x U residual overvoltage Operate time, directional...
  • Page 221: Function Block

    Section 8 1MRK 502 048-UEN A Current protection Estimated time to trip before operation is presented. 8.4.3 Function block TRPTTR I3P* TRIP BLOCK START COOLING ALARM1 RESET ALARM2 LOCKOUT WARNING IEC08000037 V1 EN Figure 106: TRPTTR function block 8.4.4 Signals TRPTTR is not provided with external temperature sensor in first release of 650 series.
  • Page 222: Settings

    Section 8 1MRK 502 048-UEN A Current protection 8.4.5 Settings Table 104: TRPTTR Group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On IRef 10.0 - 1000.0 100.0 Reference current in % of IBase IBase1 30.0 - 250.0 100.0 Base current IBase1 without cooling input...
  • Page 223: Monitored Data

    Section 8 1MRK 502 048-UEN A Current protection 8.4.6 Monitored data Table 106: TRPTTR Monitored data Name Type Values (Range) Unit Description TTRIP REAL Estimated time to trip (in min) TTRIPCAL INTEGER Calculated time status to trip: not active/long time/ active TRESCAL INTEGER...
  • Page 224 Section 8 1MRK 502 048-UEN A Current protection > Q final (Equation 57) EQUATION1172 V1 EN æ ö Q = Q × ç ÷ final è ø (Equation 58) EQUATION1173 V1 EN < Q final (Equation 59) EQUATION1174 V1 EN Q = Q ×...
  • Page 225 Section 8 1MRK 502 048-UEN A Current protection the temperature of the object is above the set lockout release temperature setting ResLo. The time to lockout release is calculated, That is, a calculation of the cooling time to a set value. æ...
  • Page 226 Section 8 1MRK 502 048-UEN A Current protection Final Temp START > TripTemp actual heat comtent Calculation of heat content Calculation of final temperature ALARM1 Actual Temp > Alarm1,Alarm2 ALARM2 Temp Current base used TRIP Actual Temp > TripTemp LOCKOUT Binary input: Forced cooling Management of...
  • Page 227: Technical Data

    Section 8 1MRK 502 048-UEN A Current protection 8.4.8 Technical data Table 107: TRPTTR technical data Function Range or value Accuracy IBase Base current 1 and 2 (30–250)% of ± 1.0% of I Operate time: = load current before overload IEC 60255–8, ±5% + 200 ms occurs Time constant τ...
  • Page 228: Function Block

    Section 8 1MRK 502 048-UEN A Current protection Contact check criteria can be used where the fault current through the breaker is small. Breaker failure protection, 3-phase activation and output (CCRBRF) current criteria can be fulfilled by one or two phase currents the residual current, or one phase current plus residual current.
  • Page 229: Settings

    Section 8 1MRK 502 048-UEN A Current protection 8.5.5 Settings Table 110: CCRBRF Group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On FunctionMode Current Current Detection principle for back-up trip Contact Current&Contact BuTripMode 2 out of 4 1 out of 3 Back-up trip mode 1 out of 3...
  • Page 230: Operation Principle

    Section 8 1MRK 502 048-UEN A Current protection 8.5.7 Operation principle Breaker failure protection, 3-phase activation and output CCRBRF is initiated from protection trip command, either from protection functions within the IED or from external protection devices. The start signal is general for all three phases. A re-trip attempt can be made after a set time delay.
  • Page 231 Section 8 1MRK 502 048-UEN A Current protection IP> a>b FunctionMode Current Reset L1 Contact Time out L1 Current and Contact Current High L1 BFP Started L1 CB Closed L1 a>b I>BlkCont CBCLDL1 Contact Closed L1 IEC09000977-2-en.vsd IEC09000977 V2 EN Figure 110: Simplified logic scheme of the CCRBRF, CB position evaluation TRRETL3...
  • Page 232: Technical Data

    Section 8 1MRK 502 048-UEN A Current protection BUTripMode 1 out of 3 2 out of 4 1 out of 4 Current High L1 BFP Started L1 a>b IN> Contact Closed L1 Current High L2 From other Current High L3 Backup Time Out L1 phases Current High L1...
  • Page 233: Pole Discordance Protection Ccrpld

    Section 8 1MRK 502 048-UEN A Current protection Function Range or value Accuracy Timers (0.000-60.000) s ± 0.5% ±10 ms Operate time for 20 ms typically current detection Reset time for current 10 ms maximum detection Pole discordance protection CCRPLD 8.6.1 Identification Function description...
  • Page 234: Signals

    Section 8 1MRK 502 048-UEN A Current protection 8.6.4 Signals Table 115: CCRPLD Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL BLOCK BOOLEAN Block of function CLOSECMD BOOLEAN Close order to CB OPENCMD BOOLEAN Open order to CB EXTPDIND...
  • Page 235: Monitored Data

    Section 8 1MRK 502 048-UEN A Current protection 8.6.6 Monitored data Table 119: CCRPLD Monitored data Name Type Values (Range) Unit Description IMin REAL Lowest phase current IMax REAL Highest phase current 8.6.7 Operation principle The detection of pole discordance can be made in two different ways. If the contact based function is used an external logic can be made by connecting the auxiliary contacts of the circuit breaker so that a pole discordance is indicated, see figure 114.
  • Page 236: Pole Discordance Signaling From Circuit Breaker

    Section 8 1MRK 502 048-UEN A Current protection ContSel EXTPDIND tTrip 150 ms TRIP CLOSECMD tTrip+200 ms OPENCMD CurrSel Unsymmetrical current detection IEC08000014-2-en.vsd IEC08000014 V2 EN Figure 115: Simplified block diagram of pole discordance function - contact and current based The pole discrepancy protection is blocked if the input signal BLOCK is high.
  • Page 237: Technical Data

    Section 8 1MRK 502 048-UEN A Current protection • any phase current is lower than CurrUnsymLevel of the highest current in the three phases. • the highest phase current is greater than CurrRelLevel of IBase. If these conditions are true, an unsymmetrical condition is detected. This detection is enabled to generate a trip after a set time delay tTrip if the detection occurs in the next 200 ms after the circuit breaker has received a command to open trip or close and if the unbalance persists.
  • Page 238: Directional Overpower Protection Goppdop

    Section 8 1MRK 502 048-UEN A Current protection 8.7.2 Directional overpower protection GOPPDOP 8.7.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Directional overpower protection GOPPDOP P > DOCUMENT172362-IMG158942 V2 EN 8.7.2.2 Function block GOPPDOP I3P* TRIP U3P*...
  • Page 239: Settings

    Section 8 1MRK 502 048-UEN A Current protection Name Type Description START1 BOOLEAN Start signal from stage 1 START2 BOOLEAN Start signal from stage 2 REAL Active Power PPERCENT REAL Active power in % of calculated power base value REAL Reactive power QPERCENT REAL...
  • Page 240: Monitored Data

    Section 8 1MRK 502 048-UEN A Current protection 8.7.2.5 Monitored data Table 126: GOPPDOP Monitored data Name Type Values (Range) Unit Description REAL Active Power PPERCENT REAL Active power in % of calculated power base value REAL MVAr Reactive power QPERCENT REAL Reactive power in % of...
  • Page 241: Signals

    Section 8 1MRK 502 048-UEN A Current protection 8.7.3.3 Signals Table 127: GUPPDUP Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function BLKST1 BOOLEAN Block of step 1...
  • Page 242: Monitored Data

    Section 8 1MRK 502 048-UEN A Current protection Table 130: GUPPDUP Group settings (advanced) Name Values (Range) Unit Step Default Description 0.00 - 0.99 0.01 0.00 Low pass filter coefficient for power measurement, U and I Table 131: GUPPDUP Non group settings (basic) Name Values (Range) Unit...
  • Page 243 Section 8 1MRK 502 048-UEN A Current protection Chosen current phasors Complex Derivation of S(angle) TRIP1 S(angle) < S(composant) power Chosen voltage Power1 in Char angle calculation phasors START1 TRIP2 S(angle) < Power2 START2 P = POWRE Q = POWIM IEC09000018-2-en.vsd IEC09000018 V2 EN Figure 118:...
  • Page 244: Low Pass Filtering

    Section 8 1MRK 502 048-UEN A Current protection Set value: Mode Formula used for complex power calculation = × × (Equation 70) EQUATION1703 V1 EN = × × (Equation 71) EQUATION1704 V1 EN = × × (Equation 72) EQUATION1705 V1 EN The active and reactive power is available from the function and can be used for monitoring and fault recording.
  • Page 245: Technical Data

    Section 8 1MRK 502 048-UEN A Current protection = × × 1 k S Calculated (Equation 73) EQUATION1959 V1 EN Where is a new measured value to be used for the protection function is the measured value given from the function in previous execution cycle is the new calculated value in the present execution cycle Calculated is settable parameter by the end user which influence the filter properties...
  • Page 246: Function Block

    Section 8 1MRK 502 048-UEN A Current protection motor drawing a large current from the system. The voltage supervised overcurrent protection is used to protect the inadvertently energized generator. Accidental energizing protection for synchronous generator (AEGGAPC) takes the maximum phase current input from the generator terminal side or generator neutral side and maximum phase to phase voltage inputs from the terminal side.
  • Page 247: Settings

    Section 8 1MRK 502 048-UEN A Current protection 8.8.5 Settings Table 137: AEGGAPC Group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On I> 5 - 900 Operate phase current level in % of IBase 0.000 - 60.000 0.001 0.030...
  • Page 248: Technical Data

    Section 8 1MRK 502 048-UEN A Current protection When the maximum phase-to-phase voltage is larger than DisarmU> for the period tDisarm, it is ensured generator is on line. During this state, undervoltage operation is disarmed, blocking the overcurrent operation and thus the function becomes inoperative.
  • Page 249: Negative-Sequence Time Overcurrent Protection For Machines Ns2Ptoc

    Section 8 1MRK 502 048-UEN A Current protection Function Range or value Accuracy Critical impulse time, 10 ms typically at 2 to 0 x U undervoltage Impulse margin time, 15 ms typically undervoltage Operate value, (2-200)% of UBase ± 0.5% of U at U<U overvoltage ±...
  • Page 250: Function Block

    Section 8 1MRK 502 048-UEN A Current protection is a constant which depends of the generators size and design NS2PTOC has a wide range of K settings and the sensitivity and capability of detecting and tripping for negative sequence currents down to the continuous capability of a generator.
  • Page 251: Settings

    Section 8 1MRK 502 048-UEN A Current protection Name Type Description BOOLEAN Start signal for step 2 ALARM BOOLEAN Alarm signal NSCURR REAL Negative sequence current in primary amps 8.9.5 Settings Table 143: NS2PTOC Group settings (basic) Name Values (Range) Unit Step Default...
  • Page 252: Monitored Data

    Section 8 1MRK 502 048-UEN A Current protection 8.9.6 Monitored data Table 145: NS2PTOC Monitored data Name Type Values (Range) Unit Description NSCURR REAL Negative sequence current in primary amps 8.9.7 Operation principle The negative sequence time overcurrent protection for machines (NS2PTOC) function directly measures the amplitude of the negative phase sequence component of the measured current.
  • Page 253 Section 8 1MRK 502 048-UEN A Current protection Where: is negative sequence current expressed in per unit of the rated generator current is operating time in seconds is a constant [s], which depends on generator size and design Operate time t1Max (Default= 1000 s) t1Min...
  • Page 254: Start Sensitivity

    Section 8 1MRK 502 048-UEN A Current protection 8.9.7.1 Start sensitivity The trip start levels Current I2-1> and I2-2> of NS2PTOC are freely settable over a range of 3 to 500 % of rated generator current IBase. The wide range of start setting is required in order to be able to protect generators of different types and sizes.
  • Page 255: Technical Data

    Section 8 1MRK 502 048-UEN A Current protection 8.9.8 Technical data Table 146: NS2PTOC technical data Function Range or value Accuracy IBase Operate value, step 1 (3-500)% of ± 1.0% of I at I < I and 2, negative ± 1.0% of I at I > I sequence overcurrent Reset ratio, step 1...
  • Page 256: Function Block

    Section 8 1MRK 502 048-UEN A Current protection One undervoltage step with definite time characteristic is also available within the function in order to provide functionality for overcurrent protection with undervoltage seal-in. 8.10.3 Function block VRPVOC I3P* TRIP U3P* TROC BLOCK TRUV BLKOC...
  • Page 257: Settings

    Section 8 1MRK 502 048-UEN A Current protection 8.10.5 Settings Table 149: VRPVOC Group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On StartCurr 2.0 - 5000.0 120.0 Start current level in % of IBase Characterist ANSI Ext.
  • Page 258: Monitored Data

    Section 8 1MRK 502 048-UEN A Current protection 8.10.6 Monitored data Table 152: VRPVOC Monitored data Name Type Values (Range) Unit Description IMAX REAL Maximum phase current magnitude UUMIN REAL Minimum ph-to-ph voltage magnitude 8.10.7 Operation principle 8.10.7.1 Measured quantities The voltage-restrained time overcurrent protection VRPVOC function is always connected to three-phase current and three-phase voltage input in the configuration tool (ACT), but it will always measure the maximum of the three-phase currents and...
  • Page 259 Section 8 1MRK 502 048-UEN A Current protection Current Start Level StartCurr VDepFact * StartCurr 0,25 UHighLimit UBase IEC10000123-1-en.vsd IEC10000123 V1 EN Figure 126: Example for current start level variation as function of measured voltage magnitude in Slope mode of operation •...
  • Page 260: Logic Diagram

    Section 8 1MRK 502 048-UEN A Current protection 8.10.7.4 Logic diagram DEF time selected TROC MaxPhCurr STOC a>b StartCurr Inverse Inverse time Voltage selected control or restraint feature MinPh-PhVoltage IEC10000214-1-en.vsd IEC10000214 V1 EN Figure 128: Simplified internal logic diagram for overcurrent function DEF time TRUV selected...
  • Page 261: Technical Data

    Section 8 1MRK 502 048-UEN A Current protection The start signal starts a definite time delay. If the value of the start signal is logical TRUE for longer than the set time delay, the undervoltage step sets its trip signal to logical TRUE.
  • Page 263: Section 9 Voltage Protection

    Section 9 1MRK 502 048-UEN A Voltage protection Section 9 Voltage protection Two step undervoltage protection UV2PTUV 9.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Two step undervoltage protection UV2PTUV 3U< SYMBOL-R-2U-GREATER-THAN V2 EN 9.1.2 Functionality Undervoltages can occur in the power system during faults or abnormal conditions.
  • Page 264: Signals

    Section 9 1MRK 502 048-UEN A Voltage protection 9.1.4 Signals Table 154: UV2PTUV Input signals Name Type Default Description GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function BLKST1 BOOLEAN Block of step 1 BLKST2 BOOLEAN Block of step 2 Table 155:...
  • Page 265: Monitored Data

    Section 9 1MRK 502 048-UEN A Voltage protection Name Values (Range) Unit Step Default Description OperationStep2 Enable execution of step 2 OpMode2 1 out of 3 1 out of 3 Number of phases required to operate (1 2 out of 3 of 3, 2 of 3, 3 of 3) from step 2 3 out of 3 U2<...
  • Page 266: Measurement Principle

    Section 9 1MRK 502 048-UEN A Voltage protection UBase kV < ⋅ (Equation 75) EQUATION1429 V2 EN and operation for phase-to-phase voltage under: < × (%) UBase(kV) (Equation 76) EQUATION1990 V1 EN When phase-to-earth voltage measurement is selected the function automatically introduces division of the base value by the square root of three.
  • Page 267: Blocking

    Section 9 1MRK 502 048-UEN A Voltage protection The lowest voltage is always used for the inverse time delay integration. The details of the different inverse time characteristics are shown in section 21.3 "Inverse time characteristics". Voltage IDMT Voltage Time IEC12000186-1-en.vsd IEC12000186 V1 EN Figure 131:...
  • Page 268: Technical Data

    Section 9 1MRK 502 048-UEN A Voltage protection UL1 or UL12 ST1L1 Comparator Phase 1 U < U1< Voltage Phase Selector ST1L2 UL2 or UL23 Comparator OpMode1 Phase 2 U < U1< 1 out of 3 ST1L3 2 out of 3 Start Phase 3 3 out of 3...
  • Page 269: Two Step Overvoltage Protection Ov2Ptov

    Section 9 1MRK 502 048-UEN A Voltage protection Function Range or value Accuracy Definite time delay, (0.00 - 6000.00) s ± 0.5% ± 25 ms step 1 Definite time delays, (0.000-60.000) s ± 0.5% ±25 ms step 2 Minimum operate (0.000–60.000) s ±...
  • Page 270: Function Block

    Section 9 1MRK 502 048-UEN A Voltage protection 9.2.3 Function block OV2PTOV U3P* TRIP BLOCK BLKST1 BLKST2 START ST1L1 ST1L2 ST1L3 IEC09000278-2-en.vsd IEC09000278 V2 EN Figure 133: OV2PTOV function block 9.2.4 Signals Table 160: OV2PTOV Input signals Name Type Default Description GROUP Three phase group signal for voltage inputs...
  • Page 271: Settings

    Section 9 1MRK 502 048-UEN A Voltage protection 9.2.5 Settings Table 162: OV2PTOV Group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On OperationStep1 Enable execution of step 1 Characterist1 Definite time Definite time Selection of time delay curve type for step Inverse curve A Inverse curve B Inverse curve C...
  • Page 272: Operation Principle

    Section 9 1MRK 502 048-UEN A Voltage protection 9.2.7 Operation principle Two step overvoltage protection OV2PTOV is used to detect high power system voltage. OV2PTOV has two steps with separate time delays. If one-, two- or three- phase voltages increase above the set value, a corresponding START signal is issued. OV2PTOV can be set to START/TRIP, based on 1 out of 3, 2 out of 3 or 3 out of 3 of the measured voltages, being above the set point.
  • Page 273: Time Delay

    Section 9 1MRK 502 048-UEN A Voltage protection 9.2.7.2 Time delay The time delay for step 1 can be either definite time delay (DT) or inverse time delay (IDMT). Step 2 is always definite time delay (DT). For the inverse time delay three different modes are available: •...
  • Page 274: Blocking

    Section 9 1MRK 502 048-UEN A Voltage protection Voltage IDMT Voltage Time IEC05000016-2-en.vsd IEC05000016 V2 EN Figure 134: Voltage used for the inverse time characteristic integration A TRIP requires that the overvoltage condition continues for at least the user set time delay.
  • Page 275 Section 9 1MRK 502 048-UEN A Voltage protection Comparator ST1L1 UL1 or UL12 U > U1> Phase 1 Voltage Phase Selector ST1L2 Comparator OpMode1 UL2 or UL23 Phase 2 U > U1> 1 out of 3 ST1L3 2 outof 3 Start Phase 3 3 out of 3...
  • Page 276: Technical Data

    Section 9 1MRK 502 048-UEN A Voltage protection 9.2.8 Technical data Table 165: OV2PTOV technical data Function Range or value Accuracy UBase Operate voltage, (1-200)% of ± 0.5% of U at U < U step 1 and 2 ± 0.5% of U at U > U Reset ratio >98% Inverse time...
  • Page 277: Function Block

    Section 9 1MRK 502 048-UEN A Voltage protection ROV2PTOV has two voltage steps, where step 1 can be set as inverse or definite time delayed. Step 2 is always definite time delayed. 9.3.3 Function block ROV2PTOV U3P* TRIP BLOCK BLKST1 BLKST2 START IEC09000273_1_en.vsd...
  • Page 278: Monitored Data

    Section 9 1MRK 502 048-UEN A Voltage protection Name Values (Range) Unit Step Default Description U1> 1 - 200 Voltage start value (DT & IDMT) in % of UBase for step 1 0.00 - 6000.00 0.01 5.00 Definite time delay of step 1 t1Min 0.000 - 60.000 0.001...
  • Page 279: Measurement Principle

    Section 9 1MRK 502 048-UEN A Voltage protection 9.3.7.1 Measurement principle The residual voltage is measured continuously, and compared with the set values, U1> and U2>. To avoid oscillations of the output START signal, a hysteresis has been included. 9.3.7.2 Time delay 9.3.7.3 Blocking...
  • Page 280 Section 9 1MRK 502 048-UEN A Voltage protection Comparator Phase 1 UN > U1> Start START & Trip Output Logic Time integrator TRIP or Timer t1 Step 1 Comparator Phase 1 UN > U2> Start START & Trip START Output Logic Timer TRIP...
  • Page 281: Technical Data

    Section 9 1MRK 502 048-UEN A Voltage protection 9.3.8 Technical data Table 171: ROV2PTOV technical data Function Range or value Accuracy UBase Operate voltage, (1-200)% of ± 0.5% of U at U < U step 1 ± 0.5% of U at U > U UBase Operate voltage, (1–100)% of...
  • Page 282: Function Block

    Section 9 1MRK 502 048-UEN A Voltage protection adjacent parts in a relatively short time. The function has settable inverse operating curves and independent alarm stages. 9.4.3 Function block OEXPVPH U3P* TRIP BLOCK START RESET ALARM IEC09000008-2-en.vsd IEC09000008 V2 EN Figure 138: OEXPVPH function block 9.4.4...
  • Page 283: Monitored Data

    Section 9 1MRK 502 048-UEN A Voltage protection Table 175: OEXPVPH Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 6 Selection of one of the Global Base Value groups VoltConn Pos Seq Pos Seq Selection of measured voltage UL1L2 UL2L3...
  • Page 284 Section 9 1MRK 502 048-UEN A Voltage protection × × × × 4 44 f n Bmax A (Equation 84) EQUATION898 V2 EN The relative excitation M is therefore according to equation 85. M p.u. = ( ) ( ) (Equation 85) IECEQUATION2296 V1 EN Disproportional variations in quantities E and f may give rise to core overfluxing.
  • Page 285: Measured Voltage

    Section 9 1MRK 502 048-UEN A Voltage protection V Hz > £ (Equation 87) IECEQUATION2297 V2 EN where: V/Hz> is the maximum continuously allowed voltage at no load, and rated frequency. V/Hz> is a setting parameter. The setting range is 100% to 180%. If the user does not know exactly what to set, then the default value for V/Hz>...
  • Page 286: Operate Time Of The Overexcitation Protection

    Section 9 1MRK 502 048-UEN A Voltage protection 9.4.7.2 Operate time of the overexcitation protection The operate time of OEXPVPH is a function of the relative overexcitation. The so called IEEE law approximates an inverse-square law and has been chosen based on analysis of the various transformer overexcitation capability characteristics.
  • Page 287 Section 9 1MRK 502 048-UEN A Voltage protection delay in s 1800 under - inverse delay law excitation overexcitation tMin - V/Hz> Overexcitation M-V/Hz> M=V/Hz> Excitation M V/Hz> E (only if f = fr = const) IEC09000114-1-en.vsd IEC09000114 V1 EN Figure 139: Restrictions imposed on inverse delays by A definite maximum time of 1800 seconds is used to limit the operate time at low...
  • Page 288: Cooling

    Section 9 1MRK 502 048-UEN A Voltage protection IEEE OVEREXCITATION CURVES Time (s) 1000 kForIEEE kForIEEE kForIEEE kForIEEE kForIEEE kForIEEE kForIEEE kForIEEE kForIEEE kForIEEE kForIEEE kForIEEE OVEREXCITATION IN % (M-Emaxcont)*100) IEC09000115-1-en.vsd IEC09000115 V1 EN Figure 140: Delays inversely proportional to the square of the overexcitation The critical value of excitation M is determined via OEXPVPH setting V/Hz>>.
  • Page 289: Overexcitation Protection Function Measurands

    Section 9 1MRK 502 048-UEN A Voltage protection applied, with a time constant of 20 minutes. This means that if the voltage and frequency return to normal values (no more overexcitation), the normal temperature is assumed to be reached after approximately 5 times the time constant of 20 minutes. If an overexcitation condition would return before that, the time to trip will be shorter than it would be otherwise.
  • Page 290: Logic Diagram

    Section 9 1MRK 502 048-UEN A Voltage protection 9.4.7.6 Logic diagram BLOCK AlarmL evel ALARM & t>tAlarm tAlarm M>V/Hz> 100 ms t>tMin TRIP & V/Hz> tMin Calc ulation of inte rnal induced (Ei / f) kForIEEE 1 voltage Ei (Ur / fr) 1800 s M>V/Hz>>...
  • Page 291: 100% Stator Earth Fault Protection, 3Rd Harmonic Based Stefphiz285

    Section 9 1MRK 502 048-UEN A Voltage protection 100% Stator earth fault protection, 3rd harmonic based STEFPHIZ 9.5.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number 100% Stator earth fault protection, 3rd STEFPHIZ 59THD harmonic based 9.5.2 Functionality Stator earth fault is a fault type having relatively high fault rate.
  • Page 292: Function Block

    Section 9 1MRK 502 048-UEN A Voltage protection CB 1 may not exist CB 1 may not exist stator winding stator winding x E3 x E3 (1- x) E3 (1- x) E3 CB 1 CB 1 CB 2 CB 2 Transformer 1 - x 1 - x...
  • Page 293: Settings

    Section 9 1MRK 502 048-UEN A Voltage protection Name Type Default Description BLOCK BOOLEAN Complete block of the stator earth fault protecion function BLOCK3RD BOOLEAN Block of the 3rd harmonic-based parts of the protection BLOCKUN BOOLEAN Block of the fund. harmonic-based part of the protection Table 179: STEFPHIZ Output signals...
  • Page 294: Monitored Data

    Section 9 1MRK 502 048-UEN A Voltage protection Table 181: STEFPHIZ Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 6 Selection of one of the Global Base Value groups TVoltType NoVoltage ResidualVoltage Used connection type for gen. terminal ResidualVoltage voltage transformer AllThreePhases...
  • Page 295 Section 9 1MRK 502 048-UEN A Voltage protection Note that angle between U and U is typically close to 180°. - DU 3T,L1 3T,L2 3T,L3 en06000448.vsd IEC06000448 V2 EN Figure 144: Generator 3 harmonic voltage characteristic at normal operation The generator is modeled as parts of a winding where a 3 harmonic voltage is induced along the winding, represented by the end voltages U (voltage drop across...
  • Page 296 Section 9 1MRK 502 048-UEN A Voltage protection ³ Beta (Equation 94) EQUATION1712 V2 EN , and U are third harmonic phasors with real and imaginary parts. The factor Beta must be set not to risk operation under non-faulted conditions. The voltage U is measured via a voltage transformer between the generator neutral point and earth.
  • Page 297 Section 9 1MRK 502 048-UEN A Voltage protection Samples: Generator TRIP terminal harmonic Complex UT3 Stator Earth voltage Fourier Fault filtering TRIP3H detection giving UT3 harmonic TRIPUN based Start Start and trip logic START3H Samples: Generator neutral point STARTUN harmonic Complex UN3 voltage Fourier...
  • Page 298 Section 9 1MRK 502 048-UEN A Voltage protection IEC07000186 V1 EN Figure 146: Simplified Start and Trip logical diagram of the STEFPHIZ protection There are two different cases of generator block configuration; with or without generator circuit breaker. If there is no generator breaker the capacitive coupling to earth is the same under all operating conditions.
  • Page 299: Technical Data

    Section 9 1MRK 502 048-UEN A Voltage protection possibility to reduce the sensitivity of the protection when the generator circuit breaker is open. With the setting CBexists change of the sensitivity is enabled. If the binary input signal CBCLOSED is activated the set sensitivity is valid. If the generator circuit breaker is opened the binary input CBCLOSED is deactivated and the sensitivity is changed.
  • Page 301: Section 10 Frequency Protection

    Section 10 1MRK 502 048-UEN A Frequency protection Section 10 Frequency protection 10.1 Underfrequency protection SAPTUF 10.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Underfrequency protection SAPTUF f < SYMBOL-P V1 EN 10.1.2 Functionality Underfrequency occurs as a result of a lack of sufficient generation in the network.
  • Page 302: Signals

    Section 10 1MRK 502 048-UEN A Frequency protection 10.1.4 Signals Table 184: SAPTUF Input signals Name Type Default Description GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function Table 185: SAPTUF Output signals Name Type Description TRIP BOOLEAN...
  • Page 303: Measurement Principle

    Section 10 1MRK 502 048-UEN A Frequency protection voltage is lower than the set blocking voltage in the preprocessing function, the function is blocked and no START or TRIP signal is issued. 10.1.7.1 Measurement principle The frequency measuring element continuously measures the frequency of the positive sequence voltage and compares it to the setting StartFrequency.
  • Page 304: Blocking

    Section 10 1MRK 502 048-UEN A Frequency protection When the measured frequency returns to the level corresponding to the setting RestoreFreq, a 100ms pulse is given on the output RESTORE after a settable time delay (tRestore). 10.1.7.3 Blocking It is possible to block underfrequency protection SAPTUF completely, by binary input signal: BLOCK: blocks all outputs...
  • Page 305: Identification

    Section 10 1MRK 502 048-UEN A Frequency protection 10.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Overfrequency protection SAPTOF f > SYMBOL-O V1 EN 10.2.2 Functionality Overfrequency protection function SAPTOF is applicable in all situations, where reliable detection of high fundamental power system frequency is needed.
  • Page 306: Settings

    Section 10 1MRK 502 048-UEN A Frequency protection Table 190: SAPTOF Output signals Name Type Description TRIP BOOLEAN General trip signal START BOOLEAN General start signal BLKDMAGN BOOLEAN Measurement blocked due to low amplitude 10.2.5 Settings Table 191: SAPTOF Group settings (basic) Name Values (Range) Unit...
  • Page 307: Time Delay

    Section 10 1MRK 502 048-UEN A Frequency protection percent of the global parameter UBase. To avoid oscillations of the output START signal, a hysteresis has been included. BLOCK BLOCK BLKDMAGN freqNotValid Start & Trip Output Logic START START Definite Time Delay Frequency Comparator f >...
  • Page 308: Technical Data

    Section 10 1MRK 502 048-UEN A Frequency protection BLOCK BLKTRIP BLOCK BLKDMAGN Comparator U < IntBlockLevel Start & Trip Voltage Time integrator Output Logic START START Definite Time Delay Frequency Comparator f > StartFrequency TimeDlyOperate TRIP TimeDlyReset TRIP en05000735.vsd IEC05000735 V1 EN Figure 153: Schematic design of overfrequency protection SAPTOF 10.2.8...
  • Page 309: Identification

    Section 10 1MRK 502 048-UEN A Frequency protection 10.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Rate-of-change frequency protection SAPFRC df/dt > < SYMBOL-N V1 EN 10.3.2 Functionality The rate-of-change frequency protection function SAPFRC gives an early indication of a main disturbance in the system.
  • Page 310: Settings

    Section 10 1MRK 502 048-UEN A Frequency protection 10.3.5 Settings Table 196: SAPFRC Group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On StartFreqGrad -10.00 - 10.00 Hz/s 0.01 0.50 Frequency gradient start value, the sign defines direction tTrip 0.000 - 60.000...
  • Page 311: Design

    Section 10 1MRK 502 048-UEN A Frequency protection fulfilled again within a defined reset time, the START output is reset after the reset time has elapsed. After an issue of the TRIP output signal, the RESTORE output of SAPFRC is set after a time delay (tRestore), when the measured frequency has returned to the level corresponding to RestoreFreq.
  • Page 312: Technical Data

    Section 10 1MRK 502 048-UEN A Frequency protection 10.3.7 Technical data Table 197: SAPFRC technical data Function Range or value Accuracy Operate value, start function (-10.00-10.00) Hz/s ± 10.0 mHz/s Operate value, restore (45.00 - 65.00) Hz ± 2.0 mHz enable frequency Timers (0.000 - 60.000) s...
  • Page 313: Section 11 Secondary System Supervision

    Section 11 1MRK 502 048-UEN A Secondary system supervision Section 11 Secondary system supervision 11.1 Fuse failure supervision SDDRFUF 11.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Fuse failure supervision SDDRFUF 11.1.2 Functionality The aim of the fuse failure supervision function SDDRFUF is to block voltage measuring functions at failures in the secondary circuits between the voltage transformer and the IED in order to avoid inadvertent operations that otherwise might occur.
  • Page 314: Function Block

    Section 11 1MRK 502 048-UEN A Secondary system supervision 11.1.3 Function block SDDRFUF I3P* BLKZ U3P* BLKU BLOCK CBCLOSED DLD1PH MCBOP DLD3PH DISCPOS IEC08000220 V1 EN Figure 156: SDDRFUF function block 11.1.4 Signals Table 198: SDDRFUF Input signals Name Type Default Description GROUP...
  • Page 315: Settings

    Section 11 1MRK 502 048-UEN A Secondary system supervision 11.1.5 Settings Table 200: SDDRFUF Group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On OpMode UZsIZs Operating mode selection UNsINs UZsIZs UZsIZs OR UNsINs UZsIZs AND UNsINs OptimZsNs 3U0>...
  • Page 316: Monitored Data

    Section 11 1MRK 502 048-UEN A Secondary system supervision 11.1.6 Monitored data Table 202: SDDRFUF Monitored data Name Type Values (Range) Unit Description REAL Magnitude of zero sequence current REAL Magnitude of negative sequence current REAL Magnitude of zero sequence voltage REAL Magnitude of negative sequence voltage...
  • Page 317: Delta Current And Delta Voltage Detection

    Section 11 1MRK 502 048-UEN A Secondary system supervision Sequence Detection 3I0< CurrZeroSeq Zero sequence filter 100 ms CurrNegSeq a>b Negative sequence filter FuseFailDetZeroSeq 100 ms a>b 3I2< FuseFailDetNegSeq 3U0> VoltZeroSeq Zero sequence a>b filter VoltNegSeq Negative sequence a>b filter 3U2>...
  • Page 318 Section 11 1MRK 502 048-UEN A Secondary system supervision • The magnitude of the phase current in the same phase is higher than the setting IPh> • The circuit breaker is closed (CBCLOSED = True) The first criterion means that detection of failure in one phase together with a current in the same phase greater than 50P will set the output.
  • Page 319 Section 11 1MRK 502 048-UEN A Secondary system supervision DUDI Detection DUDI detection Phase 1 One cycle delay |DI| a>b DI< One cycle delay |DU| a>b DU> 20 ms 1.5 cycle a>b UPh> DUDI detection Phase 2 Same logic as for phase 1 DUDI detection Phase 3 Same logic as for phase 1 a<b...
  • Page 320: Dead Line Detection

    Section 11 1MRK 502 048-UEN A Secondary system supervision 11.1.7.3 Dead line detection A simplified diagram for the functionality is found in figure 159. A dead phase condition is indicated if both the voltage and the current in one phase is below their respective setting values UDLD<...
  • Page 321 Section 11 1MRK 502 048-UEN A Secondary system supervision • UZsIZs OR UNsINs. Both negative and zero sequence is activated and working in parallel (OR-condition for operation). • UZsIZs AND UNsINs. Both negative and zero sequence is activated and working in series (AND-condition for operation).
  • Page 322 Section 11 1MRK 502 048-UEN A Secondary system supervision The input signal DISCPOS is supposed to be connected via a terminal binary input to the N.C. auxiliary contact of the line disconnector. The DISCPOS signal sets the output signal BLKU in order to block the voltage related functions when the line disconnector is open.
  • Page 323 Section 11 1MRK 502 048-UEN A Secondary system supervision Fuse failure detection Main logic TEST TEST ACTIVE BlocFuse = Yes intBlock BLOCK All UL < USealIn< SealIn = On Any UL < UsealIn< FuseFailDetDUDI OpDUDI = On FuseFailDetZeroSeq FuseFailDetNegSeq UNsINs UZsIZs UZsIZs OR UNsINs OpMode...
  • Page 324: Technical Data

    Section 11 1MRK 502 048-UEN A Secondary system supervision 11.1.8 Technical data Table 203: SDDRFUF technical data Function Range or value Accuracy Operate voltage, zero sequence (1-100)% of UBase ± 1.0% of U Operate current, zero sequence (1–100)% of IBase ±...
  • Page 325: Signals

    Section 11 1MRK 502 048-UEN A Secondary system supervision 11.2.4 Signals Table 204: TCSSCBR Input signals Name Type Default Description TCS_STATE BOOLEAN Trip circuit fail indication from I/O-card BLOCK BOOLEAN Block of function Table 205: TCSSCBR Output signals Name Type Description ALARM BOOLEAN...
  • Page 326: Technical Data

    Section 11 1MRK 502 048-UEN A Secondary system supervision To protect the trip circuit supervision circuits in the IED, the output contacts are provided with parallel transient voltage suppressors. The breakdown voltage of these suppressors is 400 +/– 20 V DC. Timer Once activated, the timer runs until the set value tDelay is elapsed.
  • Page 327: Section 12 Control

    Section 12 1MRK 502 048-UEN A Control Section 12 Control 12.1 Synchrocheck, energizing check, and synchronizing SESRSYN 12.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Synchrocheck, energizing check, and SESRSYN synchronizing sc/vc SYMBOL-M V1 EN 12.1.2 Functionality The Synchronizing function allows closing of asynchronous networks at the correct...
  • Page 328: Function Block

    Section 12 1MRK 502 048-UEN A Control 12.1.3 Function block SESRSYN U3PBB1* SYNOK U3PBB2* AUTOSYOK U3PLN1* AUTOENOK U3PLN2* MANSYOK BLOCK MANENOK BLKSYNCH TSTSYNOK BLKSC TSTAUTSY BLKENERG TSTMANSY B1QOPEN TSTENOK B1QCLD USELFAIL B2QOPEN B1SEL B2QCLD B2SEL LN1QOPEN LN1SEL LN1QCLD LN2SEL LN2QOPEN SYNPROGR LN2QCLD SYNFAIL...
  • Page 329 Section 12 1MRK 502 048-UEN A Control Name Type Default Description B1QCLD BOOLEAN Close status for CB or disconnector connected to bus1 B2QOPEN BOOLEAN Open status for CB or disconnector connected to bus2 B2QCLD BOOLEAN Close status for CB or disconnector connected to bus2 LN1QOPEN BOOLEAN...
  • Page 330: Settings

    Section 12 1MRK 502 048-UEN A Control Name Type Description B2SEL BOOLEAN Bus2 selected LN1SEL BOOLEAN Line1 selected LN2SEL BOOLEAN Line2 selected SYNPROGR BOOLEAN Synchronizing in progress SYNFAIL BOOLEAN Synchronizing failed FRDIFSYN BOOLEAN Frequency difference out of limit for synchronizing FRDERIVA BOOLEAN Frequency derivative out of limit for synchronizing...
  • Page 331 Section 12 1MRK 502 048-UEN A Control Name Values (Range) Unit Step Default Description FreqDiffMin 0.003 - 0.250 0.001 0.010 Minimum frequency difference limit for synchronizing FreqDiffMax 0.050 - 0.500 0.001 0.200 Maximum frequency difference limit for synchronizing FreqRateChange 0.000 - 0.500 Hz/s 0.001 0.300...
  • Page 332: Monitored Data

    Section 12 1MRK 502 048-UEN A Control Table 211: SESRSYN Non group settings (basic) Name Values (Range) Unit Step Default Description GblBaseSelBus 1 - 6 Selection of one of the Global Base Value groups, Bus GblBaseSelLine 1 - 6 Selection of one of the Global Base Value groups, Line SelPhaseBus1 Phase L1...
  • Page 333: Operation Principle

    Section 12 1MRK 502 048-UEN A Control 12.1.7 Operation principle 12.1.7.1 Basic functionality The synchrocheck function measures the conditions across the circuit breaker and compares them to set limits. The output is only given when all measured quantities are simultaneously within their set limits. The energizing check function measures the bus and line voltages and compares them to both high and low threshold detectors.
  • Page 334 Section 12 1MRK 502 048-UEN A Control use of different voltages on the bus and line, the factor is deducted from the line voltage before the comparison of the phase angle values. The frequency on both sides of the circuit breaker is also measured. The function is only released if the frequency difference is less than the fixed set value of +/-5 Hz.
  • Page 335: Synchronizing

    Section 12 1MRK 502 048-UEN A Control Note! Similar logic for Manual Synchrocheck. OperationSC = On TSTSC BLKSC BLOCK AUTOSYOK 0-60 s tSCA UDiffSC 50 ms Bus voltage >80% of GblBaseSelBus UOKSC Line voltage >80% of GblBaseSelLine UDIFFSC FRDIFFA FreqDiffA PHDIFFA PhaseDiffA UDIFFME...
  • Page 336: Energizing Check

    Section 12 1MRK 502 048-UEN A Control Measured frequencies between the settings for the maximum and minimum frequency will initiate the measuring and the evaluation of the angle change to allow operation to be sent in the right moment including the set tBreaker time. There is a phase angle release internally to block any incorrect closing pulses.
  • Page 337: Fuse Failure Supervision

    Section 12 1MRK 502 048-UEN A Control for GblBaseSelBus or GblBaseSelLine and to be considered dead it must be below 40% of set UBase selected forGblBaseSelBus or GblBaseSelLine. The frequency on both sides of the circuit breaker is also measured. The frequencies must not deviate from the rated frequency more than +/-5Hz.
  • Page 338: Voltage Selection For A Single Circuit Breaker With Double Busbars

    Section 12 1MRK 502 048-UEN A Control The voltage selection type to be used is set with the parameter CBConfig. If No voltage sel. is set the voltages used will be U-Line1 and U-Bus1. This setting is also used in the case when external voltage selection is provided. Fuse failure supervision for the used inputs must also be connected.
  • Page 339: Voltage Selection For A 1 1/2 Circuit Breaker Arrangement

    Section 12 1MRK 502 048-UEN A Control B1QOPEN B1SEL B1QCLD B2QOPEN B2SEL B2QCLD invalidSelection busVoltage bus1Voltage bus2Voltage UB1OK UB1FF selectedFuseOK UB2OK UB2FF USELFAIL ULN1OK ULN1FF BLOCK en05000779-2.vsd IEC05000779 V2 EN Figure 166: Logic diagram for the voltage selection function of a single circuit breaker with double busbars 12.1.7.8 Voltage selection for a 1 1/2 circuit breaker arrangement Note that with 1½...
  • Page 340 Section 12 1MRK 502 048-UEN A Control The fuse supervision is connected to ULN1OK-ULN1FF, ULN2OK-ULN2FF and with alternative Healthy or Failing MCB signals depending on what is available from each MCB. The tie circuit breaker is connected either to bus 1 or line 1 voltage on one side and the other side is connected either to bus 2 or line 2 voltage.
  • Page 341 Section 12 1MRK 502 048-UEN A Control LN1QOPEN LN1SEL LN1QCLD B1QOPEN LN2SEL B1QCLD B2SEL LN2QOPEN invalidSelection LN2QCLD B2QOPEN B2QCLD line1Voltage lineVoltage line2Voltage bus2Voltage UB1OK UB1FF selectedFuseOK UB2OK UB2FF USELFAIL ULN1OK ULN1FF ULN2OK ULN2FF BLOCK en05000780-2.vsd IEC05000780 V2 EN Figure 167: Simplified logic diagram for the voltage selection function for a bus circuit breaker in a 1 1/2 breaker arrangement Technical manual...
  • Page 342 Section 12 1MRK 502 048-UEN A Control LN1QOPEN LN1SEL LN1QCLD B1SEL B1QOPEN B1QCLD busVoltage line1Voltage bus1Voltage LN2QOPEN LN2SEL LN2QCLD B2SEL invalidSelection B2QOPEN B2QCLD lineVoltage line2Voltage bus2Voltage UB1OK UB1FF selectedFuseOK UB2OK UB2FF USELFAIL ULN1OK ULN1FF ULN2OK ULN2FF BLOCK en05000781-2.vsd IEC05000781 V2 EN Figure 168: Simplified logic diagram for the voltage selection function for the tie circuit breaker in 1 1/2 breaker arrangement.
  • Page 343: Technical Data

    Section 12 1MRK 502 048-UEN A Control 12.1.8 Technical data Table 213: SESRSYN technical data Function Range or value Accuracy Phase shift, j (-180 to 180) degrees line Voltage ratio, U 0.500 - 2.000 line Reset ratio, synchrocheck > 95% Frequency difference limit (0.003-1.000) Hz ±...
  • Page 344: Apparatus Control

    Section 12 1MRK 502 048-UEN A Control 12.2 Apparatus control 12.2.1 Functionality The apparatus control function APC8 for up to 8 apparatuses is used for control and supervision of circuit breakers, disconnectors and earthing switches within a bay. Permission to operate is given after evaluation of conditions from other functions such as interlocking, synchrocheck, operator place selection and external or internal blockings.
  • Page 345: Function Block

    Section 12 1MRK 502 048-UEN A Control 12.2.2.3 Function block SCSWI BLOCK EXE_OP PSTO EXE_CL L_SEL SELECTED L_OPEN START_SY L_CLOSE POSITION AU_OPEN OPENPOS AU_CLOSE CLOSEPOS BL_CMD CMD_BLK RES_EXT L_CAUSE SY_INPRO POS_INTR SYNC_OK XOUT EN_OPEN EN_CLOSE XPOS* IEC09000087_1_en.vsd IEC09000087 V1 EN Figure 169: SCSWI function block 12.2.2.4...
  • Page 346: Settings

    Section 12 1MRK 502 048-UEN A Control Name Type Description CLOSEPOS BOOLEAN Closed position indication CMD_BLK BOOLEAN Commands are blocked L_CAUSE INTEGER Latest value of the error indication during command POS_INTR BOOLEAN Stopped in intermediate position XOUT BOOLEAN Execution information to XCBR/XSWI 12.2.2.5 Settings Table 216:...
  • Page 347: Settings

    Section 12 1MRK 502 048-UEN A Control Table 218: SXCBR Output signals Name Type Description XPOS GROUP SIGNAL Group connection to CSWI EXE_OP BOOLEAN Executes the command for open direction EXE_CL BOOLEAN Executes the command for close direction OP_BLKD BOOLEAN Indication that the function is blocked for open commands CL_BLKD...
  • Page 348: Settings

    Section 12 1MRK 502 048-UEN A Control Name Type Default Description BL_CLOSE BOOLEAN Signal to block the close command BL_UPD BOOLEAN Steady signal for block of the position updating POSOPEN BOOLEAN Signal for open position of apparatus from I/O POSCLOSE BOOLEAN Signal for close position of apparatus from I/O TR_OPEN...
  • Page 349: Bay Control Qcbay

    Section 12 1MRK 502 048-UEN A Control 12.2.5 Bay control QCBAY 12.2.5.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Bay control QCBAY 12.2.5.2 Functionality The Bay control QCBAY function is used together with Local remote and local remote control functions to handle the selection of the operator place per bay.
  • Page 350: Settings

    Section 12 1MRK 502 048-UEN A Control 12.2.5.5 Settings Table 225: QCBAY Non group settings (basic) Name Values (Range) Unit Step Default Description AllPSTOValid Priority Priority Priority of originators No priority 12.2.6 Local remote LOCREM 12.2.6.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification...
  • Page 351: Settings

    Section 12 1MRK 502 048-UEN A Control Table 227: LOCREM Output signals Name Type Description BOOLEAN Control is disabled LOCAL BOOLEAN Local control is activated REMOTE BOOLEAN Remote control is activated VALID BOOLEAN Outputs are valid 12.2.6.5 Settings Table 228: LOCREM Non group settings (basic) Name Values (Range)
  • Page 352: Function Block

    Section 12 1MRK 502 048-UEN A Control 12.2.7.3 Function block LOCREMCTRL ^PSTO1 ^HMICTR1 ^PSTO2 ^HMICTR2 ^PSTO3 ^HMICTR3 ^PSTO4 ^HMICTR4 ^PSTO5 ^HMICTR5 ^PSTO6 ^HMICTR6 ^PSTO7 ^HMICTR7 ^PSTO8 ^HMICTR8 ^PSTO9 ^HMICTR9 ^PSTO10 ^HMICTR10 ^PSTO11 ^HMICTR11 ^PSTO12 ^HMICTR12 IEC09000074_1_en.vsd IEC09000074 V1 EN Figure 172: LOCREMCTRL function block 12.2.7.4 Signals...
  • Page 353: Settings

    Section 12 1MRK 502 048-UEN A Control Name Type Description HMICTR6 INTEGER Bitmask output 6 to local remote LHMI input HMICTR7 INTEGER Bitmask output 7 to local remote LHMI input HMICTR8 INTEGER Bitmask output 8 to local remote LHMI input HMICTR9 INTEGER Bitmask output 9 to local remote LHMI input...
  • Page 354: Settings

    Section 12 1MRK 502 048-UEN A Control Name Type Default Description SELECT4 BOOLEAN Select signal of control 4 SELECT5 BOOLEAN Select signal of control 5 SELECT6 BOOLEAN Select signal of control 6 SELECT7 BOOLEAN Select signal of control 7 SELECT8 BOOLEAN Select signal of control 8 SELECT9...
  • Page 355 Section 12 1MRK 502 048-UEN A Control in three steps, the selection, command evaluation and the supervision of position. Each step ends up with a pulsed signal to indicate that the respective step in the command sequence is finished. If an error occurs in one of the steps in the command sequence, the sequence is terminated and the error is mapped into the enumerated variable "cause"...
  • Page 356 Section 12 1MRK 502 048-UEN A Control Interaction with synchrocheck and synchronizing functions The Switch controller (SCSWI) works in conjunction with the synchrocheck and the synchronizing function (SESRSYN). It is assumed that the synchrocheck function is continuously in operation and gives the result to SCSWI. The result from the synchrocheck function is evaluated during the close execution.
  • Page 357 Section 12 1MRK 502 048-UEN A Control select execute command tSelect t1>tSelect, then long- timer operation-time in 'cause' is set en05000092.vsd IEC05000092 V1 EN Figure 175: tSelect The timer tExecutionFB supervises the time between the execute command and the command termination, see figure 176. execute command position L1 open...
  • Page 358: Bay Control Qcbay

    Section 12 1MRK 502 048-UEN A Control execute command SYNC_OK tSynchrocheck START_SY SY_INPRO tSynchronizing t2>tSynchronizing, then blocked-by-synchrocheck in 'cause' is set en05000095.vsd IEC05000095 V1 EN Figure 177: tSynchroCheck and tSynchronizing Error handling Depending on the error that occurs during the command sequence, the error signal will be set with a value.
  • Page 359 Section 12 1MRK 502 048-UEN A Control Local panel switch The local panel switch is a switch that defines the operator place selection. The switch connected to this function can have three positions remote/local/off. The positions are here defined so that remote means that operation is allowed from station/remote level and local from the IED level.
  • Page 360: Local Remote/Local Remote Control Locrem/Locremctrl

    Section 12 1MRK 502 048-UEN A Control • Blocking of position indications, BL_UPD. This input will block all inputs related to apparatus positions for all configured functions within the bay. • Blocking of commands, BL_CMD. This input will block all commands for all configured functions within the bay.
  • Page 361: Interlocking

    Section 12 1MRK 502 048-UEN A Control defined in the IED. Otherwise the default authority level, SuperUser, can handle the control without LogOn. The users and passwords are defined in PCM600. 12.3 Interlocking 12.3.1 Functionality The interlocking functionality blocks the possibility to operate high-voltage switching devices, for instance when a disconnector is under load, in order to prevent material damage and/or accidental human injury.
  • Page 362: Logic Diagram

    Section 12 1MRK 502 048-UEN A Control 12.3.2.4 Logic diagram The function contains logic to enable the open and close commands respectively if the interlocking conditions are fulfilled. That means also, if the switch being controlled has its position defined as open (via POSOPEN) for example, then the appropriate enable signal output (in this case EN_OPEN) is false.
  • Page 363: Settings

    Section 12 1MRK 502 048-UEN A Control 12.3.2.6 Settings The function does not have any settings available in Local HMI or Protection and Control IED Manager (PCM600). 12.3.3 Interlocking for busbar earthing switch BB_ES 12.3.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification...
  • Page 364: Signals

    Section 12 1MRK 502 048-UEN A Control 12.3.3.5 Signals Table 237: BB_ES Input signals Name Type Default Description QC_OP BOOLEAN Busbar earthing switch QC is in open position QC_CL BOOLEAN Busbar earthing switch QC is in closed position BB_DC_OP BOOLEAN All disconnectors on this busbar part are open VP_BB_DC BOOLEAN...
  • Page 365: Function Block

    Section 12 1MRK 502 048-UEN A Control WA1 (A1) WA2 (A2) en04000516.vsd A1A2_BS IEC04000516 V1 EN Figure 183: Switchyard layout A1A2_BS 12.3.4.3 Function block A1A2_BS QA1_OP QA1OPREL QA1_CL QA1OPITL QB1_OP QA1CLREL QB1_CL QA1CLITL QB2_OP QB1REL QB2_CL QB1ITL QC3_OP QB2REL QC3_CL QB2ITL QC4_OP QC3REL...
  • Page 366: Logic Diagram

    Section 12 1MRK 502 048-UEN A Control 12.3.4.4 Logic diagram A1A2_BS QA1_OP QA1_CL VPQA1 QB1_OP QB1_CL VPQB1 QB2_OP QB2_CL VPQB2 QC3_OP QC3_CL VPQC3 QC4_OP QC4_CL VPQC4 S1QC1_OP S1QC1_CL VPS1QC1 S2QC2_OP S2QC2_CL VPS2QC2 VPQB1 QB1_OP QA1OPREL & >1 QA1O_EX1 QA1OPITL VPQB2 QB2_OP &...
  • Page 367: Signals

    Section 12 1MRK 502 048-UEN A Control VPQA1 VPQC3 QB2REL >1 & VPQC4 QB2ITL VPS2QC2 QA1_OP QC3_OP QC4_OP S2QC2_OP EXDU_ES QB2_EX1 VPQC4 VPS2QC2 & QC4_CL S2QC2_CL EXDU_ES QB2_EX2 VPQB1 QC3REL VPQB2 QC3ITL & QB1_OP QC4REL QB2_OP QC4ITL QB1_OP QB1OPTR QB1_CL QB1CLTR VPQB1 VPQB1TR...
  • Page 368 Section 12 1MRK 502 048-UEN A Control Name Type Default Description EXDU_12 BOOLEAN No transmission error from any bay connected to busbar 1 and 2 EXDU_ES BOOLEAN No transmission error from bays containing earthing switches QC1 or QC2 QA1O_EX1 BOOLEAN External open condition for apparatus QA1 QA1O_EX2 BOOLEAN...
  • Page 369: Settings

    Section 12 1MRK 502 048-UEN A Control 12.3.4.6 Settings The function does not have any settings available in Local HMI or Protection and Control IED Manager (PCM600). 12.3.5 Interlocking for bus-section disconnector A1A2_DC 12.3.5.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification...
  • Page 370: Function Block

    Section 12 1MRK 502 048-UEN A Control 12.3.5.3 Function block A1A2_DC QB_OP QBOPREL QB_CL QBOPITL S1QC1_OP QBCLREL S1QC1_CL QBCLITL S2QC2_OP DCOPTR S2QC2_CL DCCLTR S1DC_OP VPDCTR S2DC_OP VPS1_DC VPS2_DC EXDU_ES EXDU_BB QBCL_EX1 QBCL_EX2 QBOP_EX1 QBOP_EX2 QBOP_EX3 IEC09000067_1_en.vsd IEC09000067 V1 EN Figure 186: A1A2_DC function block 12.3.5.4 Logic diagram...
  • Page 371: Settings

    Section 12 1MRK 502 048-UEN A Control Name Type Default Description S1QC1_CL BOOLEAN QC1 on bus section 1 is in closed position S2QC2_OP BOOLEAN QC2 on bus section 2 is in open position S2QC2_CL BOOLEAN QC2 on bus section 2 is in closed position S1DC_OP BOOLEAN All disconnectors on bus section 1 are in open...
  • Page 372: Identification

    Section 12 1MRK 502 048-UEN A Control 12.3.6.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Interlocking for bus-coupler bay ABC_BC 12.3.6.2 Functionality The interlocking for bus-coupler bay (ABC_BC) function is used for a bus-coupler bay connected to a double busbar arrangement according to figure 187.
  • Page 373: Function Block

    Section 12 1MRK 502 048-UEN A Control 12.3.6.3 Function block ABC_BC QA1_OP QA1OPREL QA1_CL QA1OPITL QB1_OP QA1CLREL QB1_CL QA1CLITL QB2_OP QB1REL QB2_CL QB1ITL QB7_OP QB2REL QB7_CL QB2ITL QB20_OP QB7REL QB20_CL QB7ITL QC1_OP QB20REL QC1_CL QB20ITL QC2_OP QC1REL QC2_CL QC1ITL QC11_OP QC2REL QC11_CL QC2ITL...
  • Page 374 Section 12 1MRK 502 048-UEN A Control VPQA1 VPQB2 QB1REL & >1 VPQC1 QB1ITL VPQC2 VPQC11 QA1_OP QB2_OP QC1_OP QC2_OP QC11_OP EXDU_ES QB1_EX1 VPQB2 VP_BC_12 & QB2_CL BC_12_CL EXDU_BC QB1_EX2 VPQC1 VPQC11 & QC1_CL QC11_CL EXDU_ES QB1_EX3 en04000534.vsd IEC04000534 V1 EN VPQA1 VPQB1 QB2REL...
  • Page 375 Section 12 1MRK 502 048-UEN A Control VPQA1 VPQB20 QB7REL & >1 VPQC1 QB7ITL VPQC2 VPQC71 QA1_OP QB20_OP QC1_OP QC2_OP QC71_OP EXDU_ES QB7_EX1 VPQC2 VPQC71 & QC2_CL QC71_CL EXDU_ES QB7_EX2 VPQA1 VPQB7 QB20REL & >1 VPQC1 QB20ITL VPQC2 VPQC21 QA1_OP QB7_OP QC1_OP QC2_OP...
  • Page 376: Signals

    Section 12 1MRK 502 048-UEN A Control 12.3.6.5 Signals Table 243: ABC_BC Input signals Name Type Default Description QA1_OP BOOLEAN QA1 is in open position QA1_CL BOOLEAN QA1 is in closed position QB1_OP BOOLEAN QB1 is in open position QB1_CL BOOLEAN QB1 is in closed position QB2_OP...
  • Page 377 Section 12 1MRK 502 048-UEN A Control Name Type Default Description QA1O_EX3 BOOLEAN External open condition for apparatus QA1 QB1_EX1 BOOLEAN External condition for apparatus QB1 QB1_EX2 BOOLEAN External condition for apparatus QB1 QB1_EX3 BOOLEAN External condition for apparatus QB1 QB2_EX1 BOOLEAN External condition for apparatus QB2...
  • Page 378: Settings

    Section 12 1MRK 502 048-UEN A Control Name Type Description BC12OPTR BOOLEAN No connection via the own bus coupler between WA1 and WA2 BC12CLTR BOOLEAN Connection exists via the own bus coupler between WA1 and WA2 BC17OPTR BOOLEAN No connection via the own bus coupler between WA1 and WA7 BC17CLTR BOOLEAN...
  • Page 379: Functionality

    Section 12 1MRK 502 048-UEN A Control 12.3.7.2 Functionality The interlocking for 1 1/2 breaker diameter (BH_CONN, BH_LINE_A, BH_LINE_B) functions are used for lines connected to a 1 1/2 breaker diameter according to figure 189. WA1 (A) WA2 (B) BH_LINE_B BH_LINE_A QB61 QB62...
  • Page 380: Function Block

    Section 12 1MRK 502 048-UEN A Control 12.3.7.3 Function block BH_CONN QA1_OP QA1CLREL QA1_CL QA1CLITL QB61_OP QB61REL QB61_CL QB61ITL QB62_OP QB62REL QB62_CL QB62ITL QC1_OP QC1REL QC1_CL QC1ITL QC2_OP QC2REL QC2_CL QC2ITL 1QC3_OP 1QC3_CL 2QC3_OP 2QC3_CL QB61_EX1 QB61_EX2 QB62_EX1 QB62_EX2 IEC09000072_1_en.vsd IEC09000072 V1 EN Figure 190: BH_CONN function block...
  • Page 381 Section 12 1MRK 502 048-UEN A Control BH_LINE_B QA1_OP QA1CLREL QA1_CL QA1CLITL QB6_OP QB6REL QB6_CL QB6ITL QB2_OP QB2REL QB2_CL QB2ITL QC1_OP QC1REL QC1_CL QC1ITL QC2_OP QC2REL QC2_CL QC2ITL QC3_OP QC3REL QC3_CL QC3ITL QB9_OP QB9REL QB9_CL QB9ITL QC9_OP QC9REL QC9_CL QC9ITL CQA1_OP QB2OPTR CQA1_CL...
  • Page 382: Logic Diagrams

    Section 12 1MRK 502 048-UEN A Control 12.3.7.4 Logic diagrams BH_CONN QA1_OP QA1_CL VPQA1 QB61_OP QB61_CL VPQB61 QB62_OP QB62_CL VPQB62 QC1_OP QC1_CL VPQC1 QC2_OP QC2_CL VPQC2 1QC3_OP 1QC3_CL VP1QC3 2QC3_OP 2QC3_CL VP2QC3 VPQB61 QA1CLREL VPQB62 & QA1CLITL VPQA1 VPQC1 QB61REL >1 &...
  • Page 383 Section 12 1MRK 502 048-UEN A Control BH_LINE_A QA1_OP QA1_CL VPQA1 QB1_OP QB1_CL VPQB1 QB6_OP QB6_CL VPQB6 QC9_OP QC9_CL VPQC9 QB9_OP QB9_CL VPQB9 QC1_OP QC1_CL VPQC1 QC2_OP QC2_CL VPQC2 QC3_OP QC3_CL VPQC3 CQA1_OP CQA1_CL VPCQA1 CQC1_OP CQC1_CL VPCQC1 CQC2_OP CQC2_CL VPCQC2 CQB61_OP CQB61_CL...
  • Page 384 Section 12 1MRK 502 048-UEN A Control VPQA1 VPQC1 QB1REL & >1 VPQC2 QB1ITL VPQC11 QA1_OP QC1_OP QC2_OP QC11_OP EXDU_ES QB1_EX1 VPQC1 VPQC11 & QC1_CL QC11_CL EXDU_ES QB1_EX2 VPQB1 QC1REL VPQB6 QC1ITL & QB1_OP QC2REL QB6_OP QC2ITL VPQB6 VPQB9 QC3REL &...
  • Page 385 Section 12 1MRK 502 048-UEN A Control BH_LINE_B QA1_OP QA1_CL VPQA1 QB2_OP QB2_CL VPQB2 QB6_OP QB6_CL VPQB6 QC9_OP QC9_CL VPQC9 QB9_OP QB9_CL VPQB9 QC1_OP QC1_CL VPQC1 QC2_OP QC2_CL VPQC2 QC3_OP QC3_CL VPQC3 CQA1_OP CQA1_CL VPCQA1 CQC1_OP CQC1_CL VPCQC1 CQC2_OP CQC2_CL VPCQC2 CQB62_OP CQB62_CL...
  • Page 386 Section 12 1MRK 502 048-UEN A Control VPQA1 VPQC1 QB2REL & >1 VPQC2 QB2ITL VPQC21 QA1_OP QC1_OP QC2_OP QC21_OP EXDU_ES QB2_EX1 VPQC1 VPQC21 & QC1_CL QC21_CL EXDU_ES QB2_EX2 VPQB2 QC1REL VPQB6 QC1ITL & QB2_OP QC2REL QB6_OP QC2ITL VPQB6 VPQB9 QC3REL &...
  • Page 387: Signals

    Section 12 1MRK 502 048-UEN A Control 12.3.7.5 Signals Table 245: BH_CONN Input signals Name Type Default Description QA1_OP BOOLEAN QA1 is in open position QA1_CL BOOLEAN QA1 is in closed position QB61_OP BOOLEAN QB61 is in open position QB61_CL BOOLEAN QB61 is in closed position QB62_OP...
  • Page 388 Section 12 1MRK 502 048-UEN A Control Name Type Default Description QC9_CL BOOLEAN QC9 is in closed position CQA1_OP BOOLEAN QA1 in module BH_CONN is in open position CQA1_CL BOOLEAN QA1 in module BH_CONN is in closed position CQB61_OP BOOLEAN QB61 in module BH_CONN is in open position CQB61_CL BOOLEAN...
  • Page 389 Section 12 1MRK 502 048-UEN A Control Name Type Default Description QC2_OP BOOLEAN QC2 is in open position QC2_CL BOOLEAN QC2 is in closed position QC3_OP BOOLEAN QC3 is in open position QC3_CL BOOLEAN QC3 is in closed position QB9_OP BOOLEAN QB9 is in open position QB9_CL...
  • Page 390 Section 12 1MRK 502 048-UEN A Control Table 248: BH_CONN Output signals Name Type Description QA1CLREL BOOLEAN Closing of QA1 is allowed QA1CLITL BOOLEAN Closing of QA1 is forbidden QB61REL BOOLEAN Switching of QB61 is allowed QB61ITL BOOLEAN Switching of QB61 is forbidden QB62REL BOOLEAN Switching of QB62 is allowed...
  • Page 391: Settings

    Section 12 1MRK 502 048-UEN A Control Table 250: BH_LINE_B Output signals Name Type Description QA1CLREL BOOLEAN Closing of QA1 is allowed QA1CLITL BOOLEAN Closing of QA1 is forbidden QB6REL BOOLEAN Switching of QB6 is allowed QB6ITL BOOLEAN Switching of QB6 is forbidden QB2REL BOOLEAN Switching of QB2 is allowed...
  • Page 392: Functionality

    Section 12 1MRK 502 048-UEN A Control 12.3.8.2 Functionality The interlocking for a double busbar double circuit breaker bay including DB_BUS_A, DB_BUS_B and DB_LINE functions are used for a line connected to a double busbar arrangement according to figure 193. WA1 (A) WA2 (B) DB_BUS_B...
  • Page 393: Function Block

    Section 12 1MRK 502 048-UEN A Control 12.3.8.3 Function block DB_BUS_A QA1_OP QA1CLREL QA1_CL QA1CLITL QB1_OP QB61REL QB1_CL QB61ITL QB61_OP QB1REL QB61_CL QB1ITL QC1_OP QC1REL QC1_CL QC1ITL QC2_OP QC2REL QC2_CL QC2ITL QC3_OP QB1OPTR QC3_CL QB1CLTR QC11_OP VPQB1TR QC11_CL EXDU_ES QB61_EX1 QB61_EX2 QB1_EX1 QB1_EX2...
  • Page 394: Logic Diagrams

    Section 12 1MRK 502 048-UEN A Control 12.3.8.4 Logic diagrams DB_BUS_A QA1_OP QA1_CL VPQA1 QB61_OP QB61_CL VPQB61 QB1_OP QB1_CL VPQB1 QC1_OP QC1_CL VPQC1 QC2_OP QC2_CL VPQC2 QC3_OP QC3_CL VPQC3 QC11_OP QC11_CL VPQC11 VPQB61 QA1CLREL VPQB1 & QA1CLITL VPQA1 VPQC1 QB61REL >1 &...
  • Page 395 Section 12 1MRK 502 048-UEN A Control DB_BUS_B QA2_OP QA2_CL VPQA2 QB62_OP QB62_CL VPQB62 QB2_OP QB2_CL VPQB2 QC4_OP QC4_CL VPQC4 QC5_OP QC5_CL VPQC5 QC3_OP QC3_CL VPQC3 QC21_OP QC21_CL VPQC21 VPQB62 QA2CLREL VPQB2 & QA2CLITL VPQA2 VPQC4 QB62REL >1 & VPQC5 QB62ITL VPQC3 QA2_OP...
  • Page 396 Section 12 1MRK 502 048-UEN A Control DB_LINE QA1_OP QA1_CL VPQA1 QA2_OP QA2_CL VPQA2 QB61_OP QB61_CL VPQB61 QC1_OP QC1_CL VPQC1 QC2_OP QC2_CL VPQC2 QB62_OP QB62_CL VPQB62 QC4_OP QC4_CL VPQC4 QC5_OP QC5_CL VPQC5 QB9_OP QB9_CL VPQB9 QC3_OP QC3_CL VPQC3 QC9_OP QC9_CL VPQC9 VOLT_OFF VOLT_ON...
  • Page 397: Signals

    Section 12 1MRK 502 048-UEN A Control VPQB61 VPQB62 QC3REL & VPQB9 QC3ITL QB61_OP QB62_OP QB9_OP VPQB9 VPVOLT QC9REL & QB9_OP QC9ITL VOLT_OFF en04000551.vsd IEC04000551 V1 EN 12.3.8.5 Signals Table 251: DB_BUS_A Input signals Name Type Default Description QA1_OP BOOLEAN QA1 is in open position QA1_CL BOOLEAN...
  • Page 398 Section 12 1MRK 502 048-UEN A Control Name Type Default Description QB62_OP BOOLEAN QB62 is in open position QB62_CL BOOLEAN QB62 is in closed position QC4_OP BOOLEAN QC4 is in open position QC4_CL BOOLEAN QC4 is in closed position QC5_OP BOOLEAN QC5 is in open position QC5_CL...
  • Page 399 Section 12 1MRK 502 048-UEN A Control Name Type Default Description QC3_CL BOOLEAN QC3 is in closed position QC9_OP BOOLEAN QC9 is in open position QC9_CL BOOLEAN QC9 is in closed position VOLT_OFF BOOLEAN There is no voltage on the line and not VT (fuse) failure VOLT_ON BOOLEAN...
  • Page 400: Settings

    Section 12 1MRK 502 048-UEN A Control Name Type Description QC5REL BOOLEAN Switching of QC5 is allowed QC5ITL BOOLEAN Switching of QC5 is forbidden QB2OPTR BOOLEAN QB2 is in open position QB2CLTR BOOLEAN QB2 is in closed position VPQB2TR BOOLEAN Switch status of QB2 is valid (open or closed) Table 256: DB_LINE Output signals...
  • Page 401 Section 12 1MRK 502 048-UEN A Control WA1 (A) WA2 (B) WA7 (C) en04000478.vsd IEC04000478 V1 EN Figure 197: Switchyard layout ABC_LINE The interlocking functionality in 650 series can not handle the transfer bus (WA7)C. Technical manual...
  • Page 402: Function Block

    Section 12 1MRK 502 048-UEN A Control 12.3.9.3 Function block ABC_LINE QA1_OP QA1CLREL QA1_CL QA1CLITL QB9_OP QB9REL QB9_CL QB9ITL QB1_OP QB1REL QB1_CL QB1ITL QB2_OP QB2REL QB2_CL QB2ITL QB7_OP QB7REL QB7_CL QB7ITL QC1_OP QC1REL QC1_CL QC1ITL QC2_OP QC2REL QC2_CL QC2ITL QC9_OP QC9REL QC9_CL QC9ITL...
  • Page 403: Logic Diagram

    Section 12 1MRK 502 048-UEN A Control 12.3.9.4 Logic diagram ABC_LINE QA1_OP QA1_CL VPQA1 QB9_OP QB9_CL VPQB9 QA1CLREL QB1_OP QA1CLITL QB1_CL VPQB1 & QB2_OP QB2_CL VPQB2 QB7_OP QB7_CL VPQB7 QC1_OP QC1_CL VPQC1 QC2_OP QC2_CL VPQC2 QC9_OP QC9_CL VPQC9 QC11_OP QC11_CL VPQC11 QC21_OP QC21_CL...
  • Page 404 Section 12 1MRK 502 048-UEN A Control QB1REL VPQA1 ³1 & VPQB2 VPQC1 QB1ITL VPQC2 VPQC11 QA1_OP QB2_OP QC1_OP QC2_OP QC11_OP EXDU_ES QB1_EX1 VPQB2 & VP_BC_12 QB2_CL BC_12_CL EXDU_BC QB1_EX2 VPQC1 & VPQC11 QC1_CL QC11_CL EXDU_ES QB1EX3 en04000528.vsd IEC04000528 V1 EN Technical manual...
  • Page 405 Section 12 1MRK 502 048-UEN A Control QB2REL VPQA1 ³1 & VPQB1 VPQC1 QB2ITL VPQC2 VPQC21 QA1_OP QB1_OP QC1_OP QC2_OP QC21_OP EXDU_ES QB2_EX1 VPQB1 & VP_BC_12 QB1_CL BC_12_CL EXDU_BC QB2_EX2 VPQC1 & VPQC21 QC1_CL QC21_CL EXDU_ES QB2_EX3 en04000529.vsd IEC04000529 V1 EN Technical manual...
  • Page 406 Section 12 1MRK 502 048-UEN A Control VPQC9 QB7REL >1 & VPQC71 VP_BB7_D QB7ITL VP_BC_17 VP_BC_27 QC9_OP QC71_OP EXDU_ES BB7_D_OP EXDU_BPB BC_17_OP BC_27_OP EXDU_BC QB7_EX1 VPQA1 & VPQB1 VPQC9 VPQB9 VPQC71 VP_BB7_D VP_BC_17 QA1_CL QB1_CL QC9_OP QB9_CL QC71_OP EXDU_ES BB7_D_OP EXDU_BPB BC_17_CL EXDU_BC...
  • Page 407 Section 12 1MRK 502 048-UEN A Control VPQA1 VPQB2 & >1 VPQC9 VPQB9 VPQC71 VP_BB7_D VP_BC_27 QA1_CL QB2_CL QC9_OP QB9_CL QC71_OP EXDU_ES BB7_D_OP EXDU_BPB BC_27_CL EXDU_BC QB7_EX3 VPQC9 VPQC71 & QC9_CL QC71_CL EXDU_ES QB7_EX4 VPQB1 QC1REL VPQB2 QC1ITL & VPQB9 QC2REL QB1_OP QC2ITL...
  • Page 408: Signals

    Section 12 1MRK 502 048-UEN A Control QB1_OP QB1OPTR QB1_CL QB1CLTR VPQB1 VPQB1TR QB2_OP QB2OPTR QB2_CL QB2CLTR VPQB2 VPQB2TR QB7_OP QB7OPTR QB7_CL QB7CLTR VPQB7 VPQB7TR QB1_OP QB12OPTR QB2_OP >1 QB12CLTR VPQB1 VPQB12TR VPQB2 & en04000532.vsd IEC04000532 V1 EN 12.3.9.5 Signals Table 257: ABC_LINE Input signals Name...
  • Page 409 Section 12 1MRK 502 048-UEN A Control Name Type Default Description QC21_CL BOOLEAN Earthing switch QC21 on busbar WA2 is in closed position QC71_OP BOOLEAN Earthing switch QC71 on busbar WA7 is in open position QC71_CL BOOLEAN Earthing switch QC71 on busbar WA7 is in closed position BB7_D_OP BOOLEAN...
  • Page 410: Settings

    Section 12 1MRK 502 048-UEN A Control Table 258: ABC_LINE Output signals Name Type Description QA1CLREL BOOLEAN Closing of QA1 is allowed QA1CLITL BOOLEAN Closing of QA1 is forbidden QB9REL BOOLEAN Switching of QB9 is allowed QB9ITL BOOLEAN Switching of QB9 is forbidden QB1REL BOOLEAN Switching of QB1 is allowed...
  • Page 411: Identification

    Section 12 1MRK 502 048-UEN A Control 12.3.10.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Interlocking for transformer bay AB_TRAFO 12.3.10.2 Functionality The interlocking for transformer bay (AB_TRAFO) function is used for a transformer bay connected to a double busbar arrangement according to figure 199.
  • Page 412: Function Block

    Section 12 1MRK 502 048-UEN A Control 12.3.10.3 Function block AB_TRAFO QA1_OP QA1CLREL QA1_CL QA1CLITL QB1_OP QB1REL QB1_CL QB1ITL QB2_OP QB2REL QB2_CL QB2ITL QC1_OP QC1REL QC1_CL QC1ITL QC2_OP QC2REL QC2_CL QC2ITL QB3_OP QB1OPTR QB3_CL QB1CLTR QB4_OP QB2OPTR QB4_CL QB2CLTR QC3_OP QB12OPTR QC3_CL QB12CLTR...
  • Page 413 Section 12 1MRK 502 048-UEN A Control VPQA1 VPQB2 QB1REL & >1 VPQC1 QB1ITL VPQC2 VPQC3 VPQC11 QA1_OP QB2_OP QC1_OP QC2_OP QC3_OP QC11_OP EXDU_ES QB1_EX1 VPQB2 VPQC3 & VP_BC_12 QB2_CL QC3_OP BC_12_CL EXDU_BC QB1_EX2 VPQC1 VPQC2 & VPQC3 VPQC11 QC1_CL QC2_CL QC3_CL QC11_CL...
  • Page 414: Signals

    Section 12 1MRK 502 048-UEN A Control VPQB1 QC1REL VPQB2 QC1ITL & VPQB3 QC2REL VPQB4 QC2ITL QB1_OP QB2_OP QB3_OP QB4_OP QB1_OP QB1OPTR QB1_CL QB1CLTR VPQB1 VPQB1TR QB2_OP QB2OPTR QB2_CL QB2CLTR VPQB2 VPQB2TR QB1_OP QB12OPTR QB2_OP >1 QB12CLTR VPQB1 VPQB12TR VPQB2 &...
  • Page 415: Settings

    Section 12 1MRK 502 048-UEN A Control Name Type Default Description QA1_EX1 BOOLEAN External condition for apparatus QA1 QA1_EX2 BOOLEAN External condition for apparatus QA1 QA1_EX3 BOOLEAN External condition for apparatus QA1 QB1_EX1 BOOLEAN External condition for apparatus QB1 QB1_EX2 BOOLEAN External condition for apparatus QB1 QB1_EX3...
  • Page 416: Position Evaluation Pos_Eval

    Section 12 1MRK 502 048-UEN A Control 12.3.11 Position evaluation POS_EVAL 12.3.11.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Position evaluation POS_EVAL 12.3.11.2 Functionality Position evaluation (POS_EVAL) function converts the input position data signal POSITION, consisting of value, time and signal status, to binary signals OPENPOS or CLOSEPOS.
  • Page 417: Signals

    Section 12 1MRK 502 048-UEN A Control 12.3.11.5 Signals Table 261: POS_EVAL Input signals Name Type Default Description POSITION INTEGER Position status including quality Table 262: POS_EVAL Output signals Name Type Description OPENPOS BOOLEAN Open position CLOSEPOS BOOLEAN Close position 12.3.11.6 Settings The function does not have any settings available in Local HMI or Protection and...
  • Page 418 Section 12 1MRK 502 048-UEN A Control The interlocking module is connected to the surrounding functions within a bay as shown in figure 202. Apparatus control Interlocking modules modules in SCILO SCSWI other bays SXSWI Apparatus control modules Interlocking SCILO SCSWI SXCBR module...
  • Page 419 Section 12 1MRK 502 048-UEN A Control When invalid data such as intermediate position, loss of a control IED, or input board error are used as conditions for the interlocking condition in a bay, a release for execution of the function will not be given. On the local HMI an override function exists, which can be used to bypass the interlocking function in cases where not all the data required for the condition is valid.
  • Page 420: Logic Rotating Switch For Function Selection And Lhmi Presentation Slggio

    Section 12 1MRK 502 048-UEN A Control tool PCM600. The inputs Qx_EXy on the interlocking modules are used to add these specific conditions. The input signals EXDU_xx shall be set to true if there is no transmission error at the transfer of information from other bays.
  • Page 421: Function Block

    Section 12 1MRK 502 048-UEN A Control 12.4.3 Function block SLGGIO BLOCK ^P01 PSTO ^P02 ^P03 DOWN ^P04 ^P05 ^P06 ^P07 ^P08 ^P09 ^P10 ^P11 ^P12 ^P13 ^P14 ^P15 ^P16 ^P17 ^P18 ^P19 ^P20 ^P21 ^P22 ^P23 ^P24 ^P25 ^P26 ^P27 ^P28 ^P29...
  • Page 422: Settings

    Section 12 1MRK 502 048-UEN A Control Name Type Description BOOLEAN Selector switch position 11 BOOLEAN Selector switch position 12 BOOLEAN Selector switch position 13 BOOLEAN Selector switch position 14 BOOLEAN Selector switch position 15 BOOLEAN Selector switch position 16 BOOLEAN Selector switch position 17 BOOLEAN...
  • Page 423: Monitored Data

    Section 12 1MRK 502 048-UEN A Control 12.4.6 Monitored data Table 266: SLGGIO Monitored data Name Type Values (Range) Unit Description SWPOSN INTEGER Switch position as integer value 12.4.7 Operation principle The logic rotating switch for function selection and LHMI presentation (SLGGIO) function has two operating inputs –...
  • Page 424: Functionality

    Section 12 1MRK 502 048-UEN A Control 12.5.2 Functionality The Selector mini switch VSGGIO function block is a multipurpose function used for a variety of applications, as a general purpose switch. VSGGIO can be controlled from the menu or from a symbol on the single line diagram (SLD) on the local HMI.
  • Page 425: Settings

    Section 12 1MRK 502 048-UEN A Control 12.5.5 Settings Table 269: VSGGIO Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On CtlModel Dir Norm Dir Norm Specifies the type for control model SBO Enh according to IEC 61850 Mode Steady...
  • Page 426: Iec 61850 Generic Communication I/O Functions Dpggio

    Section 12 1MRK 502 048-UEN A Control IPOS1 IPOS2 Name of displayed string Default string value PosUndefined Position1 Position2 PosBadState 12.6 IEC 61850 generic communication I/O functions DPGGIO 12.6.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number IEC 61850 generic communication I/O DPGGIO...
  • Page 427: Settings

    Section 12 1MRK 502 048-UEN A Control 12.6.5 Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600). 12.6.6 Operation principle Upon receiving the input signals, the IEC 61850 generic communication I/O functions (DPGGIO) function block will send the signals over IEC 61850-8-1 to the equipment or system that requests these signals.
  • Page 428: Signals

    Section 12 1MRK 502 048-UEN A Control 12.7.4 Signals Table 272: SPC8GGIO Input signals Name Type Default Description BLOCK BOOLEAN Block of function PSTO INTEGER Operator place selection Table 273: SPC8GGIO Output signals Name Type Description OUT1 BOOLEAN Output 1 OUT2 BOOLEAN Output 2...
  • Page 429: Operation Principle

    Section 12 1MRK 502 048-UEN A Control Name Values (Range) Unit Step Default Description Latched7 Pulsed Pulsed Setting for pulsed/latched mode for output Latched tPulse7 0.01 - 6000.00 0.01 0.10 Output 7 Pulse Time Latched8 Pulsed Pulsed Setting for pulsed/latched mode for output Latched tPulse8 0.01 - 6000.00...
  • Page 430: Function Block

    Section 12 1MRK 502 048-UEN A Control 12.8.3 Function block AUTOBITS BLOCK ^CMDBIT1 PSTO ^CMDBIT2 ^CMDBIT3 ^CMDBIT4 ^CMDBIT5 ^CMDBIT6 ^CMDBIT7 ^CMDBIT8 ^CMDBIT9 ^CMDBIT10 ^CMDBIT11 ^CMDBIT12 ^CMDBIT13 ^CMDBIT14 ^CMDBIT15 ^CMDBIT16 ^CMDBIT17 ^CMDBIT18 ^CMDBIT19 ^CMDBIT20 ^CMDBIT21 ^CMDBIT22 ^CMDBIT23 ^CMDBIT24 ^CMDBIT25 ^CMDBIT26 ^CMDBIT27 ^CMDBIT28 ^CMDBIT29 ^CMDBIT30...
  • Page 431: Settings

    Section 12 1MRK 502 048-UEN A Control Name Type Description CMDBIT8 BOOLEAN Command out bit 8 CMDBIT9 BOOLEAN Command out bit 9 CMDBIT10 BOOLEAN Command out bit 10 CMDBIT11 BOOLEAN Command out bit 11 CMDBIT12 BOOLEAN Command out bit 12 CMDBIT13 BOOLEAN Command out bit 13...
  • Page 432: Function Commands For Iec 60870-5-103 I103Cmd

    Section 12 1MRK 502 048-UEN A Control appropriate. ex: pulse-On, on-time=100, off-time=300, count=5 would give 5 positive 100 ms pulses, 300 ms apart. There is a BLOCK input signal, which will disable the operation of the function, in the same way the setting Operation: On/Off does. That means that, upon activation of the BLOCK input, all 32 CMDBITxx outputs will be set to 0.
  • Page 433: Settings

    Section 12 1MRK 502 048-UEN A Control 12.9.4 Settings Table 280: I103CMD Non group settings (basic) Name Values (Range) Unit Step Default Description FunctionType 1 - 255 Function type (1-255) 12.10 IED commands for IEC 60870-5-103 I103IEDCMD 12.10.1 Functionality I103IEDCMD is a command block in control direction with defined IED functions. All outputs are pulsed and they are NOT stored.
  • Page 434: Settings

    Section 12 1MRK 502 048-UEN A Control 12.10.4 Settings Table 283: I103IEDCMD Non group settings (basic) Name Values (Range) Unit Step Default Description FunctionType 1 - 255 Function type (1-255) 12.11 Function commands user defined for IEC 60870-5-103 I103USRCMD 12.11.1 Functionality I103USRCMD is a command block in control direction with user defined output signals.
  • Page 435: Settings

    Section 12 1MRK 502 048-UEN A Control Name Type Description OUTPUT6 BOOLEAN Command output 6 OUTPUT7 BOOLEAN Command output 7 OUTPUT8 BOOLEAN Command output 8 12.11.4 Settings Table 286: I103USRCMD Non group settings (basic) Name Values (Range) Unit Step Default Description FunctionType 1 - 255...
  • Page 436: Function Block

    Section 12 1MRK 502 048-UEN A Control 12.12.2 Function block I103GENCMD BLOCK ^CMD_OFF ^CMD_ON IEC10000285-1-en.vsd IEC10000285 V1 EN Figure 211: I103GENCMD function block 12.12.3 Signals Table 287: I103GENCMD Input signals Name Type Default Description BLOCK BOOLEAN Block of command Table 288: I103GENCMD Output signals Name Type...
  • Page 437: Function Block

    Section 12 1MRK 502 048-UEN A Control The BLOCK input will block only the signals in monitoring direction (the position information), not the commands via IEC 60870-5-103. The SELECT input is used to indicate that the monitored apparatus has been selected (in a select-before-operate type of control) 12.13.2 Function block...
  • Page 439: Section 13 Logic

    Section 13 1MRK 502 048-UEN A Logic Section 13 Logic 13.1 Tripping logic common 3-phase output SMPPTRC 13.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Tripping logic common 3-phase output SMPPTRC I->O SYMBOL-K V1 EN 13.1.2 Functionality A function block for protection tripping is provided for each circuit breaker involved...
  • Page 440: Signals

    Section 13 1MRK 502 048-UEN A Logic 13.1.4 Signals Table 292: SMPPTRC Input signals Name Type Default Description BLOCK BOOLEAN Block of function TRIN BOOLEAN Trip all phases SETLKOUT BOOLEAN Input for setting the circuit breaker lockout function RSTLKOUT BOOLEAN Input for resetting the circuit breaker lockout function Table 293:...
  • Page 441: Technical Data

    Section 13 1MRK 502 048-UEN A Logic BLOCK TRIP tTripMin TRIN Operation Mode = On Program = 3Ph en05000789.vsd IEC05000789 V1 EN Figure 214: Simplified logic diagram for three phase trip Lockout can be activated either by activating the input (SETLKOUT) or automatically from trip input by setting AutoLock to On.
  • Page 442: Function Block

    Section 13 1MRK 502 048-UEN A Logic TMAGGIO 3 output signals and the physical outputs allows the user to adapt the signals to the physical tripping outputs according to the specific application needs for settable pulse or steady output. 13.2.3 Function block TMAGGIO INPUT1...
  • Page 443: Settings

    Section 13 1MRK 502 048-UEN A Logic Name Type Default Description INPUT10 BOOLEAN Binary input 10 INPUT11 BOOLEAN Binary input 11 INPUT12 BOOLEAN Binary input 12 INPUT13 BOOLEAN Binary input 13 INPUT14 BOOLEAN Binary input 14 INPUT15 BOOLEAN Binary input 15 INPUT16 BOOLEAN Binary input 16...
  • Page 444: Operation Principle

    Section 13 1MRK 502 048-UEN A Logic Name Values (Range) Unit Step Default Description ModeOutput1 Steady Steady Mode for output 1, steady or pulsed Pulsed ModeOutput2 Steady Steady Mode for output 2, steady or pulsed Pulsed ModeOutput3 Steady Steady Mode for output 3, steady or pulsed Pulsed 13.2.6 Operation principle...
  • Page 445: Configurable Logic Blocks

    Section 13 1MRK 502 048-UEN A Logic PulseTime & ModeOutput1=Pulsed Input 1 Output 1 ³1 Ondelay Offdelay & ³1 PulseTime & ModeOutput2=Pulsed Input 17 Output 2 ³1 Ondelay Offdelay & ³1 PulseTime & ModeOutput3=Pulsed Output 3 ³1 Ondelay Offdelay & ³1 IEC09000612_2_en.vsd IEC09000612 V2 EN...
  • Page 446 Section 13 1MRK 502 048-UEN A Logic • PULSETIMER function block can be used, for example, for pulse extensions or limiting of operation of outputs, settable pulse time. • GATE function block is used for whether or not a signal should be able to pass from the input to the output.
  • Page 447: Or Function Block

    Section 13 1MRK 502 048-UEN A Logic • XORQT XOR function block. The function also propagates timestamp and quality of input signals. Each block has two outputs where one is inverted. • TIMERSETQT function has pick-up and drop-out delayed outputs related to the input signal.
  • Page 448: Inverter Function Block Inverter

    Section 13 1MRK 502 048-UEN A Logic Functionality The OR function is used to form general combinatory expressions with boolean variables. The OR function block has six inputs and two outputs. One of the outputs is inverted. Function block INPUT1 INPUT2 NOUT INPUT3...
  • Page 449: Pulsetimer Function Block

    Section 13 1MRK 502 048-UEN A Logic Function block INVERTER INPUT IEC09000287-1-en.vsd IEC09000287 V1 EN Figure 218: INVERTER function block Signals Table 302: INVERTER Input signals Name Type Default Description INPUT BOOLEAN Input signal Table 303: INVERTER Output signals Name Type Description BOOLEAN...
  • Page 450: Controllable Gate Function Block Gate

    Section 13 1MRK 502 048-UEN A Logic Signals Table 304: PULSETIMER Input signals Name Type Default Description INPUT BOOLEAN Input signal Table 305: PULSETIMER Output signals Name Type Description BOOLEAN Output signal Settings Table 306: PULSETIMER Non group settings (basic) Name Values (Range) Unit...
  • Page 451: Exclusive Or Function Block Xor

    Section 13 1MRK 502 048-UEN A Logic Table 308: GATE Output signals Name Type Description BOOLEAN Output signal Settings Table 309: GATE Group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off/On 13.3.1.6 Exclusive OR function block XOR Identification Function description IEC 61850...
  • Page 452: Loop Delay Function Block Loopdelay

    Section 13 1MRK 502 048-UEN A Logic Table 311: XOR Output signals Name Type Description BOOLEAN Output signal NOUT BOOLEAN Inverted output signal Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600). 13.3.1.7 Loop delay function block LOOPDELAY Function description...
  • Page 453: Timer Function Block Timerset

    Section 13 1MRK 502 048-UEN A Logic 13.3.1.8 Timer function block TIMERSET Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Timer function block TIMERSET Functionality The function block TIMERSET has pick-up and drop-out delayed outputs related to the input signal.
  • Page 454: And Function Block

    Section 13 1MRK 502 048-UEN A Logic Table 315: TIMERSET Output signals Name Type Description BOOLEAN Output signal, pick-up delayed BOOLEAN Output signal, drop-out delayed Settings Table 316: TIMERSET Group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off/On 0.000 - 90000.000 0.001...
  • Page 455: Set-Reset Memory Function Block Srmemory

    Section 13 1MRK 502 048-UEN A Logic Signals Table 317: AND Input signals Name Type Default Description INPUT1 BOOLEAN Input signal 1 INPUT2 BOOLEAN Input signal 2 INPUT3 BOOLEAN Input signal 3 INPUT4 BOOLEAN Input signal 4 Table 318: AND Output signals Name Type Description...
  • Page 456: Reset-Set With Memory Function Block Rsmemory

    Section 13 1MRK 502 048-UEN A Logic Function block SRMEMORY RESET NOUT IEC09000293-1-en.vsd IEC09000293 V1 EN Figure 226: SRMEMORY function block Signals Table 320: SRMEMORY Input signals Name Type Default Description BOOLEAN Input signal to set RESET BOOLEAN Input signal to reset Table 321: SRMEMORY Output signals Name...
  • Page 457 Section 13 1MRK 502 048-UEN A Logic Table 323: Truth table for RSMEMORY function block RESET NOUT Last Inverted last value value Function block RSMEMORY RESET NOUT IEC09000294-1-en.vsd IEC09000294 V1 EN Figure 227: RSMEMORY function block Signals Table 324: RSMEMORY Input signals Name Type Default...
  • Page 458: Technical Data

    Section 13 1MRK 502 048-UEN A Logic 13.3.2 Technical data Table 327: Configurable logic blocks Logic block Quantity Range or Accuracy with cycle value time 5 ms 20 ms 100 ms INVERTER SRMEMORY RSMEMORY GATE PULSETIMER (0.000– ± 0.5% ± 25 ms for 20 90000.000) s ms cycle time TIMERSET...
  • Page 459: Fixed Signals Fxdsign

    Section 13 1MRK 502 048-UEN A Logic 13.4 Fixed signals FXDSIGN 13.4.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Fixed signals FXDSIGN 13.4.2 Functionality The Fixed signals function FXDSIGN generates nine pre-set (fixed) signals that can be used in the configuration of an IED, either for forcing the unused inputs in other function blocks to a certain level/value, or for creating certain logic.
  • Page 460: Settings

    Section 13 1MRK 502 048-UEN A Logic 13.4.5 Settings The function does not have any settings available in Local HMI or Protection and Control IED Manager (PCM600). 13.4.6 Operation principle There are nine outputs from FXDSIGN function block: • OFF is a boolean signal, fixed to OFF (boolean 0) value •...
  • Page 461: Function Block

    Section 13 1MRK 502 048-UEN A Logic 13.5.3 Function block B16I BLOCK IN10 IN11 IN12 IN13 IN14 IN15 IN16 IEC09000035-1-en.vsd IEC09000035 V1 EN Figure 229: B16I function block 13.5.4 Signals Table 330: B16I Input signals Name Type Default Description BLOCK BOOLEAN Block of function BOOLEAN...
  • Page 462: Settings

    Section 13 1MRK 502 048-UEN A Logic 13.5.5 Settings The function does not have any parameters available in local HMI or Protection and Control IED Manager (PCM600) 13.5.6 Monitored data Table 332: B16I Monitored data Name Type Values (Range) Unit Description INTEGER Output value...
  • Page 463: Boolean 16 To Integer Conversion With Logic Node Representation B16Ifcvi

    Section 13 1MRK 502 048-UEN A Logic Name of input Type Default Description Value when Value when activated deactivated IN14 BOOLEAN Input 14 8192 IN15 BOOLEAN Input 15 16384 IN16 BOOLEAN Input 16 32768 The sum of the numbers in column “Value when activated” when all INx (where 1≤x≤16) are active that is=1;...
  • Page 464: Function Block

    Section 13 1MRK 502 048-UEN A Logic 13.6.3 Function block B16IFCVI BLOCK IN10 IN11 IN12 IN13 IN14 IN15 IN16 IEC09000624-1-en.vsd IEC09000624 V1 EN Figure 230: B16IFCVI function block 13.6.4 Signals Table 333: B16IFCVI Input signals Name Type Default Description BLOCK BOOLEAN Block of function BOOLEAN...
  • Page 465: Settings

    Section 13 1MRK 502 048-UEN A Logic Table 334: B16IFCVI Output signals Name Type Description INTEGER Output value 13.6.5 Settings The function does not have any parameters available in local HMI or Protection and Control IED Manager (PCM600) 13.6.6 Monitored data Table 335: B16IFCVI Monitored data Name...
  • Page 466: Integer To Boolean 16 Conversion Ib16A

    Section 13 1MRK 502 048-UEN A Logic Name of input Type Default Description Value when Value when activated deactivated IN10 BOOLEAN Input 10 IN11 BOOLEAN Input 11 1024 IN12 BOOLEAN Input 12 2048 IN13 BOOLEAN Input 13 4096 IN14 BOOLEAN Input 14 8192 IN15...
  • Page 467: Signals

    Section 13 1MRK 502 048-UEN A Logic 13.7.4 Signals Table 336: IB16A Input signals Name Type Default Description BLOCK BOOLEAN Block of function INTEGER Integer Input Table 337: IB16A Output signals Name Type Description OUT1 BOOLEAN Output 1 OUT2 BOOLEAN Output 2 OUT3 BOOLEAN...
  • Page 468 Section 13 1MRK 502 048-UEN A Logic This follows the general formulae: The sum of the values of all OUTx = 2 where 1≤x≤16 will be equal to the integer value on the input INP. The Integer to Boolean 16 conversion function (IB16A) will transfer an integer with a value between 0 to 65535 connected to the input INP to a combination of activated outputs OUTx where 1≤x≤16.
  • Page 469: Integer To Boolean 16 Conversion With Logic Node Representation Ib16Fcvb

    Section 13 1MRK 502 048-UEN A Logic 13.8 Integer to boolean 16 conversion with logic node representation IB16FCVB 13.8.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Integer to boolean 16 conversion with IB16FCVB logic node representation 13.8.2 Functionality Integer to boolean conversion with logic node representation function IB16FCVB is...
  • Page 470: Settings

    Section 13 1MRK 502 048-UEN A Logic Table 339: IB16FCVB Output signals Name Type Description OUT1 BOOLEAN Output 1 OUT2 BOOLEAN Output 2 OUT3 BOOLEAN Output 3 OUT4 BOOLEAN Output 4 OUT5 BOOLEAN Output 5 OUT6 BOOLEAN Output 6 OUT7 BOOLEAN Output 7 OUT8...
  • Page 471: Elapsed Time Integrator With Limit Transgression And Overflow Supervision Teiggio

    Section 13 1MRK 502 048-UEN A Logic activated outputs OUTx where 1≤x≤16. The values represented by the different OUTx are according to Table 340. When an OUTx is not activated, its value is 0. The IB16FCVB function is designed for receiving the integer input from a station computer - for example, over IEC 61850.
  • Page 472: Functionality

    Section 13 1MRK 502 048-UEN A Logic 13.9.2 Functionality Elapsed Time Integrator (TEIGGIO) function is a function that accumulates the elapsed time when a given binary signal has been high. The main features of TEIGGIO are • Applicable to long time integration (≤999 999.9 seconds). •...
  • Page 473: Settings

    Section 13 1MRK 502 048-UEN A Logic 13.9.5 Settings Table 343: TEIGGIO Group settings (basic) Name Values (Range) Unit Step Default Description Operation 0 - 1 Operation Off / On tWarning 1.00 - 999999.99 0.01 600.00 Time limit for warning supervision tAlarm 1.00 - 999999.99 0.01...
  • Page 474: Operation Accuracy

    Section 13 1MRK 502 048-UEN A Logic • applicable to long time integration (≤999 999.9 seconds) • output ACCTIME presents integrated value in seconds to all tools • integrated value is retained in non-volatile memory, if any warning, alarm or overflow occurs •...
  • Page 475: Technical Data

    Section 13 1MRK 502 048-UEN A Logic 13.9.7 Technical data Table 344: TEIGGIO Technical data Function Cycle time (ms) Range or value Accuracy Elapsed time 0 ~ 999999.9 s ±0.05% or ±0.01 s integration 0 ~ 999999.9 s ±0.05% or ±0.04 s 0 ~ 999999.9 s ±0.05% or ±0.2 s Technical manual...
  • Page 477: Section 14 Monitoring

    Section 14 1MRK 502 048-UEN A Monitoring Section 14 Monitoring 14.1 Measurements 14.1.1 Functionality Measurement functions is used for power system measurement, supervision and reporting to the local HMI, monitoring tool within PCM600 or to station level for example, via IEC 61850. The possibility to continuously monitor measured values of active power, reactive power, currents, voltages, frequency, power factor etc.
  • Page 478: Measurements Cvmmxn

    Section 14 1MRK 502 048-UEN A Monitoring • P, Q and S: three phase active, reactive and apparent power • PF: power factor • U: phase-to-phase voltage amplitude • I: phase current amplitude • F: power system frequency The output values are displayed in the local HMI under Main menu/Tests/Function status/Monitoring/CVMMXN/Outputs The measuring functions CMMXU, VNMMXU and VMMXU provide physical quantities:...
  • Page 479: Function Block

    Section 14 1MRK 502 048-UEN A Monitoring 14.1.2.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600. CVMMXN I3P* U3P* S_RANGE P_INST P_RANGE Q_INST Q_RANGE PF_RANGE ILAG ILEAD U_RANGE...
  • Page 480: Settings

    Section 14 1MRK 502 048-UEN A Monitoring Name Type Description I_RANGE INTEGER Calculated current range REAL System frequency magnitude of deadband value F_RANGE INTEGER System frequency range 14.1.2.4 Settings Table 347: CVMMXN Non group settings (basic) Name Values (Range) Unit Step Default Description...
  • Page 481 Section 14 1MRK 502 048-UEN A Monitoring Name Values (Range) Unit Step Default Description PFRepTyp Cyclic Cyclic Reporting type Dead band Int deadband UMin 0.0 - 200.0 50.0 Minimum value in % of UBase UMax 0.0 - 200.0 200.0 Maximum value in % of UBase URepTyp Cyclic Cyclic...
  • Page 482 Section 14 1MRK 502 048-UEN A Monitoring Name Values (Range) Unit Step Default Description QLimHyst 0.000 - 100.000 0.001 5.000 Hysteresis value in % of range (common for all limits) UGenZeroDb 1 - 100 Zero point clamping in % of Ubase PFDbRepInt 1 - 300 Type...
  • Page 483: Monitored Data

    Section 14 1MRK 502 048-UEN A Monitoring Name Values (Range) Unit Step Default Description UAmpComp100 -10.000 - 10.000 0.001 0.000 Amplitude factor to calibrate voltage at 100% of Ur IAmpComp5 -10.000 - 10.000 0.001 0.000 Amplitude factor to calibrate current at 5% of Ir IAmpComp30 -10.000 - 10.000...
  • Page 484: Function Block

    Section 14 1MRK 502 048-UEN A Monitoring 14.1.3.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600. CMMXU IL1RANG IL1ANGL IL2RANG IL2ANGL IL3RANG IL3ANGL IEC08000225 V1 EN Figure 236: CMMXU function block 14.1.3.3...
  • Page 485: Monitored Data

    Section 14 1MRK 502 048-UEN A Monitoring Name Values (Range) Unit Step Default Description ILMax 0 - 500000 1300 Maximum value ILRepTyp Cyclic Dead band Reporting type Dead band Int deadband ILAngDbRepInt 1 - 300 Type Cycl: Report interval (s), Db: In % of range, Int Db: In %s Table 353: CMMXU Non group settings (advanced)
  • Page 486: Phase-Phase Voltage Measurement Vmmxu

    Section 14 1MRK 502 048-UEN A Monitoring 14.1.4 Phase-phase voltage measurement VMMXU 14.1.4.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Phase-phase voltage measurement VMMXU SYMBOL-UU V1 EN 14.1.4.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600.
  • Page 487: Settings

    Section 14 1MRK 502 048-UEN A Monitoring Name Type Description UL31 REAL UL31 Amplitude UL31RANG INTEGER UL31Amplitude range UL31ANGL REAL UL31 Angle 14.1.4.4 Settings Table 357: VMMXU Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On GlobalBaseSel 1 - 6 Selection of one of the Global Base Value...
  • Page 488: Current Sequence Component Measurement Cmsqi

    Section 14 1MRK 502 048-UEN A Monitoring 14.1.5 Current sequence component measurement CMSQI 14.1.5.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Current sequence component CMSQI measurement I1, I2, I0 SYMBOL-VV V1 EN 14.1.5.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600.
  • Page 489: Settings

    Section 14 1MRK 502 048-UEN A Monitoring Name Type Description REAL I2 Amplitude I2RANG INTEGER I2 Amplitude range I2ANGL REAL I2Angle 14.1.5.4 Settings Table 362: CMSQI Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On 3I0DbRepInt 1 - 300 Type...
  • Page 490: Monitored Data

    Section 14 1MRK 502 048-UEN A Monitoring Table 363: CMSQI Non group settings (advanced) Name Values (Range) Unit Step Default Description 3I0ZeroDb 0 - 100000 Zero point clamping 3I0HiHiLim 0 - 500000 3600 High High limit (physical value) 3I0HiLim 0 - 500000 3300 High limit (physical value) 3I0LowLim...
  • Page 491: Function Block

    Section 14 1MRK 502 048-UEN A Monitoring 14.1.6.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600. VMSQI U3P* 3U0RANG 3U0ANGL U1RANG U1ANGL U2RANG U2ANGL IEC08000224-2-en.vsd IEC08000224 V2 EN Figure 239: VMSQI function block...
  • Page 492: Settings

    Section 14 1MRK 502 048-UEN A Monitoring 14.1.6.4 Settings Table 367: VMSQI Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On 3U0DbRepInt 1 - 300 Type Cycl: Report interval (s), Db: In % of range, Int Db: In %s 3U0Min 0 - 2000000...
  • Page 493: Monitored Data

    Section 14 1MRK 502 048-UEN A Monitoring Name Values (Range) Unit Step Default Description U1HiHiLim 0 - 2000000 96000 High High limit (physical value) U1HiLim 0 - 2000000 86000 High limit (physical value) U1LowLim 0 - 2000000 71000 Low limit (physical value) U1LowLowLim 0 - 2000000 66000...
  • Page 494: Signals

    Section 14 1MRK 502 048-UEN A Monitoring VNMMXU U3P* UL1RANG UL1ANGL UL2RANG UL2ANGL UL3RANG UL3ANGL IEC08000226-2-en.vsd IEC08000226 V2 EN Figure 240: VNMMXU function block 14.1.7.3 Signals Table 370: VNMMXU Input signals Name Type Default Description GROUP Three phase group signal for voltage inputs SIGNAL Table 371: VNMMXU Output signals...
  • Page 495: Monitored Data

    Section 14 1MRK 502 048-UEN A Monitoring Name Values (Range) Unit Step Default Description URepTyp Cyclic Dead band Reporting type Dead band Int deadband ULimHys 0.000 - 100.000 0.001 5.000 Hysteresis value in % of range and is common for all limits UAngDbRepInt 1 - 300 Type...
  • Page 496 Section 14 1MRK 502 048-UEN A Monitoring processing blocks. The number of processed alternate measuring quantities depends on the type of IED and built-in options. The information on measured quantities is available for the user at different locations: • Locally by means of the local HMI •...
  • Page 497 Section 14 1MRK 502 048-UEN A Monitoring X_RANGE = 3 High-high limit X_RANGE= 1 Hysteresis High limit X_RANGE=0 X_RANGE=0 Low limit X_RANGE=2 Low-low limit X_RANGE=4 en05000657.vsd IEC05000657 V1 EN Figure 241: Presentation of operating limits Each analogue output has one corresponding supervision level output (X_RANGE). The output signal is an integer in the interval 0-4 (0: Normal, 1: High limit exceeded, 3: High-high limit exceeded, 2: below Low limit and 4: below Low-low limit).
  • Page 498 Section 14 1MRK 502 048-UEN A Monitoring Value Reported Value Reported Value Reported Value Reported (1st) Value Reported t (*) t (*) t (*) t (*) en05000500.vsd (*)Set value for t: XDbRepInt IEC05000500 V1 EN Figure 242: Periodic reporting Amplitude dead-band supervision If a measuring value is changed, compared to the last reported value, and the change is larger than the ±ΔY pre-defined limits that are set by user (UDbRepIn), then the measuring channel reports the new value to a higher level.
  • Page 499 Section 14 1MRK 502 048-UEN A Monitoring Value Reported Value Reported Value Reported Value Reported (1st) 99000529.vsd IEC99000529 V1 EN Figure 243: Amplitude dead-band supervision reporting After the new value is reported, the ±ΔY limits for dead-band are automatically set around it.
  • Page 500: Measurements Cvmmxn

    Section 14 1MRK 502 048-UEN A Monitoring A1 >= pre-set value A >= A2 >= pre-set value pre-set value A3 + A4 + A5 + A6 + A7 >= pre-set value Value Reported Value (1st) Value Reported Value Reported Reported Value Reported 99000530.vsd...
  • Page 501 Section 14 1MRK 502 048-UEN A Monitoring Set value for Formula used for complex, three- Formula used for voltage and Comment parameter phase power calculation current magnitude calculation “Mode” L1L2 Used when × only U L1L2 phase-to- (Equation 99) phase EQUATION1391 V1 EN ) / 2 voltage is...
  • Page 502 Section 14 1MRK 502 048-UEN A Monitoring (Equation 113) EQUATION1405 V1 EN (Equation 114) EQUATION1406 V1 EN Additionally to the power factor value the two binary output signals from the function are provided which indicates the angular relationship between current and voltage phasors.
  • Page 503 Section 14 1MRK 502 048-UEN A Monitoring IEC05000652 V2 EN Figure 245: Calibration curves The first current and voltage phase in the group signals will be used as reference and the amplitude and angle compensation will be used for related input signals. Low pass filtering In order to minimize the influence of the noise signal on the measurement it is possible to introduce the recursive, low pass filtering of the measured values for P, Q, S, U, I...
  • Page 504 Section 14 1MRK 502 048-UEN A Monitoring Default value for parameter k is 0.00. With this value the new calculated value is immediately given out without any filtering (that is, without any additional delay). When k is set to value bigger than 0, the filtering is enabled. Appropriate value of k shall be determined separately for every application.
  • Page 505: Phase Current Measurement Cmmxu

    Section 14 1MRK 502 048-UEN A Monitoring Busbar Protected Object IEC09000038-1-en.vsd IEC09000038-1-EN V1 EN Figure 246: Internal IED directionality convention for P & Q measurements Practically, it means that active and reactive power will have positive values when they flow from the busbar towards the protected object and they will have negative values when they flow from the protected object towards the busbar.
  • Page 506: Phase-Phase And Phase-Neutral Voltage Measurements Vmmxu, Vnmmxu

    Section 14 1MRK 502 048-UEN A Monitoring compensation at 5, 30 and 100% of rated current. The compensation below 5% and above 100% is constant and linear in between, see figure 245. Phase currents (amplitude and angle) are available on the outputs and each amplitude output has a corresponding supervision level output (ILx_RANG).
  • Page 507: Event Counter Cntggio

    Section 14 1MRK 502 048-UEN A Monitoring Function Range or value Accuracy Apparent power, S 0.1 x U < U < 1.5 x U ± 1.0% of S at S ≤ S 0.2 x I < I < 4.0 x I ±...
  • Page 508: Settings

    Section 14 1MRK 502 048-UEN A Monitoring Name Type Default Description COUNTER5 BOOLEAN Input for counter 5 COUNTER6 BOOLEAN Input for counter 6 RESET BOOLEAN Reset of function Table 377: CNTGGIO Output signals Name Type Description VALUE1 INTEGER Output of counter 1 VALUE2 INTEGER Output of counter 2...
  • Page 509: Reporting

    Section 14 1MRK 502 048-UEN A Monitoring however gives as a result that it can take long time, up to several minutes, before a new value is stored in the flash memory. And if a new CNTGGIO value is not stored before auxiliary power interruption, it will be lost.
  • Page 510: Principle Of Operation

    Section 14 1MRK 502 048-UEN A Monitoring 14.3.3 Principle of operation Limit counter (L4UFCNT) counts the number of positive and/or negative flanks on the binary input signal depending on the function settings. L4UFCNT also checks if the accumulated value is equal or greater than any of its four settable limits. The four limit outputs will be activated relatively on reach of each limit and remain activated until the reset of the function.
  • Page 511: Reporting

    Section 14 1MRK 502 048-UEN A Monitoring Overflow indication ® ® ® ® Actual value Max value -1 Max value Max value +1 Max value +2 Max value +3 Counted value ® ® ® ® Max value -1 Max value IEC12000626_1_en.vsd IEC12000626 V1 EN Figure 249:...
  • Page 512: Signals

    Section 14 1MRK 502 048-UEN A Monitoring 14.3.5 Signals Table 381: L4UFCNT Input signals Name Type Default Description BLOCK BOOLEAN Block of function INPUT BOOLEAN Input for counter RESET BOOLEAN Reset of function Table 382: L4UFCNT Output signals Name Type Description ERROR BOOLEAN...
  • Page 513: Monitored Data

    Section 14 1MRK 502 048-UEN A Monitoring 14.3.7 Monitored data Table 384: L4UFCNT Monitored data Name Type Values (Range) Unit Description VALUE INTEGER Counted value 14.3.8 Technical data Table 385: L4UFCNTtechnical data Function Range or value Accuracy Counter value 0-65535 Max.
  • Page 514: Disturbance Report Drprdre

    Section 14 1MRK 502 048-UEN A Monitoring used to get information about the recordings. The disturbance report files may be uploaded to PCM600 for further analysis using the disturbance handling tool. 14.4.2 Disturbance report DRPRDRE 14.4.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification...
  • Page 515: Monitored Data

    Section 14 1MRK 502 048-UEN A Monitoring Name Values (Range) Unit Step Default Description MaxNoStoreRec 10 - 100 Maximum number of stored disturbances ZeroAngleRef 1 - 30 Trip value recorder, phasor reference channel OpModeTest Operation mode during test mode 14.4.2.5 Monitored data Table 388: DRPRDRE Monitored data...
  • Page 516 Section 14 1MRK 502 048-UEN A Monitoring Name Type Values (Range) Unit Description UnTrigStatCh10 BOOLEAN Under level trig for analog channel 10 activated OvTrigStatCh10 BOOLEAN Over level trig for analog channel 10 activated UnTrigStatCh11 BOOLEAN Under level trig for analog channel 11 activated OvTrigStatCh11 BOOLEAN...
  • Page 517 Section 14 1MRK 502 048-UEN A Monitoring Name Type Values (Range) Unit Description UnTrigStatCh22 BOOLEAN Under level trig for analog channel 22 activated OvTrigStatCh22 BOOLEAN Over level trig for analog channel 22 activated UnTrigStatCh23 BOOLEAN Under level trig for analog channel 23 activated OvTrigStatCh23 BOOLEAN...
  • Page 518: Analog Input Signals Axradr

    Section 14 1MRK 502 048-UEN A Monitoring Name Type Values (Range) Unit Description UnTrigStatCh34 BOOLEAN Under level trig for analog channel 34 activated OvTrigStatCh34 BOOLEAN Over level trig for analog channel 34 activated UnTrigStatCh35 BOOLEAN Under level trig for analog channel 35 activated OvTrigStatCh35 BOOLEAN...
  • Page 519: Function Block

    Section 14 1MRK 502 048-UEN A Monitoring 14.4.3.2 Function block A1RADR ^GRPINPUT1 ^GRPINPUT2 ^GRPINPUT3 ^GRPINPUT4 ^GRPINPUT5 ^GRPINPUT6 ^GRPINPUT7 ^GRPINPUT8 ^GRPINPUT9 ^GRPINPUT10 IEC09000348-1-en.vsd IEC09000348 V1 EN Figure 251: A1RADR function block, analog inputs, example for A1RADR, A2RADR and A3RADR 14.4.3.3 Signals A1RADR - A3RADR Input signals Tables for input signals for A1RADR, A2RADR and A3RADR are similar except for GRPINPUT number.
  • Page 520: Settings

    Section 14 1MRK 502 048-UEN A Monitoring 14.4.3.4 Settings A1RADR - A3RADR Settings Setting tables for A1RADR, A2RADR and A3RADR are similar except for channel numbers. • A1RADR, channel01 - channel10 • A2RADR, channel11 - channel20 • A3RADR, channel21 - channel30 Table 390: A1RADR Non group settings (basic) Name...
  • Page 521 Section 14 1MRK 502 048-UEN A Monitoring Name Values (Range) Unit Step Default Description FunType5 0 - 255 Function type for analog channel 5 (IEC-60870-5-103) InfNo5 0 - 255 Information number for analog channel 5 (IEC-60870-5-103) FunType6 0 - 255 Function type for analog channel 6 (IEC-60870-5-103) InfNo6...
  • Page 522 Section 14 1MRK 502 048-UEN A Monitoring Name Values (Range) Unit Step Default Description UnderTrigOp03 Use under level trigger for analog channel 3 (on) or not (off) UnderTrigLe03 0 - 200 Under trigger level for analog channel 3 in % of signal OverTrigOp03 Use over level trigger for analog channel 3 (on) or not (off)
  • Page 523: Analog Input Signals A4Radr

    Section 14 1MRK 502 048-UEN A Monitoring Name Values (Range) Unit Step Default Description UnderTrigLe08 0 - 200 Under trigger level for analog channel 8 in % of signal OverTrigOp08 Use over level trigger for analog channel 8 (on) or not (off) OverTrigLe08 0 - 5000 Over trigger level for analog channel 8 in...
  • Page 524: Signals

    Section 14 1MRK 502 048-UEN A Monitoring Channels 31-40 are not shown in LHMI. They are used for internally calculated analog signals. 14.4.4.3 Signals Table 392: A4RADR Input signals Name Type Default Description INPUT31 REAL Analog channel 31 INPUT32 REAL Analog channel 32 INPUT33 REAL...
  • Page 525 Section 14 1MRK 502 048-UEN A Monitoring Name Values (Range) Unit Step Default Description InfNo31 0 - 255 Information number for analog channel 31 (IEC-60870-5-103) FunType32 0 - 255 Function type for analog channel 32 (IEC-60870-5-103) InfNo32 0 - 255 Information number for analog channel 32 (IEC-60870-5-103) FunType33...
  • Page 526 Section 14 1MRK 502 048-UEN A Monitoring Name Values (Range) Unit Step Default Description OverTrigOp31 Use over level trigger for analog channel 31 (on) or not (off) OverTrigLe31 0 - 5000 Over trigger level for analog channel 31 in % of signal NomValue32 0.0 - 999999.9 Nominal value for analog channel 32...
  • Page 527 Section 14 1MRK 502 048-UEN A Monitoring Name Values (Range) Unit Step Default Description OverTrigLe36 0 - 5000 Over trigger level for analog channel 36 in % of signal NomValue37 0.0 - 999999.9 Nominal value for analog channel 37 UnderTrigOp37 Use under level trigger for analog channel 37 (on) or not (off) UnderTrigLe37...
  • Page 528: Binary Input Signals Bxrbdr

    Section 14 1MRK 502 048-UEN A Monitoring 14.4.5 Binary input signals BxRBDR 14.4.5.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Binary input signals B1RBDR Binary input signals B2RBDR Binary input signals B3RBDR Binary input signals B4RBDR Binary input signals B5RBDR...
  • Page 529: Settings

    Section 14 1MRK 502 048-UEN A Monitoring Table 395: B1RBDR Input signals Name Type Default Description INPUT1 BOOLEAN Binary channel 1 INPUT2 BOOLEAN Binary channel 2 INPUT3 BOOLEAN Binary channel 3 INPUT4 BOOLEAN Binary channel 4 INPUT5 BOOLEAN Binary channel 5 INPUT6 BOOLEAN Binary channel 6...
  • Page 530 Section 14 1MRK 502 048-UEN A Monitoring Name Values (Range) Unit Step Default Description SetLED02 Set LED on HMI for binary channel 2 Start Trip Start and Trip TrigDR03 Trigger operation On/Off SetLED03 Set LED on HMI for binary channel 3 Start Trip Start and Trip...
  • Page 531 Section 14 1MRK 502 048-UEN A Monitoring Name Values (Range) Unit Step Default Description TrigDR11 Trigger operation On/Off SetLED11 Set LED on HMI for binary channel 11 Start Trip Start and Trip TrigDR12 Trigger operation On/Off SetLED12 Set LED on HMI for binary channel 12 Start Trip Start and Trip...
  • Page 532 Section 14 1MRK 502 048-UEN A Monitoring Name Values (Range) Unit Step Default Description FunType5 0 - 255 Function type for binary channel 5 (IEC -60870-5-103) InfNo5 0 - 255 Information number for binary channel 5 (IEC -60870-5-103) FunType6 0 - 255 Function type for binary channel 6 (IEC -60870-5-103) InfNo6...
  • Page 533 Section 14 1MRK 502 048-UEN A Monitoring Table 397: B1RBDR Non group settings (advanced) Name Values (Range) Unit Step Default Description TrigLevel01 Trig on 0 Trig on 1 Trigger on positive (1) or negative (0) Trig on 1 slope for binary input 1 IndicationMa01 Hide Hide...
  • Page 534: Operation Principle

    Section 14 1MRK 502 048-UEN A Monitoring Name Values (Range) Unit Step Default Description TrigLevel13 Trig on 0 Trig on 1 Trigger on positive (1) or negative (0) Trig on 1 slope for binary input 13 IndicationMa13 Hide Hide Indication mask for binary channel 13 Show TrigLevel14 Trig on 0...
  • Page 535 Section 14 1MRK 502 048-UEN A Monitoring A1-4RADR Disturbance Report A4RADR DRPRDRE Analog signals Trip value rec B1-6RBDR Disturbance recorder Binary signals B6RBDR Event list Event recorder Indications IEC09000337-2-en.vsd IEC09000337 V2 EN Figure 254: Disturbance report functions and related function blocks The whole disturbance report can contain information for a number of recordings, each with the data coming from all the parts mentioned above.
  • Page 536: Disturbance Information

    Section 14 1MRK 502 048-UEN A Monitoring 14.4.6.1 Disturbance information Date and time of the disturbance, the indications, events, fault location and the trip values are available on the local HMI. To acquire a complete disturbance report the user must use a PC and - either the PCM600 Disturbance handling tool - or a FTP or MMS (over 61850) client.
  • Page 537: Analog Signals

    Section 14 1MRK 502 048-UEN A Monitoring The total recording time, tRecording, of a recorded disturbance is: PreFaultrecT + tFault + PostFaultrecT or PreFaultrecT + TimeLimit , depending on which tRecording = criterion stops the current disturbance recording Trig point TimeLimit PreFaultRecT PostFaultRecT...
  • Page 538 Section 14 1MRK 502 048-UEN A Monitoring SMAI A1RADR GRPNAME AI3P A2RADR AI1NAME GRPINPUT1 A3RADR External analog AI2NAME GRPINPUT2 signals AI3NAME GRPINPUT3 AI4NAME GRPINPUT4 GRPINPUT5 GRPINPUT6 A4RADR INPUT31 INPUT32 INPUT33 Internal analog signals INPUT34 INPUT35 INPUT36 INPUT40 en05000653-2.vsd IEC05000653 V2 EN Figure 256: Analog input function blocks The external input signals will be acquired, filtered and skewed and (after...
  • Page 539: Binary Signals

    Section 14 1MRK 502 048-UEN A Monitoring If Operation = Off, no waveform (samples) will be recorded and reported in graph. However, Trip value, pre-fault and fault value will be recorded and reported. The input channel can still be used to trig the disturbance recorder. If Operation = On, waveform (samples) will also be recorded and reported in graph.
  • Page 540: Post Retrigger

    Section 14 1MRK 502 048-UEN A Monitoring Binary-signal trigger Any binary signal state (logic one or a logic zero) can be selected to generate a trigger (Triglevel = Trig on 0/Trig on 1). When a binary signal is selected to generate a trigger from a logic zero, the selected signal will not be listed in the indications list of the disturbance report.
  • Page 541: Technical Data

    Section 14 1MRK 502 048-UEN A Monitoring 14.4.7 Technical data Table 398: DRPRDRE technical data Function Range or value Accuracy Current recording ± 1,0% of I at I ≤ I ± 1,0% of I at I > Ir Voltage recording ±...
  • Page 542: Function Block

    Section 14 1MRK 502 048-UEN A Monitoring 14.5.2 Function block The Indications function has no function block of it’s own. 14.5.3 Signals 14.5.3.1 Input signals The Indications function logs the same binary input signals as the Disturbance report function. 14.5.4 Operation principle The LED indications display this information: Green LED:...
  • Page 543: Technical Data

    Section 14 1MRK 502 048-UEN A Monitoring The name of the binary signal that appears in the Indication function is the user- defined name assigned at configuration of the IED. The same name is used in disturbance recorder function, indications and event recorder function. 14.5.5 Technical data Table 399:...
  • Page 544: Technical Data

    Section 14 1MRK 502 048-UEN A Monitoring generated by both internal logical signals and binary input channels. The internal signals are time-tagged in the main processor module, while the binary input channels are time-tagged directly in each I/O module. The events are collected during the total recording time (pre-, post-fault and limit time), and are stored in the disturbance report flash memory at the end of each recording.
  • Page 545: Signals

    Section 14 1MRK 502 048-UEN A Monitoring 14.7.3 Signals 14.7.3.1 Input signals The Event list logs the same binary input signals as configured for the Disturbance report function. 14.7.4 Operation principle When a binary signal, connected to the disturbance report function, changes status, the event list function stores input name, status and time in the event list in chronological order.
  • Page 546: Function Block

    Section 14 1MRK 502 048-UEN A Monitoring The Trip value recorder calculates the values of all selected analog input signals connected to the Disturbance recorder function. The result is magnitude and phase angle before and during the fault for each analog input signal. The trip value recorder information is available for the disturbances locally in the IED.
  • Page 547: Technical Data

    Section 14 1MRK 502 048-UEN A Monitoring The trip value record is stored as a part of the disturbance report information and managed in PCM600 or via the local HMI. 14.8.5 Technical data Table 402: DRPRDRE technical data Function Value Buffer capacity Maximum number of analog inputs Maximum number of disturbance reports...
  • Page 548: Operation Principle

    Section 14 1MRK 502 048-UEN A Monitoring 14.9.5 Operation principle Disturbance recording is based on the acquisition of binary and analog signals. The binary signals can be either true binary input signals or internal logical signals generated by the functions in the IED. The analog signals to be recorded are input channels from the Transformer Input Module (TRM) through the Signal Matrix Analog Input (SMAI) and possible summation (Sum3Ph) function blocks and some internally derived analog signals.
  • Page 549 Section 14 1MRK 502 048-UEN A Monitoring The recorded disturbance is now ready for retrieval and evaluation. The recording files comply with the Comtrade standard IEC 60255-24 and are divided into three files; a header file (HDR), a configuration file (CFG) and a data file (DAT). The header file (optional in the standard) contains basic information about the disturbance, that is, information from the Disturbance report sub-functions.
  • Page 550: Technical Data

    Section 14 1MRK 502 048-UEN A Monitoring 14.9.6 Technical data Table 403: DRPRDRE technical data Function Value Buffer capacity Maximum number of analog inputs Maximum number of binary inputs Maximum number of disturbance reports Maximum total recording time (3.4 s recording time and maximum number of 340 seconds (100 channels, typical value) recordings) at 50 Hz...
  • Page 551: Settings

    Section 14 1MRK 502 048-UEN A Monitoring 14.10.5 Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600). 14.10.6 Operation principle Upon receiving a signal at its input, IEC61850 generic communication I/O functions (SPGGIO) function sends the signal over IEC 61850-8-1 to the equipment or system that requests this signal.
  • Page 552: Signals

    Section 14 1MRK 502 048-UEN A Monitoring 14.11.4 Signals Table 405: SP16GGIO Input signals Name Type Default Description BLOCK BOOLEAN Block of function BOOLEAN Input 1 status BOOLEAN Input 2 status BOOLEAN Input 3 status BOOLEAN Input 4 status BOOLEAN Input 5 status BOOLEAN Input 6 status...
  • Page 553: Operation Principle

    Section 14 1MRK 502 048-UEN A Monitoring Name Type Values (Range) Unit Description OUT7 GROUP Output 7 status SIGNAL OUT8 GROUP Output 8 status SIGNAL OUT9 GROUP Output 9 status SIGNAL OUT10 GROUP Output 10 status SIGNAL OUT11 GROUP Output 11 status SIGNAL OUT12 GROUP...
  • Page 554: Functionality

    Section 14 1MRK 502 048-UEN A Monitoring 14.12.2 Functionality IEC61850 generic communication I/O functions (MVGGIO) function is used to send the instantaneous value of an analog signal to other systems or equipment in the substation. It can also be used inside the same IED, to attach a RANGE aspect to an analog value and to permit measurement supervision on that value.
  • Page 555: Monitored Data

    Section 14 1MRK 502 048-UEN A Monitoring Name Values (Range) Unit Step Default Description MV lLim -5000.00 - 5000.00 xBase 0.01 -800.00 Low limit multiplied with the base prefix (multiplication factor) MV llLim -5000.00 - 5000.00 xBase 0.01 -900.00 Low Low limit multiplied with the base prefix (multiplication factor) MV min -5000.00 - 5000.00...
  • Page 556: Functionality

    Section 14 1MRK 502 048-UEN A Monitoring 14.13.2 Functionality The current and voltage measurements functions (CVMMXN, CMMXU, VMMXU and VNMMXU), current and voltage sequence measurement functions (CMSQI and VMSQI) and IEC 61850 generic communication I/O functions (MVGGIO) are provided with measurement supervision functionality. All measured values can be supervised with four settable limits: low-low limit, low limit, high limit and high-high limit.
  • Page 557: Operation Principle

    Section 14 1MRK 502 048-UEN A Monitoring GlobalBaseSel: Selects the global base value group used by the function to define (IBase), (UBase) and (SBase). 14.13.6 Operation principle The input signal must be connected to a range output of a measuring function block (CVMMXN, CMMXU, VMMXU, VNMMXU, CMSQI, VMSQ or MVGGIO).
  • Page 558: Signals

    Section 14 1MRK 502 048-UEN A Monitoring SPVNZBAT activates the start and alarm outputs when the battery terminal voltage exceeds the set upper limit or drops below the set lower limit. A time delay for the overvoltage and undervoltage alarms can be set according to definite time characteristics.
  • Page 559: Measured Values

    Section 14 1MRK 502 048-UEN A Monitoring 14.14.6 Measured values Table 417: SPVNZBAT Measured values Name Type Default Description U_BATT REAL 0.00 Battery terminal voltage that has to be supervised BLOCK BOOLEAN Blocks all the output signals of the function 14.14.7 Monitored Data Table 418:...
  • Page 560: Technical Data

    Section 14 1MRK 502 048-UEN A Monitoring Low level detector The level detector compares the battery voltage U_BATT with the set value of the BattVoltLowLim setting. If the value of the U_BATT input drops below the set value of the BattVoltLowLim setting, the start signal ST_ULOW is activated. The measured voltage between the battery terminals U_BATT is available through the Monitored data view.
  • Page 561: Functionality

    Section 14 1MRK 502 048-UEN A Monitoring 14.15.2 Functionality Insulation gas monitoring function SSIMG is used for monitoring the circuit breaker condition. Binary information based on the gas pressure in the circuit breaker is used as input signals to the function. In addition, the function generates alarms based on received information.
  • Page 562: Settings

    Section 14 1MRK 502 048-UEN A Monitoring Table 421: SSIMG Output signals Name Type Description PRESSURE REAL Pressure service value PRES_ALM BOOLEAN Pressure below alarm level PRES_LO BOOLEAN Pressure below lockout level TEMP REAL Temperature of the insulation medium TEMP_ALM BOOLEAN Temperature above alarm level TEMP_LO...
  • Page 563: Technical Data

    Section 14 1MRK 502 048-UEN A Monitoring below the levels for more than the set time delays the corresponding signals, PRES_ALM, pressure below alarm level and PRES_LO, pressure below lockout level alarm will be obtained. The input signal BLK_ALM is used to block the two alarms levels. The input signal BLOCK is used to block both the alarms and the function.
  • Page 564: Signals

    Section 14 1MRK 502 048-UEN A Monitoring 14.16.4 Signals Inputs LEVEL and TEMP together with settings LevelAlmLimit, LevelLOLimit, TempAlarmLimit and TempLOLimit are not supported in this release of 650 series. Table 424: SSIML Input signals Name Type Default Description BLOCK BOOLEAN Block of function BLK_ALM...
  • Page 565: Operation Principle

    Section 14 1MRK 502 048-UEN A Monitoring Name Values (Range) Unit Step Default Description tTempAlarm 0.000 - 60.000 0.001 0.000 Time delay for temperature alarm tTempLockOut 0.000 - 60.000 0.001 0.000 Time delay for temperture lockout tResetLevelAlm 0.000 - 60.000 0.001 0.000 Reset time delay for level alarm...
  • Page 566: Functionality

    Section 14 1MRK 502 048-UEN A Monitoring 14.17.2 Functionality The circuit breaker condition monitoring function SSCBR is used to monitor different parameters of the circuit breaker. The breaker requires maintenance when the number of operations has reached a predefined value. The energy is calculated from the measured input currents as a sum of I t values.
  • Page 567: Settings

    Section 14 1MRK 502 048-UEN A Monitoring Name Type Default Description LOPRES BOOLEAN Binary pressure input for lockout indication SPRCHRGN BOOLEAN CB spring charging started input SPRCHRGD BOOLEAN CB spring charged input CBCNTRST BOOLEAN Reset input for CB remaining life and operation counter IACCRST BOOLEAN...
  • Page 568: Monitored Data

    Section 14 1MRK 502 048-UEN A Monitoring Name Values (Range) Unit Step Default Description AccCurrAlmLvl 0.00 - 20000.00 0.01 2500.00 Setting of alarm level for accumulated currents power AccCurrLO 0.00 - 20000.00 0.01 2500.00 Lockout limit setting for accumulated currents power DirCoef -3.00 - -0.50 0.01...
  • Page 569: Operation Principle

    Section 14 1MRK 502 048-UEN A Monitoring Name Type Values (Range) Unit Description NOOPRDAY INTEGER The number of days CB has been inactive CBLIFEL1 INTEGER CB Remaining life phase CBLIFEL2 INTEGER CB Remaining life phase CBLIFEL3 INTEGER CB Remaining life phase IACCL1 REAL Accumulated currents...
  • Page 570: Circuit Breaker Status

    Section 14 1MRK 502 048-UEN A Monitoring GUID-FE21BBDC-57A6-425C-B22B-8E646C1BD932 V1 EN Figure 265: Functional module diagram 14.17.7.1 Circuit breaker status The circuit breaker status subfunction monitors the position of the circuit breaker, that is, whether the breaker is in an open, closed or intermediate position. The operation of the breaker status monitoring can be described using a module diagram.
  • Page 571: Circuit Breaker Operation Monitoring

    Section 14 1MRK 502 048-UEN A Monitoring GUID-60ADC120-4B5A-40D8-B1C5-475E4634214B V1 EN Figure 266: Functional module diagram for monitoring circuit breaker status BLOCK and BLK_ALM inputs Phase current check This module compares the three phase currents with the setting AccDisLevel. If the current in a phase exceeds the set level, information about phase is reported to the contact position indicator module.
  • Page 572: Breaker Contact Travel Time

    Section 14 1MRK 502 048-UEN A Monitoring Inactivity timer The module calculates the number of days the circuit breaker has remained inactive, that is, has stayed in the same open or closed state. The calculation is done by monitoring the states of the POSOPEN and POSCLOSE auxiliary contacts. The inactive days NOOPRDAY is available through the Monitored data view.
  • Page 573: Operation Counter

    Section 14 1MRK 502 048-UEN A Monitoring GUID-3AD25F5A-639A-4941-AA61-E69FA2357AFE V1 EN There is a time difference t between the start of the main contact opening and the opening of the POSCLOSE auxiliary contact. Similarly, there is a time gap t between the time when the POSOPEN auxiliary contact opens and the main contact is completely open.
  • Page 574: Accumulation Of I Y T

    Section 14 1MRK 502 048-UEN A Monitoring GUID-FF1221A4-6160-4F92-9E7F-A412875B69E1 V1 EN Figure 269: Functional module diagram for counting circuit breaker operations Operation counter The operation counter counts the number of operations based on the state change of the binary auxiliary contacts inputs POSCLOSE and POSOPEN. The number of operations NO_OPR is available through the Monitored data view on the LHMI or through tools via communications.
  • Page 575 Section 14 1MRK 502 048-UEN A Monitoring GUID-DAC3746F-DFBF-4186-A99D-1D972578D32A V1 EN Figure 270: Functional module diagram for calculating accumulative energy and alarm Accumulated energy calculator This module calculates the accumulated energy I t [(kA) s]. The factor y is set with the CurrExp setting.
  • Page 576: Remaining Life Of The Circuit Breaker

    Section 14 1MRK 502 048-UEN A Monitoring Alarm limit check The IACCALM alarm is activated when the accumulated energy exceeds the value set with the AccCurrAlmLvl threshold setting. However, when the energy exceeds the limit value set with the AccCurrLO threshold setting, the IACCLOAL output is activated.
  • Page 577: Circuit Breaker Spring Charged Indication

    Section 14 1MRK 502 048-UEN A Monitoring The remaining life is calculated separately for all three phases and it is available as a monitored data value CBLIFEL1 (L2, L3). The values can be cleared by setting the parameter CB wear values in the clear menu from LHMI. Clearing CB wear values also resets the operation counter.
  • Page 578: Gas Pressure Supervision

    Section 14 1MRK 502 048-UEN A Monitoring Alarm limit check If the time taken by the spring to charge is more than the value set with the tSprngChrgAlm setting, the subfunction generates the SPRCHRAL alarm. It is possible to block the SPRCHRAL alarm signal by activating the BLOCK binary input.
  • Page 579: Technical Data

    Section 14 1MRK 502 048-UEN A Monitoring 14.17.8 Technical data Table 432: SSCBR Technical data Function Range or value Accuracy Alarm levels for open and close (0-200) ms ± 0.5% ± 25 ms travel time Alarm levels for number of (0 - 9999) operations Setting of alarm for spring...
  • Page 580: Function Block

    Section 14 1MRK 502 048-UEN A Monitoring GUID-B8A3A04C-430D-4488-9F72-8529FAB0B17D V1 EN Figure 275: Settings for CMMXU: 1 All input signals to IEC 60870-5-103 I103MEAS must be connected in application configuration. Connect an input signals on IEC 60870-5-103 I103MEAS that is not connected to the corresponding output on MMXU function, to outputs on the fixed signal function block.
  • Page 581: Signals

    Section 14 1MRK 502 048-UEN A Monitoring 14.18.3 Signals Table 433: I103MEAS Input signals Name Type Default Description BLOCK BOOLEAN Block of service value reporting REAL Service value for current phase L1 REAL Service value for current phase L2 REAL Service value for current phase L3 REAL Service value for residual current IN...
  • Page 582: Measurands User Defined Signals For Iec 60870-5-103

    Section 14 1MRK 502 048-UEN A Monitoring 14.19 Measurands user defined signals for IEC 60870-5-103 I103MEASUSR 14.19.1 Functionality I103MEASUSR is a function block with user defined input measurands in monitor direction. These function blocks include the FunctionType parameter for each block in the private range, and the Information number parameter for each block.
  • Page 583: Settings

    Section 14 1MRK 502 048-UEN A Monitoring 14.19.4 Settings Table 436: I103MEASUSR Non group settings (basic) Name Values (Range) Unit Step Default Description FunctionType 1 - 255 Function type (1-255) InfNo 1 - 255 Information number for measurands (1-255) MaxMeasur1 0.05 - 0.05 1000.00...
  • Page 584: Signals

    Section 14 1MRK 502 048-UEN A Monitoring 14.20.3 Signals Table 437: I103AR Input signals Name Type Default Description BLOCK BOOLEAN Block of status reporting 16_ARACT BOOLEAN Information number 16, auto-recloser active 128_CBON BOOLEAN Information number 128, circuit breaker on by auto- recloser 130_BLKD BOOLEAN...
  • Page 585: Settings

    Section 14 1MRK 502 048-UEN A Monitoring 14.21.4 Settings Table 440: I103EF Non group settings (basic) Name Values (Range) Unit Step Default Description FunctionType 1 - 255 Function type (1-255) 14.22 Function status fault protection for IEC 60870-5-103 I103FLTPROT 14.22.1 Functionality I103FLTPROT is used for fault indications in monitor direction.
  • Page 586: Function Block

    Section 14 1MRK 502 048-UEN A Monitoring 14.22.2 Function block I103FLTPROT BLOCK 64_STL1 65_STL2 66_STL3 67_STIN 68_TRGEN 69_TRL1 70_TRL2 71_TRL3 72_TRBKUP 73_SCL 74_FW 75_REV 76_TRANS 77_RECEV 78_ZONE1 79_ZONE2 80_ZONE3 81_ZONE4 82_ZONE5 84_STGEN 85_BFP 86_MTRL1 87_MTRL2 88_MTRL3 89_MTRN 90_IOC 91_IOC 92_IEF 93_IEF ARINPROG FLTLOC...
  • Page 587: Settings

    Section 14 1MRK 502 048-UEN A Monitoring Name Type Default Description 76_TRANS BOOLEAN Information number 76, signal transmitted 77_RECEV BOOLEAN Information number 77, signal received 78_ZONE1 BOOLEAN Information number 78, zone 1 79_ZONE2 BOOLEAN Information number 79, zone 2 80_ZONE3 BOOLEAN Information number 80, zone 3 81_ZONE4...
  • Page 588: Function Block

    Section 14 1MRK 502 048-UEN A Monitoring 14.23.2 Function block I103IED BLOCK 19_LEDRS 21_TESTM 22_SETCH 23_GRP1 24_GRP2 25_GRP3 26_GRP4 IEC10000292-2-en.vsd IEC10000292 V2 EN Figure 281: I103IED function block 14.23.3 Signals Table 443: I103IED Input signals Name Type Default Description BLOCK BOOLEAN Block of status reporting 19_LEDRS...
  • Page 589: Function Block

    Section 14 1MRK 502 048-UEN A Monitoring 14.24.2 Function block I103SUPERV BLOCK 32_MEASI 33_MEASU 37_IBKUP 38_VTFF 46_GRWA 47_GRAL IEC10000293-1-en.vsd IEC10000293 V1 EN Figure 282: I103SUPERV function block 14.24.3 Signals Table 445: I103SUPERV Input signals Name Type Default Description BLOCK BOOLEAN Block of status reporting 32_MEASI BOOLEAN...
  • Page 590: Function Block

    Section 14 1MRK 502 048-UEN A Monitoring I103USRDEF can be used, for example in mapping the INF numbers not supported directly by specific function blocks, like: INF17, INF18, INF20 or INF35. After connecting the appropriate signals to the I103USRDEF inputs, the user must also set the InfNo_x values in the settings.
  • Page 591: Settings

    Section 14 1MRK 502 048-UEN A Monitoring 14.25.4 Settings Table 448: I103USRDEF Non group settings (basic) Name Values (Range) Unit Step Default Description FunctionType 1 - 255 Function type (1-255) InfNo_1 1 - 255 Information number for binary input 1 (1-255) InfNo_2 1 - 255...
  • Page 593: Section 15 Metering

    Section 15 1MRK 502 048-UEN A Metering Section 15 Metering 15.1 Pulse counter PCGGIO 15.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Pulse counter PCGGIO S00947 V1 EN 15.1.2 Functionality Pulse counter (PCGGIO) function counts externally generated binary pulses, for instance pulses coming from an external energy meter, for calculation of energy consumption values.
  • Page 594: Settings

    Section 15 1MRK 502 048-UEN A Metering Table 450: PCGGIO Output signals Name Type Description INVALID BOOLEAN The pulse counter value is invalid RESTART BOOLEAN The reported value does not comprise a complete integration cycle BLOCKED BOOLEAN The pulse counter function is blocked NEW_VAL BOOLEAN A new pulse counter value is generated...
  • Page 595 Section 15 1MRK 502 048-UEN A Metering The reporting time period can be set in the range from 1 second to 60 minutes and is synchronized with absolute system time. Interrogation of additional pulse counter values can be done with a command (intermediate reading) for a single counter. All active counters can also be read by IEC 61850.
  • Page 596: Technical Data

    Section 15 1MRK 502 048-UEN A Metering The BLOCKED signal is a steady signal and is set when the counter is blocked. There are two reasons why the counter is blocked: • The BLOCK input is set, or • The binary input module, where the counter input is situated, is inoperative. The NEW_VAL signal is a pulse signal.
  • Page 597: Function Block

    Section 15 1MRK 502 048-UEN A Metering 15.2.3 Function block ETPMMTR ACCST EAFPULSE STACC EARPULSE RSTACC ERFPULSE RSTDMD ERRPULSE EAFALM EARALM ERFALM ERRALM EAFACC EARACC ERFACC ERRACC MAXPAFD MAXPARD MAXPRFD MAXPRRD IEC09000104 V1 EN Figure 286: ETPMMTR function block 15.2.4 Signals Table 454: ETPMMTR Input signals...
  • Page 598: Settings

    Section 15 1MRK 502 048-UEN A Metering Name Type Description EARACC REAL Accumulated reverse active energy value ERFACC REAL Accumulated forward reactive energy value ERRACC REAL Accumulated reverse reactive energy value MAXPAFD REAL Maximum forward active power demand value for set interval MAXPARD REAL...
  • Page 599: Monitored Data

    Section 15 1MRK 502 048-UEN A Metering Name Values (Range) Unit Step Default Description LevZeroClampP 0.001 - 10000.000 0.001 10.000 Zero point clamping level at active Power LevZeroClampQ 0.001 - 10000.000 MVAr 0.001 10.000 Zero point clamping level at reactive Power DirEnergyAct Forward...
  • Page 600: Technical Data

    Section 15 1MRK 502 048-UEN A Metering Outputs are available for forward as well as reverse direction. The accumulated energy values can be reset from the local HMI reset menu or with input signal RSTACC. The maximum demand values for active and reactive power are calculated for the set time interval tEnergy.
  • Page 601: Section 16 Station Communication

    Section 16 1MRK 502 048-UEN A Station communication Section 16 Station communication 16.1 DNP3 protocol DNP3 (Distributed Network Protocol) is a set of communications protocols used to communicate data between components in process automation systems. For a detailed description of the DNP3 protocol, see the DNP3 Communication protocol manual. 16.2 IEC 61850-8-1 communication protocol 16.2.1...
  • Page 602: Communication Interfaces And Protocols

    Section 16 1MRK 502 048-UEN A Station communication The Denial of Service functions DOSLAN1 and DOSFRNT are included to limit the inbound network traffic. The communication can thus never compromise the primary functionality of the IED. The event system has a rate limiter to reduce CPU load. The event channel has a quota of 10 events/second after the initial 30 events/second.
  • Page 603: Technical Data

    Section 16 1MRK 502 048-UEN A Station communication 16.2.5 Technical data Table 462: Communication protocol Function Value Protocol TCP/IP Ethernet Communication speed for the IEDs 100 Mbit/s Protocol IEC 61850–8–1 Communication speed for the IEDs 100BASE-FX Protocol DNP3.0/TCP Communication speed for the IEDs 100BASE-FX Protocol, serial IEC 60870–5–103...
  • Page 604: Function Block

    Section 16 1MRK 502 048-UEN A Station communication 16.3.2 Function block GOOSEINTLKRCV BLOCK ^RESREQ ^RESGRANT ^APP1_OP ^APP1_CL APP1VAL ^APP2_OP ^APP2_CL APP2VAL ^APP3_OP ^APP3_CL APP3VAL ^APP4_OP ^APP4_CL APP4VAL ^APP5_OP ^APP5_CL APP5VAL ^APP6_OP ^APP6_CL APP6VAL ^APP7_OP ^APP7_CL APP7VAL ^APP8_OP ^APP8_CL APP8VAL ^APP9_OP ^APP9_CL APP9VAL ^APP10_OP...
  • Page 605 Section 16 1MRK 502 048-UEN A Station communication Table 464: GOOSEINTLKRCV Output signals Name Type Description RESREQ BOOLEAN Reservation request RESGRANT BOOLEAN Reservation granted APP1_OP BOOLEAN Apparatus 1 position is open APP1_CL BOOLEAN Apparatus 1 position is closed APP1VAL BOOLEAN Apparatus 1 position is valid APP2_OP BOOLEAN...
  • Page 606: Settings

    Section 16 1MRK 502 048-UEN A Station communication Name Type Description APP13_OP BOOLEAN Apparatus 13 position is open APP13_CL BOOLEAN Apparatus 13 position is closed APP13VAL BOOLEAN Apparatus 13 position is valid APP14_OP BOOLEAN Apparatus 14 position is open APP14_CL BOOLEAN Apparatus 14 position is closed APP14VAL...
  • Page 607: Function Block

    Section 16 1MRK 502 048-UEN A Station communication 16.4.2 Function block GOOSEBINRCV BLOCK ^OUT1 OUT1VAL ^OUT2 OUT2VAL ^OUT3 OUT3VAL ^OUT4 OUT4VAL ^OUT5 OUT5VAL ^OUT6 OUT6VAL ^OUT7 OUT7VAL ^OUT8 OUT8VAL ^OUT9 OUT9VAL ^OUT10 OUT10VAL ^OUT11 OUT11VAL ^OUT12 OUT12VAL ^OUT13 OUT13VAL ^OUT14 OUT14VAL ^OUT15 OUT15VAL...
  • Page 608: Settings

    Section 16 1MRK 502 048-UEN A Station communication Name Type Description OUT4VAL BOOLEAN Valid data on binary output 4 OUT5 BOOLEAN Binary output 5 OUT5VAL BOOLEAN Valid data on binary output 5 OUT6 BOOLEAN Binary output 6 OUT6VAL BOOLEAN Valid data on binary output 6 OUT7 BOOLEAN Binary output 7...
  • Page 609: Goose Function Block To Receive A Double Point Value Goosedprcv

    Section 16 1MRK 502 048-UEN A Station communication The input of this GOOSE block must be linked in SMT by means of a cross to receive the binary values. The implementation for IEC61850 quality data handling is restricted to a simple level. If quality data validity is GOOD then the OUTxVAL output will be HIGH.
  • Page 610: Settings

    Section 16 1MRK 502 048-UEN A Station communication Table 470: GOOSEDPRCV Output signals Name Type Description DPOUT INTEGER Double point output DATAVALID BOOLEAN Data valid for double point output COMMVALID BOOLEAN Communication valid for double point output TEST BOOLEAN Test output 16.5.5 Settings Table 471:...
  • Page 611: Functionality

    Section 16 1MRK 502 048-UEN A Station communication 16.6.2 Functionality GOOSEINTRCV is used to receive an integer value using IEC61850 protocol via GOOSE. 16.6.3 Function block GOOSEINTRCV BLOCK ^INTOUT DATAVALID COMMVALID TEST IEC10000250-1-en.vsd IEC10000250 V1 EN Figure 291: GOOSEINTRCV function block 16.6.4 Signals Table 472:...
  • Page 612: Goose Function Block To Receive A Measurand Value Goosemvrcv

    Section 16 1MRK 502 048-UEN A Station communication The input of this GOOSE block must be linked in SMT by means of a cross to receive the integer values. The implementation for IEC61850 quality data handling is restricted to a simple level. If quality data validity is GOOD then the DATAVALID output will be HIGH.
  • Page 613: Settings

    Section 16 1MRK 502 048-UEN A Station communication Table 476: GOOSEMVRCV Output signals Name Type Description MVOUT REAL Measurand value output DATAVALID BOOLEAN Data valid for measurand value output COMMVALID BOOLEAN Communication valid for measurand value output TEST BOOLEAN Test output 16.7.5 Settings Table 477:...
  • Page 614: Functionality

    Section 16 1MRK 502 048-UEN A Station communication 16.8.2 Functionality GOOSESPRCV is used to receive a single point value using IEC61850 protocol via GOOSE. 16.8.3 Function block GOOSESPRCV BLOCK ^SPOUT DATAVALID COMMVALID TEST IEC10000248-1-en.vsd IEC10000248 V1 EN Figure 293: GOOSESPRCV function block 16.8.4 Signals Table 478:...
  • Page 615: Iec 60870-5-103 Communication Protocol

    Section 16 1MRK 502 048-UEN A Station communication The input of this GOOSE block must be linked in SMT by means of a cross to receive the binary single point values. The implementation for IEC61850 quality data handling is restricted to a simple level.
  • Page 616: Settings

    Section 16 1MRK 502 048-UEN A Station communication 16.9.2 Settings Table 481: OPTICAL103 Non group settings (basic) Name Values (Range) Unit Step Default Description SlaveAddress 1 - 255 Slave address BaudRate 9600 Bd 9600 Bd Baudrate on serial line 19200 Bd RevPolarity Invert polarity CycMeasRepTime...
  • Page 617: Functionality

    Section 16 1MRK 502 048-UEN A Station communication Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number System component for parallel PRPSTATUS redundancy protocol 16.10.1 Functionality Redundant station bus communication according to IEC 62439-3 Edition 2 is available as option in the Customized 650 Ver 1.3 series IEDs, and the selection is made at ordering.
  • Page 618: Function Block

    Section 16 1MRK 502 048-UEN A Station communication Station Control System Redundancy Supervision Data Data Switch A Switch B Data Data COM03 PRPSTATUS IEC13000003-1-en.vsd IEC13000003 V1 EN Figure 294: Redundant station bus 16.10.3 Function block PRPSTATUS LAN1-A LAN1-B IEC13000011-1-en.vsd IEC13000011 V1 EN Figure 295: PRPSTATUS function block Table 483:...
  • Page 619: Setting Parameters

    Section 16 1MRK 502 048-UEN A Station communication 16.10.4 Setting parameters The PRPSTATUS function has no user settings. However, the redundant communication is configured in the LHMI under Main menu/Configuration/Communication/TCP-IP configuration/ETHLAN1_AB where Operation mode, IPAddress and IPMask are configured. 16.11 Activity logging parameters ACTIVLOG 16.11.1 Activity logging ACTIVLOG...
  • Page 620: Generic Security Application Component Agsal

    Section 16 1MRK 502 048-UEN A Station communication Name Values (Range) Unit Step Default Description ExtLogSrv4IP 0 - 18 127.0.0.1 External log server 4 IP-address Address ExtLogSrv5Type External log server 5 type SYSLOG UDP/IP SYSLOG TCP/IP CEF TCP/IP ExtLogSrv5Port 1 - 65535 External log server 5 port number ExtLogSrv5IP 0 - 18...
  • Page 621: Section 17 Basic Ied Functions

    Section 17 1MRK 502 048-UEN A Basic IED functions Section 17 Basic IED functions 17.1 Self supervision with internal event list 17.1.1 Functionality The Self supervision with internal event list INTERRSIG and SELFSUPEVLST function reacts to internal system events generated by the different built-in self- supervision elements.
  • Page 622: Settings

    Section 17 1MRK 502 048-UEN A Basic IED functions 17.1.2.4 Settings The function does not have any settings available in Local HMI or Protection and Control IED Manager (PCM600). 17.1.3 Internal event list SELFSUPEVLST 17.1.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification...
  • Page 623 Section 17 1MRK 502 048-UEN A Basic IED functions Fault Power supply fault Power supply module Watchdog I/O nodes TX overflow Fault Master resp. Supply fault ReBoot I/O INTERNAL FAIL Fault Internal Fail (CPU) I/O nodes = BIO xxxx = Inverted signal IEC09000390-1-en.vsd IEC09000390 V1 EN Figure 297:...
  • Page 624: Internal Signals

    Section 17 1MRK 502 048-UEN A Basic IED functions LIODEV FAIL >1 LIODEV STOPPED e.g. BIO1- ERROR LIODEV STARTED >1 SW Watchdog Error >1 Internal Fail WDOG STARVED Runtime Exec Error RTE FATAL ERROR >1 File System Error FTF FATAL ERROR RTE APP FAILED Runtime App Error RTE ALL APPS OK...
  • Page 625 Section 17 1MRK 502 048-UEN A Basic IED functions they are also called internal signals. The internal signals can be divided into two groups. • Standard signals are always presented in the IED, see Table 488. • Hardware dependent internal signals are collected depending on the hardware configuration, see Table 489.
  • Page 626: Run-Time Model

    Section 17 1MRK 502 048-UEN A Basic IED functions Name of signal Reasons for activation Time Synch Error This signal will be active when the source of the time synchronization is lost, or when the time system has to make a time reset.
  • Page 627: Technical Data

    Section 17 1MRK 502 048-UEN A Basic IED functions ADx_Low Controller ADx_High IEC05000296-3-en.vsd IEC05000296 V3 EN Figure 299: Simplified drawing of A/D converter for the IED. The technique to split the analog input signal into two A/D converter(s) with different amplification makes it possible to supervise the A/D converters under normal conditions where the signals from the two A/D converters should be identical.
  • Page 628: Time Synchronization

    Section 17 1MRK 502 048-UEN A Basic IED functions 17.2 Time synchronization 17.2.1 Functionality The time synchronization source selector is used to select a common source of absolute time for the IED when it is a part of a protection system. This makes it possible to compare event and disturbance data between all IEDs in a station automation system.
  • Page 629: Settings

    Section 17 1MRK 502 048-UEN A Basic IED functions 17.2.3.2 Settings Table 493: SNTP Non group settings (basic) Name Values (Range) Unit Step Default Description ServerIP-Add 0 - 255 0.0.0.0 Server IP-address Address RedServIP-Add 0 - 255 0.0.0.0 Redundant server IP-address Address 17.2.4 Time system, summer time begin DSTBEGIN...
  • Page 630: Time System, Summer Time Ends Dstend

    Section 17 1MRK 502 048-UEN A Basic IED functions 17.2.5 Time system, summer time ends DSTEND 17.2.5.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Time system, summer time ends DSTEND 17.2.5.2 Settings Table 495: DSTEND Non group settings (basic) Name Values (Range)
  • Page 631: Settings

    Section 17 1MRK 502 048-UEN A Basic IED functions 17.2.6.2 Settings Table 496: TIMEZONE Non group settings (basic) Name Values (Range) Unit Step Default Description NoHalfHourUTC -24 - 24 Number of half-hours from UTC 17.2.7 Time synchronization via IRIG-B 17.2.7.1 Identification Function description IEC 61850...
  • Page 632 Section 17 1MRK 502 048-UEN A Basic IED functions Design of the time system (clock synchronization) External Time tagging and general synchronization synchronization sources Protection Commu Events and control - nication functions SNTP Time- IRIG-B regulator SW- time IEC60870-5-103 IEC09000210-2-en.vsd IEC09000210 V2 EN Figure 300: Design of time system (clock synchronization)
  • Page 633: Real-Time Clock (Rtc) Operation

    Section 17 1MRK 502 048-UEN A Basic IED functions 17.2.8.2 Real-time clock (RTC) operation The IED has a built-in real-time clock (RTC) with a resolution of one second. The clock has a built-in calendar that handles leap years through 2038. Real-time clock at power off During power off, the system time in the IED is kept by a capacitor-backed real-time clock that will provide 35 ppm accuracy for 5 days.
  • Page 634 Section 17 1MRK 502 048-UEN A Basic IED functions Synchronization via SNTP SNTP provides a ping-pong method of synchronization. A message is sent from an IED to an SNTP server, and the SNTP server returns the message after filling in a reception time and a transmission time.
  • Page 635: Technical Data

    Section 17 1MRK 502 048-UEN A Basic IED functions Synchronization via IEC60870-5-103 The IEC60870-5-103 communication can be the source for the coarse time synchronization, while the fine tuning of the time synchronization needs a source with higher accuracy. See the communication protocol manual for a detailed description of the IEC60870-5-103 protocol.
  • Page 636: Parameter Setting Groups Actvgrp

    Section 17 1MRK 502 048-UEN A Basic IED functions 17.3.3 Parameter setting groups ACTVGRP 17.3.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Parameter setting groups ACTVGRP 17.3.3.2 Function block ACTVGRP ACTGRP1 GRP1 ACTGRP2 GRP2 ACTGRP3 GRP3 ACTGRP4...
  • Page 637: Operation Principle

    Section 17 1MRK 502 048-UEN A Basic IED functions 17.3.4 Operation principle Parameter setting groups (ACTVGRP) function has four functional inputs, each corresponding to one of the setting groups stored in the IED. Activation of any of these inputs changes the active setting group. Five functional output signals are available for configuration purposes, so that information on the active setting group is always available.
  • Page 638: Test Mode Functionality Testmode

    Section 17 1MRK 502 048-UEN A Basic IED functions The above example also shows the five output signals, GRP1 to 4 for confirmation of which group that is active, and the SETCHGD signal which is normally connected to a SP16GGIO function block for external communication to higher level control systems.
  • Page 639: Settings

    Section 17 1MRK 502 048-UEN A Basic IED functions Table 503: TESTMODE Output signals Name Type Description ACTIVE BOOLEAN Terminal in test mode when active OUTPUT BOOLEAN Test input is active SETTING BOOLEAN Test mode setting is (On) or not (Off) NOEVENT BOOLEAN Event disabled during testmode...
  • Page 640: Change Lock Function Chnglck

    Section 17 1MRK 502 048-UEN A Basic IED functions The blocked functions will still be blocked next time entering the test mode, if the blockings were not reset. The released function will return to blocked state if test mode is set to off. The blocking of a function concerns all output signals from the actual function, so no outputs will be activated.
  • Page 641: Function Block

    CHNGLCK input, that logic must be designed so that it cannot permanently issue a logical one to the CHNGLCK input. If such a situation would occur in spite of these precautions, then please contact the local ABB representative for remedial action.
  • Page 642: Ied Identifiers Terminalid

    Section 17 1MRK 502 048-UEN A Basic IED functions • Reading disturbance data • Clear disturbances • Reset LEDs • Reset counters and other runtime component states • Control operations • Set system time • Enter and exit from test mode •...
  • Page 643: Product Information

    Section 17 1MRK 502 048-UEN A Basic IED functions Name Values (Range) Unit Step Default Description UnitName 0 - 18 Unit name Unit name UnitNumber 0 - 99999 Unit number IEDMainFunType 0 - 255 IED main function type for IEC60870-5-103 TechnicalKey 0 - 18 AA0J0Q0A0...
  • Page 644: Functionality

    Section 17 1MRK 502 048-UEN A Basic IED functions 17.8.2 Functionality The rated system frequency and phasor rotation are set under Main menu/ Configuration/ Power system/ Primary values/PRIMVAL in the local HMI and PCM600 parameter setting tree. 17.8.3 Settings Table 508: PRIMVAL Non group settings (basic) Name Values (Range)
  • Page 645: Function Block

    Section 17 1MRK 502 048-UEN A Basic IED functions 17.9.3 Function block SMAI_20_1 BLOCK SPFCOUT DFTSPFC AI3P REVROT ^GRP1L1 ^GRP1L2 ^GRP1L3 ^GRP1N IEC09000137-1-en.vsd IEC09000137 V1 EN Figure 306: SMAI_20_1 function block SMAI_20_2 BLOCK AI3P REVROT ^GRP2L1 ^GRP2L2 ^GRP2L3 ^GRP2N IEC09000138-2-en.vsd IEC09000138 V2 EN Figure 307: SMAI_20_2 to SMAI_20_12 function block...
  • Page 646 Section 17 1MRK 502 048-UEN A Basic IED functions Table 510: SMAI_20_1 Output signals Name Type Description SPFCOUT REAL Number of samples per fundamental cycle from internal DFT reference function AI3P GROUP SIGNAL Grouped three phase signal containing data from inputs 1-4 GROUP SIGNAL Quantity connected to the first analog input...
  • Page 647: Settings

    Section 17 1MRK 502 048-UEN A Basic IED functions 17.9.5 Settings Table 513: SMAI_20_1 Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 6 Selection of one of the Global Base Value groups DFTRefExtOut InternalDFTRef InternalDFTRef DFT reference for external output DFTRefGrp1...
  • Page 648: Operation Principle

    Section 17 1MRK 502 048-UEN A Basic IED functions measuring SMAI is used as a frequency reference for the adaptive DFT. This is not recommended, see the Setting guidelines. Table 515: SMAI_20_12 Non group settings (basic) Name Values (Range) Unit Step Default Description...
  • Page 649 Section 17 1MRK 502 048-UEN A Basic IED functions input connected. The signal received by SMAI is processed internally and in total 244 different electrical parameters are obtained for example RMS value, peak-to-peak, frequency and so on. The activation of BLOCK input resets all outputs to 0. SMAI_20 does all the calculation based on nominal 20 samples per line frequency period, this gives a sample frequency of 1 kHz at 50 Hz nominal line frequency and 1.2 kHz at 60 Hz nominal line frequency.
  • Page 650 Section 17 1MRK 502 048-UEN A Basic IED functions • All three inputs GRPxLx should be connected to SMAI for calculating sequence components for ConnectionType set to Ph-N. • At least two inputs GRPxLx should be connected to SMAI for calculating the positive and negative sequence component for ConnectionType set to Ph-Ph.
  • Page 651 Section 17 1MRK 502 048-UEN A Basic IED functions Below example shows a situation with adaptive frequency tracking with one reference selected for all instances. In practice each instance can be adapted to the needs of the actual application. Task time group 1 Task time group 2 (5ms) (20ms)
  • Page 652: Summation Block 3 Phase 3Phsum

    Section 17 1MRK 502 048-UEN A Basic IED functions For SMAI_20_1:2 to SMAI_20_12:2 DFTReference set to External DFT ref to use DFTSPFC input as reference. 17.10 Summation block 3 phase 3PHSUM 17.10.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number...
  • Page 653: Settings

    Section 17 1MRK 502 048-UEN A Basic IED functions Table 518: 3PHSUM Output signals Name Type Description AI3P GROUP SIGNAL Linear combination of two connected three phase inputs GROUP SIGNAL Linear combination of input 1 signals from both SMAI blocks GROUP SIGNAL Linear combination of input 2 signals from both SMAI blocks...
  • Page 654: Identification

    Section 17 1MRK 502 048-UEN A Basic IED functions 17.11.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Global base values GBASVAL 17.11.2 Functionality Global base values function (GBASVAL) is used to provide global values, common for all applicable functions within the IED.
  • Page 655: Settings

    Section 17 1MRK 502 048-UEN A Basic IED functions • local, through the local HMI • remote, through the communication ports The IED users can be created, deleted and edited only with PCM600 IED user management tool. IEC12000202-1-en.vsd IEC12000202 V1 EN Figure 310: PCM600 user management tool 17.12.3...
  • Page 656: Authorization Handling In The Ied

    Section 17 1MRK 502 048-UEN A Basic IED functions Table 522: Pre-defined user types User type Access rights SystemOperator Control from local HMI, no bypass ProtectionEngineer All settings DesignEngineer Application configuration (including SMT, GDE and CMT) UserAdministrator User and password administration for the IED The IED users can be created, deleted and edited only with the IED User Management within PCM600.
  • Page 657: Authority Management Authman

    Section 17 1MRK 502 048-UEN A Basic IED functions comes to password, upon pressing the key, the following characters will show up: “✳✳✳✳✳✳✳✳”. The user must scroll for every letter in the password. After all the letters are introduced (passwords are case sensitive) choose OK and press the again.
  • Page 658: Ftp Access With Password Ftpaccs

    Section 17 1MRK 502 048-UEN A Basic IED functions 17.14 FTP access with password FTPACCS 17.14.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number FTP access with SSL FTPACCS 17.14.2 FTP access with SSL FTPACCS The FTP Client defaults to the best possible security mode when trying to negotiate with SSL.
  • Page 659: Authority Status Athstat

    Section 17 1MRK 502 048-UEN A Basic IED functions 17.15 Authority status ATHSTAT 17.15.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Authority status ATHSTAT 17.15.2 Functionality Authority status ATHSTAT function is an indication function block for user log-on activity.
  • Page 660: Denial Of Service

    Section 17 1MRK 502 048-UEN A Basic IED functions • the fact that at least one user has tried to log on wrongly into the IED and it was blocked (the output USRBLKED) • the fact that at least one user is logged on (the output LOGGEDON) Whenever one of the two events occurs, the corresponding output (USRBLKED or LOGGEDON) is activated.
  • Page 661: Settings

    Section 17 1MRK 502 048-UEN A Basic IED functions 17.16.2.4 Settings The function does not have any parameters available in the local HMI or PCM600. 17.16.2.5 Monitored data Table 527: DOSFRNT Monitored data Name Type Values (Range) Unit Description State INTEGER 0=Off Frame rate control state...
  • Page 662: Function Block

    Section 17 1MRK 502 048-UEN A Basic IED functions 17.16.3.2 Function block DOSLAN1 LINKUP WARNING ALARM IEC09000134-1-en.vsd IEC09000134 V1 EN Figure 313: DOSLAN1 function block 17.16.3.3 Signals Table 528: DOSLAN1 Output signals Name Type Description LINKUP BOOLEAN Ethernet link status WARNING BOOLEAN Frame rate is higher than normal state...
  • Page 663: Operation Principle

    Section 17 1MRK 502 048-UEN A Basic IED functions 17.16.4 Operation principle The Denial of service functions (DOSLAN1 and DOSFRNT) measures the IED load from communication and, if necessary, limit it for not jeopardizing the IEDs control and protection functionality due to high CPU load. The function has the following outputs: •...
  • Page 665: Section 18 Ied Physical Connections

    Section 18 1MRK 502 048-UEN A IED physical connections Section 18 IED physical connections 18.1 Protective earth connections The IED shall be earthed with a 16.0 mm flat copper cable. The earth lead should be as short as possible, less than 1500 mm. Additional length is required for door mounting.
  • Page 666: Auxiliary Supply Voltage Input

    Section 18 1MRK 502 048-UEN A IED physical connections Table 530: Analog input modules TRM Terminal 6I + 4U 8I + 2U 4I + 1I + 5U 4I + 6U X101-1, 2 1/5A 1/5A 1/5A 1/5A X101-3, 4 1/5A 1/5A 1/5A 1/5A X101-5, 6...
  • Page 667: Binary Inputs

    Section 18 1MRK 502 048-UEN A IED physical connections Table 532: Auxiliary voltage supply of 110...250 V DC or 100...240 V AC Case Terminal Description 3U full 19” X420-1 - Input X420-3 + Input Table 533: Auxiliary voltage supply of 48-125 V DC Case Terminal Description...
  • Page 668 Section 18 1MRK 502 048-UEN A IED physical connections PCM600 info Terminal Description Hardware module Hardware channel instance X304-13 Common - for inputs 10-12 X304-14 Binary input 10 + COM_101 BI10 X304-15 Binary input 11 + COM_101 BI11 X304-16 Binary input 12 + COM_101 BI12 Table 536:...
  • Page 669 Section 18 1MRK 502 048-UEN A IED physical connections Terminal Description PCM600 info Hardware module Hardware channel instance X329-6 Binary input 3 + BIO_4 X329-7 X329-8 Common - for inputs 4-5 X329-9 Binary input 4 + BIO_4 X329-10 Binary input 5 + BIO_4 X329-11 X329-12...
  • Page 670: Outputs

    Section 18 1MRK 502 048-UEN A IED physical connections Table 539: Binary inputs X339, 3U full 19” Terminal Description PCM600 info Hardware module Hardware channel instance X339-1 - for input 1 BIO_6 X339-2 Binary input 1 + BIO_6 X339-3 X339-4 Common - for inputs 2-3 X339-5 Binary input 2 +...
  • Page 671 Section 18 1MRK 502 048-UEN A IED physical connections Table 540: Output contacts X317, 3U full 19” Terminal Description PCM600 info Hardware module Hardware channel instance Power output 1, normally open (TCS) X317-1 PSM_102 BO1_PO_TCS X317-2 Power output 2, normally open (TCS) X317-3 PSM_102...
  • Page 672: Outputs For Signalling

    Section 18 1MRK 502 048-UEN A IED physical connections Terminal Description PCM600 info Hardware module Hardware channel instance X326-4 X326-5 Power output 3, normally open BIO_4 BO3_PO X326-6 Table 543: Output contacts X331, 3U full 19” Terminal Description PCM600 info Hardware module Hardware channel instance...
  • Page 673 Section 18 1MRK 502 048-UEN A IED physical connections Table 545: Output contacts X317, 3U full 19” Terminal Description PCM600 info Hardware module Hardware channel instance X317-13 Signal output 1, normally open PSM_102 BO7_SO X317-14 X317-15 Signal output 2, normally open PSM_102 BO8_SO X317-16...
  • Page 674 Section 18 1MRK 502 048-UEN A IED physical connections Terminal Description PCM600 info Hardware module Hardware channel instance X326-16 Signal output 6, normally closed BIO_4 BO9_SO X326-17 Signal output 6, normally open X326-18 Signal output 6, common Table 548: Output contacts X331, 3U full 19” Terminal Description PCM600 info...
  • Page 675: Irf

    Section 18 1MRK 502 048-UEN A IED physical connections 18.3.3 The IRF contact functions as a change-over output contact for the self-supervision system of the IED. Under normal operating conditions, the IED is energized and one of the two contacts is closed. When a fault is detected by the self-supervision system or the auxiliary voltage is disconnected, the closed contact drops off and the other contact closes.
  • Page 676: Station Communication Rear Connection

    Section 18 1MRK 502 048-UEN A IED physical connections The default IP address of the IED through this port is 10.1.150.3. The front port supports TCP/IP protocol. A standard Ethernet CAT 5 crossover cable is used with the front port. 18.4.2 Station communication rear connection The default IP address of the IED through the Ethernet connection is 192.168.1.10.
  • Page 677: Communication Interfaces And Protocols

    The latest versions of the connection diagrams can be downloaded from http://www.abb.com/substationautomation. Connection diagrams for Customized products Connection diagram, 650 series 1.3 1MRK006501-AD Connection diagrams for Configured products Connection diagram, REG650 1.3, (GenDiff) B01 1MRK006501-ND Connection diagram, REG650 1.3, (GenTrafoDiff) B05 1MRK006501-PD Technical manual...
  • Page 679: Section 19 Technical Data

    Section 19 1MRK 502 048-UEN A Technical data Section 19 Technical data 19.1 Dimensions Table 552: Dimensions of the IED - 3U full 19" rack Description Value Width 444 mm (17.48 inches) Height 132 mm (5.20 inches), 3U Depth 249.5 mm (9.82 inches) Weight box 10 kg (<22.04 lbs) 19.2...
  • Page 680: Energizing Inputs

    Section 19 1MRK 502 048-UEN A Technical data 19.3 Energizing inputs Table 554: TRM — Energizing quantities, rated values and limits for transformer inputs Description Value Frequency Rated frequency f 50 or 60 Hz Operating range ± 10% Current inputs Rated current I 0.1 or 0.5 A 1 or 5 A...
  • Page 681: Signal Outputs

    Section 19 1MRK 502 048-UEN A Technical data 19.5 Signal outputs Table 556: Signal output and IRF output Description Value Rated voltage 250 V AC/DC Continuous contact carry Make and carry for 3.0 s 10 A Make and carry 0.5 s 30 A Breaking capacity when the control-circuit time ≤0.5 A/≤0.1 A/≤0.04 A...
  • Page 682: Data Communication Interfaces

    Section 19 1MRK 502 048-UEN A Technical data 19.7 Data communication interfaces Table 559: Ethernet interfaces Ethernet interface Protocol Cable Data transfer rate 100BASE-TX CAT 6 S/FTP or better 100 MBits/s 100BASE-FX TCP/IP protocol Fibre-optic cable with 100 MBits/s LC connector Table 560: Fibre-optic communication link Wave length...
  • Page 683: Enclosure Class

    Section 19 1MRK 502 048-UEN A Technical data Type Value Conditions Supported bit rates 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 Maximum number of 650 IEDs supported on the same bus Max. cable length 925 m (3000 ft) Cable: AWG24 or better, stub lines shall be avoided Table 564:...
  • Page 684: Environmental Conditions And Tests

    Section 19 1MRK 502 048-UEN A Technical data 19.10 Environmental conditions and tests Table 567: Environmental conditions Description Value Operating temperature range -25...+55ºC (continuous) Short-time service temperature range -40...+70ºC (<16h) Note: Degradation in MTBF and HMI performance outside the temperature range of -25...+55ºC Relative humidity <93%, non-condensing Atmospheric pressure...
  • Page 685: Section 20 Ied And Functionality Tests

    Section 20 1MRK 502 048-UEN A IED and functionality tests Section 20 IED and functionality tests 20.1 Electromagnetic compatibility tests Table 569: Electromagnetic compatibility tests Description Type test value Reference 100 kHz and 1 MHz burst IEC 61000-4-18, level 3 disturbance test IEC 60255-22-1 ANSI C37.90.1-2012...
  • Page 686 Section 20 1MRK 502 048-UEN A IED and functionality tests Description Type test value Reference • Continuous 100 A/m Pulse magnetic field immunity 1000A/m IEC 61000–4–9, level 5 test Damped oscillatory magnetic 100A/m, 100 kHz and 1MHz IEC 6100–4–10, level 5 field Power frequency immunity test IEC 60255-22-7, class A...
  • Page 687: Insulation Tests

    Section 20 1MRK 502 048-UEN A IED and functionality tests 20.2 Insulation tests Table 570: Insulation tests Description Type test value Reference Dielectric tests: IEC 60255-5 ANSI C37.90-2005 • Test voltage 2 kV, 50 Hz, 1 min 1 kV, 50 Hz, 1 min, communication Impulse voltage test: IEC 60255-5...
  • Page 688: Emc Compliance

    Section 20 1MRK 502 048-UEN A IED and functionality tests 20.5 EMC compliance Table 573: EMC compliance Description Reference EMC directive 2004/108/EC Standard EN 50263 (2000) EN 60255-26 (2007) Technical manual...
  • Page 689: Section 21 Time Inverse Characteristics

    Section 21 1MRK 502 048-UEN A Time inverse characteristics Section 21 Time inverse characteristics 21.1 Application In order to assure time selectivity between different overcurrent protections in different points in the network different time delays for the different relays are normally used.
  • Page 690 Section 21 1MRK 502 048-UEN A Time inverse characteristics Time Fault point position en05000131.vsd IEC05000131 V1 EN Figure 317: Inverse time overcurrent characteristics with inst. function The inverse time characteristic makes it possible to minimize the fault clearance time and still assure the selectivity between protections. To assure selectivity between protections there must be a time margin between the operation time of the protections.
  • Page 691 Section 21 1MRK 502 048-UEN A Time inverse characteristics Feeder I> I> Time axis en05000132.vsd IEC05000132 V1 EN Figure 318: Selectivity steps for a fault on feeder B1 where: is The fault occurs is Protection B1 trips is Breaker at B1 opens is Protection A1 resets In the case protection B1 shall operate without any intentional delay (instantaneous).
  • Page 692: Operation Principle

    Section 21 1MRK 502 048-UEN A Time inverse characteristics • If there is a risk of intermittent faults. If the current relay, close to the faults, starts and resets there is a risk of unselective trip from other protections in the system. •...
  • Page 693 Section 21 1MRK 502 048-UEN A Time inverse characteristics æ ö æ ö - × × × ç ÷ ç ÷ è ø > è ø (Equation 117) EQUATION1190 V1 EN where: is the operating time of the protection The time elapsed to the moment of trip is reached when the integral fulfils according to equation 118, in addition to the constant time delay: æ...
  • Page 694 Section 21 1MRK 502 048-UEN A Time inverse characteristics Operate time tMin Current IMin IEC05000133-3-en.vsd IEC05000133 V2 EN Figure 319: Minimum time-lag operation for the IEC curves In order to fully comply with IEC curves definition setting parameter tMin shall be set to the value which is equal to the operating time of the selected IEC inverse time curve for measured current of twenty times the set current start value.
  • Page 695: Inverse Time Characteristics

    Section 21 1MRK 502 048-UEN A Time inverse characteristics The RD inverse curve gives a logarithmic delay, as used in the Combiflex protection RXIDG. The curve enables a high degree of selectivity required for sensitive residual earth-fault current protection, with ability to detect high-resistive earth faults. The curve is described by equation 122: æ...
  • Page 696 Section 21 1MRK 502 048-UEN A Time inverse characteristics Table 575: IEC Inverse time characteristics Function Range or value Accuracy Operating characteristic: k = (0.05-999) in steps of 0.01 æ ö ç ÷ × ç ÷ è ø EQUATION1251-SMALL V1 EN I = I measured IEC Normal Inverse...
  • Page 697 Section 21 1MRK 502 048-UEN A Time inverse characteristics Table 577: Inverse time characteristics for overvoltage protection Function Range or value Accuracy Type A curve: k = (0.05-1.10) in ±5% +60 ms steps of 0.01 æ ö > ç ÷ è...
  • Page 698 Section 21 1MRK 502 048-UEN A Time inverse characteristics Table 579: Inverse time characteristics for residual overvoltage protection Function Range or value Accuracy Type A curve: k = (0.05-1.10) in steps of ±5% +70 ms 0.01 æ ö > ç ÷...
  • Page 699 Section 21 1MRK 502 048-UEN A Time inverse characteristics A070750 V2 EN Figure 320: ANSI Extremely inverse time characteristics Technical manual...
  • Page 700 Section 21 1MRK 502 048-UEN A Time inverse characteristics A070751 V2 EN Figure 321: ANSI Very inverse time characteristics Technical manual...
  • Page 701 Section 21 1MRK 502 048-UEN A Time inverse characteristics A070752 V2 EN Figure 322: ANSI Normal inverse time characteristics Technical manual...
  • Page 702 Section 21 1MRK 502 048-UEN A Time inverse characteristics A070753 V2 EN Figure 323: ANSI Moderately inverse time characteristics Technical manual...
  • Page 703 Section 21 1MRK 502 048-UEN A Time inverse characteristics A070817 V2 EN Figure 324: ANSI Long time extremely inverse time characteristics Technical manual...
  • Page 704 Section 21 1MRK 502 048-UEN A Time inverse characteristics A070818 V2 EN Figure 325: ANSI Long time very inverse time characteristics Technical manual...
  • Page 705 Section 21 1MRK 502 048-UEN A Time inverse characteristics A070819 V2 EN Figure 326: ANSI Long time inverse time characteristics Technical manual...
  • Page 706 Section 21 1MRK 502 048-UEN A Time inverse characteristics A070820 V2 EN Figure 327: IEC Normal inverse time characteristics Technical manual...
  • Page 707 Section 21 1MRK 502 048-UEN A Time inverse characteristics A070821 V2 EN Figure 328: IEC Very inverse time characteristics Technical manual...
  • Page 708 Section 21 1MRK 502 048-UEN A Time inverse characteristics A070822 V2 EN Figure 329: IEC Inverse time characteristics Technical manual...
  • Page 709 Section 21 1MRK 502 048-UEN A Time inverse characteristics A070823 V2 EN Figure 330: IEC Extremely inverse time characteristics Technical manual...
  • Page 710 Section 21 1MRK 502 048-UEN A Time inverse characteristics A070824 V2 EN Figure 331: IEC Short time inverse time characteristics Technical manual...
  • Page 711 Section 21 1MRK 502 048-UEN A Time inverse characteristics A070825 V2 EN Figure 332: IEC Long time inverse time characteristics Technical manual...
  • Page 712 Section 21 1MRK 502 048-UEN A Time inverse characteristics A070826 V2 EN Figure 333: RI-type inverse time characteristics Technical manual...
  • Page 713 Section 21 1MRK 502 048-UEN A Time inverse characteristics A070827 V2 EN Figure 334: RD-type inverse time characteristics Technical manual...
  • Page 714 Section 21 1MRK 502 048-UEN A Time inverse characteristics GUID-ACF4044C-052E-4CBD-8247-C6ABE3796FA6 V1 EN Figure 335: Inverse curve A characteristic of overvoltage protection Technical manual...
  • Page 715 Section 21 1MRK 502 048-UEN A Time inverse characteristics GUID-F5E0E1C2-48C8-4DC7-A84B-174544C09142 V1 EN Figure 336: Inverse curve B characteristic of overvoltage protection Technical manual...
  • Page 716 Section 21 1MRK 502 048-UEN A Time inverse characteristics GUID-A9898DB7-90A3-47F2-AEF9-45FF148CB679 V1 EN Figure 337: Inverse curve C characteristic of overvoltage protection Technical manual...
  • Page 717 Section 21 1MRK 502 048-UEN A Time inverse characteristics GUID-35F40C3B-B483-40E6-9767-69C1536E3CBC V1 EN Figure 338: Inverse curve A characteristic of undervoltage protection Technical manual...
  • Page 718 Section 21 1MRK 502 048-UEN A Time inverse characteristics GUID-B55D0F5F-9265-4D9A-A7C0-E274AA3A6BB1 V1 EN Figure 339: Inverse curve B characteristic of undervoltage protection Technical manual...
  • Page 719: Section 22 Glossary

    Section 22 1MRK 502 048-UEN A Glossary Section 22 Glossary Alternating current Actual channel Application configuration tool within PCM600 A/D converter Analog-to-digital converter ADBS Amplitude deadband supervision Analog input ANSI American National Standards Institute Autoreclosing ASCT Auxiliary summation current transformer Adaptive signal detection ASDU Application service data unit...
  • Page 720 Section 22 1MRK 502 048-UEN A Glossary Carrier receive Cyclic redundancy check CROB Control relay output block Carrier send Current transformer Communication unit Capacitive voltage transformer Delayed autoreclosing DARPA Defense Advanced Research Projects Agency (The US developer of the TCP/IP protocol etc.) DBDL Dead bus dead line DBLL...
  • Page 721 Section 22 1MRK 502 048-UEN A Glossary FOX 20 Modular 20 channel telecommunication system for speech, data and protection signals FOX 512/515 Access multiplexer FOX 6Plus Compact time-division multiplexer for the transmission of up to seven duplex channels of digital data over optical fibers File Transfer Protocal Function type...
  • Page 722 Section 22 1MRK 502 048-UEN A Glossary specifications from the PCI SIG (Special Interest Group) for the electrical EMF (Electromotive force). IEEE 1686 Standard for Substation Intelligent Electronic Devices (IEDs) Cyber Security Capabilities Intelligent electronic device I-GIS Intelligent gas-insulated switchgear Instance When several occurrences of the same function are available in the IED, they are referred to as instances of that function.
  • Page 723 Section 22 1MRK 502 048-UEN A Glossary OLTC On-load tap changer OTEV Disturbance data recording initiated by other event than start/pick-up Over-voltage Overreach A term used to describe how the relay behaves during a fault condition. For example, a distance relay is overreaching when the impedance presented to it is smaller than the apparent impedance to the fault applied to the balance point, that is, the set reach.
  • Page 724 Section 22 1MRK 502 048-UEN A Glossary SMA connector Subminiature version A, A threaded connector with constant impedance. Signal matrix tool within PCM600 Station monitoring system SNTP Simple network time protocol – is used to synchronize computer clocks on local area networks. This reduces the requirement to have accurate hardware clocks in every embedded system in a network.
  • Page 725 Section 22 1MRK 502 048-UEN A Glossary User management tool Underreach A term used to describe how the relay behaves during a fault condition. For example, a distance relay is underreaching when the impedance presented to it is greater than the apparent impedance to the fault applied to the balance point, that is, the set reach.
  • Page 728 Contact us Note: For more information please contact: We reserve the right to make technical changes or modify the contents of this document without prior notice. ABB AB ABB AB does not accept any responsibility whatsoever for potential Grid Automation Products errors or possible lack of information in this document.

Table of Contents