Chemiluminescence Detection; The Photo Multiplier Tube; Optical Filter - Teledyne T200H User Manual

Nitrogen oxides analyzer
Table of Contents

Advertisement

Principles of Operation

8.2. CHEMILUMINESCENCE DETECTION

8.2.1. THE PHOTO MULTIPLIER TUBE

8.2.2. OPTICAL FILTER

268
The T200H/M uses a photo-multiplier tube (PMT) to detect the amount of light created
by the NO and O
reaction in the reaction cell.
3
A PMT is typically a vacuum tube containing a variety of specially designed electrodes.
Photons enter the PMT and strike a negatively charged photo cathode causing it to emit
electrons. These electrons are accelerated by an applied high voltage and multiply
through a sequence of such acceleration steps (dynodes) until a useable current signal is
generated. This current increases or decreases with the amount of detected light (Section
10.4.3 for more details), is converted to a voltage and amplified by the preamplifier board
and then reported to the motherboard's analog inputs.
Figure 8-3:
Another critical component in the method by which your T200H/M detects
chemiluminescence is the optical filter that lies between the reaction cell and the PMT
(Figure: 10-3). This filter is a high pass filter that is only transparent to wavelengths of
light above 645 nm. In conjunction with the response characteristics of the PMT, this
filter creates a very narrow window of wavelengths of light to which the T200H/M will
respond (refer to Figure 8-1).
The narrow band of sensitivity allows the T200H/M to ignore extraneous light and
radiation that might interfere with the T200H/M's measurement. For instance, some
oxides of sulfur can also undergo chemiluminescence when in contact with O
light at shorter wavelengths (~ 260 nm to 480 nm).
Teledyne API - Model T200H/T200M Operation Manual
Reaction Cell with PMT Tube
but emit
3
07270D DCN7141

Advertisement

Table of Contents
loading

This manual is also suitable for:

T200m

Table of Contents