Page 1
User’s Manual ADMAG TI Series AXG, AXW Magnetic Flowmeter ™ Fieldbus Communi- OUNDATION cation Type IM 01E21A02-03EN IM 01E21A02-03EN 2nd Edition...
Page 3
Functions ....................47 Basic Settings ....................50 5.1.1 Overview ..................... 50 5.1.2 Connection of Process Value to AI Function........50 5.1.3 Display of the Process Value .............. 53 5.1.4 Engineering Unit Setting ..............55 5.1.5 Span Setting..................56 5.1.6 Damping Time Constant Setting ............57 5.1.7 Low-cut Function Setting ..............
Page 4
5.7.2 Display Item Setting ................113 5.7.3 Decimal-Point Position Setting ............114 5.7.4 Display Line Count and Scroll Settings ..........115 5.7.5 Trend Graph Setting ................116 5.7.6 Other Settings ..................119 5.7.7 microSD Card Setting ............... 122 Device Information ................... 124 5.8.1 Order Information ................124 5.8.2 Device Revision ................
Page 5
5.14.7 Status Output Function Setting ............168 Parameter Lists..................169 Resource Block ....................169 Sensor Transducer Block ................177 Diagnosis Transducer Block ................189 Display Transducer Block ................196 Maintenance Transducer Block ..............202 AI Function Block ..................... 210 DI Function Block ..................... 214 MAO Function Block (only AXG) ..............
Page 6
A3.2 Input Section ....................256 A3.2.1 Main Inputs ..................256 A3.2.2 Auxiliary Inputs .................. 257 A3.2.3 INPUT_OPTS ................... 257 A3.2.4 Relationship between the Main Inputs and PV ......... 258 A3.3 Computation Section ..................259 A3.3.1 Computing Equations ............... 259 A3.3.2 Compensated Values ................
Page 7
A5.12 External-output Tracking (LO) ................ 287 A5.13 Measured-value Tracking ................288 A5.13.1 CONTROL_OPTS ................288 A5.14 Initialization and Manual Fallback (IMan) ............289 A5.14.1 IMan condition ................... 289 A5.14.2 Establishment of IMan condition ............289 A5.15 Manual Fallback ....................289 A5.15.1 Condition of MAN Fallback ...............
<1. Introduction> Introduction This manual provides the basic guidelines for basic operation of ADMAG TI Series AXG, AXW magnetic flowmeters with F ™ Fieldbus protocol. OUNDATION For items which are not covered in this manual, read the applicable user’s manuals listed in “Table 1.1 Manual and General Specifications List” in the ADMAG TI Series Installation Manual.
Page 9
Take special note that if you handle the product in a manner that violates these instructions, the protection function of the product may be damaged or impaired, or may not be fully demonstrated. In such a case, YOKOGAWA does not guarantee the quality, performance, function, or safety of the product.
Page 10
• All the brands or names of Yokogawa Electric’s products used in this manual are either trademarks or registered trademarks of Yokogawa Electric Corporation. • All other company and product names mentioned in this manual are trade names, trademarks or registered trademarks of their respective companies.
Take special note that if you handle the product in a manner that violates these instructions, the protection function of the product may be damaged or impaired. In such a case, YOKOGAWA shall not be liable for any indirect or consequential loss incurred by either using or not being able to use the product.
Page 12
• Do not physically shock, bend, or twist the microSD card. • While reading/writing data, do not turn off the power, apply vibration or shock or pull out the card. Data can be corrupted or permanently lost. • Use only the microSD cards specified by YOKOGAWA. The operation cannot be guaranteed when other cards are used. • When inserting the microSD card into the product, make sure to orient the microSD card correctly (face up or down) and insert it securely. If not inserted correctly, the microSD card...
• The warranty shall cover the period described in the quotation presented to the purchaser at the time of purchase. Problems that may occur during the warranty period shall be repaired free of charge. • In case of problems, the customer should contact the YOKOGAWA representative from which the product was purchased or the nearest YOKOGAWA office. • If a problem arises with this product, please inform YOKOGAWA of the nature of the problem and the circumstances under which the problem developed, including the model specification and serial number. Any diagrams, data and other information you can include...
The ADMAG TI Series Fieldbus communication type employs the specifications standardized by FieldComm Group, and provides interoperability between Yokogawa devices and those produced by other manufacturers. Fieldbus comes with software consisting of AI, DI, IT, AR, PID and MAO (only AXG) function blocks that enable the flexible implementation of systems.
Page 15
<2. About Fieldbus> (4) Local Display transducer block (LTB) • Controls the display. (5) Maintenance transducer block (MTB) • Is related to settings for detailed device information and manufacturing. • Has functions to display device information (detailed version of the device, serial No. information, etc.), information related to event management (backup/restore, data logging function), application for service/factory/expert (for debugging, manufacturing), alarm/error log and software download results. (6) AI function block (AIFB) (AXG: 4, AXW: 3) • Outputs various flow rates (including flow velocity), calorie and totalized value.
<2. About Fieldbus> Block Start Index DI3 function block 6200 PID function Block 8000 MAO function block 10000 IT1 function block 16000 IT2 function block 16100 AR function block 17500 Logical Structure of Each Block ADMAG TI System/Network management VFD Fieldbus PD tag Parameters...
For laboratory or other experimental use, a twisted pair cable two to three meters in length (a cross section 0.9mm (AXG #18) or more and a cycle period of within 5 cm (2 inches)) may be used. Termination processing depends on the type of device being deployed. For this product, use an M4 screw terminal claw. Some hosts require a connector. Contact Yokogawa when making arrangements to purchase the recommended devices. IM 01E21A02-03EN...
Page 18
<3. Getting Started> Connect devices as shown in Figure 3.1. Connect the terminators at both ends of the trunk, with the minimum length of the spur laid for connection. The polarity of signal and power must be maintained. Fieldbus power supply ADMAG TI HOST...
<3. Getting Started> Host Setting To activate Fieldbus, the following settings are required for the host. Particularly, pay attention so that the address range to use includes setting values of this product. IMPORTANT Do not turn off the power immediately after setting. To improve the reliability of the device, processing to store data to EEPROM is duplexing. If the power is turned off within 60 seconds after setting is made, the modified parameters are not saved, and the settings may return to the original values.
PD Tag FT2001 Device Revision Node Address 0xF4 Serial No. XXXXXXXXXXXXXXXXX Physical Location Note: Our Device Description Files and Capabilities Files available at http://www.yokogawa.com/fld/ (English) or http://www.yokogawa.co.jp/fld/ (Japanese) Device ID 5945430016XXXXXXXX PD Tag FT2001 Device Revision Node Address 0xF4 Serial No.
Integration of DD If the host supports DD (Device Description), the DD of this product needs to be specified. Check if the host has the following directory under the directory to specify DD. 594543¥0016 (AXG) 594543¥0017 (AXW) (594543 is the manufacturer number of Yokogawa Electric Corporation, and 0016 is the device number of AXG, and 0017 is the device type for AXW.) If the directory is not found, the DD of this product has not been included. Create the above directory and copy the DD file of this product (0m0n.ff5, 0m0n.sy5 (m, n is a numeral)) (separately supplied) into the directory.
<4. Configuration> Configuration This chapter describes how to adapt the function and performance of this product to suit specific applications. Because multiple devices are connected to Fieldbus, it is important to carefully consider the device requirements and settings when configuring the system. Specifically, the following steps must be taken. (1) Network design Determine the devices to be connected to Fieldbus and check the capacity of the power supply. (2) Network definition Determine the PD tag and node addresses for all devices.
<4. Configuration> Cable: Used for connecting devices. Refer to “Fieldbus Technical Information” (TI 38K03A01-01E) for details of instrumentation cabling. For field branch cabling, use terminal boards or a connection box as required. First, check the capacity of the power supply. The power supply capacity must be greater than the sum of the maximum current consumed by all devices to be connected to Fieldbus. The maximum current consumed (power supply voltage 9V to 32V) for this product is 15 mA.
Page 24
<4. Configuration> The devices within the address range written as “Unused” in Figure 4.1 cannot be used on Fieldbus. For other address ranges, the range is periodically checked to identify when a new device is mounted. Care must be taken to keep the unused device range as narrow as possible so as to lessen the load on Fieldbus. 0x00 Not used 0x0F...
<4. Configuration> Definition of Combining Function Blocks The input/output parameters for function blocks are combined. Specifically, see “VFD Parameter Configuration” in Section 4.6 for the details though the setting is written to the link object of this product. It is also possible to read values from the host at proper intervals instead of connecting the block output of this product to other blocks. The combined blocks need to be executed synchronously with other blocks on the communications schedule.
<4. Configuration> When the control period (macro cycle) is set to more than 4 seconds, set the following intervals to be more than 1% of the control period. • Interval between “end of block execution” and “start of sending CD from LAS” • Interval between “end of the block execution” and “start of the next block execution” Setting Tag and Address This section describes the procedures to set PD Tag and node address in this product. There are three states of the Fieldbus devices as shown in Figure 4.4, and if the state is other than the lowest SM_OPERATIONAL state, no function block is executed.
<4. Configuration> Communication Setting To set the communication function, it is necessary to change the database residing in SM-VFD. 4.5.1 VCR Setting Set VCR (Virtual Communication Relationship), which specifies the called party for communication and resources. This product has 38 VCRs whose application can be changed, except for the first VCR, which is used for management. This product has VCRs of four types: Server (QUB) VCR A Server responds to requests from a host. This communication needs data exchange. This type of communication is called QUB (Queued User- triggered Bidirectional) VCR.
<4. Configuration> Sub-index Parameter Name Description Specifies maximum DL Service Data unit Size (DLSDU). FasDllMaxDlsduSize Set 256 for Server and Trend VCR, and 64 for other VCRs. Specifies whether connection is monitored. Set TRUE FasDllResidualActivity (0xff) for Server. This parameter is not used for other Supported communication. FasDllTimelinessClass Not used. FasDllPublisherTime Not used. WindowSize FasDllPublisherSynchronizaing Not used. Dlcep FasDllSubsriberTime Not used. WindowSize FasDllSubscriberSynchronization Not used.
<4. Configuration> VFD Parameter Configuration Set the parameter for function block VFD. 4.6.1 Link object A link object combines the data voluntarily sent by the function block with the VCR. This product has 45 link objects. A single link object specifies one combination. Each link object has the parameters listed in Table 4.6. Parameters must be changed collectively for each VCR because the modifications made to each parameter may cause inconsistent operation.
<4. Configuration> 4.6.2 Alert Object This product can report the following alarms or events. Analog Alerts (Generated when a process value exceeds the threshold) AI Block: Hi-Hi Alarm, Hi Alarm, Low Alarm, Low-Low Alarm Discrete Alerts (Generated when an abnormal condition is detected) Resource Block: Block Alarm, Write Alarm Transducer block: Block alarm AI, DI, IT, AR, PID and MAO Blocks: Block Alarm...
<4. Configuration> 4.6.3 Trend Object It is possible to set the parameter so that the function block automatically transmits Trend. This product has ten Trend objects, eight of which are used for Trend in analog mode parameters and two is used for Trend in discrete mode parameter. A single Trend object specifies the trend of one parameter. Each Trend object has the parameters listed in Table 4.8. The first four parameters are the items to be set. Before writing to a Trend object, it is necessary to release the WRITE_LOCK parameter.
Page 32
<4. Configuration> Table 4.11 View Object for Resource Block View View Relative Relative Parameter Name Parameter Name Index Index ST_REV FD_OFFSPEC_MASK TAG_DESC FD_MAINT_MASK STRATEGY FD_CHECK_MASK ALERT_KEY FD_FAIL_ALM MODE_BLK FD_OFFSPEC_ALM BLOCK_ERR FD_MAINT_ALM RS_STATE FD_CHECK_ALM TEST_RW FD_FAIL_PRI FD_OFFSPEC_PRI DD_RESOURCE MANUFAC_ID FD_MAINT_PRI DEV_TYPE FD_CHECK_PRI DEV_REV FD_SIMULATE DD_REV...
Page 42
<4. Configuration> View Relative Parameter Name Index P1_WIDTH P1_RATE_UNIT P1_RATE_VAL P1_LOW_CUT P1_LOW_CUT_UNIT P1_ALM_OUT F1_AT_0 F1_AT_100 SO1_FUNC P1_OPTS Total 114 114 109 106 IM 01E21A02-03EN...
Page 43
<4. Configuration> Table 4.16 View Object for AI Function Block Table 4.17 View Object for DI Function Block View View Relative Relative Parameter Name Parameter Name Index Index ST_REV ST_REV TAG_DESC TAG_DESC STRATEGY STRATEGY ALERT_KEY ALERT_KEY MODE_BLK MODE_BLK BLOCK_ERR BLOCK_ERR PV_D OUT_D SIMULATE SIMULATE_D...
Page 44
<4. Configuration> Table 4.18 View Object for PID Function Block View View Relative Relative Parameter Name Parameter Name Index Index ST_REV LO_LO_LIM DV_HI_PRI TAG_DESC STRATEGY DV_HI_LIM ALERT_KEY DV_LO_PRI MODE_BLK DV_LO_LIM BLOCK_ERR HI_HI_ALM HI_ALM LO_ALM LO_LO_ALM PV_SCALE DV_HI_ALM OUT_SCALE DV_LO_ALM GRANT_DENY Total 43 43 83 104 CONTROL_OPTS STATUS_OPTS...
Page 45
<4. Configuration> Table 4.19 View Object for MAO Function Block View Relative Parameter Name Index ST_REV TAG_DESC STRATEGY ALERT_KEY MODE_BLK BLOCK_ERR CHANNEL IN_1 IN_2 IN_3 IN_4 IN_5 IN_6 IN_7 IN_8 MO_OPTS FSTATE_TIME FSTATE_VAL1 FSTATE_VAL2 FSTATE_VAL3 FSTATE_VAL4 FSTATE_VAL5 FSTATE_VAL6 FSTATE_VAL7 FSTATE_VAL8 FSTATE_STATUS UPDATE_EVT BLOCK_ALM Total...
Page 46
<4. Configuration> Table 4.20 View Object for IT Function Block Table 4.21 View Object for AR Function Block View View Relative Relative Parameter Name Parameter Name Index Index ST_REV ST_REV TAG_DESC TAG_DESC STRATEGY STRATEGY ALERT_KEY ALERT_KEY MODE_BLK MODE_BLK BLOCK_ERR BLOCK_ERR TOTAL_SP OUT_RANGE PRE_OUT GRANT_DENY...
<4. Configuration> Table 4.22 Indexes of VIEW for Each Block VIEW Block Name Resource block 40100 40101 40102 40103 Sensor transducer block 40200 40201 40202 to 40203 40204 to 40209 Diagnosis transducer block 40250 40251 40252 to 40253 40254 to 40255 Display transducer block 40270 40271...
Page 48
This chapter describes each function of the product. The overview of each function is as follows. NOTE Fieldbus items found in the following menu path tables indicate a case where OUNDATION FieldMate, Yokogawa Electric’s adjusting and setting tool for field device/environmental device, is used. NOTE For various setting changes, there is a mode which allows each parameter to be written.
Page 49
<5. Functions> Alarm A detected error can be notified as an alarm or warning. This function can show the error status based on NAMUR NE107 by setting parameters. It is also possible to keep alarms that occurred in the past as a record and mask unnecessary alarms so that they are hidden on the display. For details about the alarm contents and setting procedures, refer to Section 5.6.
Page 50
<5. Functions> Write lock function A write lock can be changed with two methods; the hardware write lock switch and the parameter settings (software write lock). For details about the software write lock function, refer to Section 5.12. Simulation function ...
<5. Functions> Basic Settings 5.1.1 Overview This product can measure the flow velocity, volumetric flow rate, mass flow rate, calorie, and various diagnostic values. Refer to the table below for the specification codes for communication/input-output and connection terminals, and input and output for each terminal. Communication Connection Terminal and I/O I/O1 +/- I/O2 +/- I/O3 +/- I/O4 +/- code OUNDATION P/Sout Fieldbus (Passive) communication P/Sout: Pulse output or status output The position of Communication and I/O code: Integral Type: A XG□□□-□□□□□□□□□□□□□□-□■■□□...
Page 53
<5. Functions> Display Device setup ► Detailed setup ► Fieldbus info ► AI1FB* ► (see below) Device Configuration ► AI1* ► Device Configuration ► Configuration ► Basic Setting ► OUNDATION Fieldbus (see below) *For AXG, one from Al1 to Al4, and for AXW, one from AI1 to AI3. Parameter Relative Block Name Description Index Display Fieldbus OUNDATION Selects CHANNEL number - AI4(AXG) used in the AI function block. Channel CHANNEL Refer to Table 5.1.2.1 for...
<5. Functions> 5.1.3 Display of the Process Value The flow rate (PV), flow velocity, volumetric flow rate, mass flow rate, totalized value, calorie, flow noise, electrode adhesion, electrode potential, and conductivity can be checked with the following parameters. However, calorie, flow noise and conductivity are parameters which can be checked only with AXG, and they are hidden with AXW. Flow rate (PV), flow velocity, volumetric flow rate, mass flow rate, totalized value, calorie Menu path Display Device setup ► Process variables ► (see below) Process Variables ► STB ► Process Variables ► Dynamic Variables ► Device Variables OUNDATION Fieldbus ► (see below) Parameter Block Relative Description Name Index Display Fieldbus...
Page 55
<5. Functions> Flow noise Menu path Display Device setup ► Diag/Service ► Diagnosis ► Flow noise ► Result ► (see below) Process Variables ► DTB ► Process Variables ► Dynamic Variables ► Device Variables OUNDATION Fieldbus ► Flow Noise Value ► (see below) Parameter Block Relative Description Name Index Display Fieldbus OUNDATION Flow Noise Value.Status Status of the flow noise value Value Flow Noise Value.Value Displays the flow noise value. This parameter can be used only for AXG, not for AXW. Electrode adhesion detection ...
<5. Functions> Conductivity Menu path Display Device setup ► Diag/Service ► Diagnosis ► Conductivity ► Result ► (see below) Process Variables ► DTB ► Process Variables ► Dynamic Variables ► Device Variables OUNDATION Fieldbus ► Conductivity Value ► (see below) Parameter Block Relative Description Name Index Display Fieldbus OUNDATION Displays the status of the Conductivity Value.Status calculated conductivity. Displays the calculated Value Conductivity Value.Value conductivity. This parameter can be used only for AXG, not for AXW. 5.1.4 Engineering Unit Setting The unit of the process value set for the AI channel (see 5.1.2) can be set with the following...
<5. Functions> Display Device setup ► Detailed setup ► Totalizer ► (see below) Device Configuration ► STB ► Device Configuration ► Configuration ► Totalizer ► (see OUNDATION Fieldbus below) Parameter Block Relative Description Name Index Display Fieldbus OUNDATION Totalizer 1 ► Unit Totalizer 1 ► Total 1 Lowcut Displays the unit of totalizer 1. Totalizer 2 ► Unit Totalizer 2 ► Total 2 Lowcut Displays the unit of totalizer 2. NOTE If there is inconsistency between the process value selected in the AI FB channel and the unit set with XD scale Units index, Bit1 in Block Error of the AI function block is set on.
<5. Functions> NOTE Pay attention to the following points when setting the flow rate span. • For a line with a significant flow rate change, set the flow rate span to the maximum flow rate. If the flow rate exceeds the flow rate span, the error of the flow rate% increases. • For a line with a stable flow rate, set the flow rate span to approximately 1.5 to 2.0 times the normal flow rate. • Set the flow rate for which the flow velocity is comparable to the range from 0.3 to 10 m/s. Check the flow velocity using the sizing data described in the general specifications. If the flow velocity is checked using the parameter, it displays the value obtained by converting the specified flow rate span to the flow velocity. NOTE Be sure to set the flow rate unit first when the flow rate unit and its span value are changed at the same time. 5.1.6 Damping Time Constant Setting The flow rate-related process value (flow velocity, volumetric flow rate, mass flow rate and calorie), the damping time constant for flow noise (63.2% response) and the damping time constant for AIFB output can be specified. To reduce an output fluctuation or change the response speed, change the damping time constant (default value, 3.0 seconds). For a piston pump, etc., the pulsing flow of up to 1 Hz can be measured with an output damping of 0.1 seconds. The setting can be configured with the following parameters. Flow rate-related process values/frequency Menu path Display Device setup ► Detailed setup ► Pro var ► (see below) Device Configuration ► STB ► Device Configuration ► Configuration ► Process...
Page 59
<5. Functions> Pulse output/totalization Menu path Display Device setup ► Detailed setup ► Pro var ► (see below) Device Configuration ► STB ► Device Configuration ► Configuration ► Process OUNDATION Fieldbus Variables ► Density ► (see below) Parameter Block Relative Description Name Index Display Fieldbus OUNDATION Specifies the damping time constant of the Velocity ► Damp pls/ttl Velocity ► Velocity Damping Ttl flow velocity pulse/ totalized value. Specifies the damping Volume Flow ► Volume F time constant of the Volume ► Damp pls/ttl Damping Total volumetric flow rate pulse/totalized value.
<5. Functions> NOTE The output fluctuation increases if the damping time constant is set to a lower value. Set the damping time constant to 5 seconds or longer for using the constant for control purpose. 5.1.7 Low-cut Function Setting A low-cut value can be set for the frequency output, pulse output and totalizer. If the low-cut function is used, the flow rate below setponts can be stopped from being output. This function helps reduce erroneous output when the flow rate is “0”.
Page 61
<5. Functions> Frequency output/pulse output Menu path Display Device setup ► Detailed setup ► Pulse/Status out ► PO1/SO1 ► (see below) Device Configuration ► MTB ► Device Configuration ► Maintenance ► Pulse/Status Out OUNDATION Fieldbus ► (see below) Parameter Block Relative Description Name Index Display Fieldbus OUNDATION Specifies the low-cut value of Low cut Pulse 1 Low Cut the frequency output and pulse output. Totalizer Menu path Display Device setup ► Detailed setup ► Totalizer ► (see below)
<5. Functions> When a flow rate is decreasing and an actual flow rate goes below 0.95 [m /h], the output flow rate is reduced to 0.0 [m /h] with the low-cut function. On the other hand, when a flow rate is increasing and the actual flow rate goes over 1.05 [m /h], a flow rate is output. Output [m Hysteresis Input [m 0.95 1.05 F0401.ai NOTE Note that the totalization might be counted due to the influence of the output fluctuation near 0% output if a small low-cut value is set. In particular, if the value of the flow rate span, damping time constant or conductivity is low, the totalization is easily counted when the flow rate is zero. In such a case, increase the flow rate span, damping time constant, or low-cut value. NOTE If the output process value to be output is changed, it is necessary to specify the low-cut value again.
<5. Functions> 5.1.9 Density Setting The density must be set in order to measure the mass flow rate. The density can be selected from the fixed density or density corrected with temperature. For details about how to measure the mass flow rate or correct the density by temperature, refer to Subsection 5.5.5. If density is set to “0” while the mass flow rate is mapped to PV, a setting error will result. The setting can be configured with the following parameters. Menu path Display Device setup ► Detailed setup ► Pro var ► Density ► (see below) Device Configuration ► STB ► Device Configuration ► Configuration ► Process OUNDATION Fieldbus Variables ► Density ► (see below) Parameter Block Relative Description Name Index Display Fieldbus OUNDATION Selects one of the following temperature-based density corrections. • Fixed value : Uses the Value select Density Select...
<5. Functions> 5.1.10 Temperature Setting The temperature setting is required when calculating the calorie based on the temperature difference from the temperature that is taken in via MAO FB. For details about the calorie measurement, refer to Subsection 5.5.6. This parameter can be used only for AXG, not for AXW. The setting can be configured with the following parameters.
<5. Functions> 5.1.11 Zero Adjustment The zero adjustment is to set the output for zero flow velocity to 0%. Although the adjustment to zero is performed at the manufacturing factory prior to shipment, this procedure must be carried out once again following the installation of piping to match the magnetic flowmeter to its operating conditions. This subsection describes zero adjustment procedures using the display. IMPORTANT • The zero adjustment should be carried out before the actual operation. Note that other parameters cannot be set and changed during the zero adjustment (for approximately 30 seconds).
Page 66
<5. Functions> The zero adjustment starts, and the progress is displayed with the remaining time and a 00 : 00 Autozero function bar graph. Wait for the zero adjustment to complete. executing... The time remaining 00 : 08 until the end. F0407.ai After the zero adjustment is finished, the display returns to “Autozero” menu.
<5. Functions> Totalization Function 5.2.1 Totalized Value and Unit Setting This product has two totalizers for TB in addition to IT FB. A process value which can be set for the totalizer on the TB side is a volumetric flow rate, mass flow rate, and calorie. When Totalizer 1 and Totalizer 2 are selected as the channel of the AI function block, a unit can be set with following steps in 5.1.4 Engineering Unit Setting.
<5. Functions> 5.2.4 Operation of Totalizer Function at Alarm Occurrence The operation of the totalizer can be specified when an alarm that affects the totalization function occurs. The setting can be configured with the following parameters. Menu path Display Device setup ► Detailed setup ► Totalizer ► (see below) Device Configuration ► STB ► Device Configuration ► Configuration ► Totalizer ► (see OUNDATION Fieldbus below) Parameter Block Relative Description Name Index Display Fieldbus OUNDATION Specifies the totalizer 1 Totalizer1 ► Total 1 Failure Totalizer 1 ► Failure opts operation to be performed Opts when an alarm occurs. Specifies the totalizer 2 Totalizer2 ► Total 2 Failure Totalizer 2 ► Failure opts...
<5. Functions> 5.2.6 Totalization Direction Setting The totalization direction can be specified when using the totalization function. The setting can be configured with the following parameters. Menu path Display Device setup ► Detailed setup ► Totalizer ► (see below) Device Configuration ► STB ► Device Configuration ► Configuration ► Totalizer ► (see OUNDATION Fieldbus below) Parameter Block Relative Description Name Index Display Fieldbus OUNDATION Specifies the totalization Totalizer 1 ► Options Totalizer1 ► Total 1 Options direction of totalizer 1. Specifies the totalization Totalizer 2 ► Options Totalizer2 ► Total 2 Options direction of totalizer 2. From the table below, select the totalization direction. Selection Description OUNDATION...
Page 71
<5. Functions> From the table below, select the reset/preset function. In the communication access of Fieldbus, the communication access is set with the procedures of the interactive OUNDATION operation guide called DD Method. Selection Description OUNDATION Display Fieldbus Not execute Not execute Does not use the reset/preset function of the totalized value.
<5. Functions> Limit Switch Function 5.3.1 Limit Switch The limit switch function is to transmit 0 and 1 as a parameter by judging whether the selected process value is above or below the threshold value. The function operates as the figure below. Active direction: Low limit Active direction: High limit Process value Process value Set point Set point + Hysteresis Set point Set point - Hysteresis...
Page 73
<5. Functions> Parameter Block Relative Description Name Index Display Fieldbus OUNDATION Specifies the threshold of flow velocity Lmt Sts Velo1 Sp limit switch 1. Specifies the operation direction of flow Lmt Sts Velo1 Act Dir velocity limit switch 1. Specifies the hysteresis of flow velocity Lmt Sts Velo1 Hys limit switch 1. Lmt Sts Velo1 Unit Displays the unit of the flow velocity.
Page 74
<5. Functions> Mass flow rate limit switch Display Device Configuration ► STB ► Device Configuration ► Configuration ►Limit Sts Mass ► OUNDATION Fieldbus (see below) Parameter Block Relative Description Name Index Display Fieldbus OUNDATION Limit Sts Mass1 Value ► Displays the status of the contact point Lmt Sts Mass1.Status output of mass flow rate limit switch 1. Limit Sts Mass1 Value ► Displays the contact point output of mass Lmt Sts Mass1.Value flow rate limit switch 1.
Page 75
<5. Functions> Parameter Block Relative Description Name Index Display Fieldbus OUNDATION Specifies the hysteresis of calorie limit Lmt Sts Cal2 Hys switch 2. Lmt Sts Cal2 Unit Displays the unit of the calorie. Adhesion limit switch Display Device Configuration ► DTB ► Device Configuration ► Configuration ► Limit Switch OUNDATION Fieldbus Adhesion 1 ► (see below) Parameter Block Relative Description Name...
Page 76
<5. Functions> Voltage limit switch between electrode A and electrode C Display Device Configuration ► DTB ► Device Configuration ► Configuration ► Limit Switch OUNDATION Fieldbus Electrode A1 ► (see below) Parameter Block Relative Description Name Index Display Fieldbus OUNDATION Displays the status of the contact point Lim.Sw. Electrode A1 Value ► output of voltage limit switch 1 between Lmt Sts Elec A1.Status electrode A and electrode C.
Page 77
<5. Functions> Voltage limit switch between electrode B and electrode C Display Device Configuration ► DTB ► Device Configuration ► Configuration ► Limit Switch OUNDATION Fieldbus Electrode B1 ► (see below) Parameter Block Relative Description Name Index Display Fieldbus OUNDATION Displays the status of the contact point Lim.Sw. Electrode B1 Value ► output of voltage limit switch 1 between Lmt Sts Elec B1.Status electrode B and electrode C.
Page 78
<5. Functions> Flow noise limit switch (only available for AXG, not for AXW) Display Device Configuration ► DTB ► Device Configuration ► Configuration ► Limit Switch Flow OUNDATION Fieldbus Noise 1 ► (see below) Parameter Block Relative Description Name Index Display Fieldbus OUNDATION Lim.Sw. Flow Noise 1 Value ► Displays the status of the contact point Lmt Sts FLN1.Status output of flow noise limit switch 1.
Page 79
<5. Functions> Display Device Configuration ► DTB ► Device Configuration ► Configuration ► Limit Switch OUNDATION Fieldbus Conductivity 2 ► (see below) Parameter Block Relative Description Name Index Display Fieldbus OUNDATION Lim.Sw. Conductivity 2 Value Displays the status of the contact point ► Lmt Sts Cndc2.Status output of conductivity limit switch 2. Lim.Sw. Conductivity 2 Value Displays the contact point output of ► Lmt Sts Cndc2.Value conductivity limit switch 2.
<5. Functions> 5.3.2 Connection of Contact Point Output to DI Function The contact point outputs at STB and DTB are output to specific channels, respectively. By selecting the channel to use in the DI function block, it is connected to the contact point. The relation of the channel for each contact point output and the channel which can be selected from each DI function block is shown in the figure below.
<5. Functions> Inputting External Temperature By using the external temperature input, external temperature can be used for temperature-base density correction calculation and calorie calculation. For details about the temperature-input density correction calculation and calorie calculation, refer to Subsections 5.5.5 and 5.5.6. This function can be used by making the minimum settings, such as scheduling and connecting the external input to IN_1 of the MAO function block.
<5. Functions> Auxiliary Calculation Function 5.5.1 Fluid Flow Direction Setting The arrow indicated on the surface of the sensor indicates a fluid flow direction. At shipment from the manufacturing factory, a flow rate is measured assuming that the arrow direction is forward. By changing the parameter settings, this product can measure the flow rate, assuming that the reverse direction is forward against the arrow direction. The setting can be configured with the following parameter. Menu path Display Device setup ► Detailed setup ► AUX calculation ► (see below) Device Configuration ► STB ► Device Configuration ► Configuration ► AUX Calculation OUNDATION Fieldbus ► (see below) Parameter Block Relative Description Name Index Display Fieldbus OUNDATION Specifies the fluid flow Flow direct Flow Direction direction.
Page 84
<5. Functions> *1: From the table below, select the noise filter (rate limit value and dead time). Selection Rate limit value Dead time OUNDATION Display Fieldbus The value is specified in the The value is specified in the Manual Manual parameter “Rate limit”. parameter “Dead time”. Level 1 Level 1 0.5% 0.5s Level 2 Level 2 1.0% 1.0s Level 3 Level 3 5.0% 3.0s NOTE If either the rate limit value or the dead time is specified, the noise filter is set to “Manual”. NOTE Determining the rate limit value and dead time The Rage limit value: The Dead time (T...
Page 85
<5. Functions> Example: (1) When input = 0 to 10%, Damping time constant = 5 seconds, Dead time = 3 seconds, and Rate limit value = 1%, the output for the step input is obtained as shown below. Input: 0 to 10% Damping time constant: 5 s Dead time: 3 s Rate limit value: 1% Step signal 63.2% Flow rate value after rate limit processing (d) Flow rate value after damping Number of signal samples Dead time: 3 s F0421.ai • In the condition above (1), the signal exceeds the rate limit value as compared with the...
<5. Functions> 5.5.3 Pulsing Flow Support Function Setting If a pump, etc. is used, it may cause an error in the average of the flow rate due to the pulsing flow. If the pulsing flow support function is used, an error due to a pulsing flow can be reduced by following a flow rate change while controlling the flow rate calculation. The setting can be configured with the following parameter. Menu path Display Device setup ► Detailed setup ► AUX calculation ►(see below) Device Configuration ► STB ► Device Configuration ► Configuration ► AUX Calculation OUNDATION Fieldbus ► (see below) Parameter Block Relative Description Name Index Display Fieldbus OUNDATION Specifies the use of the pulsing Pulsing flow Pulsing Flow flow support function. From the table below, select the use of the pulsing flow support function. Selection Description OUNDATION Display Fieldbus Do not use the pulsing flow support function.
<5. Functions> IMPORTANT When using the DC power as the transmitter power, set the commercially available power frequency of the place where the transmitter will be used. Set “Power sync on/off” to Off and then set “Set power freq”. The excitation frequency and power frequency can be checked with the following parameters. Menu path Display Device setup ► Detailed setup ► AUX calculation ► (see below)
Page 88
<5. Functions> Parameter Block Relative Description Name Index Display Fieldbus OUNDATION Specifies the primary Coef A1 Temperature Coef A1 compensating rate. Specifies the secondary Coef A2 Temperature Coef A2 compensating rate. The density correction calculation can be set using the following procedure. (1) Set to the use of the temperature-corrected density by referring to Subsection 5.1.9. (2) Set the function of the external temperature input function to the temperature by referring to Section 5.4.
<5. Functions> 5.5.6 Calorie Calculation By obtaining the absolute temperature or the temperature difference from other product (temperature transmitter, etc.) from MAO, the calorie calculation is executable. The calorie is obtained using the following formula. Q = c × V × ∆t Q: Calorie [J/s] c: Specific heat [J/kg•K] : Mass flow rate [kg/s] ∆t: Temperature difference [K] The temperature difference of Δt varies depending on the MAO function set in Section 5.4. If the temperature difference is selected, the temperature obtained in MAO is used. If the absolute temperature is selected, a difference between the temperature obtained in MAO and the reference temperature set in Subsection 5.1.10 is used. [“Temperature acquired by MAO” – “Set reference temperature”] This function can be used only for AXG, not for AXW. The setting can be configured with the following parameter. Menu path Display Device setup ► Detailed setup ► Pro var ► Calorie ► (see below) Device Configuration ► STB ► Device Configuration ► Configuration ► Process OUNDATION Fieldbus...
<5. Functions> 5.5.7 0% Signal Lock If this function is enabled, the flow rate is fixed at 0. The setting can be configured with the following parameter. Menu path Display Device setup ► Detailed setup ► AUX calculation ► (see below) OUNDATION Device Configuration ► STB ► Device Configuration ► Maintenance ► (see below) Fieldbus Parameter Block Relative Description Name Index Display Fieldbus OUNDATION Specifies specifications for 0% 0% signal lock Signal Lock signal lock. From the table below, select the specifications of 0% signal lock. Selection Description OUNDATION Display Fieldbus Unlock Does not use 0% Signal Lock Lock Uses 0% signal lock IM 01E21A02-03EN...
Device replacement is needed. Error Message Error Description Countermeasure FD bit OUNDATION Display Fieldbus Main board CPU CPU (main board) Contact Yokogawa 010:Main CPU FAIL failure failure was detected. service center. Failure of reverse Reverse calculation Contact Yokogawa 011:Rev calc FAIL calculation was failure service center.
Page 92
<5. Functions> Error Message Error Description Countermeasure FD bit OUNDATION Display Fieldbus Failure of A/D Contact Yokogawa 017:AD 2 FAIL[Excit] A/D2 failure[Exciter] transmitter 2 (exciting service center. current) was detected. Turn off the power, Coil of sensor was 018:Coil open Coil open check coil of sensor disconnected. and excitation cable.
Page 93
<5. Functions> Process alarm The device works normally, but some issue of the process causes abnormal measurement. Maintenance work is needed. Error Message Error Description Countermeasure FD bit OUNDATION Display Fieldbus Failure of input signal Check whether signal 050:Signal overflow Signal overflow was detected.
Page 94
<5. Functions> Error Message Error Description Countermeasure FD bit OUNDATION Display Fieldbus Check AI3 Output Low alarm occurred in Value and settings of 375:AI3 Lo Alarm AI3 Low Alarm the AI3 block. AI3 Lo Lim and AI3 Lo Pri. Check AI4 Output HI_HI alarm occurred Value and settings of 376:AI4 HH Alarm...
Page 95
<5. Functions> Error Message Error Description Countermeasure FD bit OUNDATION Display Fieldbus Configuration error of nominal size was detected. Check the parameter Nominal size (fulfill “0.99 mm < 069:Nomi size cfg settings related to configuration error nominal size of sensor nominal size. < 3000.10 mm (0.01 inch < nominal size of sensor < 120.10 inch)”) Setting error of electrode adhesion Check the parameter...
Page 96
<5. Functions> Error Message Error Description Countermeasure FD bit OUNDATION Display Fieldbus The PID block is in the Change the PID block 329:PID Man Mode PID in Man Mode Man mode. mode. The PID block is Schedule the PID 330:PID Not Schedule PID Not Scheduled unscheduled.
Page 97
Check the signal cable Misconnection of cable 085:Cable miscon Cable misconnect and excitation cable was detected. connection. Insulation deterioration Coil insulation Contact Yokogawa 086:Coil insulation of the coil was warning service center. detected. The resistance value of the electrodes Adhesion over level exceeded Level 3.
Page 98
Removal of the 106:SD removal ERR removal procedure card in appropriate microSD card failed. error procedures. Mismatch of sensor Transmitter type Contact Yokogawa 131:Trans mismatch and transmitter was mismatch service center. detected. Information The device works normally and measurement is also normal. These messages are just reference information.
Page 99
<5. Functions> Error Message Error Description Countermeasure FD bit OUNDATION Display Fieldbus Simulation Switch Simulation switch is Turn on the simulation 246:Simulate SW OFF turned off. switch. IM 01E21A02-03EN...
<5. Functions> 5.6.3 Operation at the Time of Error The following table shows outputs at the time of error and actions of the outputs. ■ System alarm Error XD_ERROR BLOCK_ERR Process Totalizer Display value* Message STB DTB MTB LTB 10 Main CPU FAIL Other STOP Totalizer stop Undefined...
Page 101
<5. Functions> Abnormal Boot Alarm Process IT1 Total Backup Normal IT2 Total Backup Normal ■ Process alarm Error XD_ERROR BLOCK_ERR Process Totalizer Display value* Message STB DTB MTB LTB Follows Hold Prior 50 Signal overflow Other settings (see Alarm setting 4.2.4). Follows Empty pipe Hold Prior Other settings (see...
Page 102
<5. Functions> ■ Setting alarm Error XD_ERROR BLOCK_ERR Process Totalizer Display value* Message STB DTB MTB LTB Follows Span Normal Other settings (see Alarm configuration error calculation 4.2.4). Follows Density Normal Other settings (see Alarm configuration error calculation 4.2.4). Totalizer Pulse output 1 Normal Other processing Alarm configuration error calculation...
Page 103
<5. Functions> Error XD_ERROR BLOCK_ERR Process Totalizer Display value* Message STB DTB MTB LTB IT2 Not Normal Scheduled 340 DI1 in O/S Mode Normal 341 DI1 in Man Mode Normal DI1 Not Normal Scheduled DI1 Simulation Normal Active 344 DI2 in O/S Mode Normal 345 DI2 in Man Mode Normal...
Page 104
<5. Functions> ■ Warning Error XD_ERROR BLOCK_ERR Process Totalizer Display value* Message STB DTB MTB LTB Totalizer Pulse output 1 Normal Other processing Warning saturated calculation continue Totalizer Normal 85 Cable misconnect Other processing Warning calculation continue Totalizer Coil insulation Normal Other processing Warning...
Page 105
<5. Functions> ■ Information Error XD_ERROR BLOCK_ERR Process Totalizer Display value* Message STB DTB MTB LTB Totalizer Normal 120 Watchdog processing Normal calculation continue Totalizer Normal 121 Power off processing Normal calculation continue Totalizer Instant power Normal processing Normal failure calculation continue Totalizer Parameter Normal...
<5. Functions> 5.6.4 Alarm Display Setting (1) Alarm display If an error occurs on this product, an alarm appears on the display. The alarm display modes are classified into two types: one mode to display a process value and alarm name, and another mode to display an alarm name and action. If multiple alarms occur on this product, they will be displayed in sequence on the display. The setting can be configured with the following parameter.
<5. Functions> From the table below, select the alarm display. Selection Description OUNDATION Display Fieldbus Normal Normal Sets to the normal alarm display. NE107 NE107 Sets the alarm display based on NAMUR NE107. 5.6.5 Alarm Record Function The alarm record function can record an alarm that occurred in the past as history. The setting can be configured with the following parameters.
<5. Functions> 5.6.6 Alarm Mask Function The alarm mask function can mask a specified alarm, hide an alarm notification, and record no alarm history. The mask function can be set for both the alarm notification and alarm record, respectively. This function is only for alarm whose FD is 2, 3, 4 or 5 in the Alarm List, 5.6.2 Errors and Countermeasures. Only this target alarm is described below. The setting can be configured with the following parameters. Alarm notification mask ...
Page 109
<5. Functions> Alarm record mask If the alarm record mask function is turned “On”, it disables the alarm record. Setting example for alarm “Empty pipe detection”: To disable the alarm record, set “Empty detect on” of STB: Alarm Record Mask2 to “On”. To enable the alarm record, set “Empty detect on” of STB: Alarm Record Mask2 to “Off”. Menu path Display Device setup ► Diag/Service ► Sts/Self test ► Alarm ► Alarm record mask ► (see below) Device Configuration ► STB ► Device Configuration ► Query Device ► SnsrTB Original OUNDATION Fieldbus Parameters(Part2) ► Page 4 ► Alarm Record Mask ► (see below) Parameter Block Relative Description Name Index Display Fieldbus OUNDATION Specifies the mask function for Mask 1-1 alarm record 1-1. Alarm Record Mask1 Specifies the mask function for Mask 1-2 alarm record 1-2.
Page 110
<5. Functions> Display Fieldbus OUNDATION Default Value Attribute Parameter Parameter Alarm Name Alarm Name Name Name 018:Coil open Coil open 019:Coil short Coil short 020:Exciter FAIL Exciter failure Parameter restore 027:Restore FAIL incomplete Mask 1-2 028:Ind bd FAIL Alarm out mask 1 Indicator board failure ...
Page 111
<5. Functions> Display Fieldbus OUNDATION Default Value Attribute Parameter Parameter Alarm Name Alarm Name Name Name microSD card removal Mask 3-2 106:SD removal ERR Alarm out mask 3 procedure error Mask 3-2 120:Watchdog Alarm out mask 3 Watchdog ...
Page 112
<5. Functions> Display Fieldbus OUNDATION Default Value Attribute Parameter Parameter Alarm Name Alarm Name Name Name Density configuration 066:Density cfg ERR error Pulse output 1 067:Pls 1 cfg ERR configuration error Nominal size 069:Nomi size cfg configuration error Adhesion 070:Adh cfg ERR ...
<5. Functions> Display 5.7.1 Language Setting The language for the display can be selected from nine languages. Set the desired display language from the languages that are included in the language package specified at the time of ordering. The setting can be configured with the following parameter. Selecting language Menu path Display Device setup ► (see below) Device Configuration ► LTB ► Device Configuration ► Configuration ► Display Operation...
<5. Functions> 5.7.2 Display Item Setting This product can show up to eight items on the display by scrolling it. Set each display item to the eight display line. The setting can be configured with the following parameters. Menu path Display Device setup ► Detailed setup ► Display set ► Line select ► (see below) Device Configuration ► LTB ► Device Configuration ► Configuration ► Line Select ► OUNDATION Fieldbus (see below) Parameter Block Relative Description Name...
<5. Functions> Selection Description OUNDATION Display Fieldbus IT1.OUT IT1.OUT Displays OUT of IT1FB. IT2.OUT IT2.OUT Displays OUT of IT2FB. AR.OUT AR.OUT Displays OUT of ARFB. 5.7.3 Decimal-Point Position Setting The number of decimal places can be set to the automatic adjustment or fix mode for the totalized value or process value PV-mapped in Subsection 5.1.2. The setting can be configured with the following parameters. Menu path Display Device setup ► Detailed setup ► Display set ► Disp format ► (see below)
<5. Functions> Selection Description OUNDATION Display Fieldbus 7 digit 7 digit Fixes the number of decimal places to “7”. 5.7.4 Display Line Count and Scroll Settings This product can show up to eight items on the display by scrolling, with four lines max. shown at a time. The scroll method can be selected from the automatic display switching or the display switching using the IR switch.
<5. Functions> Selection Description OUNDATION Display Fieldbus 3 line 3 Line 3-line display with units. 4 line 4 Line 4-line display with units. *2 Select the scroll method from the table below. Selection Description OUNDATION Display Fieldbus Does not scroll. Manual Manual Sets to the scroll using the IR switch.
Page 118
<5. Functions> (1) Trend graph display setting The process value and high/low limit that can be shown in the trend graph are as follows: Process value Display Low limit High limit Flow rate (%) 100% Flow velocity Span value specified in Volumetric flow rate Subsection 5.1.5 Mass flow rate Calorie Totalizer 1 Preset value specified in...
Page 119
<5. Functions> From the table below, select the display item of trend graph. Selection Description OUNDATION Display Fieldbus None None Does not set any items (item 1 is not selectable). Specifies the flow rate for the span of the process value that is mapped Flow rate(%) Flow rate(%) with PV in Subsection 5.1.2. Specifies the process value PV-mapped in Subsection 5.1.2. Velocity Velocity Sets the display item to the flow velocity. Volume flow Volume flow Specifies the display item to the volumetric flow rate. Mass flow Mass flow Specifies the display item to the mass flow rate. Sets the display item to the calorie (only available for AXG, not for Calorie Calorie AXW).
<5. Functions> 5.7.6 Other Settings (1) Display contrast (graduations) setting The contrast of the display can be changed to 11 levels (+5 to -5). The setting can be configured with the following parameter. Menu path Display Device setup ► Detailed setup ► Display set ► Optional config ► (see below) Device Configuration ► LTB ► Device Configuration ► Configuration ► Display Operation OUNDATION Fieldbus Configuration ► (see below) Parameter Block Relative Description Name Index Display Fieldbus OUNDATION Specifies the contrast of the Contrast Display Contrast display. High NOTE How the contrast of the display looks changes a little depending on ambient temperature. Set the contrast of the display by taking into account the ambient temperature of the environment where the display is used.
Page 121
<5. Functions> (3) Date display format setting The date display format can be set. The setting can be configured with the following parameter. Menu path Display Device setup ► Detailed setup ► Display set ► Optional config ► (see below) Device Configuration ► LTB ► Device Configuration ► Configuration ► Display Operation OUNDATION Fieldbus Configuration ► (see below) Parameter Block Relative Description Name Index Display Fieldbus OUNDATION Specifies the date display Format date Display Format Date format. From the table below, set the date display format. Selection Description OUNDATION...
Page 122
<5. Functions> (5) Display squawk setting (squawk) The back light of the display can be blinked (squawked) at 4-second intervals to identify a communicating product if a number of the same instrument is installed. The setting can be configured with the following parameter. Menu path Display Device setup ► Diag/Service ► Disp indicator ► (see below) Device Configuration ► LTB ► Device Configuration ► Configuration ► Display Indication OUNDATION Fieldbus ► (see below) Parameter Block Relative Description Name Index Display Fieldbus OUNDATION Specifies the blinking operation Squawk Squawk of the display.
<5. Functions> The default value of “All block target mode” and the value right after “Restore” is “Not execute”. Menu path (at the following five points on the menu tree of the display) Device setup ► Block mode ► (see below) Device setup ► Diag/Service ► (see below) Display Device setup ► Easy setup wizard ► (see below) Device setup ► Detailed setup ► (see below) Device setup ► Detailed setup ► Fieldbus info ► (see below) Parameter Block Relative Description Name Index Display Fieldbus OUNDATION Switch the target mode of All block target RB/STB/DTB/LTB/MTB/FB mode (AIFB,DIFB) at once. Select from the table below. Selection Description OUNDATION Display Fieldbus Set the target mode of each block to O/S.
Page 124
<5. Functions> (2) microSD card format IMPORTANT If the format function of this product is not used to format the microSD card, it may cause a device operation failure. Formatting is possible with the following parameter. Menu path Display Device setup ► microSD ► (see below) Parameter Description Format...
<5. Functions> Device Information 5.8.1 Order Information Order information can be specified for this product. If a particular parameter is specified at the time of ordering, this product is shipped with the parameter specified. If a parameter is not specified at the time of ordering, that parameter needs to be set by the customer. The format of the model and suffix code is as shown below. Sensor: AXG□□□ - □□□□□□□□□□□□□□ - □□□□□ / □ (1) (2) AXW □□□ - □□□□□□□□□□□□□□ - □□□□□ / □ (1) (2) AXW □□□ G - □□□□□□ - □□□□ - □□□ / □ (1) (2) AXW □□□ W - □□□□□□ - □□□□ - □□□ / □ (1) (2) Transmitter: AXG□A - □□□□□□□□□□□ / □ (1) (2) AXW □ A - □□□□□□□□□□□...
<5. Functions> 5.8.3 Memo Function Three parameters can be used as a memo function. The memo function can be set to up to 16 characters. The setting can be configured with the following parameters. Menu path Display Device setup ► Detailed setup ► Device info ► Memo ► (see below) Device Configuration ► MTB ► Device Configuration ► Device Information ► Memo ► OUNDATION Fieldbus (see below) Parameter Block Relative Description Name Index Display Fieldbus OUNDATION...
<5. Functions> Self-check Function 5.9.1 Types of Diagnosis Functions This product has the self-check functions to diagnose device failures or process states. The diagnosis functions of this instrument are as follows: Diagnosis function Description Displays an alarm when the specified value is exceeded and outputs it as the High/low limit alarm notification status output. Diagnoses an electrode adhesion from the resistance value of the electrode, Electrode adhesion detection and displays a warning or alarm if adhesion is detected.
Page 129
<5. Functions> When the high and low limit alarms are reset, each has a hysteresis. The hysteresis width should be set with the percentage (%) for the span of the physical quantity PV-mapped in Subsection 5.1.2. The hysteresis in each case can be specified with the following parameter. Menu path Display Diagnostic ► AI1* ► Device Diagnostics ► Diagnostics/Alerts ► Alert ► Alert Common ► OUNDATION Fieldbus (see below) *For AXG, one from Al1 to Al4, and for AXW, one from AI1 to AI3. Parameter Relative Block Name...
<5. Functions> Flow rate[m Hysteresis High-High Limit High Limit Low Limit Low-Low Limit Time Status Output (High/Low limit) Status Output (High-High/ Low-Low limit) F0433.ai NOTE When the physical quantity to be output is changed, set the high/low limits to judge an alarm again.
Page 131
<5. Functions> Parameter Block Relative Description Name Index Display Fieldbus OUNDATION Specifies the value to judge Threshold level 4 Adhesion Level4 level 4. Displays the electrode Result ► Status Adhesion Status adhesion detection level. Specifies the data update Check cycle Adhesion Check Cycle cycle for electrode adhesion detection. From the table below, select the use of the electrode adhesion detection function. Selection Description OUNDATION...
<5. Functions> 5.9.4 Sensor Empty Check The sensor empty check function checks whether the sensor is in the empty pipe state, and displays an alarm if the empty pipe state is detected. For details about the alarm and warning, refer to Subsection 5.6.1. This information can be checked with the following parameter.
Page 133
<5. Functions> Parameter Block Relative Description Name Index Display Fieldbus OUNDATION Specifies the use of the Diagnostic execute Diagnostic Exe wiring connection diagnostic function. Specifies the output to use the Diagnostic output Diagnostic Output wiring connection diagnostic function. From the table below, select the use of the wiring connection diagnostic function. In the communication access of Fieldbus, the communication access is set with the procedures of the interactive operation guide called OUNDATION DD Method.
00001D 10:01 Magnetic circuit result Passed Exciting circuit result Passed Calculation circuit result Failed Device status result Passed Connection status result Passed Contact Yokogawa service center if the “Failed” message is displayed for items from “Magnetic circuit result” to “Device status result”. If “Failed” is displayed for “Connection status result”, check for wiring misconnection between the sensor and transmitter (refer to Subsection 5.9.5 for detail) and damage on the cables. The verification function can be used in two ways depending on the state of the fluid; one state where a fluid is flowing and another state where no fluid is flowing. The two diagnosis results (current and previous) are stored in the device memory, and they can be checked later. If the verification function is used, the following results can be displayed. Total judgment result Calculation circuit diagnosis result...
Page 135
<5. Functions> Parameter Block Relative Description Name Index Display Fieldbus OUNDATION Specifies the output to execute Diagnostic output Diagnostic Output the verification function. Menu path Display Device setup ► Diag/Service ► Verification ►(see below) Diagnostic ► DTB ► Device Diagnostics ► Diagnostics/Alerts ► Maintenance ► OUNDATION Fieldbus Verification ► (see below) Parameter Block Relative Description Name Index Display Fieldbus OUNDATION Specifies the fluid status to execute Mode Verification Mode the verification function. Specifies the execution of the Execute Verification Exe verification function.
Page 136
<5. Functions> *5: Select the target for diagnosis from the table below (All of them are set to diagnosis target at the time of shipment). Selection Description OUNDATION Display Fieldbus Magnetic circuit Magnetic Magnetic circuit diagnosis Excitation circuit Excitation Excitation circuit diagnosis Calculation circuit Calculation Calculation circuit diagnosis Device status Device status Device alarm diagnosis Connection status Conn status Wiring misconnection check In the default state, all of the diagnosis results are reflected in the final results of the verification.
<5. Functions> NOTE • Be sure to use the verification function when the sensor is in the full pipe state. If the sensor is in the empty pipe state, the function to detect adhesion may not run normally. • When using the verification function, correctly specify the fluid status with the parameter. • If there is a problem with the result of the verification function, refer to the Maintenance Manual. 5.9.7 Electrode Insulation Deterioration Diagnosis (only available for AXG, not for AXW) The electrode insulation deterioration diagnosis function diagnoses the deterioration of insulation with the resistance value of the electrode and displays a warning if the deterioration of insulation is detected.
<5. Functions> IMPORTANT • Before using the electrode insulation deterioration diagnosis function, be sure to disconnect this product from the control loop. • While the electrode insulation deterioration diagnosis function is used, the pulse output is not output correctly. NOTE Before using the electrode insulation deterioration diagnosis function, always make sure that the sensor is in the full pipe state.
<5. Functions> Selection Description OUNDATION Display Fieldbus Disable Disable Does not use the flow noise diagnosis function. Enable Enable Uses the flow noise diagnosis function. NOTE If the flow noise diagnosis function is set to “Disable”, the flow noise value and level are cleared. 5.9.9 Diagnosing Low Conductivity (only available for AXG, not for AXW) The low conductivity diagnosis function calculates conductivity from the resistance value and size of the electrode and displays a warning if the conductivity falls below the specified value. For details about the alarm and warning, refer to Subsection 5.6.1.
<5. Functions> NOTE The electrode size is specified at shipment from the manufacturing factory. When any parameter related to the order information about the device is changed, the order information at shipment from the manufacturing factory cannot be referred to. To store the order information defined at shipment from the manufacturing factory, it is recommended to refer to Section 5.11 to make a backup. NOTE Before using the low conductivity diagnosis function, always make sure that the sensor is in the full pipe state.
<5. Functions> 5.9.11 Other Setting In addition, the maximum voltage values of the flow rate signal and coil resistance value are displayed as diagnostic information. This information can be checked with the following parameters. The setting can be configured with the following parameters. Menu path Display Device setup ► Diag/Service ► Diagnosis ► (see below) Diagnostic ► DTB ► Device Diagnostics ► Diagnostics/Alerts ► Diagnostics ► (see OUNDATION Fieldbus below) Parameter Block Relative Description Name Index Display Fieldbus OUNDATION Displays the maximum voltage value of the flow rate signal V peak hold Peak Hold Value...
<5. Functions> 5.10 Test Mode 5.10.1 Test Mode Setting If the test mode is executed, the flow velocity or the value to be output from a connection terminal can be arbitrarily set, and a response from the device can be tested. A warning is displayed to indicate that the test mode is in use while this test mode is used. The setting can be configured with the following parameter.
<5. Functions> 5.10.2 Test Value Setting It is necessary to set a test value for the terminal output value (pulse/status) and the process value. The setting can be configured with the following parameters. However, the unit of the process value to test is the unit specified in Subsection 5.1.4. If the unit is changed, the process value is also changed in conjunction with the changed unit. Menu path Display Device setup ► Diag/Service ► Test ► (see below) Device Configuration ► MTB ► Device Configuration ► Query Device ► MaintTB Original OUNDATION Fieldbus Parameters(Part2) ► Page 4 ► Test ► (see below) Parameter Block Relative Description Name Index Display Fieldbus OUNDATION Sets the display item to the flow Velocity Velocity Test Value...
<5. Functions> 5.10.4 Test Mode Auto Reset If the specified time lapses with no parameters changed while the test mode is enabled, the test mode is reset automatically. When any test mode parameter is changed, the test mode reset time is extended. The setting can be configured with the following parameter. Menu path Display Device setup ► Diag/Service ► Test ► (see below) Device Configuration ► MTB ► Device Configuration ► Query Device ► MaintTB Original OUNDATION Fieldbus Parameters(Part2) ► Page 4 ► Test Parameter Block Relative Description Name Index Display Fieldbus...
There are three backup methods available: Backup from the main board of this product to the memory on the display board, backup from the main board of the product to the microSD card, and backup from the memory on the display board to the microSD card. The file name, backup name, and date can be specified using the backup function. The data backed up to the microSD card is stored in the “YOKOGAWA” folder as a “.PAR” file. The setting can be configured with the following parameters. For details about the backup parameters, refer to Subsection 5.11.3. Menu path Display Device setup ► Diag/Service ► Param bkup/restore ► (see below)
Page 146
<5. Functions> From the table below, select the execution of the backup function. In the communication access of F OUNDATION Fieldbus, the communication access is set with the procedures of the interactive operation guide called DD Method. Selection Description OUNDATION Display Fieldbus Not execute...
Page 147
<5. Functions> The table below shows alarms whose parameters can be backed up when an alarm occurs. : Executable when an alarm occurs. -: Not executable when an alarm occurs. Alarm name Backup Display Fieldbus OUNDATION 010:Main CPU FAIL 10:Main board CPU failure 011:Rev calc FAIL 11:Reverse calculation failure...
Page 148
<5. Functions> Alarm name Backup Display Fieldbus OUNDATION 124:Data log run 124:Data logging running 131:Trans mismatch 131:Transmitter type mismatch 133:G/A mismatch 133:G/A mismatch error 225:Lnk.O16/32 N/O 225:Link Obj. 16/32 Not Open 226:Lnk.O15/31 N/O 226:Link Obj. 15/31 Not Open ...
Page 149
<5. Functions> Alarm name Backup Display Fieldbus OUNDATION 335:IT1 ttl bkup ERR 335:IT1 Total Backup Err 336:IT2 O/S Mode 336:IT2 in O/S mode 337:IT2 Man Mode 337:IT2 in Man mode 338:IT2 Not Schedule 338:IT2 Not Scheduled 339:IT2 ttl bkup ERR 339:IT2 Total Backup Err ...
<5. Functions> IMPORTANT • When backing up the data in the microSD card, make sure that the preparation of the microSD card is completed. It takes approximately one minute until the product is ready to store data in the microSD card after it has been turned on. •...
Page 151
<5. Functions> Device Information Duplicate Data Restore Data Compulsion Data Sensor Serial No Main Board Software Rev. Sensor Board Software Rev. Display Board Software Rev. Model (Note) Communication and I/O Code ...
Page 152
<5. Functions> The result of the restore function is displayed as shown below. Selection Description OUNDATION Display Fieldbus Unexecuted Unexecuted Does not restore data. Success Success Succeeded in restoration. Failure Failure Failed in restoration. Running Running Restore running The table below shows alarms whose parameters can be restored or duplicated when an alarm occurs.
Page 154
<5. Functions> Alarm Name Restore or Duplicate Display Fieldbus OUNDATION 314:AI4 Not Schedule 314:AI4 Not Scheduled 315:AI4 Simulate Act 315:AI4 Simulation Active 328:PID O/S Mode 328:PID in O/S Mode 329:PID Man Mode 329:PID in Man Mode 330:PID Not Schedule 330:PID Not Scheduled ...
<5. Functions> Alarm Name Restore or Duplicate Display Fieldbus OUNDATION 393:PID LL Alarm 393:PID Low Low Alarm 394:PID Hi Alarm 394:PID High Alarm 395:PID Lo Alarm 395:PID Low Alarm 395:PID Lo Alarm PID Low Alarm IMPORTANT When using the restore function, be sure to prepare a backup file in the built-in memory or the microSD card. Note that the restore function is not executable if a backup file is not provided.
Page 156
<5. Functions> Parameter Restore Block Duplicate Restore Compulsion Restore Name Display Fieldbus OUNDATION data data data Factory Start/Stop Total1 Execution Reset/Preset Total1 Preset Preset value Total1 Preset Value Set point Total1 Setpoint ...
Page 157
<5. Functions> Parameter Restore Block Duplicate Restore Compulsion Restore Name Display Fieldbus OUNDATION data data data Factory Line 2 Display Line Select 2 Line 3 Display Line Select 3 Line 4 Display Line Select 4 ...
<5. Functions> 5.11.4 Data Logging Function When the optional code MC (microSD card) is selected, the data logging function can store up to four process values to the microSD card. To use this function, it is necessary to specify a file name, data storage interval,and ending time. Stored data is saved in the “YOKOGAWA” folder as a “.TRD” file. The setting can be configured with the following parameters. Menu path Display Device setup ► Diag/Service ► Data log ► (see below) Device Configuration ► MTB ► Device Configuration ► Maintenance ► Data Logging ► OUNDATION Fieldbus (see below) Parameter Block Relative Description Name Index Display Fieldbus OUNDATION Specifies the name of the file to be File name Logging File Name stored.
Page 159
<5. Functions> From the table below, select the ending time of the data logging function. Selection Description OUNDATION Display Fieldbus 10 min 10min Sets the ending time to 10 minutes later. 30 min 30min Sets the ending time to 30 minutes later. Sets the ending time to 1 hour later.
Page 160
<5. Functions> When the microSD card cannot be accessed to remove, the icon of “Disable to access the microSD card” is displayed. Insert the microSD card again when it is necessary to use this function again. The alarm of “microSD failure” occurs when the microSD card has any problems. Ready for the microSD card Accessing the microSD card Disable to access the microSD card...
<5. Functions> 5.12 Write Lock Function A write lock can be changed with two methods; the hardware write lock switch and parameter settings for software write lock. When the write lock is enabled with either method, data cannot be written. For details about the write lock switch, see the Installation Manual. This function can be configured with the following parameters.
Page 162
<5. Functions> Table 5.12-2 Relationship among Feature Selection, Write Lock Switch and WRITE_ LOCK Parameter Feature Selection Write lock Write Lock Hard W Lock Soft W Lock switch (bit4) (bit3) 0 (OFF) Setting unable (“1” (write lock disabled)) 0 (OFF) (Write lock disabled) (Write lock disabled) (At factory shipping) 1 (ON) (Write lock enabled) 1 (ON) 0 (OFF) Setting disabled (Write lock enabled) * W hen both of “Hard W Lock” and “Soft W Lock” are set to 1(ON), the settings for “Hard W Lock”...
<5. Functions> 5.13 Simulation Function The product has a function to simulate the input of the function block as if the data is received from the transducer block. This function makes it possible to test the function block and alarm- processing system on the downstream side.
Page 164
<5. Functions> Simulation switch (SW1-1) Safety cover Write lock switch (SW1-2) F0520.ai Figure 13.1 Settings of Simulation Switch IMPORTANT • To set the simulation switch, it needs to remove and install the cover on the display side. Refer to the procedures described on the ADMAG TI Installation Manual for implementation. •...
<5. Functions> 5.14 Pulse Output, Frequency Output, and Status Output NOTE The pulse output, frequency output and status output should be used only at calibrating, and not used when normally running. 5.14.1 Outputs of I/O2 Terminals Use the I/O2 terminal only when calibrating. The I/ O2 terminal can be used as the pulse output, frequency output, and status output.
<5. Functions> From the table below, select the use of the alarm output function. Selection Description OUNDATION Display Fieldbus 0 pps 0 pps Pulse output stop Outputs the frequency or fixed pulse with the measured value Measured value Measured value calculated while an alarm occurs. Outputs the frequency or pulse with the last instantaneous value Last valid Last valid right before an alarm occurs (output is monotonic increase).
<5. Functions> 5.14.4 Active Direction Setting The active direction of the pulse output or status output can be set. The setting can be configured with the following parameter. Menu path Display Device setup ► Detailed setup ► Pulse/Status out ► PO1/SO1 ► (see below) Device Configuration ► MTB ► Device Configuration ► Maintenance ► Pulse/Status Out OUNDATION Fieldbus ► (see below) Parameter Block Relative Description Name Index Display Fieldbus OUNDATION Specifies an active direction for Active mode Pulse 1 Active Mode the pulse signal.
Page 168
<5. Functions> From the table below, select the pulse rate scaling. Selection Description OUNDATION Display Fieldbus n unit/P n unit/P x units per pulse u unit/P u unit/P x units per pulse m unit/P m unit/P x units per pulse Unit/P Unit/P 1 unit per pulse...
<5. Functions> 5.14.6 Frequency Output Range Setting When the frequency output is used, the frequency at 0% and 100% can be specified for the span of the process value. The frequency output range can be set by specifying the frequency. Set the output frequency for the span of the process value which is assigned to PV in Subsection 5.1.2.
<6. Parameter Lists> Parameter Lists Note: The Write Mode column contains the modes in which each parameter is write enabled. : Write enabled in the O/S mode. MAN : Write enabled in the Man and O/S modes. AUTO : Write enabled in the Auto, Man, and O/S modes. : Unable to write Resource Block Relative...
Page 171
Index Mode Manufacturer identification number (ID No.) used by an interface device 1010 MANUFAC_ID 0x594543 to locate the DD for the resource. The manufacturer identification number of Yokogawa is 5850435 (0x594543). ID number assigned to the device. The 1011 DEV_TYPE 0x16 ID number for AXG is 0x0016, and for AXW 0x0017. 1012 DEV_REV Device revision number.
Page 172
<6. Parameter Lists> Relative Write Index Parameter Name Default Value Description Index Mode Sets time for device’s communication 1026 SHED_RCAS 640000 AUTO timeout set for Remote cascade. Used only with PID function. Sets time for device’s communication 1027 SHED_ROUT 640000 AUTO timeout set for remote out.
Page 173
<6. Parameter Lists> Relative Write Index Parameter Name Default Value Description Index Mode Version number of the FF certification 1041 ITK_VER test (interoperability test) by Fieldbus Foundation applied to this product. COMPATIBILITY_ Indicates the lower revision compatible 1042 with the device DevRev. Indicates capability level inside the 1043 CAPABILITY_LEV 0 device.
Page 174
<6. Parameter Lists> Relative Write Index Parameter Name Default Value Description Index Mode Specifies a bit not to notify to the host among 32-bit “CheckFunction” alarms FD_CHECK_ 1056 0x00000000 AUTO appearing on FD_CHECK_ACTIVE. For MASK details about bit assignment, refer to ■ Field Diagnostic. 0(Uninitialized) AUTO 0(Uninitialized) Indicates contents of the alarm when the 1057 FD_FAIL_ALM alarm classified into “Failed” occurs. 0(Other) 0(Uninitialized) AUTO Indicates contents of the alarm when the 0(Uninitialized) alarm classified into “Off Specification”...
Page 175
<6. Parameter Lists> Relative Write Index Parameter Name Default Value Description Index Mode Shows the FD_CHECK_ALM priority of the alarm. To activate an alarm on communication, it is necessary to specify the priority for alarm activation in advance. To activate an 1064 FD_CHECK_PRI 0 AUTO alarm, set 3 or more.
Page 176
<6. Parameter Lists> Relative Write Index Parameter Name Default Value Description Index Mode Parameter set by the user as the mask from FD_EXTENDED_ACTIVE_6 to FD_EXTENDED_ DEVICE CONDITION_ACTIVE_6. For 1080 0x00000000 AUTO MAP_6 details about bit assignment, refer to FD and bit items in the table in Subsection 5.6.2.
Page 177
<6. Parameter Lists> Field diagnostic Selection Fieldbus OUNDATION Electronics failure Sensor/Actuator failure Failure which requires investigation Device specific failure Operated at the backup side Firmware update error Communication configuration error Non operating state Calibration warning Instrument configuration error Function restricted Simulation mode Manual mode Function Block notification Device specific function check Sensor-Actuator value out of specification...
<6. Parameter Lists> Sensor Transducer Block List of sensor transducer block parameter Relative Write Index Parameter Name Default Value Description Index Mode Information on this block, such 2000 Block Header as Block Tag, DD Revision, Execution, etc. Represents the revision level of the setting parameter of the own 2001 ST_REV...
Page 179
Indicates the serial No. of the 2023 SENSOR_SN Space (32 characters) sensor. SENSOR_CAL_ Specifies a calibration method for 2024 101(static weigh) AUTO METHOD the sensor. SENSOR_CAL_ Specifies a location to calibrate 2025 Yokogawa AUTO the sensor. SENSOR_CAL_ 0,0,0,1,1,15 (00:00:00 Specifies the calibration date of 2026 AUTO DATE January 1, 2015) the sensor. SENSOR_CAL_ Specifies the calibrator of the 2027 Yokogawa AUTO sensor.
Page 180
<6. Parameter Lists> Relative Write Index Parameter Name Default Value Description Index Mode VELOCITY_ 2039 FLOW_ AUTO See 5.1.6. DAMPING VELOCITY_ FLOW_ 2040 AUTO See 5.1.6. DAMPING_ TOTAL CALORIFIC_ 2041 See 5.1.3. VALUE 2042 CALORIFIC_UNIT 50302(J/h) See 5.1.4. CALORIFIC_ 2043 AUTO See 5.1.6.
Page 181
<6. Parameter Lists> Relative Write Index Parameter Name Default Value Description Index Mode 2070 TOT1_OPTS 2(OnlyPositive) See 5.2.6. 2071 TOT1_EXEC 0(Stop) See 5.2.5. 2072 TOT1_PRESET 0(Not execute) See 5.2.7. 2073 TOT1_PRE_VAL See 5.2.7. 2074 TOT1_SETPNT See 5.2.3. 2075 TOT2_CONV_FC 1.0 See 5.2.2. 2076 TOT2_LOWCUT See 5.1.7.
Page 182
<6. Parameter Lists> Relative Write Index Parameter Name Default Value Description Index Mode LIMIT_STS_ 0x1C See 5.3.1 ■ Flow velocity limit 2113 VEL2_VALUE switch. LIMIT_STS_ See 5.3.1 ■ Flow velocity limit 2114 VEL2_SETPOINT switch. LIMIT_STS_ See 5.3.1 ■ Flow velocity limit 2115 VEL2_ACT_ 0(Low limit) switch. DIRECTION LIMIT_ See 5.3.1 ■ Flow velocity limit 2116 STS_VEL2_ switch. HYSTERESIS LIMIT_STS_ See 5.3.1 ■ Flow velocity limit 2117 1061(m/s) VEL2_UNIT switch.
Page 183
<6. Parameter Lists> Relative Write Index Parameter Name Default Value Description Index Mode LIMIT_STS_ 0x1C 2138 See 5.3.1 ■ Calorie limit switch. CAL1_VALUE LIMIT_STS_ 2139 See 5.3.1 ■ Calorie limit switch. CAL1_SETPOINT LIMIT_STS_ 2140 CAL1_ACT_ 1(High limit) See 5.3.1 ■ Calorie limit switch. DIRECTION LIMIT_ 2141 STS_CAL1_ See 5.3.1 ■ Calorie limit switch. HYSTERESIS LIMIT_STS_ 2142 50302(J/h) See 5.3.1 ■ Calorie limit switch. CAL1_UNIT LIMIT_STS_ 0x1C 2143 See 5.3.1 ■ Calorie limit switch.
Page 184
<6. Parameter Lists> Relative Write Index Parameter Name Default Value Description Index Mode 2163 STB_INFO1 Parameter for service IM 01E21A02-03EN...
Page 185
<6. Parameter Lists> List of selection for sensor transducer block parameter Label Selection Value OUNDATION OUNDATION Parameter Name Display Display Fieldbus Fieldbus SENSOR_CAL_ Sensor Calibration volumetric METHOD method static weigh dynamic weigh other SELECTED_FLOW PV flow select Selected Flow Velocity Velocity Volume Volume...
Page 186
<6. Parameter Lists> Label Selection Value OUNDATION OUNDATION Parameter Name Display Display Fieldbus Fieldbus PULSING_FLOW Pulsing flow Pulsing Flow POWER_SYNCH Power sync on/off Power Synchronize DENSITY_SEL Value select Density Select Fixed value Fixed value Correction value Correction value DENSITY_UNIT Density ► Unit Density Unit kg/m³ kg/m lb/gal lb/gal...
Page 187
<6. Parameter Lists> Label Selection Value OUNDATION OUNDATION Parameter Name Display Display Fieldbus Fieldbus ALM_RECORD1 Alarm Record 1 All Space ALM_RECORD2 Alarm Record 2 10:Main CPU FAIL ALM_RECORD3 Alarm Record 3 11:Rev cal FAIL ALM_RECORD4 Alarm Record 4 12:Main EEP FAIL 13:Main EEP dflt 14:Snsr bd FAIL 15:Snsr comm...
Page 188
<6. Parameter Lists> List of sensor transducer block parameter bit Label Selection Parameter OUNDATION OUNDATION Display Display Name Fieldbus Fieldbus ALM_OUT_ Mask 1-1 (bit28) Alarm Out Mask1 bit:28 013:Main EEP dflt Main EEP dflt on MASK1 Mask 1-2 (bit1 - 6) bit:6 028:Ind bd FAIL Ind bd FAIL on bit:5 029:Ind bd EEP FAIL Ind EEP FAIL on...
Page 189
<6. Parameter Lists> Label Selection Parameter OUNDATION OUNDATION Display Display Name Fieldbus Fieldbus ALM_REC_ Mask 1-1(bit31) Alarm Record Mask1 bit:31 013:Main EEP dflt Main EEP dflt on MASK1 Mask 1-2(bit28 - 1) bit:6 028:Ind bd FAIL Ind bd FAIL on bit:5 029:Ind bd EEP FAIL Ind EEP FAIL on bit:4 030:LCD drv FAIL LCD drv FAIL on...
<6. Parameter Lists> Diagnosis Transducer Block List of diagnosis transducer block parameter Relative Write Index Parameter Name Default Value Description Index Mode Information on this block, such as 2500 Block Header Block Tag, DD Revision, Execution, etc. Represents the revision level of the setting parameter of the own 2501 ST_REV...
Page 191
<6. Parameter Lists> Relative Write Index Parameter Name Default Value Description Index Mode ELECTRODE_A_ 2517 1240(V) Shows the electrode voltage unit (V). VALUE_UNIT ELECTRODE_B_ 2518 See 5.1.3. VALUE ELECTRODE_B_ 2519 1240(V) Shows the electrode voltage unit (V). VALUE_UNIT FLOW_NOISE_ 2520 See 5.1.3. VALUE FLOW_NOISE_ 2521 50500(cm/s) Shows the flow noise unit (cm/s). VALUE_UNIT CONDUCTIVITY_ 2522 See 5.1.3.
Page 192
<6. Parameter Lists> Relative Write Index Parameter Name Default Value Description Index Mode See 5.9.6. For details about VERIFICATION_ bit assignment, refer to ■ List 2547 0xf800 AUTO TARGET of diagnosis transducer block parameter selection bit. VERIFICATION_ 2548 0(No flow) AUTO See 5.9.6. MODE VERIFICATION_ 2549 0(Not execute) See 5.9.6.
Page 193
<6. Parameter Lists> Relative Write Index Parameter Name Default Value Description Index Mode LIMIT_STS_ 5.3.1 ■ Voltage limit switch between 2571 ELEC_A1_ Electrode A to C HYSTERESIS LIMIT_STS_ 5.3.1 ■ Voltage limit switch between 2572 1240(V) ELEC_A1_UNIT Electrode A to C LIMIT_STS_ 5.3.1 ■ Voltage limit switch between 2573 ELEC_A2_VALUE Electrode A to C LIMIT_STS_ 5.3.1 ■ Voltage limit switch between 2574 ELEC_A2_...
<6. Parameter Lists> Display Transducer Block Relative Parameter Write Index Default Value Description Index Name Mode Information on this block, such 2700 Block Header as Block Tag, DD Revision, Execution, etc. Represents the revision level of the setting parameter of the own 2701 ST_REV block.
Page 198
<6. Parameter Lists> Relative Parameter Write Index Default Value Description Index Name Mode DISP_LINE4_ 2717 0(None) AUTO See 5.7.2. DISP_LINE5_ 2718 0(None) AUTO See 5.7.2. DISP_LINE6_ 2719 0(None) AUTO See 5.7.2. DISP_LINE7_ 2720 0(None) AUTO See 5.7.2. DISP_LINE8_ 2721 0(None) AUTO See 5.7.2.
Page 199
<6. Parameter Lists> Relative Parameter Write Index Default Value Description Index Name Mode 2751 I_PARAM2 Parameter for service 2752 I_PARAM3 Parameter for service 2753 I_PARAM4 Parameter for service List of selection for display transducer block parameter Label Selection Value Parameter OUNDATION...
Page 200
<6. Parameter Lists> Label Selection Value Parameter OUNDATION Display Fieldbus Display OUNDATION Name Fieldbus Display Line Select 2 None None DISP_LINE2_ Line 2 DISP_LINE3_ Display Line Select 3 Flow rate(%) Flow rate(%) Line 3 DISP_LINE4_ Display Line Select 4 Line 4 DISP_LINE5_ Display Line Select 5 Velocity Velocity...
Page 201
<6. Parameter Lists> Label Selection Value Parameter OUNDATION Display Fieldbus Display OUNDATION Name Fieldbus DISP_ Contrast Display Contrast CONTRAST DISP_LINE Line mode Display Line 1 line(big) 1 Line(Big) 1 line 1 Line 2 line 2 Line 3 line 3 Line 4 line 4 Line DISP_PERIOD Period...
<6. Parameter Lists> Maintenance Transducer Block Relative Write Index Parameter Name Default Value Description Index Mode Information on this block, such 2900 Block Header as Block Tag, DD Revision, Execution, etc. Represents the revision level of the setting parameter of the own block.
Page 204
<6. Parameter Lists> Relative Write Index Parameter Name Default Value Description Index Mode Indicates the serial number of the device and transmitter. 2915 DEVICE_SN “0000000001 ” Displays Serial Number for Transmitter in the copied format. SPECIAL_ Identification number for 2916 “0000000001 ” AUTO ORDER_ID special order 0,0,0,1,1,15 (00:00:00 2917...
Page 205
<6. Parameter Lists> Relative Write Index Parameter Name Default Value Description Index Mode Indicates the number of 2931 EXEC_FB_CNT executed time of each scheduled function block. Parameter utilized when changing DEVICE_ID. Only changing FB_TEMP_ DEV_ID does not lead to the change of Device ID. If FB_TEMP_DEV_ “59454300160000000 2932...
Page 206
<6. Parameter Lists> Relative Write Index Parameter Name Default Value Description Index Mode 2947 TRNS_TYPE 2(4A Type) See 5.8.2. 2948 EL_SIZE 1(3mm) AUTO See 5.9.9. Selects an explosion- 2949 0(NO) AUTO protective product or standard PROTECTION product. 2950 MODEL_CODE Space (16 characters) AUTO See 5.8.1.
Page 207
<6. Parameter Lists> Relative Write Index Parameter Name Default Value Description Index Mode SO1_TEST_ 2999 0(Open) AUTO See 5.10.2. VALUE 3000 TEST_2_MODE 0(Normal) AUTO See 5.10.2. 3001 TEST_2_OUT AUTO See 5.10.2. 3002 P1_OUT_MODE 1(Fixed Pulse Output) AUTO See 5.14.1. 3003 P1_ACT_MODE 0(On Active) AUTO See 5.14.4.
Page 208
<6. Parameter Lists> Label Selection Value OUNDATION Parameter Name Display Display Fieldbus OUNDATION Fieldbus TRNS_TYPE Transmitter type Transmitter Type None 1A type 1A Type 4A type 4A Type EL_SIZE Electrode size Electrode Size 1 mm 3 mm 8 mm 10 mm 10mm 6 mm EX_PROTECTION Explosion protection Explosion Proof...
Page 209
<6. Parameter Lists> Label Selection Value OUNDATION Parameter Name Display Display Fieldbus OUNDATION Fieldbus LOG_END_TIME End time Logging End Time 10 min 10min 30 min 30min 12 h 24 h 72 h 240 h 240h 720 h 720h 1440 h 1440h LOG1_SELECT Log 1...
Page 210
<6. Parameter Lists> Label Selection Value OUNDATION Parameter Name Display Display Fieldbus OUNDATION Fieldbus P1_WIDTH Fix width Pulse 1 Fix Width 0.05 ms 0.05ms 0.1 ms 0.1ms 0.5 ms 0.5ms 1 ms 20 ms 20ms 33 ms 33ms 50 ms 50ms 100 ms 100ms...
<6. Parameter Lists> AI Function Block Index Relative Parameter Write Default Value Description Index Name Mode (only AXG) AI1:“AI1 ” Information on this block, such AI2:“AI2 ” 4000 4100 4200 4300 Block Header as Block Tag, DD Revision, AI3:“AI3 ” Execution, etc. AI4:“AI4 ” Represents the revision level of the setting parameter of the own block.
Page 212
<6. Parameter Lists> Index Relative Parameter Write Default Value Description Index Name Mode (only AXG) The parameter for checking if various operations have been executed. Set a bit corresponding to the GRANT parameter before various operations are executed. 0x00 AUTO Check the DENY parameter 4012 4112 4212 4312 GRANT_DENY 0x00...
Page 213
<6. Parameter Lists> Index Relative Parameter Write Default Value Description Index Name Mode (only AXG) Sets operation to acknowledge (acknowledgment for the alarm) of various alarms. By setting a bit to the alarm, the device operates for the 4023 4123 4223 4323 ACK_OPTION 0xFFFF AUTO alarm as if it is acknowledged without the acknowledgment.
Page 214
<6. Parameter Lists> Index Relative Parameter Write Default Value Description Index Name Mode (only AXG) Specifies the priority for the LO alarm. Meanwhile, to activate an alarm on communication, it is necessary to specify the priority for alarm activation in advance. To activate an alarm, set 3 or more.
<6. Parameter Lists> DI Function Block Index Relative Parameter Write Default Value Description Index Name Mode DI1:“DI1 ” Information on this block, 6000 6100 6200 Block Header DI2:“DI2 ” such as Block Tag, DD DI3:“DI3 ” Revision, Execution, etc. Represents the revision level of the setting parameter of the own 6001 6101 6201 ST_REV block.
Page 216
<6. Parameter Lists> Index Relative Parameter Write Default Value Description Index Name Mode Parameter to check whether various operations are executed. Corresponds to the operation of the GRANT parameter before executing various operations. Set a bit and check GRANT_ 0x00 AUTO 6012 6112 6212 the DENY parameter...
Page 217
<6. Parameter Lists> Index Relative Parameter Write Default Value Description Index Name Mode Sets operation to acknowledge (acknowledgment for the alarm) of various alarms. By setting a bit to the alarm, the device 6021 6121 6221 ACK_OPTION 0xFFFF AUTO operates for the alarm as if it is acknowledged without the acknowledgment.
<6. Parameter Lists> MAO Function Block (only AXG) Relative Parameter Write Index Default Value Description Index Name Mode Information on this block, such as Block 10000 Block Header “MAO” Tag, DD Revision, Execution, etc. Represents the revision level of the setting parameter of the own block.
Page 219
<6. Parameter Lists> Relative Parameter Write Index Default Value Description Index Name Mode Value to be transmitted to the sensor FSTATE_ 10020 AUTO transducer block as input 3 at the fault VAL3 state. (Option) Value to be transmitted to the sensor FSTATE_ 10021 AUTO...
<7. Parameter Menu Tree> Parameter Menu Tree NOTE The available menus and parameters vary depending on the connection terminal type and the optional codes selected at the time of ordering. Display Menu Tree The following table provides an overview of the display menu structure. See the installation manual for general information regarding the operation via display unit.
Page 222
<7. Parameter Menu Tree> Current alarm Current alarm Setting upload ExtAct1-1 ExtAct1-2 ExtAct2-1 ExtAct2-2 ExtAct3-1 ExtAct3-2 ExtAct4-1 ExtAct4-2 ExtAct5-1 ExtAct6-1 ExtAct6-2 ExtAct7-1 ExtAct7-2 ExtAct8-1 Setting download ExtAct1-1 ExtAct1-2 ExtAct2-1 ExtAct2-2 244:Amp EEP FAIL 225:Lnk.O16/32 N/O 010:Main CPU FAIL 023:Opt bd mismatch 246:Simulate SW OFF 226:Lnk.O15/31 N/O...
Page 224
<7. Parameter Menu Tree> ExtAct7-2 ExtAct8-1 360:STB O/S Mode 376:AI4 HH Alarm 361:DTB O/S Mode 377:AI4 LL Alarm 362:MTB O/S Mode 378:AI4 Hi Alarm 363:LTB O/S Mode 379:AI4 Lo Alarm 364:AI1 HH Alarm 392:PID HH Alarm 365:AI1 LL Alarm 393:PID LL Alarm 366:AI1 Hi Alarm 394:PID Hi Alarm 367:AI1 Lo Alarm...
Page 225
<7. Parameter Menu Tree> Process value Process variables Flow rate(%) Flow rate Velocity Volume Mass Calorie Totalizer Totalizer 1 Totalizer 2 Totalizer 1 count Totalizer 2 count IM 01E21A02-03EN...
Page 226
<7. Parameter Menu Tree> Diagnosis/service Diag/Service All block target mode Sts/Self test -> Page 226 Time stamp Date Time Op time Diagnosis -> Page 227 Verification -> Page 228 Autozero Execute R/W2 Result Zero value R/W2 Test -> Page 228 Param bkup/restore F backup name F backup date...
Page 227
<7. Parameter Menu Tree> State/ Self test Sts/Self test Current alarm ExtAct1-1 ExtAct1-2 ExtAct2-1 ExtAct2-2 ExtAct3-1 ExtAct3-2 ExtAct4-1 ExtAct4-2 ExtAct5-1 ExtAct6-1 ExtAct6-2 ExtAct7-1 ExtAct7-2 ExtAct8-1 Alarm Alarm record mask Mask 1-1 R/W3 Mask 1-2 R/W3 Mask 2-1 R/W3 Mask 2-2 R/W3 Mask 3-1 R/W3...
Page 228
<7. Parameter Menu Tree> Diagnosis Diagnosis Adhesion Function R/W3 Threshold level 1 R/W3 Threshold level 2 R/W3 Threshold level 3 R/W3 Threshold level 4 R/W3 Result Value Status Check cycle R/W3 Flow noise Function R/W3 Threshold level 1 R/W3 Threshold level 2 R/W3 Threshold level 3...
Page 229
<7. Parameter Menu Tree> Verification Verification Mode R/W3 Execute R/W3 VF No R/W3 VF target select R/W3 Result Failed/Passed VF operate time Magnetic circuit Excite circuit Calc circuit Device status Connect status Test Test Release time Test mode R/W3 Velocity R/W3...
Page 230
<7. Parameter Menu Tree> Easy setup wizard Easy setup wizard All block target mode Volume Setting upload Damp AO/F R/W3 Damp pls/ttl R/W3 Unit Time unit Span R/W3 Setting download Pulse/Status out Setting upload P1 unit R/W3 P1 val R/W3 F1 at 0% R/W3...
Page 231
<7. Parameter Menu Tree> Detailed setup Detailed setup All block target mode Pro var -> Page 231 Sensor Low MF R/W3 High MF R/W3 Low MF EDF R/W3 High MF EDF R/W3 Flow sensor sel R/W3 Measure mode R/W3 Nominal size unit R/W3...
Page 232
<7. Parameter Menu Tree> Display set -> Page 232 Access cfg User role Chg mainte R/W2 Chg special R/W3 Device info -> Page 233 Fieldbus info -> Page 234 All block target mode R/W3 STB target mode R/W3 DTB target mode R/W3 LTB target mode R/W3...
Page 233
<7. Parameter Menu Tree> Totalizer Totalizer Totalizer 1 Unit Conv factor R/W3 Low cut R/W3 Failure opts R/W3 Options R/W3 Start/Stop R/W3 Reset/Preset R/W3 Preset value R/W3 Set point R/W3 Totalizer 2 Unit Conv factor R/W3 Low cut R/W3 Failure opts R/W3 Options...
Page 234
<7. Parameter Menu Tree> Device information Device info Date/Time Current date Current time Operation time Order info Long tag Electrode size R/W3 Explosion protection R/W3 MS code Model code R/W3 Suffix config 1 R/W3 Suffix config 2 R/W3 Option 1 R/W3 Option 2 R/W3 Option 3 R/W3...
Page 235
<7. Parameter Menu Tree> Fieldbus info Fieldbus info All block target mode R/W3 STB target mode R/W3 DTB target mode R/W3 LTB target mode R/W3 MTB target mode R/W3 Target mode R/W3 Write lock AI1FB Target mode R/W3 XD scale EU at 100% R/W3 XD scale EU at 0% R/W3 XD scale Units index...
Page 236
<7. Parameter Menu Tree> AI4FB Target mode R/W3 XD scale EU at 100% R/W3 XD scale EU at 0% R/W3 XD scale Units index R/W3 Channel R/W3 L_TYPE R/W3 LOW_CUT R/W3 PV_FTIME R/W3 DI1FB Target mode R/W3 Channel R/W3 PV_FTIME R/W3 DI2FB Target mode...
<Appendix 1. Application, Setting And Change Of Basic Parameters> Appendix 1. Application, Setting and Change of Basic Parameters A1.1 Applications and Selection of Basic Parameters Setting Item (applicable Overview parameter) Sets PD_TAG and each block tag. Tag No. (PD_TAG) setup Up to 32 alphanumeric characters can be set for both. Sets the range of input from the transducer block corresponding to 0% point (always 0 for this product) and 100% points in operation within the AI function Calibration range setup...
<Appendix 1. Application, Setting And Change Of Basic Parameters> A1.2 Setting and Change of Basic Parameters This section describes procedures to set and change the parameters for each block. Obtaining access to each parameter differs depending on the configuration system used. For details, refer to the instruction manual for each configuration system. (1) Access the block mode (MODE_BLK) of each block. (2) Set the block mode (MODE_BLK) target to Auto, Man or O/S in accordance with (note 1) (note 2) the Write Mode of the parameter to be set or changed.
<Appendix 1. Application, Setting And Change Of Basic Parameters> A1.3 Setting the AI Function Block The AI function block calculates the flow rate outputs. Setting the flow range Access the XD_SCALE parameter. Set the required unit for the measurement range to Unit Index for XD_SCALE. Set the upper range limit to EU at 100% of XD_SCALE. Set the lower range limit to EU at 0% of XD_SCALE.
<Appendix 1. Application, Setting And Change Of Basic Parameters> (3) Access the SIMULATE status parameter. Set the desired status code. (4) Access the SIMULATE value parameter. Set the desired input value. If simulation is enabled, AI block uses SIMULATE Status and SIMULATE Value as the input, and if disabled, the AI block uses Transducer Status and Transducer Value as input. Refer to “Simulation Function” in Section 5.13.
<Appendix 1. Application, Setting And Change Of Basic Parameters> Resetting or presetting totalized value Reset totalization Access the OP_CMD_INT parameter in IT block, and set Reset “1”. Preset totalization (1) Access the MODE_BLK parameter in the IT block and set Target (target mode) to O/S or Man in. (2) Access the OUT parameter in the IT block, and set preset value to “Value”. (3) Access the MODE_BLK parameter in the IT block and set Target (target mode) to Auto. A1.5 Setting the DI Function Block The DI function block receives and outputs limit switch signals from the transducer block. Three DI blocks have independent parameters.
<Appendix 2. Integrator (It) Block> Appendix 2. Integrator (IT) Block The IT block adds two main inputs and integrates them for output. The block compares the outputs with TOTAL_SP and PRE_TRIP and generates signals when the limits are reached (OUT_TRIP output, OUT_PTRIP output). The output is as represented by the following equation (for counting UP and RATE conversion).
<Appendix 2. Integrator (It) Block> The IT block is classified into the following five sections for each function: • Input process section ..Determines the input value status, converts RATE and ACCUM, and determines the input flow direction. • Adder ........ Adds the two inputs. • Integrator ......Integrates the result of the adder into the integrated value. •...
<Appendix 2. Integrator (It) Block> A2.2.2 Converting RATE The following shows an example of RATE conversion. In the RATE conversion, firstly convert the time system unit of two inputs to the unit of second. Next, convert the unit of the inputs to the same unit to be added together. The unit of IN_2 is standardized to that of IN_1. Then, calculates a weight, volume, or energy by multiplying the block execution time by each of the two input values.
<Appendix 2. Integrator (It) Block> A2.2.4 Determining the Input Flow Direction The IT block also considers the input flow direction. Information about the input flow direction is contained in REV_FLOW1 and REV_FLOW2 (0: FORWARD, 1: REVERSE). In input processing, the sign of the value after the RATE/ACCUM conversion is reversed if the REV_FLOW1 and REV_FLOW2 parameters are set to REVERSE. When determination of the flow direction of two input values is complete, these two inputs are passed to the adder. The settings in REV_FLOW will be retained even if the power is turned OFF.
<Appendix 2. Integrator (It) Block> A2.4 Integrator When addition is complete, its result will be passed to the integrator. An integration method consists of combinations of a reset method and counting up/down. There are the following seven integration types, which can be set using INTEG_TYPE. UP_AUTO: 0 to TOTAL_SP - auto reset at TOTAL_SP;...
<Appendix 2. Integrator (It) Block> A2.5 Output Process There are the following three output parameters: OUT_TRIP OUT_PTRIP Parameters OUT_TRIP and OUT_PTRIP are used only when INTEG_TYPE is from 1 to 4. In case that IT block related memory failed, the status of OUT, OUT_TRIP, OUT_PTRIP becomes “Bad-Device Failure”.
<Appendix 2. Integrator (It) Block> A2.5.2 Determining the Output Value The value of OUT.Value is determined as follows: z For counting up OUT = Integration start value (0) + Total z For counting down OUT = Integration start value (TOTAL_SP) - Total Total...Total of integrated values. This value is retained even if INTEG_TYPE is changed during integration (in AUTO).
<Appendix 2. Integrator (It) Block> z OUT <= 0 =>OUT_TRIP = 1, OUT_PTRIP = 1 Note that the given conditions do not apply to the following cases: • If INTEG_TYPE is 5, 6, or 7, OUT_TRIP and OUT_PTRIP always output “0”. • If INTEG_TYPE is 1 or 3, occurrence of AutoRESET (reset caused if the threshold is exceeded) causes OUT_TRIP to hold “1” for five seconds. A2.5.3 Mode Handling Mode Action Output AUTO Normal action Normal output OUT rewritable. If no value is rewritten, the value with which the Integration function is stopped.
<Appendix 2. Integrator (It) Block> A2.6 Reset Processing A2.6.1 Reset Trigger There are the following five types of reset triggers: (1) An integrated value exceeds TOTAL_SP. (2) An integrated value falls below “0”. (3) RESET_IN is “H”. (4) Every period specified in CLOCK_PER. (5) OP_CMD_INT is 1. The table shows the correlation between INTEG_TYPE and RESET triggers. 1:UP_AUTO ◦ ◦ ◦ 2:UP_DEM ◦ ◦ 3:DN_AUTO ◦...
<Appendix 2. Integrator (It) Block> A2.6.3 Reset Process The basic reset process sequence is as follows: Snapshot Clearing the integrated values Reset count increment Judging OUT_TRIP and OUT_PTRIP (see A2.5) Snapshot Saves the following values in the specified parameters before clearing the integrated values. These values will be retained until the next reset is made. STOTAL = Total SRTOTAL = RTotal SSP = TOTAL_SP Clearing the integrated values...
<Appendix 2. Integrator (It) Block> A2.7 List of Integrator Block Parameters Write View Parameter Default Index Description Name Value Mode BLOCK_ Block Information relating to this function block, such TAG: “IT” HEADER Tag=o/s as block tag, DD revision, execution time The revision level of the set parameters ST_REV associated with the Integrator block TAG_DESC...
Page 253
<Appendix 2. Integrator (It) Block> Write View Parameter Default Index Description Name Value Mode Integration Type Setting Value Name Description Counts up and is automatically reset UP_AUTO when TOTAL_SP is reached. Counts up and is reset UP_DEM as demanded. Counts down and is DN_AUTO automatically reset UP_AUTO...
Page 254
<Appendix 2. Integrator (It) Block> Write View Parameter Default Index Description Name Value Mode Specifies an integration optional function. Option Description Name Input 1 Selects RATE or accumulate ACCUM input of IN_1. Input 2 Selects RATE or accumulate ACCUM input of IN_2. Integrates forward flow Flow (interprets reverse flow forward as zero).*...
Page 255
<Appendix 2. Integrator (It) Block> Write View Parameter Default Index Description Name Value Mode The threshold of the ratio of “the integrated values of the increments whose status is UNCERT_ 0.0[%] Good” to all the integrated values in which the status of OUT is “Uncertain” OP_CMD_ Operator command that resets integrated values Maximum time for which values can be OUTAGE_ retained in the event of power failure.
<Appendix 3. Arithmetic (Ar) Block> Appendix 3. Arithmetic (AR) Block The AR block switches two main inputs of different measurement ranges bumplessly and combines the result with three auxiliary inputs through the selected compensation function (10 types) to calculate the output. A3.1 Functional Block Diagram The diagram below shows the functional block diagram of the AR block. FA0301.EPS The AR block is divided into three sections to explain each function. Input section...Makes a go/no-go decision on the use of an input value, switches the range, and determines the PV status.
<Appendix 3. Arithmetic (Ar) Block> A3.2 Input Section There are five inputs: IN and IN_LO main inputs and IN_1, IN_2, and IN_3 auxiliary inputs. IN and IN_LO are intended to connect devices with different measurement ranges and allow the use of switching a measurement range by selecting the measuring device. However, because there are slight differences between IN and IN_LO values even when the same item is measured, instantaneous switching causes abrupt changes in the output. To prevent this phenomenon, the Arithmetic block uses a function known as range extension to compensate the IN and IN_LO values between RANGE_HI and RANGE_LO.
<Appendix 3. Arithmetic (Ar) Block> Example RANGE_LO RANGE_HI In the above case, the followings are established: IN = 310, IN_LO = 20 => PV = 310 IN = 230, IN_LO = 20 => g = (230−20) / (300−20) = 0.75 PV = 0.75 x 230 + (1−0.75) x 20 = 177.5 IN = 90, IN_LO = 20 => g = (90− 20) / (300−20) = 0.25 PV = 0.25 x 230 + (1-0.25) x 20 = 37.5 IN = 19, IN_LO = 10 => PV = 10 A3.2.2 Auxiliary Inputs There are bias and gain parameters for the IN_1, IN_2, and IN_3 auxiliary inputs. The following shows the equation using them.
<Appendix 3. Arithmetic (Ar) Block> A3.2.4 Relationship between the Main Inputs and PV The value and PV status are determined with the statuses of two main inputs, INPUT_OPTS, and RANGE_LO and RANGE_HI. • If the statuses of two main inputs are both “good”, or both statuses of two main inputs are other than “good”, See A3.2.1 Main Inputs. • If only one of the main inputs has “good” status after application of INPUT_OPTS, the PV value is determined as follows: − If the status of IN is “good” and the status of “IN_LO” is anything other than “good”, IN > RANGE_LO => PV = IN...
<Appendix 3. Arithmetic (Ar) Block> A3.3 Computation Section A3.3.1 Computing Equations This subsection shows computing equations used in the computation section: 1) Flow rate compensation (linear) func = PV x f f = (t_1/t_2) 2) Flow rate compensation (square root) func = PV x f f = sqrt(t_1/t_2/t_3) 3) Flow rate compensation (approximate formula) func = PV x f f = sqrt(t_1 x t_2 x t_3 x t_3) 4) Calorie calculation func = PV x f f = (t_1−t_2) 5) Multiplication and division func = PV x f f = ((t_1/t_2) + t_3) 6) Average calculation func = (PV + t_1 + t_2 + t_3)/N...
<Appendix 3. Arithmetic (Ar) Block> 10) Polynomial computation func = PV + t_1 x PV + t_2 x PV + t_3 x PV * Precaution for computation Division by 0 => If a value is divided by “0”, the calculation result is interpreted as 10 and, depending with core, a plus sign is added to it Negative square root => The square root of an absolute value is extracted and a minus sign is added to it. A3.3.2 Compensated Values In computing equations 1) to 5) in A3.3.1, the value “f” is restricted by the COMP_HI_LIM or COMP_LO_LIM parameter. In this case, the value “f” is treated as follows: If “f” > COMP_HI_LIM...
<Appendix 3. Arithmetic (Ar) Block> A3.4.1 Mode Handling Mode Output Auto OUT=PRE_OUT For output of OUT, the OUT value in the Auto mode just before change to MAN or O/S is retained. In the Manual mode (including O/S), the value of OUT in the Auto mode just before a change to the Manual mode is held, or the value written to OUT is output. If the mode is switched from Manual to Auto, the output value of OUT that is linearly changed with respect to the value of PRE_OUT for time set by BAL_TIME is output.
<Appendix 3. Arithmetic (Ar) Block> A3.4.2 Status Handling The setting of INPUT_OPTS is applied to the input status. When INPUT_OPTS is applied, there are cases where the PV status becomes “good” even if the status of main inputs is “uncertain”, or the status of auxiliary inputs is “uncertain” or “bad”. The PV status is classified by the following: • If the statuses of two main inputs are both “good”, Or if both statuses of two main inputs are other than “good” See A3.2.1 Main Inputs. • If only one of the statuses of two main inputs is “good” - If the status of IN is “good” and the status of “IN_LO” is anything other than “good” IN > RANGE_LO => The status of IN applies. IN ≤ RANGE_LO => See A3.2.1 Main Inputs. - If the status of IN is anything other than “good” and the status of “IN_LO” is “good” IN_LO < RANGE_HI => The status of IN_LO applies IN_LO ≥ RANGE_HI => See A3.2.1 Main Inputs.
<Appendix 3. Arithmetic (Ar) Block> A3.5 List of the Arithmetic Block Parameters Relative Write Valid Default Parameter Name Description / Remarks Index mode Range Value BLOCK_ Information on this block such as block tag, DD TAG=“AR” HEADER revision, and execution time. Indicates the revision level of the set parameters associated with the Arithmetic function block.
Page 265
<Appendix 3. Arithmetic (Ar) Block> Relative Write Valid Default Parameter Name Description / Remarks Index mode Range Value Determines whether an input is used as a “good” input when the input status is “bad” or “uncertain”. Function Handles IN as a “good” status input if its status is “uncertain”. Handles IN_LO as a “good” status input if its status is “uncertain”. Handles IN_1 as a “good” status input if its status is “uncertain”. Handles IN_1 as a “good” status input if its status is “bad”. INPUT_OPTS Handles IN_2 as a “good” status input if its status is “uncertain”. Handles IN_2 as a “good” status input if its status is “bad”. Handles IN_3 as a “good” status input if its status is “uncertain”. Handles IN_3 as a “good” status input if its status is “bad”. 8 to Reserved Input block Input for a low-range process value.
Page 266
<Appendix 3. Arithmetic (Ar) Block> Relative Write Valid Default Parameter Name Description / Remarks Index mode Range Value Computation algorithm identification no. Value Selection Name Description Flow rate Flow compensation, compensation linear (linear) Flow rate Flow compensation, compensation square root (square root) Flow rate Flow compensation, compensation approximate...
<Appendix 4. Link Master Functions> Appendix 4. Link Master Functions A4.1 Link Active Scheduler (LAS) A link active scheduler (LAS) is a device to perform the network control function for Fieldbus. Fieldbus always needs one LAS on the link. This product supports the following LAS functions. PN transmission Identifies a fieldbus device newly connected to the bus.* PN (ProbeNode) function PT transmission Passes a token to a device on the link.* PT (PassToken) function CD transmission Starts up a scheduled transmission to a device on the link.
<Appendix 4. Link Master Functions> A4.3 Transition of LM Function There are the following procedures for an LM device to become the LAS: (1) If the LM device judges that there is no LAS on the link, in such a case as when the link starts up or when the LAS fails*, the LM declares itself as the LAS, and then becomes the LAS.* Backup for LAS (Figure A4.2) (2) The LM device requests the LAS on the link to transfer the right of being the LAS, and then becomes the LAS.
Page 269
<Appendix 4. Link Master Functions> To set up this product as a device that is capable of backing up the LAS, follow the procedures (1), (2) and (3) below. Note: When changing the settings of this product, add this product to the link where an LAS is running. After making changes to the settings, do not turn off the power to this product for at least 30 seconds.
<Appendix 4. Link Master Functions> A4.4 LM Functions A4.4.1 LM Function List Function Name Function Among LM devices, at startup, the device with the smallest [V(ST) x V(TN)] value becomes the LAS. LM initialization function At all times, each LM device is monitoring whether or not the BUS line is in a no-signal state. StartUp of other nodes Transmits a PN (Probe Node).
<Appendix 4. Link Master Functions> A4.5 LM Parameters A4.5.1 LM Parameter List The tables below show the list of LM parameters. Sub-parameter Name Write Description/ Index(SM) Parameter Name Default Value (Sub Index) mode Remarks PLME_BASIC_ CHARACTERISTICS 1 ChannelStatisticsSupported 0x00 2 MediumAndDataRatesSupported 0x4900000000000000 3 IecVersion 1 (0x1)
Page 272
<Appendix 4. Link Master Functions> Sub-parameter Name Write Description/ Index(SM) Parameter Name Default Value (Sub Index) mode Remarks BOOT_OPERAT_ Specified at the time 0x01 (basic FUNCTIONAL_ of ordering device); 0x02 (LM) CLASS CURRENT_LINK_ Settings for LAS SETTING_RECORD 1 SlotTime 2 PerDlpduPhlOverhead 3 MaxResponseDelay 4 FirstUnpolledNodeId 5 ThisLink 6 MinInterPduDelay 7 NumConseeUnpolledNodeId 8 PreambleExtension...
<Appendix 4. Link Master Functions> A4.5.2 Descriptions for LM Parameters The following describes LM parameters of this product. Do not turn off the power to this product for 60 seconds after making a change to parameter settings. (1) DlmeLinkMasterCapabilitiesVariable Bit Position Meaning Description Value Indicates whether the LAS schedule can LAS Schedule in B3: 0x04 (= 1) or cannot (= 0) be saved to the non- Non-volatile Memory volatile memory Last Values Record Indicates whether to support (= 1) or not to...
Page 274
<Appendix 4. Link Master Functions> (5) MaxTokenHoldTimeArray An 8 (64 byte array variable, in which each set of 2 bytes represents the delegation time (set as an octet time) assigned to a device. The delegation time denotes a time period that is given to a device by means of a PT message sent from the LAS within each token circulation cycle. The unit is in octet time. The leading 2 bytes correspond to the device address 0x00, and the final 2 bytes to the device address 0xFF. Specify the subindex to access this parameter.
Page 275
<Appendix 4. Link Master Functions> (9) PlmeBasicCharacteristics Sub-index Element Size [B] Value Description Channel Statistics Statistics information are not supported. Supported Medium AndData Wire medium, voltage mode, and 31.25 0x490000000000000 Rates kbps are supported. Supported Indicates the version for IEC Physical Layer IceVersion Entity.
Page 276
<Appendix 4. Link Master Functions> (13) LinkScheduleListCharacteristicsRecord Sub-index Element Size [B] Description NumOf Indicates the total number of LAS schedules that have been Schedules downloaded to the domain. NumOfSub Indicates the maximum number of sub-schedules an LAS SchedulesPer schedule can contain. Schedule ActiveSchedule Indicates the version number of the schedule currently...
<Appendix 4. Link Master Functions> A4.6 FAQs When the LAS stops, this products does not back it up by becoming the LAS. Why? A1-1. Is this product running as the LM device? -> Check that the value of BootOperatFunctionalClass (index 367) is 2 (indicating that it is an LM). A1-2. Check that the relation of V(ST) and V(TN) as LM device of this product is as follows: This Device Other LM devices V(ST) x V(TN) <...
Page 278
<Appendix 4. Link Master Functions> “AL.20” remains displayed on LCD. The reason could be that LAS may not be on the bus, that communication with LAS is not established, and so on. A4-1. Check that LAS is connected to the bus. (To use this product as LAS, perform the following operations in A4.3 (1), (2) and (3).) A4-2. S et the LAS parameter to the operating parameter of this product. (Reference: 4.2 Network definition) This product V(ST) >...
<Appendix 5. PID Block> Appendix 5. PID Block The PID block performs the PID calculation based on the deviation of the measured value (PV) from the setpoint (SP). The PID block is generally used for constant-setpoint and tracking control. A5.1 Functional Block Diagram The functional block diagram of the PID block is shown below. BKCAL_OUT BKCAL_IN RCAS_OUT FF_VAL ROUT_IN ROUT_OUT CAS_IN...
<Appendix 5. PID Block> A5.2 Functions of PID Block The control calculation processing provided in the PID block has the following functions. Control Calculation Description Processing PID control Calculates the control output using the PID control algorithm. Converts the change in control output (ΔMV) for each control period to the Control output action manipulated value (MV) that is to be actually output.
<Appendix 5. PID Block> A5.3 Parameter List of PID Block A blank in the Write Mode column indicates that the corresponding parameter can be written in all modes. Parameter Default Write Valid Index Description Name Value mode Range TAG: Block Tag Block Header Same as that for the AI block.
Page 282
<Appendix 5. PID Block> Parameter Default Write Valid Index Description Name Value mode Range Remote setpoint set from a high-level RCAS_IN computer, etc. Remote control output value set from a ROUT_IN high-level computer, etc. Defines action of mode shedding. SHED_OPT defines the changes to be made to MODE.BLK.target and MODE. SHED_OPT BLK.actual when the value of RCAS_ IN.status or ROUT_IN.status becomes BAD if MODE_BLK.actual = RCas or ROut. See Subsection A5.17.1 for details.
<Appendix 5. PID Block> Parameter Default Write Valid Index Description Name Value mode Range HI_ALM Same as HI_HI_ALM. Same as HI_HI_ALM. LO_ALM Cleared when the PV value increases above LO_LIM + ALM_HYS. LO_LO_ALM Same as LO_ALM. Alarm that is generated when the value of (PV - SP) has exceeded the DV_HI_LIM DV_HI_ALM value.
<Appendix 5. PID Block> A5.4.2 PID Control Algorithm Parameters The table below shows setting parameters for the PID control algorithm. Parameter Description Valid Range Proportional GAIN 0.05 to 20 gain 0.1 to 10000 RESET Integral time (seconds) Derivative 0 to infinity RATE time (seconds) A5.5...
<Appendix 5. PID Block> A5.7 Control Action Bypass The PID calculation processing can be bypassed so as to set the SP value as the operation output (OUT). The bypass setting is performed if the parameter BYPASS is set to “On”. The block diagram is shown in the figure below. BYPASS Output CAS_IN Setpoint Feed- RCAS_IN Control forward Filter FA0102.EPS A5.8 Feed-forward Feed-forward is a control action to add a compensation output value (FF_VAL) to the output signal of the PID calculation.
<Appendix 5. PID Block> A5.9 Block Modes The block mode is defined with the parameter MODE_BLK. Target Defines the target mode. Indicates the current block mode. Actual Changes depending on the status of input data and target contents. MODE_ Defines constraints of the target mode. Permitted If constraints are not defined here, it becomes impossible to transition to the mode. Normal Defines the normal mode. There are eight modes for the PID block as shown below. Block Description Mode...
<Appendix 5. PID Block> Note 2: A transition to Cas, RCas, or ROut requires that initialization of the cascade connection has been completed. Note 3: I n case of the mode shedding (the data status of RCAS_IN, ROUT_IN is BAD), it transitions to the mode which has been specified with SHED_OPT. (For details, refer to A5.17.1.) A5.10 Bumpless Switching Bumpless switching is the function to allow the bumpless switch of MODE_BLK and of operation output values at the cascade downstream without a sudden change in the control output. The action to perform a bumpless switching differs depending on the MODE_BLK values.
<Appendix 5. PID Block> A5.12 External-output Tracking (LO) External tracking is the action of outputting the set value of the operation output (TRK_VAL). External tracking functions when the block mode is LO. The flow of the processing is shown below. TRK_VAL TRK_SCALE OUT_SCALE TRK_IN_D PID control computation result LO mode FA0104.EPS To change the block mode to LO: Set Track Enable in CONTROL_OPTS. If TRK_IN_D is set to true, the block mode becomes LO.
<Appendix 5. PID Block> A5.13 Measured-value Tracking Measured-value tracking is an action to equalize the setpoint (SP) to the measured value (PV) when the block mode (MODE_BLK) is running in Man in order to prevent a sudden change in control output from being caused by a mode change to Auto. If the mode of the cascade secondary loop is changed from the Cas mode to the Auto mode while the cascade primary loop is controlling in the Auto or Cas mode, the cascade connection is opened and the control action of the primary loop stops. The setpoint (SP) of the secondary loop can also be equalized to its cascade input (CAS_IN) by tracing the measured value.
<Appendix 5. PID Block> A5.14 Initialization and Manual Fallback (IMan) Initialization and manual fallback denotes an abnormality processing function in which the PID block changes mode to IMan (initialization and manual) and suspends the control action. The function operates when the initialization and manual fallback conditions (IMan condition) are met. A5.14.1 IMan condition The IMan conditions are transition conditions of the mode to temporarily suspend control action by changing the block mode to the IMan mode.
<Appendix 5. PID Block> A5.16 AUTO Fallback AUTO fallback denotes a mode in which the PID block changes a mode from Cas to Auto and continues automatic PID control with the user-set setpoint. A5.16.1 Condition of AUTO Fallback The condition is established when the data status of the cascade setpoint (CAS_IN.Status) is BAD, (Excluding when BYPASS) A5.16.2 Specification of AUTO Fallback Specifies “Target to next permitted mode if BAD CAS IN” with STATUS_OPTS.
<Appendix 5. PID Block> A5.17.1 SHED_OPT The SHED_OPT setting stipulates the specifications of mode shedding. Available Setting for Operation Contents SHED_OPT Normal shed, normal return Sets MODE_BLK.actual to Cas(*1), and leaves MODE_BLK.target unchanged. Normal shed, no return Sets both MODE_BLK.Actual and MODE_BLK.Target to Cas (*1). Shed to Auto, normal return Sets MODE_BLK.actual to Auto(*2), and leaves MODE_BLK.target unchanged. Shed to Auto, no return Sets both MODE_BLK.actual and MODE_BLK.target to Auto(*2). Shed to Manual, normal Sets MODE_BLK.actual to Man, and leaves MODE_BLK.target unchanged. return Shed to Manual, no return Sets both MODE_BLK.actual and MODE_BLK.target to Man.
<Appendix 5. PID Block> A5.18 Alarm Processing of Block There are two kinds of alarms generated by the PID block: Block and process alarms. A5.18.1 Block Alarm (BLOCK_ALM) The block alarm (BLOCK_ALM) is generated upon the occurrence of either of the following errors (values set in BLOCK_ERR) and notifies the content of BLOCK_ERR. Name Condition Local Override If MODE_BLK actual of PID block is LO. If the PV status is Bad, that is, the IN status is Bad, or the IN status is Uncertain Input Failure and when the “Use Uncertain as Good” bit of STATUS_OPTS is not set Out of Service...
<Appendix 5. PID Block> A5.19 Example of Block Connections BKCAL_IN CAS_IN BKCAL_OUT FA0106.ai To use a simple PID control loop by combining a valve positioner (device with AO) with a sensor device, the setting procedures for each block are explained based on the basic connection example of PID. (1) Connect the AI block and PID block of the sensor device, and the AO block of the valve positioner as shown above. (2) Set GAIN, RESET, and RATE parameters by setting the MODE_BLK target of the PID block to O/S. (3) Check that the value of MODE_BLK actual of the AI block is Auto.
<Appendix 6. Software Download> Appendix 6. Software Download Function A6.1 Benefits of Software Download Function The software download function is to update software used in field devices via F OUNDATION Fieldbus. Typical uses are to add new features such as function blocks and diagnostic function to the existing devices, and to optimize the existing field devices for your plant. Update Program Diagnostics FA0601.ai Figure A6.1 Concept of Software Downloading A6.2 Specifications of Software Download Function...
For the software download tool, use only a program developed for that purpose. For details, see the software’s User’s Manual. For information about updates of software binary files for field devices and how to obtain them, visit the following web site. http://www.yokogawa.co.jp/fld/top/fld-top-jp.htm CAUTION The communication may be disturbed if the software download tool is connected to a Fieldbus segment.
<Appendix 6. Software Download> CAUTION The current dissipation of the target field device temporarily increases immediately after a download due to erasing of the FlashROM’s contents. Use a Fieldbus power supply which has sufficient capacity to cover such increases in feed current. CAUTION Upon the completion of the activation(*1), the target fieldbus device performs resetting internally. The reset breaks communication with the field device and stops function block execution. *1 Processing which automatically replaces the downloaded software in the software download processing CAUTION Do not turn off the power to a field device or disconnect the download tool during a download or activation.
<Appendix 6. Software Download> A6.6 Steps after Activating a Field Device After the communication with a field device is recovered after activating the device, check that the software revision of the field device is updated accordingly by using the download tool. The software revision of the field device can be checked with the SOFT_REV parameter of the resource block. The PD tag, node address, and transducer block calibration parameters that are retained in the nonvolatile memory inside the target device will remain unchanged after software download is executed.
Fieldbus. Check whether communication with Transient error caused by the An error occurs after activation. the field device is recovered after a internal resetting of the field device while. The file of the current revision was Obtain the correct file. downloaded. The new software does not work after the activation. Failure of the memory in field Contact Yokogawa service center. device, etc. IM 01E21A02-03EN...
<Appendix 6. Software Download> A6.8 Maintenance Block’s Parameters Relating to Software Download Table A6.3 Maintenance Transducer Block’s Parameters Relating to Software Download Relative Parameter Default Index Write Mode Description Index Name Value Mask for software download SOFTDL_ function. 2923 Auto PROTECT 0x01: No mask 0x02: With mask...
Page 301
<Appendix 6. Software Download> Table A6.4 Download Error Codes Code Description No error. 32768 Version error of file header (other than 1). 32769 Size error of file header (other than 44). 32770 Manufacturer ID No. error (other than 0x594543) 32771 Device family error (other than RB.DEV_TYPE) 32772 Device revision error (less than RB.DEV_REV) 32773 File revision error (other than 3). 32774 File type error (other than 0, 1). 32775 Error of the number of modules (more than 9). 32776 Error of the number of EEPROM data adjustment (places not taken over) (more than 11) 32777 Size error of program module (less than 13 bytes or more than 655373 bytes) 32778 Size error of EEPROM data (less than 13 bytes or more than A area size + 13 bytes) 32779 Module type error (other than 0, 1). 32780 Module address error (less than 32768 (0x8000) or more than 786432 (0xC0000)) 32781 Module CRC error.
<Appendix 6. Software Download> A6.9 System/Network Management VFD Parameter related to Software Download Table A6.5 System/Network Management VFD Parameter Write Mode R/W: Read/Write, R: Read Only Index (Sub- Write Parameter Name Sub-parameter Name Default Value Remarks (SM) Index) Mode DWNLD_PROPERTY Download Class Write Rsp Returned For ACTIVATE...
Page 303
<Appendix 6. Software Download> Index (Sub- Write Parameter Name Sub-parameter Name Default Value Remarks (SM) Index) Mode Read/write: prohibited, DOWNLOAD_DOMAIN Get-OD: permitted IM 01E21A02-03EN...
<Appendix 6. Software Download> A6.10 Comments on System/Network Management VFD Parameters Relating to Software Download IMPORTANT Do not turn off the power to a field device immediately after changing parameter settings. To improve the reliability of the device, processing to store data to EEPROM is duplexing. If the power is turned off within 60 seconds after setup, the parameters may not be saved and revert to the previous settings. (1) DWNLD_PROPERTY Size Element Description Index...
Page 305
<Appendix 6. Software Download> Size Element Description Index Indicates the domain name. In this product, Domain Name Domain Name indicates the field device name. (AXG4A or AXW4A) (3) DOMAIN_HEADER Size Element Description Index Header Version Number Indicates the version number of the header. Header Size Indicates the header size. Indicates the value of resource block’s MANUFAC_ID Manufacturer ID (manufacturer ID) as character string data.
Revision Information Title : ADMAG TI Series AXG, AXW Magnetic Flowmeter F Fieldbus OUNDATION Communication Type Manual No. : IM 01E21A02-03EN Edition Date Page Revised Item Sep. 2019 — New publication Mar. 2020 — Correction of errors. 5.1.2 Add the setting example.
Need help?
Do you have a question about the Admag TI Series and is the answer not in the manual?
Questions and answers