Lenze i55AE125B Manual

Lenze i55AE125B Manual

Cabinet 0.25 ... 90 kw
Table of Contents

Advertisement

Commissioning | EN
Inverter
Inverter i550 Cabinet
0.25 ... 90 kW

Advertisement

Table of Contents
loading
Need help?

Need help?

Do you have a question about the i55AE125B and is the answer not in the manual?

Questions and answers

Subscribe to Our Youtube Channel

Summary of Contents for Lenze i55AE125B

  • Page 1 Commissioning | EN Inverter Inverter i550 Cabinet 0.25 ... 90 kW...
  • Page 3: Table Of Contents

    Contents Contents 1 General information Read first, then start 2 Safety instructions Basic safety measures Residual hazards Application as directed 3 Mechanical installation Dimensions 4 Electrical installation Important notes Mains connection 4.2.1 1-phase mains connection 120 V 4.2.1.1 Connection plan 4.2.1.2 Fusing and terminal data 4.2.2...
  • Page 4 Contents 5 Commissioning Important notes Operating interfaces 5.2.1 Keypad 5.2.2 Engineering tool »EASY Starter« 5.2.2.1 Generate a connection between inverter and »EASY Starter« Parameter setting 5.3.1 General notes on parameters 5.3.2 Basic inverter settings 5.3.3 Basic motor settings 5.3.4 Function assignment of the inputs and outputs Keypad parameter list Save parameter settings in the memory module 5.5.1...
  • Page 5 Contents 7 Basic setting Mains voltage Inverter load characteristic Control source selection Selection of setpoint source 7.4.1 Keypad setpoint default setting Starting/stopping performance 7.5.1 Starting performance 7.5.2 Stopping performance Frequency limits and ramp times Quick stop S-shaped ramps Optical device identification...
  • Page 6 Contents 8 Motor control Motor data 8.1.1 Manual setting of the motor data Motor control selection 8.2.1 V/f characteristic control (VFC) 8.2.1.1 Linear V/f characteristic 8.2.1.2 Square-law V/f characteristic 8.2.1.3 User-definable V/f characteristic 8.2.1.4 V/f characteristic control - energy-saving (VFC Eco) 8.2.2 V/f characteristic control (VFC closed loop) 8.2.3...
  • Page 7 Contents Motor protection 8.7.1 Motor overload monitoring (i²*t) 8.7.2 Motor temperature monitoring 8.7.3 Current limits 8.7.4 Overcurrent monitoring 8.7.5 Motor phase failure detection 8.7.6 Motor speed monitoring 8.7.7 Motor torque monitoring...
  • Page 8 General network settings Predefined process data words 9.2.1 Device profile CiA 402 9.2.2 AC Drive Profile 9.2.3 Lenze LECOM profile 9.2.4 Further process data 9.2.5 Parameter access monitoring (PAM) 9.2.6 Process data handling in case of error Acyclic data exchange CANopen 9.4.1...
  • Page 9 Contents PROFIBUS 9.6.1 Introduction 9.6.2 Communication time setting 9.6.3 Station address setting 9.6.4 Baud rate setting 9.6.5 Monitoring 9.6.6 LED status displays 9.6.7 Diagnostics 9.6.8 Functions 9.6.9 Data mapping 9.6.10 Parameter data transfer 9.6.11 Read parameter data 9.6.12 Write parameter data 9.6.13 Error codes for parameter data transfer 9.6.14...
  • Page 10 Contents 9.10 EtherCAT 9.10.1 Device identification 9.10.2 EtherCAT configuration 9.10.3 LED status displays 9.10.4 Diagnostics 9.10.5 Monitoring 9.10.6 Objects 9.10.7 Process data transfer 9.10.8 Parameter data transfer 9.10.9 Short setup 9.11 POWERLINK 9.11.1 Introduction 9.11.2 Basic settings 9.11.3 LED status displays 9.11.4 Diagnostics 9.11.5...
  • Page 11 11.4.1 Example 1: Automatic DC braking when the motor is started 11.4.2 Example 2: Automatic DC braking when the motor is stopped 11.4.3 Migration of Lenze Inverter Drives 8200/8400 11.5 Brake energy management 11.5.1 Use of a brake resistor 11.5.2 Stopping the deceleration ramp function generator 11.5.3...
  • Page 12 Contents 11.14 Automatic restart 11.15 Mains failure control 11.15.1 Activating the mains failure control 11.15.2 Restart protection 11.15.3 Fast mains recovery 11.15.4 Commissioning the mains failure control 11.16 UPS operation 11.17 Process data 11.17.1 Position counter 11.18 Encoder settings 11.18.1 HTL encoder 11.18.2 Encoder monitoring...
  • Page 13 Contents 14 Flexible I/O configuration 14.1 Control source change-over 14.1.1 Example 1: Change-over from terminal control to keypad control 14.1.2 Example 2: Change-over from terminal control to network control 14.2 Start / stop motor 14.2.1 Example 1: Start/stop (1 signal) and reversal 14.2.2 Example 2: Start forward/start reverse/stop (edge-controlled) 14.2.3...
  • Page 14 Contents 14.15 Configuration of digital outputs 14.15.1 Relay 14.15.2 Digital output 1 14.15.3 Digital output 2 14.15.4 NetWordOUT1 status word 14.15.5 HTL output 14.15.5.1 Example 1: Pulse train 0 ... 10 kHz ≡ output frequency 0 ... 100 Hz 14.15.5.2 Example 2: Pulse train 2 ...
  • Page 15: General Information

    Read first, then start WARNING! Read this documentation thoroughly before carrying out the installation and commissioning. ▶ Please observe the safety instructions! Information and tools with regard to the Lenze products can be found on the Internet: http://www.lenze.com à Download...
  • Page 16: Safety Instructions

    The procedural notes and circuit details described in this document are only proposals. It is up to the user to check whether they can be adapted to the particular applications. Lenze does not take any responsibility for the suitability of the procedures and circuit proposals descri- bed.
  • Page 17: Residual Hazards

    Safety instructions Application as directed Residual hazards The user must take the residual hazards mentioned into consideration in the risk assessment for his/her machine/system. If the above is disregarded, this can lead to severe injuries to persons and damage to material assets! Product Observe the warning labels on the product!
  • Page 18: Mechanical Installation

    Mechanical installation Mechanical installation Dimensions 0.25 kW ... 0.37 kW The dimensions in mm apply to: 0.25 kW I55AE125B I55AE125D 0.37 kW I55AE137B I55AE137D I55AE137F...
  • Page 19 Mechanical installation Dimensions 0.25 kW ... 0.37 kW The dimensions in mm apply to: 0.25 kW I55AE125A 0.37 kW I55AE137A...
  • Page 20 Mechanical installation Dimensions 0.55 kW ... 0.75 kW The dimensions in mm apply to: 0.55 kW I55AE155B I55AE155D I55AE155F 0.75 kW I55AE175B I55AE175D I55AE175F...
  • Page 21 Mechanical installation Dimensions 0.75 kW ... 1.1 kW The dimensions in mm apply to: 0.75 kW I55AE175A 1.1 kW I55AE211A...
  • Page 22 Mechanical installation Dimensions 1.1 kW ... 2.2 kW The dimensions in mm apply to: 1.1 kW I55AE211B I55AE211D I55AE211F 1.5 kW I55AE215B I55AE215D I55AE215F 2.2 kW I55AE222B I55AE222D I55AE222F...
  • Page 23 Mechanical installation Dimensions 3 kW ... 5.5 kW The dimensions in mm apply to: 3 kW I55AE230F 4 kW I55AE240C I55AE240F 5.5 kW I55AE255C I55AE255F...
  • Page 24 Mechanical installation Dimensions 7.5 kW ... 11 kW The dimensions in mm apply to: 7.5 kW I55AE275F 11 kW I55AE311F...
  • Page 25 Mechanical installation Dimensions 15 kW ... 22 kW The dimensions in mm apply to: 15 kW I55AE315F 18.5 kW I55AE318F 22 kW I55AE322F...
  • Page 26 Mechanical installation Dimensions 30 kW ... 45 kW The dimensions in mm apply to: 30 kW I55AE330F 37 kW I55AE337F 45 kW I55AE345F...
  • Page 27 Mechanical installation Dimensions 55 kW ... 75 kW The dimensions in mm apply to: 55 kW I55AE355F 75 kW I55AE375F...
  • Page 28: Electrical Installation

    Electrical installation Important notes Electrical installation Important notes DANGER! Dangerous electrical voltage Possible consequence: death or severe injuries ▶ All work on the inverter must only be carried out in the deenergised state. ▶ After switching off the mains voltage, wait for at least 3 minutes before you start working.
  • Page 29: Mains Connection

    Electrical installation Mains connection 1-phase mains connection 120 V Mains connection 4.2.1 1-phase mains connection 120 V 4.2.1.1 Connection plan The connection plan is valid for the inverters I55AExxxA. Inverters I55AExxxA do not have an integrated RFI filter in the AC mains supply. In order to meet the EMC requirements according to EN 61800−3, an external EMC filter according to IEC EN 60939 must be used.
  • Page 30: Fusing And Terminal Data

    Electrical installation Mains connection 1-phase mains connection 120 V 4.2.1.2 Fusing and terminal data Fuse data Inverter I55AE125A I55AE175A I55AE137A I55AE211A Cable installation in compliance with EN 60204-1 Installation method operation without mains choke Fuse Characteristics gG/gL or gRL Max. rated current Circuit breaker Characteristics Max.
  • Page 31 Electrical installation Mains connection 1-phase mains connection 120 V Mains connection Inverter I55AE125A I55AE175A I55AE137A I55AE211A Connection X100 Connection type pluggable screw terminal Min. cable cross-section mm² Min. cable cross-section Max. cable cross-section mm² Max. cable cross-section Stripping length Stripping length inch 0.32 Tightening torque...
  • Page 32: 1-Phase Mains Connection 230/240 V

    Electrical installation Mains connection 1-phase mains connection 230/240 V 4.2.2 1-phase mains connection 230/240 V 4.2.2.1 Connection plan The connection plan is valid for the inverters I55AExxxB. 3/N/ PE 3/N/ PE 2/N/ PE 400 V 208 V ... 240 V 208 V ...
  • Page 33 Electrical installation Mains connection 1-phase mains connection 230/240 V The connection plan is valid for the inverters I55AExxxD. Inverters I55AExxxD do not have an integrated RFI filter in the AC mains supply. In order to meet the EMC requirements according to EN 61800−3, an external EMC filter according to IEC EN 60939 must be used.
  • Page 34: Fusing And Terminal Data

    Electrical installation Mains connection 1-phase mains connection 230/240 V 4.2.2.2 Fusing and terminal data Fuse data Inverter I55AE125B I55AE125D I55AE155B I55AE155D I55AE137B I55AE137D I55AE175B I55AE175D Cable installation in compliance with EN 60204-1 Installation method operation without mains choke Fuse Characteristics gG/gL or gRL Max.
  • Page 35 Electrical installation Mains connection 1-phase mains connection 230/240 V Fuse data Inverter I55AE125B I55AE125D I55AE211B I55AE211D I55AE137B I55AE137D I55AE215B I55AE215D I55AE155B I55AE155D I55AE222B I55AE222D I55AE175B I55AE175D Cable installation in compliance with US National Electrical Code NFPA 70 / Canadian Electrical Code C22.1...
  • Page 36 Electrical installation Mains connection 1-phase mains connection 230/240 V PE connection Inverter I55AE125B I55AE125D I55AE137B I55AE137D I55AE155B I55AE155D I55AE175B I55AE175D I55AE211B I55AE211D I55AE215B I55AE215D I55AE222B I55AE222D Connection Connection type PE screw Min. cable cross-section mm² Min. cable cross-section Max. cable cross-section mm²...
  • Page 37: 3-Phase Mains Connection 230/240

    Electrical installation Mains connection 3-phase mains connection 230/240 V 4.2.3 3-phase mains connection 230/240 V 4.2.3.1 Connection plan The connection plan is valid for the inverters I55AExxxC. Inverters I55AExxxC do not have an integrated RFI filter in the AC mains supply. In order to meet the EMC requirements according to EN 61800−3, an external EMC filter according to IEC EN 60939 must be used.
  • Page 38 Electrical installation Mains connection 3-phase mains connection 230/240 V The connection plan is valid for the inverters I55AExxxD. Inverters I55AExxxD do not have an integrated RFI filter in the AC mains supply. In order to meet the EMC requirements according to EN 61800−3, an external EMC filter according to IEC EN 60939 must be used.
  • Page 39: Fusing And Terminal Data

    Electrical installation Mains connection 3-phase mains connection 230/240 V 4.2.3.2 Fusing and terminal data Fuse data Inverter I55AE211D I55AE125D I55AE155D I55AE240C I55AE215D I55AE137D I55AE175D I55AE255C I55AE222D Cable installation in compliance with EN 60204-1 Installation method operation without mains choke Fuse Characteristics gG/gL or gRL Max.
  • Page 40 Electrical installation Mains connection 3-phase mains connection 230/240 V Mains connection Inverter I55AE125D I55AE211D I55AE137D I55AE240C I55AE215D I55AE155D I55AE255C I55AE222D I55AE175D Connection X100 Connection type pluggable screw terminal Screw terminal Min. cable cross-section mm² Min. cable cross-section Max. cable cross-section mm²...
  • Page 41: 3-Phase Mains Connection 400 V

    Electrical installation Mains connection 3-phase mains connection 400 V 4.2.4 3-phase mains connection 400 V 4.2.4.1 Connection plan The connection plan is valid for the inverters I55AExxxF. 3/N/ PE AC 400 V … 3/ PE 340 V ... 528 V 45 Hz ...
  • Page 42: Fusing And Terminal Data

    Electrical installation Mains connection 3-phase mains connection 400 V 4.2.4.2 Fusing and terminal data Fuse data Inverter I55AE137F I55AE211F I55AE230F I55AE275F I55AE155F I55AE215F I55AE240F I55AE311F I55AE175F I55AE222F I55AE255F Cable installation in compliance with EN 60204-1 Installation method operation without mains choke Fuse Characteristics gG/gL or gRL...
  • Page 43 Electrical installation Mains connection 3-phase mains connection 400 V Fuse data Inverter I55AE355F I55AE345F I55AE375F Cable installation in compliance with EN 60204-1 Installation method operation Fuse Characteristics Max. rated current Circuit breaker Characteristics Max. rated current operation with mains choke Fuse Characteristics gG/gL or gRL...
  • Page 44 Electrical installation Mains connection 3-phase mains connection 400 V Fuse data Inverter I55AE315F I55AE322F I55AE330F I55AE337F I55AE318F Cable installation in compliance with US National Electrical Code NFPA 70 / Canadian Electrical Code C22.1 operation without mains choke Fuse Characteristics all acc. to UL 248 / Class J, T, R Max.
  • Page 45 Electrical installation Mains connection 3-phase mains connection 400 V Mains connection Inverter I55AE137F I55AE155F I55AE230F I55AE315F I55AE330F I55AE175F I55AE275F I55AE355F I55AE240F I55AE318F I55AE337F I55AE211F I55AE311F I55AE375F I55AE255F I55AE322F I55AE345F I55AE215F I55AE222F Connection X100 Connection type pluggable Screw terminal screw terminal Min.
  • Page 46 Electrical installation Mains connection 3-phase mains connection 400 V Motor connection Inverter I55AE137F I55AE155F I55AE230F I55AE315F I55AE330F I55AE175F I55AE275F I55AE355F I55AE240F I55AE318F I55AE337F I55AE211F I55AE311F I55AE375F I55AE255F I55AE322F I55AE345F I55AE215F I55AE222F Connection X105 Connection type pluggable Screw terminal screw terminal Min.
  • Page 47: 3-Phase Mains Connection 400 V "Light Duty

    Electrical installation Mains connection 3-phase mains connection 400 V "light duty" 4.2.5 3-phase mains connection 400 V "light duty" 4.2.5.1 Connection plan See chapter "3-phase mains connection 400 V". ^ 41...
  • Page 48: Fusing And Terminal Data

    Electrical installation Mains connection 3-phase mains connection 400 V "light duty" 4.2.5.2 Fusing and terminal data Fuse data Inverter I55AE230F I55AE240F I55AE275F I55AE311F I55AE315F I55AE255F Cable installation in compliance with EN 60204-1 Installation method operation without mains choke without mains choke Fuse Characteristics gG/gL or gRL...
  • Page 49 Electrical installation Mains connection 3-phase mains connection 400 V "light duty" Fuse data Inverter I55AE355F I55AE390F I55AE375F Cable installation in compliance with EN 60204-1 Installation method operation Fuse Characteristics Max. rated current Circuit breaker Characteristics Max. rated current operation with mains choke Fuse Characteristics Max.
  • Page 50 Electrical installation Mains connection 3-phase mains connection 400 V "light duty" Fuse data Inverter I55AE318F I55AE330F I55AE337F I55AE345F I55AE322F Cable installation in compliance with US National Electrical Code NFPA 70 / Canadian Electrical Code C22.1 operation Fuse Characteristics Max. rated current Circuit breaker Characteristics Max.
  • Page 51 Electrical installation Mains connection 3-phase mains connection 400 V "light duty" Mains connection Inverter I55AE230F I55AE315F I55AE330F I55AE275F I55AE355F I55AE240F I55AE318F I55AE337F I55AE390F I55AE311F I55AE375F I55AE255F I55AE322F I55AE345F Connection X100 Connection type Screw terminal Min. cable cross-section mm² Min. cable cross-section Max.
  • Page 52: Connection Plan

    Electrical installation Mains connection 3-phase mains connection 480 V 4.2.6 3-phase mains connection 480 V 4.2.6.1 Connection plan The connection plan is valid for the inverters I55AExxxF. 3/N/ PE AC 480 V … 3/ PE 340 V ... 528 V 45 Hz ...
  • Page 53: Fusing And Terminal Data

    Electrical installation Mains connection 3-phase mains connection 480 V 4.2.6.2 Fusing and terminal data Fuse data Inverter I55AE137F I55AE211F I55AE230F I55AE275F I55AE155F I55AE215F I55AE240F I55AE311F I55AE175F I55AE222F I55AE255F Cable installation in compliance with EN 60204-1 Installation method operation without mains choke Fuse Characteristics gG/gL or gRL...
  • Page 54 Electrical installation Mains connection 3-phase mains connection 480 V Fuse data Inverter I55AE355F I55AE375F Cable installation in compliance with EN 60204-1 Installation method operation Fuse Characteristics Max. rated current Circuit breaker Characteristics Max. rated current operation with mains choke Fuse Characteristics Max.
  • Page 55 Electrical installation Mains connection 3-phase mains connection 480 V Fuse data Inverter I55AE315F I55AE318F I55AE330F I55AE337F I55AE345F I55AE322F Cable installation in compliance with US National Electrical Code NFPA 70 / Canadian Electrical Code C22.1 operation without mains choke Fuse Characteristics all acc.
  • Page 56 Electrical installation Mains connection 3-phase mains connection 480 V Mains connection Inverter I55AE137F I55AE155F I55AE230F I55AE315F I55AE330F I55AE175F I55AE275F I55AE355F I55AE240F I55AE318F I55AE337F I55AE211F I55AE311F I55AE375F I55AE255F I55AE322F I55AE345F I55AE215F I55AE222F Connection X100 Connection type pluggable Screw terminal screw terminal Min.
  • Page 57 Electrical installation Mains connection 3-phase mains connection 480 V Motor connection Inverter I55AE137F I55AE155F I55AE230F I55AE315F I55AE330F I55AE175F I55AE275F I55AE355F I55AE240F I55AE318F I55AE337F I55AE211F I55AE311F I55AE375F I55AE255F I55AE322F I55AE345F I55AE215F I55AE222F Connection X105 Connection type pluggable Screw terminal screw terminal Min.
  • Page 58: 3-Phase Mains Connection 480 V "Light Duty

    Electrical installation Mains connection 3-phase mains connection 480 V "Light Duty" 4.2.7 3-phase mains connection 480 V "Light Duty" 4.2.7.1 Connection plan See chapter "3-phase mains connection 480 V". ^ 52...
  • Page 59: Fusing And Terminal Data

    Electrical installation Mains connection 3-phase mains connection 480 V "Light Duty" 4.2.7.2 Fusing and terminal data Fuse data Inverter I55AE230F I55AE240F I55AE275F I55AE311F I55AE315F I55AE255F Cable installation in compliance with EN 60204-1 Installation method operation without mains choke without mains choke Fuse Characteristics gG/gL or gRL...
  • Page 60 Electrical installation Mains connection 3-phase mains connection 480 V "Light Duty" Fuse data Inverter I55AE355F I55AE390F I55AE375F Cable installation in compliance with EN 60204-1 Installation method operation Fuse Characteristics Max. rated current Circuit breaker Characteristics Max. rated current operation with mains choke Fuse Characteristics Max.
  • Page 61 Electrical installation Mains connection 3-phase mains connection 480 V "Light Duty" Fuse data Inverter I55AE318F I55AE330F I55AE337F I55AE345F I55AE322F Cable installation in compliance with US National Electrical Code NFPA 70 / Canadian Electrical Code C22.1 operation Fuse Characteristics Max. rated current Circuit breaker Characteristics Max.
  • Page 62 Electrical installation Mains connection 3-phase mains connection 480 V "Light Duty" Mains connection Inverter I55AE230F I55AE315F I55AE330F I55AE275F I55AE355F I55AE240F I55AE318F I55AE337F I55AE390F I55AE311F I55AE375F I55AE255F I55AE322F I55AE345F Connection X100 Connection type Screw terminal Min. cable cross-section mm² Min. cable cross-section Max.
  • Page 63: Control Connections

    Electrical installation Control connections Control connections Terminal description Relay output PTC input Control terminals Connection X109 Connection type pluggable screw terminal pluggable screw terminal pluggable spring terminal Min. cable cross-section mm² Min. cable cross-section Max. cable cross-section mm² Max. cable cross-section Stripping length Stripping length inch...
  • Page 64: Networks

    Electrical installation Networks CANopen Networks 4.4.1 CANopen Typical topologies Line X216 X216 X216 X216 Terminal description CANopen Connection X216 Connection type pluggable spring terminal Min. cable cross-section mm² Min. cable cross-section Max. cable cross-section mm² Max. cable cross-section Stripping length Stripping length inch 0.39...
  • Page 65: Modbus Rtu

    Electrical installation Networks Modbus RTU 4.4.2 Modbus RTU Typical topologies Line X216 X216 X216 X216 Terminal description Modbus RTU Connection X216 Connection type pluggable spring terminal Min. cable cross-section mm² Min. cable cross-section Max. cable cross-section mm² Max. cable cross-section Stripping length Stripping length inch...
  • Page 66: Modbus Tcp

    Electrical installation Networks Modbus TCP 4.4.3 Modbus TCP Typical topologies Line Tree Master Switch Slave Basic network settings The rotary encoder switch allows you to set the last byteof the IP address. Setting Value of last byte Resulting IP address 0x00 Value from parameter Value from parameter...
  • Page 67: Profibus

    Electrical installation Networks PROFIBUS 4.4.4 PROFIBUS Typical topologies Line with repeater Master Repeater Slave Activated bus terminating resistor Terminal description PROFIBUS Connection X226 Connection type Sub-D 9p Min. cable cross-section mm² Min. cable cross-section Max. cable cross-section mm² Max. cable cross-section Stripping length Stripping length inch...
  • Page 68: Ethercat

    Electrical installation Networks EtherNet/IP 4.4.5 EtherCAT Typical topologies Line Master Slave Device Basic network settings The rotary encoder switch allows you to set an EtherCAT identifier. Setting Identifier 0x00 Value from parameter 0x01 ... 0xFF Switch position 4.4.6 EtherNet/IP Typical topologies Line Tree Ring...
  • Page 69: Profinet

    Electrical installation Networks PROFINET 4.4.7 PROFINET Typical topologies Line Tree Ring IO controller Switch SCALANCE (MRP capable) IO device Redundant domain The rotary encoder switch has no function.
  • Page 70: Powerlink

    Electrical installation Connection of the safety module 4.4.8 POWERLINK Typical topologies Line CN1n CN11 CN12 CN2n CN21 CN22 Mrated Managing Node Controlled Node Basic network settings The rotary encoder switch allows you to set the node address (last byte of the IP address). Setting Node address Resulting IP address...
  • Page 71: Commissioning

    Commissioning Important notes Commissioning Important notes WARNING! Incorrect wiring can cause unexpected states during the commissioning phase. Possible consequence: death, severe injuries or damage to property Check the following before switching on the mains voltage: ▶ Is the wiring complete and correct? ▶...
  • Page 72: Operating Interfaces

    Commissioning Operating interfaces Keypad Operating interfaces Commissioning the inverter requires an operator-process interface. 5.2.1 Keypad The keypad is an easy means for the local operation, parameterisation, and diagnostics of the inverter. The keypad is simply connected to the diagnostic interface on the front of the inverter. •...
  • Page 73: Engineering Tool »Easy Starter

    Engineering tool »EASY Starter« The »EASY Starter« is a PC software that is especially designed for the commissioning and maintenance of the inverter. The »EASY Starter« PC software can be found on the Internet: http://www.lenze.com à Download à Software Downloads Sample screenshot:...
  • Page 74: Generate A Connection Between Inverter And »Easy Starter

    Commissioning Operating interfaces Engineering tool »EASY Starter« 5.2.2.1 Generate a connection between inverter and »EASY Starter« For commissioning the inverter with the »EASY Starter«, a communication link with the inver- ter is required. This can be established in a wired or wireless manner via WLAN. Preconditions For the wired communication with the inverter, the USB module and a USB 2.0 cable (A •...
  • Page 75 Commissioning Operating interfaces Engineering tool »EASY Starter« Details The following instructions describe the connection establishment via the USB module. Parameterising without motor operation does not require a mains voltage: If you connect • the inverter directly to the PC without a hub, The USB interface of the PC is sufficient for the voltage supply.
  • Page 76: Parameter Setting

    Commissioning Parameter setting Parameter setting As a part of a machine with a speed-variable drive system, the inverter must be adapted to its drive task. The adaptation process of the inverter is carried out by changing parameters. Optionally these parameters can be accessed by means of the keypad or »EASY Starter«. If the inverter is provided with a network option, access can also be effected by a higher-level Con- troller via the corresponding network.
  • Page 77: General Notes On Parameters

    Commissioning Parameter setting General notes on parameters 5.3.1 General notes on parameters Each parameter features a 16-bit index as address. Under this address, the parameter is stored in the object directory of the inverter. Parameters that belong together functionally are combined in a data set. These parame- •...
  • Page 78: Basic Inverter Settings

    Commissioning Parameter setting Basic inverter settings 5.3.2 Basic inverter settings Check the following basic settings of the inverter and adapt them, if required. Parameter Name / value range / [default setting] Info 0x2540:001 Mains settings: Rated mains voltage Selection of the mains voltage for actuating the inverter. (P208.01) (Mains settings: Mains voltage) •...
  • Page 79 Commissioning Parameter setting Basic inverter settings Parameter Name / value range / [default setting] Info 0x2860:001 Frequency control: Default setpoint source Selection of the standard setpoint source for operating mode "MS: (P201.01) (Stnd. setpoints: Freq. setp. src.) Velocity mode". • The selected standard setpoint source is always active in the operat- ing mode 0x6060 (P301.00) = "MS: Velocity mode [-2]"...
  • Page 80 Commissioning Parameter setting Basic inverter settings Parameter Name / value range / [default setting] Info 0x2911:001 Frequency setpoint presets: Preset 1 Parameterisable frequency setpoints (presets) for operating mode "MS: (P450.01) (Freq. presets: Freq. preset 1) Velocity mode". 0.0 ... [20.0] ... 599.0 Hz 0x2911:002 Frequency setpoint presets: Preset 2 (P450.02)
  • Page 81: Basic Motor Settings

    Commissioning Parameter setting Basic motor settings 5.3.3 Basic motor settings Check the following default settings for the motor and motor control and adapt them, if required. Drive behaviour by default By default, the V/f characteristic control with a linear characteristic is preset as motor control for asynchronous motors.
  • Page 82: Function Assignment Of The Inputs And Outputs

    Commissioning Parameter setting Function assignment of the inputs and outputs 5.3.4 Function assignment of the inputs and outputs The inverter control can be adapted individually to the respective application. This is basically effected by assigning digital control sources ("triggers") to functions of the inverter. By default, the inverter can be controlled via the I/O terminals as follows: Input signals Mains voltage...
  • Page 83 Commissioning Parameter setting Function assignment of the inputs and outputs Parameter Name / value range / [default setting] Info 0x2631:002 Function list: Run Assignment of a trigger to the "Run" function. (P400.02) (Function list: Run) • Setting can only be changed if the inverter is inhibi- Function 1: Start / stop motor (default setting) ted.
  • Page 84 Commissioning Parameter setting Function assignment of the inputs and outputs Parameter Name / value range / [default setting] Info 0x2634:002 Digital outputs function: Digital output 1 Assignment of a trigger to digital output 1. (P420.02) (Dig.out.function: DO1 function) Trigger = FALSE: X3/DO1 set to LOW level. •...
  • Page 85: Keypad Parameter List

    Commissioning Keypad parameter list Keypad parameter list For commissioning or diagnostics using the keypad, all parameters of the inverter that can also be accessed by means of the keypad are listed in the following "Keypad parameter list". The keypad parameter list is sorted in ascending order in compliance with the "display •...
  • Page 86 Commissioning Keypad parameter list How to read the keypad parameter list: Column Meaning Display code Parameter number on the keypad. Format: Number.Subindex Short designation Short keypad designation limited to 16 characters. Default setting Default setting of the parameter. Setting range Possible setting range for the parameter.
  • Page 87 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category └ P117.01 Heatsink temp. x.x °C - (Read only) 0x2D84:001 general P118.00 Digital inputs - (Read only) 0x60FD general P119.00 Keypad status - (Read only) 0x2DAC general P120.00 Int.
  • Page 88 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category └ P190.08 OBD version - (Read only) 0x2000:008 general └ P190.10 PU firmware ver. - (Read only) 0x2000:010 general └ P190.11 PU firmware type - (Read only) 0x2000:011 general └...
  • Page 89 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category P301.00 Modes of op. MS: Velocitymode [-2] Selection list 0x6060 general P302.00 V/f charac.shape Linear [0] Selection list 0x2B00 general P303.xx V/f shape data └ P303.01 Base voltage 230 V * 0 ...
  • Page 90 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category P324.00 Max current 200.0 % 0.0 ... 3000.0 % 0x6073 general P325.00 Motor torque 1.650 Nm * 0.001 ... 4294967.295 Nm 0x6076 MCTRL P326.00 Max torque 250.0 % 0.0 ...
  • Page 91 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category └ P351.03 Magn. current 0.96 A * 0.00 ... 500.00 A 0x2C02:003 MCTRL └ P351.04 Slip frequency x.x Hz - (Read only) 0x2C02:004 general P352.xx PSM motor par. └...
  • Page 92 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category └ P400.47 PID-I inhibited Not connected [0] Selection list 0x2631:047 general └ P400.48 PID-Inf ramp on TRUE [1] Selection list 0x2631:048 general └ P400.49 Release brake Not connected [0] Selection list 0x2631:049...
  • Page 93 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category └ P420.13 NetWordOUT1.03 Error [56] Selection list 0x2634:013 general └ P420.14 NetWordOUT1.04 Not connected [0] Selection list 0x2634:014 general └ P420.15 NetWordOUT1.05 Quick stop [54] Selection list 0x2634:015 general └...
  • Page 94 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category └ P431.07 AI2 dead band 0.0 % 0.0 ... 100.0 % 0x2637:007 general └ P431.08 AI2 monit.level 0.0 % -100.0 ... 100.0 % 0x2637:008 general └ P431.09 AI2 error resp.
  • Page 95 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category └ P500.01 Active module ID - (Read only) 0x231F:001 general └ P500.02 Module ID conn. - (Read only) 0x231F:002 general P505.xx NetWordIN1 fct. └ P505.01 NetWordIN1.00 Not active [0] Selection list 0x400E:001...
  • Page 96 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category └ P510.03 Data format Automatic [0] Selection list 0x2321:003 Modbus RTU └ P510.04 Min. resp. time 0 ms 0 ... 1000 ms 0x2321:004 Modbus RTU P510.xx MBTCP settings └...
  • Page 97 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category └ P512.01 Port 1 Auto-Negotiation [0] Selection list 0x23B4:001 Modbus TCP └ P512.02 Port 2 Auto-Negotiation [0] Selection list 0x23B4:002 Modbus TCP P512.xx PROFIBUS Config. └ P512.01 Ext.
  • Page 98 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category P516.00 PROFINET status - (Read only) 0x2388 PROFINET P517.00 CAN contr.status - (Read only) 0x2309 CANopen P517.00 EtherCAT error - (Read only) 0x2369 EtherCAT P517.00 EtherN/IP status - (Read only) 0x23A9 EtherNet/IP...
  • Page 99 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category └ P551.02 Transm. type 0 ... 255 0x1801:002 CANopen └ P551.03 Inhibit time 0.0 ms 0.0 ... 6553.5 ms 0x1801:003 CANopen └ P551.05 Event timer 0 ms 0 ...
  • Page 100 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category └ P583.16 Last RxD byte14 - (Read only) 0x232E:016 Modbus RTU └ P583.17 Last RxD byte15 - (Read only) 0x232E:017 Modbus RTU P585.xx Tx data diagn. └...
  • Page 101 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category └ P593.08 Frequency 0.02Hz - (Read only) 0x400C:008 general └ P593.09 Freq. [+/-16384] - (Read only) 0x400C:009 general P595.xx PAM monitoring └ P595.02 Keep alive reg. 0 ...
  • Page 102 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category └ P700.08 Load par. set 2 Off / ready [0] Selection list 0x2022:008 general └ P700.09 Load par. set 3 Off / ready [0] Selection list 0x2022:009 general └...
  • Page 103 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category └ P712.15 Brake status - (Read only) 0x2820:015 general P718.xx Flying restart └ P718.01 Current 30 % 0 ... 100 % 0x2BA1:001 MCTRL └ P718.02 Start frequency 20.0 Hz -599.0 ...
  • Page 104 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category └ P740.35 Parameter 35 0x26311200 0x00000000 ... 0xFFFFFF00 0x261C:035 general └ P740.36 Parameter 36 0x26311300 0x00000000 ... 0xFFFFFF00 0x261C:036 general └ P740.37 Parameter 37 0x26311400 0x00000000 ... 0xFFFFFF00 0x261C:037 general └...
  • Page 105 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category P790.00 Quick stop dec. 546000 pos. unit/s² 0 ... 2147483647 pos. unit/s² 0x6085 general P791.00 Fault reaction Coasting [0] Selection list 0x605E general P800.00 Sequencer mode Disabled [0] Selection list 0x4025...
  • Page 106 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category └ P807.03 Time 0.0 s 0.0 ... 100000.0 s 0x402C:003 general └ P807.04 Digital outp. 0 ... 255 0x402C:004 general └ P807.05 Analog outp. 0.00 VDC 0.00 ...
  • Page 107: Save Parameter Settings In The Memory Module

    Commissioning Save parameter settings in the memory module Save parameter settings with »EASY Starter« Save parameter settings in the memory module 5.5.1 Save parameter settings with keypad If one parameter setting has been changed with the keypad but has not been saved in the memory module with mains failure protection, the SET display is blinking.
  • Page 108: Diagnostics And Fault Elimination

    Diagnostics and fault elimination LED status display Diagnostics and fault elimination LED status display The "RDY" and "ERR" LED status displays on the front of the inverter provide some quick infor- mation about certain operating states. "RDY" LED (blue) "ERR" LED (red) Status/meaning No supply voltage.
  • Page 109: Diagnostics Parameter

    Diagnostics and fault elimination Diagnostics parameter Diagnostics parameter The inverter provides many diagnostic parameters which are helpful for operation, mainte- nance, error diagnosis, error correction, etc. In the following overview the most common diagnostic parameters are listed. For the key- •...
  • Page 110: Logbook

    Diagnostics and fault elimination Diagnostics parameter Logbook 6.2.1 Logbook For diagnostic purposes, the logbook contains the last 32 error messages and warning signals of the inverter, which have occurred during operation. Preconditions The logbook can only be accessed via the user interface of »EASY Starter« ("Diagnostics" tab) or •...
  • Page 111: Error History Buffer

    Diagnostics and fault elimination Diagnostics parameter Error history buffer 6.2.2 Error history buffer For purposes of diagnostics, the error history buffer contains the last 32 error and warning messages of the inverter, which have occurred during operation. The error history buffer can be read out using the keypad via P155.00 and provides a limited view on the logbook.
  • Page 112 Diagnostics and fault elimination Diagnostics parameter Error history buffer Parameter Name / value range / [default setting] Info 0x2006:002 Error history buffer: Latest message Display of the subindex of the most recent message. • Read only 0x2006:003 Error history buffer: Latest acknowledgement mes- 0 = delete all entries in the error history buffer.
  • Page 113 Diagnostics and fault elimination Diagnostics parameter Error history buffer Parameter Name / value range / [default setting] Info 0x2006:028 Error history buffer: Message 22 Error history buffer entry 23 • Read only 0x2006:029 Error history buffer: Message 23 Error history buffer entry 24 •...
  • Page 114: Inverter Diagnostics

    Diagnostics and fault elimination Diagnostics parameter Inverter diagnostics 6.2.3 Inverter diagnostics The following parameters supply some information about the current operating status of the inverter. This includes the following information: Active access protection after log-in by means of PIN1/PIN2 • Currently loaded parameter settings •...
  • Page 115 Diagnostics and fault elimination Diagnostics parameter Inverter diagnostics Parameter Name / value range / [default setting] Info 0x282A:002 Status words: Cause of quick stop Bit coded display of the cause(s) of quick stop. (P126.02) (Status words: Cause of QSP) • Read only Bit 0 Flexible I/O configuration 1 ≡...
  • Page 116 Diagnostics and fault elimination Diagnostics parameter Inverter diagnostics Parameter Name / value range / [default setting] Info 0x282B:002 Inverter diagnostics: Active setpoint source Display of the setpoint source that is currently active. (P125.02) (Inverter diag.: Active setpoint) • Read only 0 Not selected 1 Analog input 1 2 Analog input 2...
  • Page 117 Diagnostics and fault elimination Diagnostics parameter Inverter diagnostics Parameter Name / value range / [default setting] Info 0x282B:004 Inverter diagnostics: Active drive mode Display of the active drive mode. (P125.04) (Inverter diag.: Drive mode) • Read only 0 Velocity mode "Velocity mode"...
  • Page 118: Network Diagnostics

    Diagnostics and fault elimination Diagnostics parameter Inverter diagnostics Parameter Name / value range / [default setting] Info 0x2DAD Internal hardware states Bit-coded display of internal hardware states. (P120.00) (Int. HW states) • Read only Bit 0 Relay 0 ≡ X9/NO-COM open and NC-COM closed. 1 ≡...
  • Page 119: Canopen Diagnostics

    Diagnostics and fault elimination Diagnostics parameter Network diagnostics Parameter Name / value range / [default setting] Info 0x231F:001 Module ID: Active module ID Display of the network options currently configured in the inverter. (P500.01) (Module ID: Active module ID) • With the help of this module ID, the keypad only shows the communi- •...
  • Page 120 0x1018:001 Identity object: Vendor ID Display of the manufacturer's identification number. • Read only • The identification number allocated to Lenze by the organisation "CAN in Automation e. V." is "0x0000003B". 0x1018:002 Identity object: Product ID Display of the product code of the inverter.
  • Page 121 Diagnostics and fault elimination Diagnostics parameter Network diagnostics Parameter Name / value range / [default setting] Info 0x2308 CANopen status Display of the current fieldbus state (P516.00) (CANopen status) • Read only 0 Initialisation Fieldbus initialisation active. • The initialisation is started automatically at mains connection. During this phase, the inverter us not involved in the data exchange process on the CAN bus.
  • Page 122: Modbus Diagnostics

    Diagnostics and fault elimination Diagnostics parameter Network diagnostics 6.2.4.2 Modbus diagnostics The following parameters serve to diagnose the Modbus interface and communication via Modbus. Preconditions Control unit (CU) of the inverter is provided with Modbus. Parameter Name / value range / [default setting] Info 0x2322:001 Active Modbus settings: Active node ID...
  • Page 123 Diagnostics and fault elimination Diagnostics parameter Network diagnostics Parameter Name / value range / [default setting] Info 0x2342:002 Active PROFIBUS settings: Active baud rate Display of the active baud rate. (P511.02) (PROFIBUS diag.: Active baud rate) • Read only 0 12 Mbps 1 6 Mbps 2 3 Mbps 3 1.5 Mbps...
  • Page 124 Diagnostics and fault elimination Diagnostics parameter Network diagnostics Parameter Name / value range / [default setting] Info 0x2349 PROFIBUS error Bit-coded display of PROFIBUS errors. (P517.00) (PROFIBUS error) • Read only Bit 0 Watchdog elapsed Communication with the PROFIBUS master is continuously interrupted, e.
  • Page 125: Ethernet/Ip Diagnostics

    Diagnostics and fault elimination Diagnostics parameter Network diagnostics 6.2.4.4 EtherNet/IP diagnostics The following parameters serve to diagnose the EtherNet/IP interface and the communication via EtherNet/IP. Preconditions Control unit (CU) of the inverter is provided with EtherNet/IP. Parameter Name / value range / [default setting] Info 0x23A2:001 Active EtherNet/IP settings: IP address...
  • Page 126: Profinet Diagnostics

    Diagnostics and fault elimination Diagnostics parameter Network diagnostics Parameter Name / value range / [default setting] Info 0x23A9 EtherNet/IP status Display of the active network status. (P517.00) (EtherN/IP status) • Read only • From version 02.00 Related topics 4EtherNet/IP ^ 316 6.2.4.5 PROFINET diagnostics The following parameters serve to diagnose the PROFINET interface and the communication...
  • Page 127: Ethercat Diagnostics

    Diagnostics and fault elimination Diagnostics parameter Network diagnostics Parameter Name / value range / [default setting] Info 0x2389:001 PROFINET error: Error 1 The parameter currently contains the error detected on the network. (P517.01) (PROFINET error: Error 1) • The error values may occur in combination with the error values from •...
  • Page 128: Powerlink Diagnostics

    Diagnostics and fault elimination Diagnostics parameter Network diagnostics Parameter Name / value range / [default setting] Info 0x1018:002 Identity object: Product ID Display of the product code of the inverter. • Read only • From version 02.00 0x1018:003 Identity object: Revision number Display of the main and subversion of the firmware.
  • Page 129: Diagnostics Of The Inputs And Outputs

    Diagnostics and fault elimination Diagnostics parameter Network diagnostics Parameter Name / value range / [default setting] Info 0x1008 NMT_ManufactDevName_VS Display of the manufacturer device name. • Read only 0x1009 NMT_ManufactHwVers_VS Display of the manufacturer hardware version. • Read only 0x100A NMT_ManufactSwVers_VS Display of the manufacturer software version.
  • Page 130: Analog Inputs And Outputs

    Diagnostics and fault elimination Diagnostics parameter Diagnostics of the inputs and outputs Parameter Name / value range / [default setting] Info 0x4016:005 Digital output 1: Terminal state Display of the logic state of output terminal X3/DO1. • Read only 0 FALSE 1 TRUE 0x4016:006 Digital output 1: Trigger signal state...
  • Page 131 Diagnostics and fault elimination Diagnostics parameter Diagnostics of the inputs and outputs Parameter Name / value range / [default setting] Info 0x2DA4:016 Diagnostics of analog input 1: Status Bit-coded display of the status of analog input 1 (X3/AI1). (P110.16) (AI1 diagnostics: AI1 status) •...
  • Page 132: Wireless-Lan Diagnostics

    Diagnostics and fault elimination Diagnostics parameter Wireless-LAN diagnostics Related topics 4Configuration of analog inputs ^ 597 4Configuration of analog outputs ^ 617 6.2.6 Wireless-LAN diagnostics The following parameters serve to diagnose the WLAN module and the WLAN communica- tion. Preconditions WLAN module has been plugged onto the interface X16 on the front of the inverter.
  • Page 133: Setpoint Diagnostic

    Diagnostics and fault elimination Diagnostics parameter Setpoint diagnostic 6.2.7 Setpoint diagnostic The following parameters show the current setpoints of different setpoint sources. Parameter Name / value range / [default setting] Info 0x282B:007 Inverter diagnostics: Default frequency setpoint Display of the frequency setpoint of the standard setpoint source set in •...
  • Page 134: Sequencer Diagnostics

    Diagnostics and fault elimination Diagnostics parameter Process controller status Parameter Name / value range / [default setting] Info 0x401F:003 Status Bit-coded status display of the process controller. (P121.03) (PID status) • Read only Bit 0 Process controller off Bit 1 PID output set to 0 Bit 2 PID I-component inhibited Bit 3 PID influence active Bit 4 Setpoint = actual value...
  • Page 135: Device Identification

    Diagnostics and fault elimination Diagnostics parameter Sequencer diagnostics Parameter Name / value range / [default setting] Info 0x2DAE:008 Sequencer diagnostics: Relative sequence time Display of the residual time of the sequence in [%]. (P140.08) remaining (Sequencer diag: SeqTime remain %) •...
  • Page 136: Device Overload Monitoring (I*T)

    Diagnostics and fault elimination Diagnostics parameter Device identification Parameter Name / value range / [default setting] Info 0x2000:016 Device data: Bootloader revision number Bootloader version of the network option. (P190.16) (Device data: Bootloader revNo) • Read only 0x2001 Device name Any device name (e.g.
  • Page 137: Heatsink Temperature Monitoring

    Diagnostics and fault elimination Diagnostics parameter Heatsink Temperature Monitoring Parameter Name / value range / [default setting] Info 0x2D40:005 Device utilisation (i*t): Error response Selection of the response to be executed when the device overload (P135.05) (Device utilisat.: Error response) monitoring function is triggered.
  • Page 138 Diagnostics and fault elimination Diagnostics parameter Life-diagnosis Parameter Name / value range / [default setting] Info 0x2D81:008 Life-diagnosis: Clamp active Display of the number of "Imax: Clamp responded too often" errors that (P151.08) (Life-diagnosis: Clamp active) have occurred. • Read only •...
  • Page 139: Error Handling

    Diagnostics and fault elimination Error handling Error types Error handling Many functions integrated in the inverter can detect errors and thus protect inverter and motor from damages, • detect an operating error of the user, • output a warning or information if desired. •...
  • Page 140: Error Configuration

    Diagnostics and fault elimination Error handling Keypad error messages 6.3.2 Error configuration The errors can be divided into two types: Errors with predefined error type • Errors with configurable error type • Especially critical errors are permanently set to the "Fault" error type in order to protect inver- ter and motor from damages.
  • Page 141: Data Handling

    Diagnostics and fault elimination Data handling Data handling In the following, the behaviour of the inverter is described if the data on the memory module do not match the inverter hardware or firmware, for whatever reason. The following points are described in detail here: Automatic loading of the parameter settings when the inverter is switched on •...
  • Page 142 Diagnostics and fault elimination Data handling Manual loading of the OEM data via device command Device command: "Load OEM data" 0x2022:005 (P700.05) If the OEM memory contains invalid parameter settings, the user parameter settings are • loaded automatically. If the OEM memory is empty, the status feedback "Action cancelled" takes place. The cur- •...
  • Page 143: Basic Setting

    Basic setting Basic setting This chapter contains the most frequently used functions and settings to adapt the inverter to a simple application based on the default setting. Mains voltage • ^ 144 Inverter load characteristic • ^ 146 Control source selection •...
  • Page 144: Mains Voltage

    Basic setting Mains voltage Mains voltage The rated mains voltage set for the inverter has an impact on the operating range of the inver- ter. Details By default, the rated mains voltage in 0x2540:001 (P208.01) is set according to the product code of the inverter.
  • Page 145 Basic setting Mains voltage Parameter Name / value range / [default setting] Info 0x2540:001 Mains settings: Rated mains voltage Selection of the mains voltage for actuating the inverter. (P208.01) (Mains settings: Mains voltage) • Setting can only be changed if the inverter is inhibi- ted.
  • Page 146: Inverter Load Characteristic

    Basic setting Inverter load characteristic Inverter load characteristic The inverter has two different load characteristics: "Light Duty" and "Heavy Duty". The load characteristic "Light Duty" enables a higher output current with restrictions regarding over- load capacity, ambient temperature and switching frequency. This enables the motor required for the application to be driven by a less powerful inverter.
  • Page 147: Control Source Selection

    Basic setting Control source selection Control source selection The selected "control source" serves to provide the inverter with its start, stop, and reversal commands. Possible control sources are: Digital inputs • Keypad • Network • Irrespective of the control source selection, stop commands are always active from each source connected! If, for instance, the network control is active and a keypad is connected for diagnostic purposes, the motor is also stopped if the keypad key...
  • Page 148: Selection Of Setpoint Source

    Basic setting Selection of setpoint source Selection of setpoint source The selected "setpoint source" serves to provide the inverter with its setpoint. The setpoint source can be selected individually for each operating mode. Possible setpoint sources are: Analog inputs • Keypad •...
  • Page 149 Basic setting Selection of setpoint source Parameter Name / value range / [default setting] Info 31 Segment preset 1 For the setpoint selection, the segment presets parameterised for the (from version 03.00) "sequencer" function can be selected as well. 32 Segment preset 2 (from version 03.00) 4Sequencer ^ 504...
  • Page 150 Basic setting Selection of setpoint source Parameter Name / value range / [default setting] Info 0x2860:002 PID control: Default setpoint source Selection of the standard setpoint source for the reference value of the (P201.02) (Stnd. setpoints: PID setp. src.) PID control. •...
  • Page 151: Keypad Setpoint Default Setting

    Basic setting Selection of setpoint source Keypad setpoint default setting Parameter Name / value range / [default setting] Info 0x2860:003 Torque control: Default setpoint source Selection of the standard setpoint source for operating mode "MS: Tor- (P201.03) (Stnd. setpoints: Torque setp.src.) que mode".
  • Page 152 Basic setting Selection of setpoint source Keypad setpoint default setting Parameter Name / value range / [default setting] Info 0x2601:003 Keypad setpoints: Torque setpoint Default setting of the keypad setpoint for the operating mode 0x6060 (P202.03) (Keypad setpoints: KP torq.setpoint) (P301.00) = "MS: Torque mode [-1]".
  • Page 153: Starting/Stopping Performance

    Basic setting Starting/stopping performance Starting performance Starting/stopping performance 7.5.1 Starting performance The start can be optionally made with DC braking or flying restart circuit. Moreover, an auto- matic start can be activated after switch-on. Details The start method can be selected in 0x2838:001 (P203.01).
  • Page 154 Basic setting Starting/stopping performance Starting performance Automatic start after switching on the mains voltage The automatic start can be activated in 0x2838:002 (P203.02). Preconditions for the automatic start: Flexible I/O configuration is selected: 0x2824 (P200.00) = "Flexible I/O configuration [0]" •...
  • Page 155: Stopping Performance

    Basic setting Starting/stopping performance Stopping performance 7.5.2 Stopping performance In the default setting, the motor is brought to a standstill after a stop command with standard ramp. Alternatively, coasting or ramping down with quick stop ramp can be selected. Details The stop method can be selected in 0x2838:003 (P203.03).
  • Page 156: Frequency Limits And Ramp Times

    Basic setting Frequency limits and ramp times Frequency limits and ramp times The frequency range can be limited by setting a minimum and maximum frequency. For the frequency setpoint, two different ramps can be parameterised. Change-over to ramp 2 can be carried out manually or automatically.
  • Page 157 Basic setting Frequency limits and ramp times Parameter Name / value range / [default setting] Info 0x2917 Acceleration time 1 Acceleration time 1 for the operating mode "MS: Velocity mode". (P220.00) (Accelerat.time 1) • The acceleration time set refers to the acceleration from standstill to 0.0 ...
  • Page 158 Basic setting Frequency limits and ramp times Example for operating mode Parameter Name Setting for this example 0x2631:001 (P400.01) Enable inverter Constant TRUE [1] 0x2631:002 (P400.02) Digital input 1 [11] 0x2915 (P210.00) Minimum frequency 15 Hz 0x2916 (P211.00) Maximum frequency 40 Hz 0x2917 (P220.00) Acceleration time 1...
  • Page 159: Quick Stop

    Basic setting Quick stop Quick stop The "quick stop" function is an alternative stop method if the motor has to be stopped faster than normal. Cancelling the quick stop causes a restart of the motor if the start command is still active and the inverter is enabled! Details Possible triggers to be selected for the "quick stop"...
  • Page 160 Basic setting Quick stop Example for operating mode Parameter Name Setting for this example 0x2631:001 (P400.01) Enable inverter Constant TRUE [1] 0x2631:002 (P400.02) Digital input 1 [11] 0x2631:003 (P400.03) Activate quick stop Digital input 2 [12] 0x2838:003 (P203.03) Stop method Standard ramp [1] 0x2916 (P211.00) Maximum frequency...
  • Page 161: S-Shaped Ramps

    Basic setting S-shaped ramps S-shaped ramps In order to reduce the jerk and to therefore prevent the drive components from damage, a smoothing factor can be set for the acceleration/deceleration ramps. Details In the default setting, the motor is accelerated and decelerated with linear ramps since this is the most used configuration.
  • Page 162: Optical Device Identification

    Basic setting Optical device identification Optical device identification For applications including several interconnected inverters it may be difficult to locate a device that has been connected online. The "Optical device identification" function serves to locate the inverter by means of blinking LEDs. Details In order to start the visual tracking, click the button in the toolbar of the »EASY Starter«...
  • Page 163: Motor Control

    Whether a setting can be applied or not depends on the motor (Lenze motor yes/no) and the application. If possible, always use the possible setting listed first in the following diagram since this one leads to the most accurate results.
  • Page 164: Motor Data

    (star or delta connection). Only enter the data applying to the connec- tion type selected. Possible settings If a Lenze motor is connected to the inverter, you can simply select the used motor in the engineering tool from the "motor catalog". For details see chapter "Motor selection from motor...
  • Page 165: Motor Control Selection

    Motor control Motor control selection Motor control selection Setting of motor data Motor control selection Optimisation of motor control Optimisation of the control loops The inverter supports different modes for closed-loop/open-loop motor control. Parameter Name / value range / [default setting] Info 0x2C00 Motor control mode...
  • Page 166: V/F Characteristic Control (Vfc)

    Motor control Motor control selection V/f characteristic control (VFC) 8.2.1 V/f characteristic control (VFC) The V/f characteristic control is a motor control for conventional frequency inverter applica- tions. It is based on a simple and robust control mode for the operation of asynchronous motors with a linear or square-law load torque characteristic (e.g.
  • Page 167: Linear V/F Characteristic

    Motor control Motor control selection V/f characteristic control (VFC) 8.2.1.1 Linear V/f characteristic The linear V/f characteristic is the most used characteristic shape for general applications since they cause a torque that is largely constant. Details Select V/f characteristic control with linear characteristic: 1.
  • Page 168: Square-Law V/F Characteristic

    Motor control Motor control selection V/f characteristic control (VFC) 8.2.1.2 Square-law V/f characteristic The square-law V/f characteristic is typically used in heating, ventilation and climate applica- tions to control the speed of fans and pumps. Details Each application that is provided with the features according to the affinity laws may possibly benefit from a square-law V/f characteristic.
  • Page 169: User-Definable V/F Characteristic

    Motor control Motor control selection V/f characteristic control (VFC) 8.2.1.3 User-definable V/f characteristic The user-definable V/f characteristic is based on the linear V/f characteristic. An additional medium characteristic point, however, enables the adaptation to applications with special tor- que properties. Details An application case for this characteristic shape are applications that require a higher torque at lower speeds.
  • Page 170: V/F Characteristic Control - Energy-Saving (Vfc Eco)

    Motor control Motor control selection V/f characteristic control (VFC) 8.2.1.4 V/f characteristic control - energy-saving (VFC Eco) In case of the energy-saving V/f characteristic control (VFCplusEco). the motor voltage of the inverter is detected by means of a linear characteristic as a function of the rotating field fre- quency or motor speed to be generated.
  • Page 171 Motor control Motor control selection V/f characteristic control (VFC) Parameter Name / value range / [default setting] Info 0x2B00 V/f characteristic shape Selection of the V/f characteristic shape for the adaptation to different (P302.00) (V/f charac.shape) load profiles. • Setting can only be changed if the inverter is inhibi- ted.
  • Page 172: V/F Characteristic Control (Vfc Closed Loop)

    Motor control Motor control selection V/f characteristic control (VFC closed loop) 8.2.2 V/f characteristic control (VFC closed loop) The V/f characteristic control with feedback (VFC closed loop) can be used if an asynchronous motor with motor encoder is connected to the inverter. The speed feedback leads to the following advantages: Stationary speed accuracy •...
  • Page 173: Sensorless Vector Control (Slvc)

    Motor control Motor control selection Sensorless vector control (SLVC) 8.2.3 Sensorless vector control (SLVC) Sensorless (field-oriented) vector control for asynchronous motors is based on a decoupled, separate control for the torque-producing and the field-producing current component. In addition, the actual speed is reconstructed by means of a motor model so that a speed sensor is not required.
  • Page 174 Motor control Motor control selection Sensorless vector control (SLVC) Parameter Name / value range / [default setting] Info 0x2949:001 Positive torque limit source Selection of the source for the positive torque limit source. (P337.01) (Pos. torqlim src) • From version 03.00 0 Max torque Positive torque limit source = Max torque 0x6072...
  • Page 175 Motor control Motor control selection Sensorless vector control (SLVC) Parameter Name / value range / [default setting] Info 0x6060 Modes of operation Selection of the operating mode. (P301.00) (Modes of op.) • Setting can only be changed if the inverter is inhibi- ted.
  • Page 176: Servo Control For Asynchronous Motors (Sc-Asm)

    Motor control Motor control selection Servo control for asynchronous motors (SC-ASM) 8.2.4 Servo control for asynchronous motors (SC-ASM) The field-oriented servo control is based on a decoupled, separated control of the torque-pro- ducing and field-producing current share. The motor control is based on a feedback, field-ori- ented and cascaded controller structure and enables a dynamic and stable operation in all four quadrants.
  • Page 177 Motor control Motor control selection Servo control for asynchronous motors (SC-ASM) Parameter Name / value range / [default setting] Info 0x2949:002 Negative torque limit source Selection of the source for the negative torque limit source. (P337.02) (Neg. torqlim src) • From version 03.00 0 (-) Max torque Negative torque limit source = (-) Max torque 0x6072...
  • Page 178: Sensorless Control For Synchronous Motors (Sl-Psm)

    Motor control Motor control selection Sensorless control for synchronous motors (SL-PSM) 8.2.5 Sensorless control for synchronous motors (SL-PSM) The sensorless control for synchronous motors is based on a decoupled, separated control of the torque-producing current and the current in field direction. In contrast to the servo con- trol, the actual speed value and rotor position are reconstructed via a motor model.
  • Page 179 Motor control Motor control selection Sensorless control for synchronous motors (SL-PSM) SL-PSM parameters The parameters for this motor control type are calculated and set automatically while optimis- ing the control loops. 4Optimisation of the control loops ^ 193 Parameter Name / value range / [default setting] Info 0x2C03:001 Back EMF constant...
  • Page 180 Motor control Motor control selection Sensorless control for synchronous motors (SL-PSM) Parameter Name / value range / [default setting] Info 0x2949:002 Negative torque limit source Selection of the source for the negative torque limit source. (P337.02) (Neg. torqlim src) • From version 03.00 0 (-) Max torque Negative torque limit source = (-) Max torque 0x6072...
  • Page 181: Stall Monitoring

    Motor control Motor control selection Sensorless control for synchronous motors (SL-PSM) 8.2.5.1 Stall monitoring The stalling monitoring for the sensorless control for synchronous motors (SL-PSM) switches off the drive if the motor is about to "stall". A possible cause may be an overload of the motor. Preconditions The stalling monitoring only works in the controlled area and if the motor is not operated in the field weakening range.
  • Page 182: Optimisation Of Motor Control

    Motor control Optimisation of motor control Optimisation of motor control Setting of motor data Motor control selection Optimisation of motor control Optimisation of the control loops The inverter provides different functions by means of which the drive behaviour can be fur- ther optimised.
  • Page 183: V/F Voltage Boost

    Motor control Optimisation of motor control V/f voltage boost 8.3.1 V/f voltage boost The parameterisable voltage boost makes it possible to improve the starting performance for applications requiring a high starting torque. Preconditions The function is only effective in the following motor control types: V/f characteristic control (VFC open loop) •...
  • Page 184: Skip Frequencies

    Motor control Optimisation of motor control Skip frequencies 8.3.2 Skip frequencies By means of the three parameterisable skip frequencies, critical frequencies can be sup- pressed which lead to mechanical resonances in the system. Details A blocking zone is active as soon as the frequency for this blocking zone is set to value unequal to "0 Hz".
  • Page 185 Motor control Optimisation of motor control Skip frequencies Valid and invalid ranges: Example on the left: Skip frequency = 5 Hz, bandwidth = 10 Hz • à Valid range (starts at ≥ 0) Example on the right: Skip frequency = 4 Hz, bandwidth = 10 Hz •...
  • Page 186: Optimising The Stalling Behaviour

    Motor control Optimisation of motor control Optimising the stalling behaviour 8.3.3 Optimising the stalling behaviour If the motor is driven with frequencies above the rated motor frequency, the operating point is shifted to the "field weakening range". In this range, the motor voltage does not increase proportionately to the output frequency anymore.
  • Page 187 Motor control Optimisation of motor control Optimising the stalling behaviour Details The operating range of an asynchronous motor consists of the voltage range and the field ① weakening range. The field weakening range again is divided into two ranges: In the first range , the power can be kept constant without the motor stalling.
  • Page 188: Slip Compensation

    Motor control Optimisation of motor control Slip compensation 8.3.4 Slip compensation In case of a load, the speed of an asynchronous motor decreases. This load-dependent speed drop is called slip. The slip compensation serves to counteract the load-dependent speed loss. Preconditions The function is only effective in the motor control type "V/f characteristic control (VFC open loop)".
  • Page 189 Motor control Optimisation of motor control Slip compensation Parameter Name / value range / [default setting] Info 0x2C02:004 Slip frequency Display of the rated slip determined. (P351.04) (Slip frequency) • Read only: x.x Hz 0x2C01:001 Motor parameters: Number of pole pairs Display of the number of pole pairs calculated from the rated speed and •...
  • Page 190: Oscillation Damping

    Motor control Optimisation of motor control Oscillation damping 8.3.5 Oscillation damping The oscillation damping serves to reduce the oscillations during no-load operation which are caused by energy oscillating between the mechanical system (mass inertia) and the electrical system (DC bus). Furthermore, the oscillation damping can also be used to compensate for resonances.
  • Page 191: Pole Position Identification Without Movement

    Motor control Optimisation of motor control Pole position identification without movement 8.3.6 Pole position identification without movement If a permanent-magnet synchronous motor is driven by the inverter, a "pole position identifi- cation (PLI)" is required for an optimum and jerk-free starting torque. In the default setting, a pole position identification is executed after each inverter enable.
  • Page 192 Motor control Optimisation of motor control Pole position identification without movement Parameter Name / value range / [default setting] Info 0x2C63:001 PPI without movement: Execution Starting performance (without or with pole position identification before • Setting can only be changed if the inverter is inhibi- the start).
  • Page 193: Optimisation Of The Control Loops

    Motor control Optimisation of the control loops Optimisation of the control loops Setting of motor data Motor control selection Optimisation of motor control Optimisation of the control loops If there is a need to improve the total power of the system, different options are available: a) Select motor from motor catalogue b) Tuning of the motor and the speed controller c) Automatic motor identification (energized)
  • Page 194 Optimisation of the control loops Performing optimisation with engineering tool The following flow diagram shows the optimisation process with an engineering tool (e. g. »EASY Starter«): Start Lenze motor connected? Set manually: • Motor data (e.g. according to data on the motor nameplate) Engineering tool •...
  • Page 195 4Man- ual setting of the motor data ^ 164 The following flow diagram shows the optimisation process with the keypad: Start Lenze motor connected? Set manually: • Motor data (e.g. according to data on the motor nameplate) Engineering tool •...
  • Page 196: Options For Optimized Motor Tuning

    Motor control Optimisation of the control loops Options for optimized motor tuning 8.4.1 Options for optimized motor tuning The option to be selected depends on the respective application. Depending on the selected option, different procedures become active and thus different parameter groups are influ- enced: Rated motor data •...
  • Page 197: Motor Selection From Motor Catalogue

    Optimisation is possible online or offline (with or without connected motor). • Required steps 1. Open the Lenze engineering tool that provides for the functionality of a "Lenze motor cata- logue". 2. Click the Select motor... button. In case of the »EASY Starter«, you find the Select motor...
  • Page 198: Tuning Of The Motor And The Speed Controller

    Motor control Optimisation of the control loops Options for optimized motor tuning 8.4.1.2 Tuning of the motor and the speed controller The following describes in general how to optimise the speed controller. This may be required if some parameters have on the load side of the drive system have changed or have not been set yet, such as: Motor moment of inertia •...
  • Page 199: Automatic Motor Identification (Energized)

    Motor control Optimisation of the control loops Options for optimized motor tuning 8.4.1.3 Automatic motor identification (energized) The automatic identification of the motor results in the best possible parameter settings. If the application enables you to energise the system during the optimisation, carry out this optimisation.
  • Page 200: Automatic Motor Calibration (Non-Energized)

    Motor control Optimisation of the control loops Inverter Characteristics 8.4.1.4 Automatic motor calibration (non-energized) If the application does not enable you to energise the system during the optimisation, carry out this optimisation. Preconditions All rated motor data are known and set in the inverter, either by selecting the motor from •...
  • Page 201: Motor Equivalent Circuit Diagram Data

    Motor control Optimisation of the control loops Motor equivalent circuit diagram data 8.4.3 Motor equivalent circuit diagram data The motor equivalent circuit diagram data are automatically set if one of the following optimi- sations is carried out: 4Motor selection from motor catalogue ^ 197 4Automatic motor identification (energized) ^ 199...
  • Page 202: Motor Controller Settings

    Motor control Optimisation of the control loops Motor controller settings 8.4.4 Motor controller settings After the motor settings have been made, the different control loops must be set. For a quick commissioning, the calculations and settings are made automatically if one of the following optimisations is carried out: 4Motor selection from motor catalogue ^ 197...
  • Page 203: Field Controller

    Motor control Optimisation of the control loops Motor controller settings 8.4.4.2 Field controller For a quick commissioning, the calculations and settings are made automatically during the optimisation. Preconditions The field controller is only effective in the following motor control types: Servo control (SC ASM) •...
  • Page 204: Imax Controller

    Motor control Optimisation of the control loops Motor controller settings 8.4.4.5 Imax controller For a quick commissioning, the calculations and settings are made automatically during the optimisation. For typical applications, a manual adaptation of the parameters of the Imax con- troller is not recommended.
  • Page 205: Flying Restart Controller

    Motor control Optimisation of the control loops Motor controller settings 8.4.4.6 Flying restart controller For a quick commissioning, the calculations and settings are made automatically during the optimisation. Preconditions The flying restart controller is only effective in the following motor control types: V/f characteristic control (VFC open loop) •...
  • Page 206: Torque Control W/ Freq. Limit

    Motor control Optimisation of the control loops Motor controller settings 8.4.4.8 Torque control w/ freq. limit In general, the inverter is operated in a mode that controls the motor frequency. Alternatively, the inverter can be configured in such a way that it controls a motor torque within a defined frequency range.
  • Page 207 Motor control Optimisation of the control loops Motor controller settings Parameterisation required 1. Set the operating mode "MS: Torque mode [-1]" in 0x6060 (P301.00). 2. Set the rated motor torque in 0x6076 (P325.00). 3. Set the permissible maximum torque in 0x6072 (P326.00).
  • Page 208 Motor control Optimisation of the control loops Motor controller settings Diagnostic parameters: 0x2DD5: Torque setpoint • 0x2949:003 (P337.03): Actual positive torque limit • 0x2949:004 (P337.04): Actual negative torque limit • 0x2946:007 (P340.07): Speed limitation: Actual upper speed limit • 0x2946:008 (P340.08): Speed limitation: Actual lower speed limit •...
  • Page 209 Motor control Optimisation of the control loops Motor controller settings Parameter Name / value range / [default setting] Info 0x2946:004 Speed limitation: Lower speed limit source Selection of the source for the lower speed limit. (P340.04) (Speed limitation: Lowspeed lim src) •...
  • Page 210: Slip Controller

    Motor control Optimisation of the control loops Motor controller settings Parameter Name / value range / [default setting] Info 0x2949:002 Negative torque limit source Selection of the source for the negative torque limit source. (P337.02) (Neg. torqlim src) • From version 03.00 0 (-) Max torque Negative torque limit source = (-) Max torque 0x6072...
  • Page 211: Speed Controller

    Motor control Optimisation of the control loops Speed controller 8.4.5 Speed controller The speed controller is automatically set if one of the following optimisations is carried out: 4Motor selection from motor catalogue ^ 197 4Automatic motor identification (energized) ^ 199 4Automatic motor calibration (non-energized) ^ 200 For typical applications, a manual adaptation of the parameters of the speed...
  • Page 212: Motor Rotating Direction

    Motor control Motor rotating direction Motor rotating direction In the default setting, both directions of motor rotation are enabled. Optionally, the direction of rotation can be restricted so that only a clockwise rotation (CW) of the motor is possible. Preconditions Wiring of the motor phases must be carried out correctly with regard to the direction of motor rotation.
  • Page 213: Switching Frequency Changeover

    Motor control Switching frequency changeover Switching frequency changeover The output voltage of the inverter is a DC voltage with sine-coded pulse width modulation (PWM). This corresponds by approximation to a AC voltage with variable frequency. The fre- quency of the PWM pulses is adjustable and is called "switching frequency". Details The switching frequency has an impact on the smooth running performance and the noise generation in the motor connected as well as on the power loss in the inverter.
  • Page 214: Motor Protection

    Motor control Motor protection Motor protection Many monitoring functions integrated in the inverter can detect errors and thus protect the device or motor from being destroyed or overloaded. Motor overload monitoring (i²*t) • ^ 215 Motor temperature monitoring • ^ 219 Current limits •...
  • Page 215: Motor Overload Monitoring (I²*T)

    Motor control Motor protection Motor overload monitoring (i²*t) 8.7.1 Motor overload monitoring (i²*t) This function monitors the thermal utilisation of the motor, taking the motor currents recor- ded and a mathematical model as a basis. DANGER! Fire hazard by overheating of the motor. Possible consequences: Death or severe injuries ▶...
  • Page 216 Motor control Motor protection Motor overload monitoring (i²*t) The following two diagrams show the relation between the motor load and release time of the monitoring under the following conditions: Maximum utilisation 0x2D4B:001 (P308.01) = 150 % • Speed compensation 0x2D4B:002 (P308.02) = "Off [1]"...
  • Page 217 Motor control Motor protection Motor overload monitoring (i²*t) Speed compensation for protecting motors at low speed The inverter comes with an implemented compensation for low speed. If the motor is driven with frequencies lower than 40 Hz, the speed compensation in 0x2D4B:002 (P308.02)should be set to "On [0]"...
  • Page 218 Motor control Motor protection Motor overload monitoring (i²*t) Parameter Name / value range / [default setting] Info 0x2D4B:002 Motor overload monitoring (i²*t): Speed compensa- Use this function to protect motors that are actuated at a speed below (P308.02) tion 40 Hz. (Motor overload: Speed comp.) •...
  • Page 219: Motor Temperature Monitoring

    Motor control Motor protection Motor temperature monitoring 8.7.2 Motor temperature monitoring In order to record and monitor the motor temperature, a PTC thermistor (single sensor according to DIN 44081 or triple sensor according to DIN 44082) or thermal contact (normally- closed contact) can be connected to the terminals T1 and T2.
  • Page 220: Current Limits

    Motor control Motor protection Current limits 8.7.3 Current limits For the purpose of current limitation, a maximum overload current can be set for the inverter. If the current consumption of the motor exceeds this current limit, the inverter changes its dynamic behaviour, in order to counteract this exceedance.
  • Page 221 Motor control Motor protection Current limits Parameter Name / value range / [default setting] Info 0x6073 Max current Maximum overload current of the inverter. (P324.00) (Max current) • 100 % ≡ Motor rated current 0x6075 (P323.00) 0.0 ... [200.0] ... 3000.0 % •...
  • Page 222: Overcurrent Monitoring

    Motor control Motor protection Overcurrent monitoring 8.7.4 Overcurrent monitoring This function monitors the instantaneous value of the motor current and serves as motor pro- tection. NOTICE With an incorrect parameterisation, the maximum permissible motor current may be excee- ded in the process. Possible consequence: irreversible damage of the motor.
  • Page 223: Motor Phase Failure Detection

    Motor control Motor protection Motor phase failure detection 8.7.5 Motor phase failure detection The motor phase failure detection function can be activated for both synchronous and asyn- chronous motors. Preconditions Phase failure detection during operation is basically only suitable for applications which are operated with a constant load and speed.
  • Page 224: Motor Speed Monitoring

    Motor control Motor protection Motor speed monitoring 8.7.6 Motor speed monitoring This function monitors the motor speed during operation. Preconditions In order to detect the current motor speed, the inverter must be enabled and the motor • must rotate. For an exact monitoring, rated motor speed 0x2C01:004 (P320.04) and rated motor fre- •...
  • Page 225 Motor control Motor protection Motor torque monitoring Parameter Name / value range / [default setting] Info 0x2D67:002 Maximum torque monitoring: Triggering delay Optional setting of a deceleration for triggering the response selected in (P329.02) (MaxTrq.Monitor: Triggering delay) 0x2D67:001 (P329.01). 0.000 ... [0.000] ... 10.000 s Typical application: •...
  • Page 226: Configuring The Network

    Configuring the network Configuring the network The inverter is available as variants with different network options. General network settings • ^ 227 Predefined process data words • ^ 246 Acyclic data exchange • ^ 258 CANopen • ^ 259 Modbus RTU •...
  • Page 227: General Network Settings

    Configuring the network General network settings General network settings Activate network control In order to be able to control the inverter via network, a trigger must be first assigned in 0x2631:037 (P400.37) to the "Activate network control" function. This trigger can for instance be the constant value "TRUE" or a digital input. •...
  • Page 228 Configuring the network General network settings Network setpoint It must be observed that the network setpoint must be selected explicitly. There are various options to select/change-over to the network setpoint. See the following examples. Example 1: The AC drive control word shall enable a change-over from the standard setpoint source to the network setpoint (bit 6).
  • Page 229 Configuring the network General network settings Parameter Name / value range / [default setting] Info 0x231F:001 Module ID: Active module ID Display of the network options currently configured in the inverter. (P500.01) (Module ID: Active module ID) • With the help of this module ID, the keypad only shows the communi- •...
  • Page 230 Configuring the network General network settings Parameter Name / value range / [default setting] Info 4 Reset error Trigger bit = 0-1 edge: Active error is reset (acknowledged) if the error condition is not active anymore and the error is resettable. Trigger bit = 0: No action.
  • Page 231 Configuring the network General network settings Parameter Name / value range / [default setting] Info 30 Run/abort sequence Trigger bit = 1: Start selected sequence. (from version 03.00) Trigger bit = 0: Abort sequence. Notes: • The assigned trigger bit must remain set to "1" for the duration of the sequence.
  • Page 232 Configuring the network General network settings Parameter Name / value range / [default setting] Info 41 Select parameter set (bit 0) Selection bits for the "Parameter change-over" function. 4Parameter change-over ^ 464 42 Select parameter set (bit 1) 43 Activate fault 1 Trigger bit = 1: Trigger user-defined error 1.
  • Page 233 Configuring the network General network settings Parameter Name / value range / [default setting] Info 54 Position counter reset Trigger bit = 1: Reset position counter manually. Trigger bit = 0: No action. 4Position counter ^ 493 55 Activate UPS operation Trigger bit = 1: Activate UPS operation.
  • Page 234 Configuring the network General network settings Parameter Name / value range / [default setting] Info 0x400E:010 NetWordIN1 function: Bit 9 Definition of the function that is to be triggered via bit 9 of the mappa- (P505.10) (NetWordIN1 fct.: NetWordIN1.09) ble NetWordIN1 data word. •...
  • Page 235 Configuring the network General network settings Parameter Name / value range / [default setting] Info 1 Constant TRUE Trigger is constantly TRUE. 11 Digital input 1 State of X3/DI1, taking an inversion set in 0x2632:001 (P411.01) into consideration. 12 Digital input 2 State of X3/DI2, taking an inversion set in 0x2632:002 (P411.02) into...
  • Page 236 Configuring the network General network settings Parameter Name / value range / [default setting] Info 81 Error of analog input 1 active TRUE if the monitoring of the input signal at the analog input 1 has responded. Otherwise FALSE. This trigger is set as a function of the following settings: •...
  • Page 237 Configuring the network General network settings Parameter Name / value range / [default setting] Info 0x2631:002 Function list: Run Assignment of a trigger to the "Run" function. (P400.02) (Function list: Run) • Setting can only be changed if the inverter is inhibi- Function 1: Start / stop motor (default setting) ted.
  • Page 238 Configuring the network General network settings Parameter Name / value range / [default setting] Info 0x2631:010 Function list: Jog foward (CW) Assignment of a trigger for the "Jog foward (CW)" function. (P400.10) (Function list: Jog foward) Trigger = TRUE: Let motor rotate forward with preset 5. •...
  • Page 239 Configuring the network General network settings Parameter Name / value range / [default setting] Info 0x2631:037 Function list: Activate network control Assignment of a trigger for the "Activate network control" function. (P400.37) (Function list: Network control) Trigger = TRUE: Activate network control. •...
  • Page 240 Configuring the network General network settings Parameter Name / value range / [default setting] Info 0x2634:016 Digital outputs function: NetWordOUT1 - bit 6 Assignment of a trigger to bit 6 of NetWordOUT1. (P420.16) (Dig.out.function: NetWordOUT1.06) Trigger = FALSE: bit set to 0. •...
  • Page 241 Configuring the network General network settings Parameter Name / value range / [default setting] Info 2 Analog input 1 The setpoint is defined as analog signal via the analog input 1. 4Analog input 1 ^ 597 3 Analog input 2 The setpoint is defined as analog signal via the analog input 2.
  • Page 242 Configuring the network General network settings Parameter Name / value range / [default setting] Info 0x2860:002 PID control: Default setpoint source Selection of the standard setpoint source for the reference value of the (P201.02) (Stnd. setpoints: PID setp. src.) PID control. •...
  • Page 243 Configuring the network General network settings Parameter Name / value range / [default setting] Info 0x4008:001 Process input words: NetWordIN1 Mappable data word for flexible control of the inverter via network. (P590.01) (NetWordINx: NetWordIN1) 0x0000 ... [0x0000] ... 0xFFFF Bit 0 Mapping bit 0 Assignment of the function: 0x400E:001 (P505.01) Bit 1 Mapping bit 1...
  • Page 244 Configuring the network General network settings Parameter Name / value range / [default setting] Info 0x400A:001 Process output words: NetWordOUT1 Mappable data word for the output of status messages of the inverter (P591.01) (NetWordOUTx: NetWordOUT1) via network. • Read only Bit 0 Mapping bit 0 Mappable data word for the output of status messages of the inverter via network.
  • Page 245 Configuring the network General network settings Parameter Name / value range / [default setting] Info 0x400A:002 Process output words: NetWordOUT2 Mappable data word for the output of messages of the "Sequencer" (P591.02) (NetWordOUTx: NetWordOUT2) function via network. • Read only Configuration of the messages: Bit 0 Mapping bit 0 •...
  • Page 246: Predefined Process Data Words

    Configuring the network Predefined process data words Predefined process data words Process data are exchanged via cyclic data exchange between the network master and the inverter. Details For the cyclic data exchange, the inverter is provided with 24 network registers. 12 network registers are provided as input registers for data words from the network mas- •...
  • Page 247: Device Profile Cia 402

    Configuring the network Predefined process data words Device profile CiA 402 9.2.1 Device profile CiA 402 For control via device profile CiA 402, the parameters listed in the following can be mapped to network register. Details The mapping entry for the CiA 402 control word is 0x60400010. •...
  • Page 248: Ac Drive Profile

    Configuring the network Predefined process data words AC Drive Profile 9.2.2 AC Drive Profile For control via AC drive profile, the parameters listed in the following can be mapped to net- work registers. Details The mapping entry for the AC Drive control word is 0x400B0110. •...
  • Page 249: Lenze Lecom Profile

    7 Squirrel cage induction 9.2.3 Lenze LECOM profile For connection to Lenze inverters with a LECOM control word (C135) and LECOM status word (C150), the parameters listed in the following can be mapped to network registers. Details The mapping entry for the LECOM control word is 0x400B0210.
  • Page 250 Mappable status word with bit assignment in compliance with code (P593.02) (Process data OUT: LECOM stat. word) C150 of the 8200 Lenze inverter. • Read only Bit 0 Active parameter set (0 = set 1 or 3; 1 = set 2...
  • Page 251: Further Process Data

    Configuring the network Predefined process data words Further process data 9.2.4 Further process data The parameters listed in the following can also be mapped to network registers, in order to transmit control and status information as well as setpoints and actual values as process data. Details The following parameters are always available irrespective of the network option.
  • Page 252 Configuring the network Predefined process data words Further process data Parameter Name / value range / [default setting] Info 0x4008:001 Process input words: NetWordIN1 Mappable data word for flexible control of the inverter via network. (P590.01) (NetWordINx: NetWordIN1) 0x0000 ... [0x0000] ... 0xFFFF Bit 0 Mapping bit 0 Assignment of the function: 0x400E:001 (P505.01)
  • Page 253 Configuring the network Predefined process data words Further process data Parameter Name / value range / [default setting] Info 0x4008:002 Process input words: NetWordIN2 Mappable data word for optional control of the digital outputs via net- (P590.02) (NetWordINx: NetWordIN2) work. 0x0000 ...
  • Page 254 Configuring the network Predefined process data words Further process data Parameter Name / value range / [default setting] Info 0x400A:001 Process output words: NetWordOUT1 Mappable data word for the output of status messages of the inverter (P591.01) (NetWordOUTx: NetWordOUT1) via network. •...
  • Page 255 Configuring the network Predefined process data words Further process data Parameter Name / value range / [default setting] Info 0x400A:002 Process output words: NetWordOUT2 Mappable data word for the output of messages of the "Sequencer" (P591.02) (NetWordOUTx: NetWordOUT2) function via network. •...
  • Page 256 Configuring the network Predefined process data words Further process data Parameter Name / value range / [default setting] Info 0x400C:004 Process output data: Motor speed Mappable parameter for the output of the actual value as speed in [rpm] (P593.04) (Process data OUT: Motor speed) via network.
  • Page 257: Parameter Access Monitoring (Pam)

    Configuring the network Predefined process data words Parameter access monitoring (PAM) 9.2.5 Parameter access monitoring (PAM) The parameter access monitoring can be used as basic protection against a control loss of the inverter. Monitoring is triggered if a parameter write access to a certain index does not take place at regular intervals via the established communication connection.
  • Page 258: Process Data Handling In Case Of Error

    Configuring the network Acyclic data exchange Parameter Name / value range / [default setting] Info 0x2552:006 Parameter access monitoring: Parameter Access Mon- Bit coded display of the status of parameter access monitoring. (P595.06) itoring-Status (PAM monitoring: PAM status) • Read only •...
  • Page 259: Canopen

    Configuring the network CANopen Introduction CANopen CANopen® is an internationally approved communication protocol which is designed for com- mercial and industrial automation applications. High data transfer rates in connection with efficient data formatting provide for the coordination of motion control devices in multi-axis applications.
  • Page 260: Node Address Setting

    Configuring the network CANopen Node address setting 9.4.2 Node address setting Each network node must be provided with a unique node address. Details The node address of the inverter can be optionally set in 0x2301:001 (P510.01) or using • the DIP switches on the device labelled with "1" ... "64". The setting that is active when the inverter is switched on is the effective setting.
  • Page 261: Baud Rate Setting

    Configuring the network CANopen Baud rate setting 9.4.3 Baud rate setting All network nodes must be set to the same baud rate. Details The baud rate can be optionally set in 0x2301:002 (P510.02) or using the DIP switches on • the device labelled with "a"...
  • Page 262: Configure Device As Mini Master

    Configuring the network CANopen Configure device as mini master 9.4.4 Configure device as mini master If the initialisation of the CANopen network and the associated status change from "Pre- Operational" to "Operational" is not effected by a higher-level host system, the inverter can instead be defined as a "mini"...
  • Page 263: Diagnostics

    Configuring the network CANopen Diagnostics 9.4.5 Diagnostics For the purpose of diagnostics, the inverter provides several status words via which the CAN bus status, the CAN bus controller status, and the status of different time monitoring func- tions can be queried. Parameter Name / value range / [default setting] Info...
  • Page 264: Emergency Telegram

    Configuring the network CANopen Emergency telegram Parameter Name / value range / [default setting] Info 0x2309 CANopen controller status Status display of the internal CANopen controller. (P517.00) (CAN contr.status) • Read only 1 Error active The inverter is a fully-fledged communication node at the CANopen net- work.
  • Page 265 Configuring the network CANopen Heartbeat protocol Parameter Name / value range / [default setting] Info 0x1016:001 Consumer heartbeat time: Consumer heartbeat time Node ID and heartbeat time of node 1 which is to be monitored. (P520.01) • Format: 0x00nnhhhh (nn = node ID, hhhh = heartbeat time in [ms]) (Cons.
  • Page 266: Process Data Objects

    Configuring the network CANopen Process data objects 9.4.8 Process data objects Process data objects (PDOs) are used for the cyclic transmission of (process) data via CAN- open. PDOs only contain data and an identifier. They do not contain any information about the sender or receiver and are therefore very efficient.
  • Page 267 Configuring the network CANopen Process data objects Synchronisation of PDOs via sync telegram During cyclic transmission, one or more PDOs are transmitted/received in fixed time intervals. An additional specific telegram, the so-called sync telegram, is used for synchronising cyclic process data. The sync telegram is the trigger point for the transmission of process data from the slaves •...
  • Page 268 Configuring the network CANopen Process data objects Parameter Name / value range / [default setting] Info 0x1400:002 RPDO1 communication parameter: Transmission type RPDO1: transmission type in compliance with DS301 V4.02 (P540.02) (RPDO1 config.: Transm. type) 0 ... [255] ... 255 0x1400:005 RPDO1 communication parameter: Event timer RPDO1: time-out for the monitoring of data reception.
  • Page 269 Configuring the network CANopen Process data objects Parameter Name / value range / [default setting] Info 0x1800:001 TPDO1 communication parameter: COB-ID TPDO1: identifier (P550.01) (TPDO1 config.: COB-ID) How to change the identifier: 0x00000001 ... [0x40000180] ... 0xFFFFFFFF 1. Set PDO to "invalid": Set bit 31 to "1". Bit 0 COB-ID bit 0 2.
  • Page 270 Configuring the network CANopen Process data objects Parameter Name / value range / [default setting] Info 0x1802:001 TPDO3 communication parameter: COB-ID TPDO3: identifier (P552.01) (TPDO3 config.: COB-ID) How to change the identifier: 0x00000001 ... [0xC0000380] ... 0xFFFFFFFF 1. Set PDO to "invalid": Set bit 31 to "1". Bit 0 COB-ID bit 0 2.
  • Page 271: Data Mapping

    Configuring the network CANopen Data mapping 9.4.9 Data mapping Data mapping serves to define which process data are transmitted cyclically via the process data channels. Details Data mapping (in the case of CANopen also referred to as "PDO mapping") is preconfigured for control of the inverter via the device profile CiA 402: RPDO1 = CiA 402 control word 0x6040...
  • Page 272 Configuring the network CANopen Data mapping Parameter Name / value range / [default setting] Info 0x1601:003 RPDO2 mapping parameter: Application object 3 Mapping entry 3 for RPDO2. 0x00000000 ... [0x00000000] ... 0xFFFFFFFF 0x1601:004 RPDO2 mapping parameter: Application object 4 Mapping entry 4 for RPDO2. 0x00000000 ...
  • Page 273 Configuring the network CANopen Data mapping Parameter Name / value range / [default setting] Info 0x1A01:005 TPDO2 mapping parameter: Application object 5 Mapping entry 5 for TPDO2. 0x00000000 ... [0x00000000] ... 0xFFFFFFFF 0x1A01:006 TPDO2 mapping parameter: Application object 6 Mapping entry 6 for TPDO2. 0x00000000 ...
  • Page 274: Service Data Objects

    Configuring the network CANopen Service data objects 9.4.10 Service data objects Service data objects (SDOs) make it possible to read and write all parameters of the inverter via CANopen. Details Two independent SDO channels are provided at the same time. SDO channel 1 is always •...
  • Page 275: Error Responses

    Configuring the network CANopen Service data objects Maximally 4 bytes are available for parameter value entries. Depending on the data format, they are assigned as follows: 5th byte 6th byte 7th byte 8th byte Parameter value (1 byte) 0x00 0x00 0x00 Parameter value (2 bytes) 0x00...
  • Page 276: Diagnostic Counter

    Configuring the network CANopen Error responses Parameter Name / value range / [default setting] Info 0x1029:001 Error behavior: Communication error Selection of the NMT state to which the inverter is to change automati- cally if a failure of a CANopen node or an internal error is detected in the "Operational"...
  • Page 277: Led Status Displays

    Configuring the network CANopen LED status displays Parameter Name / value range / [default setting] Info 0x230A:002 CANopen statistics: PDO2 received Display of the number of PDO2 telegrams received. (P580.02) (CAN statistics: PDO2 received) • Read only 0x230A:003 CANopen statistics: PDO3 received Display of the number of PDO3 telegrams received.
  • Page 278: Restart Communication

    Configuring the network CANopen Restart communication 9.4.14 Restart communication The following parameter can be used to restart or stop communication. Optionally it is also possible to reset all communication parameters to the default status. Details A restart of communication is required after changes of the interface configuration (e. g. node address and baud rate) in order that the changed settings become effective.
  • Page 279: Short Setup

    Configuring the network CANopen Short setup 9.4.15 Short setup In the following, the steps required for controlling the inverter via CANopen are described. Parameterisation required 1. Set the CANopen node address. Each network node must be provided with a unique node address. •...
  • Page 280 Configuring the network CANopen Short setup RPDO1 mapping The RPDO1 is used to control the inverter. Changing the identifier (COB-ID) and the PDO mapping only allows the following procedure: 1. Set RPDO1 to "invalid": Set bit 31 in the identifier 0x1400:001 (P540.01) to "1".
  • Page 281 Configuring the network CANopen Short setup TPDO1 mapping The TPDO1 is used for the output of status information and the actual frequency value. Changing the identifier (COB-ID) and the PDO mapping only allows the following procedure: 1. Set TPDO1 to "invalid": Set bit 31 in the identifier 0x1800:001 (P550.01) to "1".
  • Page 282: Modbus Rtu

    Configuring the network Modbus RTU Introduction Modbus RTU Modbus is an internationally approved, asynchronous, serial communication protocol, designed for commercial and industrial automation applications. Detailed information on the Modbus can be found on the web page of the international • Modbus Organization, USA, who also further develop the Modbus protocol: http:// www.modbus.org Information about the dimensioning of a Modbus network can be found in the configura-...
  • Page 283: Baud Rate Setting

    Configuring the network Modbus RTU Data format setting Parameter Name / value range / [default setting] Info 0x2323 Modbus switch position Display of the DIP switch setting at the last mains power-on. (P509.00) (Modbus switch) • The value displayed corresponds to the sum of all DIP switch values •...
  • Page 284: Time-Out Monitoring

    Configuring the network Modbus RTU Time-out monitoring 9.5.5 Time-out monitoring The response to the missing Modbus messages can be configured via the following parame- ters. Parameter Name / value range / [default setting] Info 0x2858:001 Modbus monitoring: Response to time-out Selection of the response executed if no valid messages have been (P515.01) (Modbus monit.: Resp.
  • Page 285 Configuring the network Modbus RTU Diagnostics Parameter Name / value range / [default setting] Info 0x232E:002 Modbus diagnostics of last Rx data: Data byte 0 Display of the message received last. (P583.02) (Rx data diagn.: Last RxD byte0) • Read only 0x232E:003 Modbus diagnostics of last Rx data: Data byte 1 (P583.03)
  • Page 286 Configuring the network Modbus RTU Diagnostics Parameter Name / value range / [default setting] Info 0x232F:002 Modbus diagnostics of last Tx data: Data byte 0 Display of the message sent last. (P585.02) (Tx data diagn.: Last TxD byte0) • Read only 0x232F:003 Modbus diagnostics of last Tx data: Data byte 1 (P585.03)
  • Page 287: Function Codes

    • the leading 4 is omitted in the addressing process. Lenze supports the basic 1 addressing of Modbus, i.e. the numbering of the registers starts • with 1 whereas addressing starts with 0. For example, the address 0 is used in the frame when register 40001 is read.
  • Page 288 Configuring the network Modbus RTU Function codes Error codes In the event of an error, the node responds with a function code associated to the message: Function code Associated func- Supported error codes tion code in the event of an error 0x03 0x83...
  • Page 289: Data Mapping

    Configuring the network Modbus RTU Data mapping 9.5.8 Data mapping The process of data mapping is used for defining which Modbus registers read or write to which inverter parameters. Details There are fixedly defined Modbus registers for common control and status words, which •...
  • Page 290: Led Status Displays

    Configuring the network Modbus RTU LED status displays Variable mapping 0x232B:001 ... 0x232B:024 (P530.01 ... 24), 24 registers can be mapped to parameters • of the inverter. Format: 0xiiiiss00 (iiii = index hexadecimal, ss = subindex hexadecimal) The display of the internal Modbus register numbers in 0x232C:001 ...
  • Page 291: Restart Communication

    Configuring the network Modbus RTU Response time setting 9.5.10 Restart communication The following parameter can be used to restart communication. Details A restart of communication is required after changes of the interface configuration (e. g. node address and baud rate) in order that the changed settings become effective. For restarting communication, there are two options: a) Switch inverter off and on again.
  • Page 292: Short Setup

    Configuring the network Modbus RTU Short setup 9.5.12 Short setup In the following, the steps required for controlling the inverter via Modbus are described. Parameterisation required 1. Activate network control: 0x2631:037 (P400.37) = "TRUE [1]" 2. Set network as standard setpoint source: 0x2860:001 (P201.01) = "Network [5]"...
  • Page 293 Configuring the network Modbus RTU Short setup Write the speed of the drive via Modbus The drive speed can be changed via the Modbus register 42102, see Data mapping. Example of an inverter with the node address 1: Request frame by the master Slave address Function code Data...
  • Page 294: Profibus

    Configuring the network PROFIBUS Communication time setting PROFIBUS PROFIBUS® (Process Field Bus) is a widely-used fieldbus system for the automation of machines and production plants. Detailed information on PROFIBUS can be found on the web page of the PROFIBUS & PRO- •...
  • Page 295: Station Address Setting

    Configuring the network PROFIBUS Station address setting 9.6.3 Station address setting Each network node must be provided with a unique station address. The parameters for addressing the device are described below. Details The station address of the inverter can be optionally set via the DIP switches on the device •...
  • Page 296: Baud Rate Setting

    Configuring the network PROFIBUS Baud rate setting 9.6.4 Baud rate setting At the class 1 DP master, the desired baud rate is set. All masters at the bus must be set to the same baud rate. The parameters for the baud rate of the device are described below. Details The inverter detects the baud rate automatically.
  • Page 297 Configuring the network PROFIBUS Monitoring Parameter Name / value range / [default setting] Info 0x2348:002 PROFIBUS Status: Watchdog status Display of the current state of the watchdog state machine (WD-STATE). (P516.02) (PROFIBUS Status: Watchdog status) • Read only 0 BAUD_SEARCH The inverter (slave) is able to detect the baud rate automatically.
  • Page 298: Led Status Displays

    Configuring the network PROFIBUS LED status displays Parameter Name / value range / [default setting] Info 0x2859:005 PROFIBUS monitoring: Invalid process data Selection of the response triggered by the reception of invalid process (P515.05) (PROFIBUS monit.: Inval. proc.data) data. • For further possible settings, see parameter •...
  • Page 299: Functions

    Configuring the network PROFIBUS Functions Parameter Name / value range / [default setting] Info 0x234A:005 PROFIBUS statistics: C1 messages Display of the number of requests by the class 1 DPV1 master. (P580.05) (PROFIBUS counter: C1 messages) • Read only 0x234A:006 PROFIBUS statistics: C2 messages Display of the number of requests by the class 2 DPV1 master.
  • Page 300: Data Mapping

    Configuring the network PROFIBUS Data mapping 9.6.9 Data mapping Data mapping is used to define which process data are exchanged cyclically between the mas- ter and slave. Data mapping is defined in the hardware configurator. The configuration of the process data is automatically sent to the inverter. The same applies to the bit configuration of the data words NetWordIN1 and NetWordOUT1.
  • Page 301 Configuring the network PROFIBUS Data mapping Parameter Name / value range / [default setting] Info 0x24E0:012 Generic RPDO mapping: Entry 12 Mapping entry 12 for RPDO. 0x00000000 ... [0x00000000] ... 0xFFFFFFFF • From version 02.00 0x24E0:013 Generic RPDO mapping: Entry 13 Mapping entry 13 for RPDO.
  • Page 302 Configuring the network PROFIBUS Data mapping Parameter Name / value range / [default setting] Info 0x24E1:016 Generic TPDO mapping: Entry 16 Mapping entry 16 for TPDO. 0x00000000 ... [0x00000000] ... 0xFFFFFFFF • From version 02.00...
  • Page 303: Parameter Data Transfer

    Configuring the network PROFIBUS Parameter data transfer 9.6.10 Parameter data transfer Data communication with PROFIBUS DP-V0 is characterised by cyclic diagnostics and cyclic process data transfer. An optional service expansion is the acyclic parameter data transfer of PROFIBUS DP-V1. This service does not impair the functionality of the standard services under PROFIBUS DP-V0.
  • Page 304 Configuring the network PROFIBUS Parameter data transfer Telegram structure DSAP SSAP Data Unit (DU) The Data Unit (DU) contains the DP-V1 header and the parameter request or the parameter response. The DP V1 header consists of the function detection, slot number, data set, and the length of the user data.
  • Page 305: Read Parameter Data

    Configuring the network PROFIBUS Read parameter data 9.6.11 Read parameter data This section describes the request and response for the acyclic reading of a parameter. Details When a read request is processed, no parameter value is written to the slave. •...
  • Page 306 Configuring the network PROFIBUS Read parameter data Parameter format Byte 5 Byte 6 Format Number of values Field Data type Values Format 0x02: integer8 (1 byte with sign) 0x03: Integer16 (2 bytes with sign) 0x04: Integer32 (4 bytes with sign) 0x05: Unsigned8 (1 byte without sign) 0x06: Unsigned16 (2 bytes without sign) 0x07: Unsigned32 (4 bytes without sign)
  • Page 307 Configuring the network PROFIBUS Read parameter data Response header Byte 1 Byte 2 Byte 3 Byte 4 Request reference Response identification Axis Number of indices (mirrored) (mirrored) Field Data type Values Request reference Mirrored value of the parameter request. Response identification 0x81: Parameter has not been read.
  • Page 308: Write Parameter Data

    Configuring the network PROFIBUS Write parameter data 9.6.12 Write parameter data This section describes the request and response for the acyclic writing of a parameter. Details When a multi-parameter write request is transmitted, the parameter attribute, index and • subindex and then the parameter format and parameter value are repeated "n" times, "n" being the number of parameters addressed.
  • Page 309 Configuring the network PROFIBUS Write parameter data Parameter value Byte 13 Byte 14 Byte 15 Byte 16 Value (Integer8 / Unsigned8 / byte) Value (Integer16 / Unsigned16 / word) Value (Integer32 / Unsigned32 / double word) Byte 13 Byte 14 Byte 15 Byte ...
  • Page 310 Configuring the network PROFIBUS Write parameter data Parameter format Byte 5 Byte 6 Format Number of values Field Data type Values Format 0x44: Error Number of values 0x01: Error code without additional information. 0x02: Error code with additional information. Error code Byte 7 Byte 8 Byte 9...
  • Page 311: Error Codes For Parameter Data Transfer

    Configuring the network PROFIBUS Error codes for parameter data transfer 9.6.13 Error codes for parameter data transfer The following table lists all possible error codes for the acyclic data exchange: Error code Description Explanation Additional infor- mation 0x0000 Parameter number impermissible Access to non-available parameter.
  • Page 312: Restart Communication

    Configuring the network PROFIBUS Restart communication 9.6.14 Restart communication The following parameter can be used to restart or stop communication. Optionally it is also possible to reset all communication parameters to the default status. Details A restart of communication is required after changes of the interface configuration (e. g. sta- tion address and baud rate) in order that the changed settings become effective.
  • Page 313: Short Setup

    The device description file for the inverter can be found in the Internet: http://www.lenze.com à Download The following language versions of the device description file can be used: LENZE[product type].GSE (source file, English), e.g. LENZE550.GSE for i550 • LENZE[product type].GSG (German), e.g. LENZE550.GSG for i550 •...
  • Page 314 Configuring the network PROFIBUS Short setup RPDO mapping For the process data from the master to the inverter, the following data mapping is preset in the device description file: 1. NetWordIN1 data word0x4008:001 (P590.01) 2. Network setpoint frequency (0.01) 0x400B:005 (P592.05) 3.
  • Page 315 Configuring the network PROFIBUS Short setup TPDO mapping For the process data from the inverter to the master, the following data mapping is preset in the device description file: 1. NetWordOUT1 data word 0x400A:001 (P591.01) 2. Network setpoint frequency (0.01) 0x400B:005 (P592.05) 3.
  • Page 316: Ethernet/Ip

    • connected to the Scanner. Current device description files for EtherNet/IP are available. • EDS files for Lenze devices: Download • The files are installed via the "EDS Hardware Installation Tool" of the »RSLogix™ 5000«. • Allen-Bradley control systems do not need any EDS files to add devices to their configu- •...
  • Page 317: Basic Settings

    Configuring the network EtherNet/IP Basic settings 9.7.1 Basic settings IP basic settings The basic IP settings are required to let the engineering software access the network nodes (PLC, inverter) directly via Ethernet. The PC with the engineering software must be in the same network as the devices to be con- figured.
  • Page 318 Configuring the network EtherNet/IP Basic settings Set gateway address If a gateway is used, set the gateway address via 0x23A1:003 (P510.03). 0x23A2:003 (P511.03) shows the active gateway address. Set host name Set the desired host name (max. 64 characters) via 0x23A1:004 (P510.04).
  • Page 319 Configuring the network EtherNet/IP Basic settings Parameter Name / value range / [default setting] Info 0x23A1:001 EtherNet/IP settings: IP address Set IP address. (P510.01) (EtherN/IP sett.: IP address) The default setting 276605120 corresponds to the IP address 0 ... [276605120] ... 4294967295 192.168.124.16.
  • Page 320: Monitoring

    Configuring the network EtherNet/IP Basic settings Parameter Name / value range / [default setting] Info 0x23A4:002 Port settings: Port 2 Set baud rate for Ethernet port 2. (P512.02) (Port settings: Port 2) • From version 02.00 0 Auto-Negotiation 1 10 Mbps 2 100 Mbps 3 Reserved 4 Reserved...
  • Page 321 Configuring the network EtherNet/IP Monitoring Parameter Name / value range / [default setting] Info 0x2859:005 EtherNet/IP monitoring: Invalid process data Selection of the response triggered by the reception of invalid process (P515.05) (EtherN/IP monit.: Inval. proc.data) data. • From version 02.00 Associated error code: •...
  • Page 322: Led Status Displays

    Configuring the network EtherNet/IP LED status displays 9.7.3 LED status displays Information on the CIP status can be obtained quickly via the "MS" and "NS" LED displays on the front of the inverter. In addition, the LEDs at the RJ45 sockets indicate the Ethernet con- nection status.
  • Page 323 Configuring the network EtherNet/IP Diagnostics Parameter Name / value range / [default setting] Info 0x23A2:003 Active EtherNet/IP settings: Gateway Display of the active gateway address. (P511.03) (EtherN/IP diag.: Gateway) Example: • Read only The setting 276344004 corresponds to the gateway address •...
  • Page 324: Objects

    Various services such as read or write services can be applied to these objects. This chapter only describes the CIP objects implemented by Lenze and their sup- ported features (attributes). Not all object features as described in the "Common Industrial Protocol Specifi- cation"...
  • Page 325 Configuring the network EtherNet/IP Objects 0x04: Assembly Object The inverter contains EtherNet/IP assembly object instances which refer to the follow- ing »RSLogix™ 5000« connection parameters: Inputs (actual value such as actual speed, actual position, etc.) • Outputs (enable and reference value for the drive) •...
  • Page 326 Configuring the network EtherNet/IP Objects Assembly output objects (outputs) Assembly output objects are usually used to enable the inverter (Adapter) and define a speed or torque setpoint. Depending on the data length defined by the PLC (Scanner) the memory map of the I/O data may vary in size.
  • Page 327 Configuring the network EtherNet/IP Objects Assembly input objects (inputs) Assembly input objects are usually used to monitor the status of the inverter (Adapter) and request current actual values (e. g. the current speed). The input objects are mapped in the Adaptermemory from byte 0 and transmitted "mode- less".
  • Page 328 Configuring the network EtherNet/IP Objects 0x29: Control Supervisor Object The "Control Supervisor Object" describes all management functions of the device for the motor control. Attribute Name Info / parameter (Instance ID) Run1 AC Drive control word 0x400B:001 (P592.01): Bit 0 (run forward, CW) Run2 AC Drive control word 0x400B:001...
  • Page 329 Configuring the network EtherNet/IP Objects 0x2A: AC Drive Object The "AC Drive Object" describes the device-specific functions of the inverter, e. g. speed ramps, torque control etc. Attribute Name Info / parameter (Instance ID) AtReference AC Drive status word 0x400C:001 (P593.01): Bit 7 (At Reference) NetRef AC Drive control word...
  • Page 330 Configuring the network EtherNet/IP Objects Parameter Name / value range / [default setting] Info 0x2631:017 Function list: Activate network setpoint Assignment of a trigger for the "Activate network setpoint" function. (P400.17) (Function list: Setp: Network) Trigger = TRUE: the network is used as setpoint source (if the trigger •...
  • Page 331: Restart Communication

    Configuring the network EtherNet/IP Restart communication 9.7.6 Restart communication In order that the inverter can be controlled via the network, activate the network control: 0x2631:037 (P400.37) = "Network control active [114]" Select "Network [5]" in 0x2860:001 (P201.01)to use the network generally as a standard set- point source.
  • Page 332: Process Data Transfer

    Configuring the network EtherNet/IP Process data transfer 9.7.7 Process data transfer Implicit Messaging Configure the cyclic data transfer (Implicit Messaging) in »RSLogix™ 5000« (from version 20): 1. Network configuration of the inverter. 1. Go to the navigation tree ("Controller Organizer") under "I/O Configuration à Ethernet" and execute the context menu command "New Module"...
  • Page 333 Configuring the network EtherNet/IP Process data transfer In the example, the assembly input object 73 is used for reading status information of the inverter and the assembly output object 23 is used for controlling the inverter. The assembly objects 73 (Extended Speed and Torque Control Input) and 23 (Extended Speed and Torque Control Output) can be used for most of the applications.
  • Page 334 Configuring the network EtherNet/IP Process data transfer 6. Set the RPI rate. The example shows the default setting of the RPI rate with "10.0" ms. This means that the inverter is queried every 10 milliseconds by the scanner. For the most inverter appli- cations, it is not required to query the inverter more frequently.
  • Page 335 Configuring the network EtherNet/IP Process data transfer Here, for instance, the four words are displayed, the output assembly "My_EIP_i550:O" consists of: 2. Creating alias tags for individual bits of the assemblies. 1. In the navigation tree (Controller Organizer) under "Controller", open the "Controller Tags".
  • Page 336 Configuring the network EtherNet/IP Process data transfer Save the »RSLogix™« project and load the configuration into the PLC (scanner): 1. »RSLogix™«project must be saved. Click "File" in the upper toolbar and execute the "Save" menu command. If the project is saved for the first time, the "Save as" dialog box appears. Here, navigate to a folder and click "Save".
  • Page 337: Customer Specific Configurations

    For a customer specific configuration, the inverter must be registered with an EDS device description file in »RSLogix™ 5000«. EDS files for Lenze devices: Download • Afterwards, I/O data can be freely assigned in the assembly objects 110 (Custom Output) and 111 (Custom Input).
  • Page 338 Configuring the network EtherNet/IP Process data transfer Execute a customer specific configuration in »RSLogix™ 5000« (from version 20): 1. Open the dialog "Select Module Type". 2. Go to the "Catalog" tab ... a) and select the "AC Drive Device" type category. b) select the "IOFW51AGXX"...
  • Page 339 Configuring the network EtherNet/IP Process data transfer DNS is not supported. The host name only describes the device. 5. Click "Change". 6. Open the "Module Definition" dialog box. 7. Here the access to the I/O data for the technology applications "Speed" and "Torque" or a freely definable I/O process data set is defined.
  • Page 340 Configuring the network EtherNet/IP Process data transfer 9. Group the process data according to their data length to prevent gaps. Example: 1. All required DINT data 2. All required INT data 3. All required SINT data At the end, a DINT value is automatically added to prevent tool zero-length problems. Data types are provided according to the input or output data length.
  • Page 341 Configuring the network EtherNet/IP Process data transfer Save the »RSLogix™« project and load the configuration into the PLC (scanner): 1. »RSLogix™«project must be saved. Click "File" in the upper toolbar and execute the "Save" menu command. If the project is saved for the first time, the "Save as" dialog box appears. Here, navigate to a folder and click "Save".
  • Page 342: Parameter Data Transfer

    Configuring the network EtherNet/IP Parameter data transfer 9.7.8 Parameter data transfer The acyclic/non-cyclic data access (service access) provides a procedure for the PLC (scan- • ner) to access any drive or device parameter. This type of parameter access is typically used for ... •...
  • Page 343 Configuring the network EtherNet/IP Parameter data transfer Read parameter value Definitions to read a parameter value (Adapter à Scanner): Message Type = CIP Generic • Service Code = 0x0E (read parameter, Get_Attribute_Single) • Class= 0x6E (hex) • Instance= index number of the parameter •...
  • Page 344 Configuring the network EtherNet/IP Parameter data transfer Write variables "TorqueScale" and "Drive_Mode" The variables "TorqueScale" and "Drive_Mode" are AC Drive profile objects They are defined in the CIP library: Variable Class Instance Attribute Data type Size Drive_Mode SINT 1 byte TorqueScale SINT 1 byte...
  • Page 345 Configuring the network EtherNet/IP Parameter data transfer CIP Generic Master(read/write assembly data) For "CIP Generic Master" that do not support the Implicit Messaging (class 1), the assembly data can be read or written via Explicit Messaging (class 3). Definitions to read assembly data (Adapter à Scanner): Message Type = CIP Generic •...
  • Page 346: Short Setup

    • connected to the Scanner. Current device description files for EtherNet/IP are available. • EDS files for Lenze devices: Download • The files are installed via the "EDS Hardware Installation Tool" of the »RSLogix™ 5000«. • Allen-Bradley control systems do not need any EDS files to add devices to their configu- •...
  • Page 347 Configuring the network EtherNet/IP Short setup Save the »RSLogix™« project and load the configuration into the PLC (scanner): 1. »RSLogix™«project must be saved. Click "File" in the upper toolbar and execute the "Save" menu command. If the project is saved for the first time, the "Save as" dialog box appears. Here, navigate to a folder and click "Save".
  • Page 348: Modbus Tcp

    Configuring the network Modbus TCP Introduction Modbus TCP Modbus is an internationally approved, asynchronous, serial communication protocol, designed for commercial and industrial automation applications. Detailed information on the Modbus can be found on the web page of the international • Modbus Organization, USA, who also further develop the Modbus protocol: http:// www.modbus.org Information about the dimensioning of a Modbus network can be found in the configura-...
  • Page 349: Basic Settings

    Configuring the network Modbus TCP Basic settings 9.8.2 Basic settings IP basic settings The basic IP settings are required to let the engineering software access the network nodes (PLC, inverter) directly via Ethernet. The PC with the engineering software must be in the same network as the devices to be con- figured.
  • Page 350 Configuring the network Modbus TCP Basic settings The parameters for configuring the network of the device are described below. Parameter Name / value range / [default setting] Info 0x23B1:001 Modbus -TCP/IP settings: IP address Set IP address. (P510.01) (MBTCP settings: IP address) The default setting 276605120 corresponds to the IP address 0 ...
  • Page 351: Time-Out Behaviour

    Configuring the network Modbus TCP Basic settings Parameter Name / value range / [default setting] Info 0x23B0 Modbus TCP communication Restart / stop communication (P508.00) (MBTCP comm.) • From version 04.00 0 No action/no error Only status feedback. 1 Restart with current values Restart communication in order that changed settings of the interface configuration become effective.
  • Page 352: Led Status Displays

    Configuring the network Modbus TCP LED status displays Parameter Name / value range / [default setting] Info 0x2859:008 Modbus TCP/IP monitoring: Fault reaction by time-out Selection of the response if within the time set in 0x23B6:001 (P514.01) (P515.08) Master no valid message has arrived at the Modbus master. (MBTCP monitoring: React t-out mast) Associated error code: •...
  • Page 353: Diagnostics

    Configuring the network Modbus TCP Diagnostics 9.8.5 Diagnostics The parameters for diagnosing the network are described below. Parameter Name / value range / [default setting] Info 0x23B2:001 Active Modbus TCP settings: Active IP address Display of the active IP address. (P511.01) (Act.
  • Page 354 Configuring the network Modbus TCP Diagnostics Parameter Name / value range / [default setting] Info 0x23B9 Modbus TCP/IP network status Display of the active network status. (P517.00) (MBTCP netw stat) • Read only • From version 04.00 0 No configuration 1 Initialization 2 Connection time-out 3 Configuration error...
  • Page 355: Function Codes

    • fore the leading 4 is omitted in the addressing process. Lenze supports the basic 1 addressing of Modbus, i.e. the numbering of the registers • starts with 1 whereas addressing starts with 0. For example, the address 0 is used in the frame when register 40001 is read.
  • Page 356 Configuring the network Modbus TCP Function codes Error codes Error code Designation Cause(s) 0x01 Invalid function code The function code is not supported by the inverter, or the inverter is in a state in which the request is not permissible or in which it cannot be processed.
  • Page 357 Configuring the network Modbus TCP Function codes Data transfer with function code 6 Request Function code 0x06 Register address 0x0000 ... 0xFFFF Register value 0x0000 ... 0xFFFF Response Function code 0x06 Register address 0x0000 ... 0xFFFF Register value 0x0000 ... 0xFFFF Error message Function code in the event of an 0x86...
  • Page 358 Configuring the network Modbus TCP Function codes Example for data transfer with function code 16 In a transaction, the value "10" is to be written into the register 40002 and the value "258" is to be written into the adjacent register 40003. Request Info Function code...
  • Page 359 Configuring the network Modbus TCP Function codes Example for data transfer with function code 23 The following tasks are to be executed with a transaction: The values from six connected registers, starting with register 40005, are to be read. • The value "255"...
  • Page 360: Data Mapping

    Configuring the network Modbus TCP Data mapping 9.8.7 Data mapping The process of data mapping is used for defining which Modbus registers read or write to which inverter parameters. Overview The following table provides an overview of the Modbus register with variable and permanent assignment: Register Register address...
  • Page 361 Configuring the network Modbus TCP Data mapping Predefined Modbus status registers These registers are only provided with read access. • The cross-reference in column 2 leads to the detailed parameter description. • Modbus registers Permanently assigned parameter Address Name 42001 0x400C:001 (P593.01) AC Drive status word 42002...
  • Page 362: Short Setup

    Configuring the network Modbus TCP Short setup 9.8.8 Short setup In the following, the steps required for controlling the inverter via Modbus are described. Parameterisation required 1. Activate network control: 0x2631:037 (P400.37) = "TRUE [1]" 2. Set network as standard setpoint source: 0x2860:001 (P201.01) = "Network [5]"...
  • Page 363: Restart Communication

    Configuring the network Modbus TCP Restart communication Read the drive speed via Modbus The drive speed can be read out via the Modbus register 42002, see Data mapping. For read- ing a single register or several connected register blocks, the function code 3 is used, see Function codes.
  • Page 364 Configuring the network Modbus TCP Baud rate setting Parameter Name / value range / [default setting] Info 0x23B4:002 Port settings: Port 2 Set baud rate for the port 2. (P512.02) (Port settings: Port 2) • From version 04.00 0 Auto-Negotiation 1 10 Mbps 2 100 Mbps 5 10 Mbps/Half Duplex...
  • Page 365: Profinet

    Topology support LLDP MIB, station alias PN blinking function Alarm type User Acyclic services Additional Ethernet channel TCP/IP channel Lenze GCI support Lenze ESDCP support Power over Ethernet PoE External 24V current supply X3 24E / GND Optical fiber support...
  • Page 366: Basic Settings

    • The station name and the IP address are assigned by the IO controller. The assignment can also be made by the Lenze engineering tool. Preconditions The entire wiring of the inverter has already been checked for completeness, short circuit •...
  • Page 367 Configuring the network PROFINET Basic settings Parameter Name / value range / [default setting] Info 0x2380 PROFINET communication Restart / stop communication (P508.00) (PROFINET comm.) • When the device command has been executed successfully, the value • From version 02.00 0 is shown.
  • Page 368: Led Status Displays

    Configuring the network PROFINET LED status displays 9.9.3 LED status displays Information on the network status can be obtained quickly via the "BUS RDY" and "BUS ERR" LED displays on the front of the inverter. In addition, the LEDs at the RJ45 sockets indicate the PROFINET connection status.
  • Page 369 Configuring the network PROFINET Diagnostics Parameter Name / value range / [default setting] Info 0x2388 PROFINET status Bit coded display of the current Bus status. (P516.00) (PROFINET status) • Read only • From version 02.00 Bit 0 Initialized After initialisation, the network component waits for a communication partner and the system power-up.
  • Page 370: Monitoring

    Configuring the network PROFINET Monitoring 9.9.5 Monitoring The parameters for setting network monitoring functions are described below. Parameter Name / value range / [default setting] Info 0x2859:001 PROFINET monitoring: Watchdog elapsed Selection of the response to a permanent interruption of the communi- (P515.01) (PROFINET monit.: WD elapsed) cation to the IO controller.
  • Page 371: Data Mapping

    Configuring the network PROFINET Data mapping 9.9.6 Data mapping The process data are used to control the inverter. The process data is transmitted cyclically between the IO-Controller and the IO-Devices partic- ipating at the PROFINET: The available 27 network registers ("slots") serve to maximally exchange 16 process data •...
  • Page 372 Configuring the network PROFINET Data mapping RPDO mapping The assignment of different bits with the same function is not permissible. For the process data from the master to the inverter, the following data mapping is preset in the device description file: 1.
  • Page 373 Configuring the network PROFINET Data mapping TPDO mapping The assignment of different bits with the same function is not permissible. For the process data from the inverter to the master, the following data mapping is preset in the device description file: 1.
  • Page 374 Configuring the network PROFINET Data mapping Example for changing a pre-assigned mapping The assignment of the third output word is to be changed. Due to the device description file, this output word (designation "16 bit selectable OUT-data_1") has already been assigned with the keypad setpoint.
  • Page 375: Parameter Data Transfer

    Configuring the network PROFINET Parameter data transfer 9.9.7 Parameter data transfer Data communication with PROFINET is characterised by the simultaneous operation of cyclic and acyclic services in the network. As an optional extension, the parameter data transfer belongs to the acyclic services. Details Only one parameter request is processed at a time (no pipelining).
  • Page 376 Configuring the network PROFINET Parameter data transfer Assignment of the user data depending on the data type Depending on the data type used, the user data are assigned as follows: Data type Length User data assignment Byte 1 Byte 2 Byte 3 Byte 4 Byte ...
  • Page 377: Short Setup

    (e.g. »Siemens TIA Portal«). Please note that in the standard setting of the used engineering tool, changes of network parameters carried out by a Lenze engineering tool (e.g. »EASY Starter«) may be overwritten.
  • Page 378 Configuring the network PROFINET Short setup Restart or stop communication The following parameter can be used to restart or stop communication. Optionally it is also possible to reset all communication parameters to the default status. A restart of communication is required after changes of the interface configuration (e. g. sta- tion address and baud rate) in order that the changed settings become effective.
  • Page 379 Configuring the network PROFINET Short setup Parameter Name / value range / [default setting] Info 0x2631:002 Function list: Run Assignment of a trigger to the "Run" function. (P400.02) (Function list: Run) • Setting can only be changed if the inverter is inhibi- Function 1: Start / stop motor (default setting) ted.
  • Page 380 Configuring the network PROFINET Short setup Parameter Name / value range / [default setting] Info 3 Analog input 2 The setpoint is defined as analog signal via the analog input 2. 4Analog input 2 ^ 601 4 HTL input The digital inputs DI3 and DI4 can be configured as HTL input to use an (from version 04.00) HTL encoder as setpoint encoder or define the setpoint as a reference frequency ("pulse train").
  • Page 381 Configuring the network PROFINET Short setup Parameter Name / value range / [default setting] Info 0x4008:001 Process input words: NetWordIN1 Mappable data word for flexible control of the inverter via network. (P590.01) (NetWordINx: NetWordIN1) 0x0000 ... [0x0000] ... 0xFFFF Bit 0 Mapping bit 0 Assignment of the function: 0x400E:001 (P505.01) Bit 1 Mapping bit 1...
  • Page 382 Configuring the network PROFINET Short setup Parameter Name / value range / [default setting] Info 0x400A:001 Process output words: NetWordOUT1 Mappable data word for the output of status messages of the inverter (P591.01) (NetWordOUTx: NetWordOUT1) via network. • Read only Bit 0 Mapping bit 0 Mappable data word for the output of status messages of the inverter via network.
  • Page 383: Ethercat

    • For commissioning, the »PLC Designer« and current device description files for EtherCAT • are available: Download »PLC Designer« • Download XML/ESI files for Lenze devices • Properties and supported services Properties / supported services CoE (CANopen over EtherCAT) ü...
  • Page 384: Device Identification

    Configuring the network EtherCAT Device identification 9.10.1 Device identification The EtherCAT objects for identifying the devices are described below. The objects can only be accessed via the EtherCAT network. Parameter Name / value range / [default setting] Info 0x1000 Device type CANopen device profile according CANopen specification CiA 301/ •...
  • Page 385: Ethercat Configuration

    "Explicit Device Identification" via rotary encoder switch or parameter The "Explicit Device Identification" is required if the device is part of a "Hot Connect" group or the device is operated within a modular Lenze machine application. Each slave receives an unambiguous identifier for being identified by the master.
  • Page 386: Led Status Displays

    Configuring the network EtherCAT LED status displays 9.10.3 LED status displays Information on the network status can be obtained quickly via the "BUS RDY" and "BUS ERR" LED displays on the front of the inverter. In addition, the LEDs at the RJ45 sockets indicate the EtherCAT connection status.
  • Page 387: Monitoring

    Configuring the network EtherCAT Monitoring Parameter Name / value range / [default setting] Info 0x2368 EtherCAT status Display of the current network status. (P516.00) (EtherCAT status) • Read only • From version 02.00 1 Initialisation Network initialisation is active. • No PDO/SDO transmission. •...
  • Page 388: Objects

    Configuring the network EtherCAT Objects 9.10.6 Objects The parameters for the implemented EtherCAT objects are described below. Parameter Name / value range / [default setting] Info 0x2360 EtherCAT communication Restart communication. (P508.00) (EtherCAT comm.) • When the device command has been executed successfully, the value •...
  • Page 389: Process Data Transfer

    Configuring the network EtherCAT Process data transfer 9.10.7 Process data transfer Process data are cyclically transferred between the EtherCAT master and the slaves (per- • manent exchange of current input and output data). The transfer of process data is time-critical. •...
  • Page 390 Configuring the network EtherCAT Process data transfer Parameter Name / value range / [default setting] Info 0x1605:001 RPDO6 mapping parameter: Application object 1 Mapping entry for the selection of an object to be received. • Read only • From version 02.00 0x1605:002 RPDO6 mapping parameter: Application object 2 •...
  • Page 391 Configuring the network EtherCAT Process data transfer Parameter Name / value range / [default setting] Info 0x1A05:001 TPDO6 mapping parameter: Application object 1 Mapping entry for the selection of an object to be sent. • Read only • From version 02.00 0x1A05:002 TPDO6 mapping parameter: Application object 2 •...
  • Page 392 Configuring the network EtherCAT Process data transfer Parameter Name / value range / [default setting] Info 0x1C00:003 Sync Manager communication type: SM3 communica- The communication type SM3 is used for the input process data tion type (RPDOs). • Read only •...
  • Page 393: Parameter Data Transfer

    Configuring the network EtherCAT Parameter data transfer 9.10.8 Parameter data transfer For configuring and diagnosing the EtherCAT devices, the parameters are accessed by • means of acyclic communication. Parameter data are transferred as SDOs (Service Data Objects). • The SDO services enable the writing and reading access to parameters, EtherCAT objects •...
  • Page 394: Short Setup

    Download »PLC Designer« • A »PLC Designer« project with current device description files for EtherCAT is available. • Download XML/ESI files for Lenze devices • The files are installed via the device repository of the »PLC Designer« (menu command •...
  • Page 395 Configuring the network EtherCAT Short setup How to configure the network: 1. Activate network control in the inverter. 1. Activate network control: 0x2631:037 (P400.37) = "TRUE [1]" 2. Set network as standard setpoint source: 0x2860:001 (P201.01) = "Network [5]" The network control is now activated. Further information on this: 4General network settings ^ 332...
  • Page 396: Powerlink

    Configuring the network POWERLINK Introduction 9.11 POWERLINK POWERLINK is a real-time capable fieldbus system based on Ethernet. Detailed information on POWERLINK can be found on the web page of the Ethernet POW- • ERLINK Standardization Group (EPSG): http://www.ethernet-powerlink.org Information about the dimensioning of a POWERLINK network can be found in the config- •...
  • Page 397: Basic Settings

    Configuring the network POWERLINK Basic settings 9.11.2 Basic settings Each network node must be provided with a unique node address (node ID). Setting the node address The node address can be set in 0x23C1:004 or via the two rotary encoder switches on the front of the inverter.
  • Page 398: Led Status Displays

    Configuring the network POWERLINK LED status displays 9.11.3 LED status displays Information on the network status can be obtained quickly via the "BS" and "BE" LED displays on the front of the inverter. In addition, the LEDs at the RJ45 sockets indicate the POWERLINK connection status.
  • Page 399: Diagnostics

    Configuring the network POWERLINK Process data transfer 9.11.4 Diagnostics The controlled node indicates applied diagnostic data by an emergency message to the man- aging node. Details XXXX parameter serves to suppress the transmission of emergency messages to the • managing node. Thus, errors of a certain type can be suppressed in a targeted way. Errors and warnings of the inverter and the network option are sent as extended diagnos- •...
  • Page 400: Monitoring

    Configuring the network POWERLINK Error response 9.11.6 Monitoring In the "Operational" state, the controlled node detects an interruption of the POWERLINK communication, e. g. by cable breakage or failure of the managing node. The response to the interrupted communication is controlled by the following settings: 1.
  • Page 401 Configuring the network POWERLINK Supported objects Parameter Name / value range / [default setting] Info 0x1003:001 ERR_History_ADOM: ErrorEntry_DOM 1 Error memory • Read only • Further information on the error memory can be found in the current Ethernet POWERLINK specification. 0x1003:002 ERR_History_ADOM: ErrorEntry_DOM 2 •...
  • Page 402 Configuring the network POWERLINK Supported objects Parameter Name / value range / [default setting] Info 0x1400:002 PDO_RxCommParam_00h_REC: MappingVersion_U8 Display of the version of the RPDO1 mapping. • Read only 0x1600:001 ... PDO_RxMappParam_00h_REC: ObjectMapping_U64 Mapping entries 1 ... 16 for RPDO1. 0x1600:016 1 ...
  • Page 403 Configuring the network POWERLINK Supported objects Parameter Name / value range / [default setting] Info 0x1E4A:003 NWL_IpGroup_REC: ForwardingDatagrams_U32 Display of the number of frames received that were determined for a • Read only different IP address. • As the device does not support the IP router function, this value is always 0.
  • Page 404 Configuring the network POWERLINK Supported objects Parameter Name / value range / [default setting] Info 0x1F93:002 NMT_EPLNodeID_REC: NodeIDByHW_BOOL Display whether the node address (node ID) has been set via rotary • Read only encoder switch or via software. 0x1F93:003 NMT_EPLNodeID_REC: SWNodeID_U8 Setting of the unique node address (node ID) in the network.
  • Page 405 Configuring the network POWERLINK Supported objects Parameter Name / value range / [default setting] Info 0x1F9E NMT_ResetCmd_U8 This object enables the managing node to execute a reset command in • Read only the controlled node. Note! A reset command at a single POWERLINK node in the network can cause cycle and monitoring errors.
  • Page 406: Short Setup

    Configuring the network POWERLINK Short setup 9.11.9 Short setup In the following, the steps required for controlling the inverter via POWERLINK are described. Parameterisation required 1. Activate network control: 0x2631:037 (P400.37) = "TRUE [1]" 2. Set network as standard setpoint source: 0x2860:001 (P201.01) = "Network [5]"...
  • Page 407: Configuring The Process Controller

    Configuring the process controller Configuring the process controller By means of the process controller, a process variable can be regulated, for instance the pres- sure of a pump. The process controller is also referred to as "PID controller" (PID controller = proportional, integral and differential controller).
  • Page 408: Basic Process Controller Settings

    Configuring the process controller Basic process controller settings 10.1 Basic process controller settings The process controller is set in two steps: 1. Basic settings 2. Fine adjustment of the PID controller for an optimum control mode Basic settings Based on the default setting, we recommend the following proceeding: 1.
  • Page 409 Configuring the process controller Basic process controller settings Fine adjustment of the PID controller The dynamics of the PID controller is parameterised based on the gain of the P component 0x4048 (P601.00), the reset time for the I component 0x4049 (P602.00) and the gain of the D component 0x404A...
  • Page 410 Configuring the process controller Basic process controller settings Internal signal flow The following illustration shows the internal signal flow of the process controller (without the additional functions "idle state" and "rinsing function"): PID controller P component gain 0x4048 Status I component reset time 0x4049 0x401F:003 D component gain...
  • Page 411 Configuring the process controller Basic process controller settings Parameter Name / value range / [default setting] Info 0x4020:001 Process controller setup (PID): Operating mode Selection of the process controller operating mode. (P600.01) (PID setup: Operating mode) 0 Inhibited Process controller deactivated. 1 Normal operation The setpoint is higher than the fed back variable (actual value).
  • Page 412 Configuring the process controller Basic process controller settings Parameter Name / value range / [default setting] Info 0x4048 PID P-component Output frequency of the process controller per 1 % system deviation. (P601.00) (PID P-component) • 100 % ≡ maximum frequency 0x2916 (P211.00).
  • Page 413 Configuring the process controller Basic process controller settings Parameter Name / value range / [default setting] Info 0x2860:002 PID control: Default setpoint source Selection of the standard setpoint source for the reference value of the (P201.02) (Stnd. setpoints: PID setp. src.) PID control.
  • Page 414: Process Controller - Idle State And Rinse Function

    Configuring the process controller Process controller - idle state and rinse function Process controller idle state 10.2 Process controller - idle state and rinse function 10.2.1 Process controller idle state If the PID control is activated, this function sets the drive in process controller mode to an energy-saving idle state when no power is required.
  • Page 415 Configuring the process controller Process controller - idle state and rinse function Process controller idle state Parameter Name / value range / [default setting] Info 0x4023:001 PID sleep mode: Activation Condition for activating the idle state. (P610.01) (PID sleep mode: Activation) 0 Disabled Idle state deactivated.
  • Page 416: Process Controller Rinse Function

    Configuring the process controller Process controller - idle state and rinse function Process controller rinse function 10.2.2 Process controller rinse function This function accelerates the motor in idle state of the process controller at regular intervals to a defined speed. Details A typical application for this function is the rinsing of a pipe system with a pump that has been in an inactive state for a longer period to prevent deposits.
  • Page 417: Additional Functions

    Additional functions Additional functions Device Commands • ^ 418 Keypad • ^ 422 Wireless LAN (WLAN) • ^ 426 DC braking • ^ 437 Brake energy management • ^ 443 Load loss detection • ^ 449 Access protection • ^ 450 Favorites •...
  • Page 418: Device Commands

    Additional functions Device Commands Reset parameters to default 11.1 Device Commands Device commands are commands for calling organisational functions of the inverter, e.g. sav- ing and loading of parameter settings, or restoring the default setting. 11.1.1 Reset parameters to default With the "Load default settings"...
  • Page 419: Saving/Loading The Parameter Settings

    Additional functions Device Commands Saving/loading the parameter settings 11.1.2 Saving/loading the parameter settings If parameter settings of the inverter are changed, these changes at first are only made in the RAM memory of the inverter. In order to save the parameter settings with mains failure pro- tection, the inverter is provided with a pluggable memory module and corresponding device commands.
  • Page 420 Additional functions Device Commands Saving/loading the parameter settings Response after initial switch-on of the inverter After switch-on, the inverter first tries to load the parameter settings stored in the user mem- ory. If the user memory is empty or damaged, an error message is output and the user must intervene: Option 1 = user memory empty: →...
  • Page 421: Device Commands For Parameter Change-Over

    Additional functions Device Commands Delete logbook 11.1.3 Device commands for parameter change-over The inverter supports several parameter sets. The parameter set can be selected by means of the device commands "Load parameter set 1" ... "Load parameter set 4". DANGER! Changed parameter settings can become effective immediately depending on the activating method set in 0x4046...
  • Page 422: Keypad

    Additional functions Keypad Keypad status display 11.2 Keypad For the keypad various settings can be made, which are described in detail in the following subchapters. 11.2.1 Keypad language selection Parameter Name / value range / [default setting] Info 0x2863 Keypad language selection Language selection for the keypad display.
  • Page 423: Keypad - Configuration Of R/F And Ctrl Buttons

    Additional functions Keypad Keypad - Configuration of R/F and CTRL buttons 11.2.5 Keypad - Configuration of R/F and CTRL buttons Keypad rotation setup Use the keypad to reverse the rotation direction at local keypad control. After the key has been pressed, the reversal of rotation direction must be confirmed •...
  • Page 424 Additional functions Keypad Keypad - Configuration of R/F and CTRL buttons Keypad Full Control Use the keypad key to activate the "Keypad Full Control" control mode. Both the control CTRL and the setpoint selection are then made via the keypad. This special control mode can be, for instance, used during the commissioning phase if external control and setpoint sources are not ready to use yet.
  • Page 425 Additional functions Keypad Keypad - Configuration of R/F and CTRL buttons Parameter Name / value range / [default setting] Info 0x2602:001 Keypad setup: CTRL & F/R key setup Disable/enable CTRL and F/R key of the keypad. (P708.01) (Keypad setup: CTRL&F/R keys) •...
  • Page 426: Wireless Lan (Wlan)

    • Android smartphone with Lenze Smart Keypad App. • The Lenze Smart Keypad App is recommended for the adaptation of simple applications. The Lenze Smart Keypad App can be found in the Google Play Store. 11.3.1 WLAN LED status displays Information on the WLAN module status can be obtained quickly via the LED displays "Power",...
  • Page 427: Wlan Basic Settings

    Additional functions Wireless LAN (WLAN) WLAN basic settings 11.3.2 WLAN basic settings The WLAN functionality can be configured via the following parameters. Preconditions WLAN module has been plugged onto the interface X16 on the front of the inverter. Details The WLAN module can be connected and removed during operation. •...
  • Page 428 Additional functions Wireless LAN (WLAN) WLAN basic settings Parameter Name / value range / [default setting] Info 0x2441:007 WLAN settings: WLAN SSID Name (Service Set Identifier, SSID) of the WLAN network. ["i5"] • The preset name consists of the device name (iXXX) and the first 10 •...
  • Page 429: Resetting Wlan Settings To Default Setting

    Additional functions Wireless LAN (WLAN) WLAN basic settings Parameter Name / value range / [default setting] Info 0x2449 WLAN error Bit coded display of WLAN errors. • Read only • From version 02.00 Bit 2 WLAN error Bit 3 Memory problem Bit 4 WLAN connection problem Bit 7 WLAN off Bit 9 Client mode off...
  • Page 430: Wlan Access Point Mode

    In this operating mode, the WLAN module creates its own WLAN network for a direct connection to other WLAN devices. The supported WLAN devices are: Android smartphone with Lenze Smart Keypad App. • Engineering PC (with WLAN functionality) and the »EASY Starter« engineering tool.
  • Page 431: Establishing A Direct Wlan Connection Between Smartphone And Inverter

    The connection to the WLAN network of the inverter is now established. 5. Start the Lenze Smart Keypad App on the Android smartphone. If a WLAN connection to the inverter has been established, the Lenze Smart Keypad App serves to read out diagnostics parameters of the inverter, •...
  • Page 432: Using The Smartphone As "Smart Keypad

    WLAN module is plugged onto the inverter 2. After the WLAN network is restarted, a connection is established again to the smartphone ② because the WLAN settings are identical. Now, the inverter 2 can be diagnosed or parameterised with the Lenze Smart Keypad App. How to configure the WLAN module for a "Smart Keypad" use:...
  • Page 433: Establishing A Direct Wlan Connection Between Engineering Pc And Inverter

    Additional functions Wireless LAN (WLAN) WLAN access point mode 11.3.3.3 Establishing a direct WLAN connection between Engineering PC and inverter How to establish a direct WLAN connection to the inverter on the Engineering PC: Requirements: The functional test described in the mounting and switch-on instructions has been com- •...
  • Page 434 Additional functions Wireless LAN (WLAN) WLAN access point mode Recommendation: Click the button in the toolbar of the »EASY Starter« to start visual track- ing. This function serves to quickly check whether the connection to the correct device has been established. 4Optical device identification ^ 162...
  • Page 435: Wlan Client Mode

    Additional functions Wireless LAN (WLAN) WLAN client mode 11.3.4 WLAN client mode The WLAN module can be optionally configured as a WLAN client. In this operating mode, the WLAN module can be implemented into an already existing WLAN network. Inverter 1 Inverter 2 WLAN-Client WLAN-Client...
  • Page 436 Additional functions Wireless LAN (WLAN) WLAN client mode Parameter Name / value range / [default setting] Info 0x2441:002 WLAN settings: Netmask Definition of the network mask for the WLAN access point. 0 ... [16777215] ... 4294967295 • In the client mode, a static network mask can be set here for the •...
  • Page 437: Dc Braking

    For further details and configuration examples, see the following chapter: 4Example 1: Automatic DC braking when the motor is started ^ 439 4Example 2: Automatic DC braking when the motor is stopped ^ 440 4Migration of Lenze Inverter Drives 8200/8400 ^ 442 4Activating DC braking manually ^ 572 Parameter...
  • Page 438 Name / value range / [default setting] Info 0x2B84:006 DC braking: DC brake with inverter disable 1 = behaviour in case of automatic DC braking as with the Lenze Inverter (P704.06) (DC braking: DCbrk/inv.disab) Drives 8200/8400. 0 ... [0] ... 1...
  • Page 439: Example 1: Automatic Dc Braking When The Motor Is Started

    Additional functions DC braking Example 1: Automatic DC braking when the motor is started 11.4.1 Example 1: Automatic DC braking when the motor is started In order that the DC braking is automatically active when the motor is started, the start method "DC braking [1]"...
  • Page 440: Example 2: Automatic Dc Braking When The Motor Is Stopped

    Additional functions DC braking Example 2: Automatic DC braking when the motor is stopped 11.4.2 Example 2: Automatic DC braking when the motor is stopped In order that the DC braking is automatically active when the motor is stopped, the corre- sponding operating threshold must be set in 0x2B84:003 (P704.03).
  • Page 441 Additional functions DC braking Example 2: Automatic DC braking when the motor is stopped Stop method = "Coasting [0]" Parameter Name Setting for this example 0x2631:001 (P400.01) Enable inverter Digital input 1 [11] 0x2631:002 (P400.02) Digital input 2 [12] 0x2838:003 (P203.03) Stop method Coasting [0] 0x2860:001 (P201.01)
  • Page 442: Migration Of Lenze Inverter Drives 8200/8400

    Migration of Lenze Inverter Drives 8200/8400 The behaviour of the Lenze Inverter Drives 8200/8400 in case of automatic DC braking is dif- ferent: In case of these inverters, after the auto DCB hold time has elapsed, the motor is dee- nergised (by means of pulse inhibit) until the setpoint exceeds the auto DCB operating thresh- old.
  • Page 443: Brake Energy Management

    Additional functions Brake energy management 11.5 Brake energy management When braking electrical motors, the kinetic energy of the drive train is fed back regeneratively to the DC bus. This energy causes a DC-bus voltage boost. If the energy fed back is too high, the inverter reports an error.
  • Page 444 Additional functions Brake energy management Parameter Name / value range / [default setting] Info 0x2541:001 Brake energy management: Operating mode Selection of the braking method. (P706.01) (Brake management: Operating mode) • The braking method(s) selected is/are activated if the DC-bus voltage exceeds the voltage threshold for the braking operation shown in 0x2541:002 (P706.02).
  • Page 445: Use Of A Brake Resistor

    Additional functions Brake energy management Use of a brake resistor 11.5.1 Use of a brake resistor For braking operation, optionally the brake chopper integrated in the inverter (brake transis- tor) can be used. NOTICE Incorrect dimensioning of the brake resistor may result in the destruction of the integrated brake chopper (brake transistor).
  • Page 446 Additional functions Brake energy management Use of a brake resistor Brake resistor monitoring The inverter calculates and monitors the thermal load of the brake resistor to ensure that the brake resistor will not be overloaded. A correct calculation required the following settings according to the data on the nameplate of the brake resistor: 0x2550:002 (P707.02): Resistance value...
  • Page 447: Stopping The Deceleration Ramp Function Generator

    Additional functions Brake energy management Stopping the deceleration ramp function generator Parameter Name / value range / [default setting] Info 0x2550:011 Brake resistor: Response to error Selection of the response to be executed when the error threshold for (P707.11) (Brake resistor: Error response) brake resistor monitoring is reached.
  • Page 448: Inverter Motor Brake

    Additional functions Brake energy management Inverter motor brake 11.5.3 Inverter motor brake With this braking method, which can be selected in 0x2541:001 (P706.01), the regenerative energy in the motor is converted as a result of dynamic acceleration/deceleration with down- ramping of the ramp function generator. NOTICE Too frequent braking may cause thermal overload of the motor.
  • Page 449: Load Loss Detection

    Additional functions Load loss detection Parameter Name / value range / [default setting] Info 0x6060 Modes of operation Selection of the operating mode. (P301.00) (Modes of op.) • Setting can only be changed if the inverter is inhibi- ted. -2 MS: Velocity mode Vendor specific velocity mode -1 MS: Torque mode Vendor specific torque mode...
  • Page 450: Access Protection

    Additional functions Access protection Write access protection 11.7 Access protection 11.7.1 Write access protection Optionally a write access protection can be installed for the inverter parameters. Write access protection only restricts parameterisation via keypad and »EASY Starter«. Write access protection via network is not restricted. Irrespective of the write access protection that is currently set, a higher-level controller, OPC- UA server, or any other communication partner connected to the inverter is always provided with full read/write access to all parameters of the inverter.
  • Page 451 Additional functions Access protection Write access protection Notes: The firmware of the inverter does only support the protection status. • The access protection is realised by the keypad and engineering tools as "clients" them- • selves based on the current protection status 0x2040 (P197.00).
  • Page 452: Write Access Protection In The »Easy Starter

    Additional functions Access protection Write access protection 11.7.1.1 Write access protection in the »EASY Starter« If a write access protection is active for the online connected inverter, it is displayed in the status bar of the »EASY Starter«: Display Representation of the parameters in the »EASY Starter« All parameters in all dialogs are displayed as read-only parameters.
  • Page 453 Additional functions Access protection Write access protection Configuring the write access protection with »EASY Starter« The write access protection is activated by specifying PIN1 and/or PIN2 (depending on the desired configuration of the write access protection). How to activate the write access protection: 1.
  • Page 454 Additional functions Access protection Write access protection Impact of the write access protection on EASY Starter« functions The following »EASY Starter« functions are not supported when write access protection is active: Parameter set download • Definition of the "Favorites" parameters. •...
  • Page 455: Write Access Protection In The Keypad

    Additional functions Access protection Write access protection 11.7.1.2 Write access protection in the keypad If a write access protection is active for the inverter, the keypad automatically displays a log-in when changing to the parameterisation mode. You can either skip the log-in and thus keep the access protection active or remove it temporarily by entering a valid PIN.
  • Page 456 Additional functions Access protection Write access protection Configuring the write access protection with the keypad The write access protection is activated by defining PIN1 in P730.00 and/or PIN2 in P731.00 (depending on the desired configuration of the write access protection). In the following example, the write access protection is configured in such a way that a write access to the favorites only is possible or (when knowing PIN) to all parameters.
  • Page 457 Additional functions Access protection Write access protection In the following example, PIN1 is changed from "123" to "456". For this purpose, the defined PIN must first be deleted by the setting "0". VEL: FLEX: AIN1 Change defined PIN1: 1. Use the key in the operating mode to navigate to 0 0 0 S T O P...
  • Page 458 Additional functions Access protection Write access protection How to remove a configured write access protection permanently: 1. Remove the active write access protection temporarily (see above). 2. Set PIN1 (P730.00) and PIN2 (P731.00) to the value "0" (see instructions for changing the PIN).
  • Page 459: Favorites

    Additional functions Favorites Accessing the "Favorites" with the keypad 11.8 Favorites In order to gain quick access using »EASY Starter« or the keypad, frequently used parameters of the inverter can be defined as "Favorites". »EASY Starter« provides quick access to the "Favorites" via the Favorites tab. •...
  • Page 460: Favorites Parameter List (Default Setting)

    Additional functions Favorites Favorites parameter list (default setting) 11.8.2 Favorites parameter list (default setting) In the default setting, the most common parameters for the solution of typical applications are defined as "Favorites": Display code Designation Default setting Setting range Info P100.00 Output frequency x.x Hz...
  • Page 461: Configuring The "Favorites

    Additional functions Favorites Configuring the "Favorites" 11.8.3 Configuring the "Favorites" The "Favorites" can be configured by the user. Details A maximum number of 50 parameters can be defined as "Favorites". The easiest way to process the selection of the favorites is via the parameterisation dialog in the »EASY Starter«: 1.
  • Page 462 Additional functions Favorites Configuring the "Favorites" Parameter Name / value range / [default setting] Info 0x261C:009 Favorites settings: Parameter 9 (P740.09) (Favorites sett.: Parameter 9) 0x00000000 ... [0x25400100] ... 0xFFFFFF00 0x261C:010 Favorites settings: Parameter 10 (P740.10) (Favorites sett.: Parameter 10) 0x00000000 ...
  • Page 463 Additional functions Favorites Configuring the "Favorites" Parameter Name / value range / [default setting] Info 0x261C:030 Favorites settings: Parameter 30 (P740.30) (Favorites sett.: Parameter 30) 0x00000000 ... [0x26310600] ... 0xFFFFFF00 0x261C:031 Favorites settings: Parameter 31 (P740.31) (Favorites sett.: Parameter 31) 0x00000000 ...
  • Page 464: Parameter Change-Over

    Additional functions Parameter change-over 11.9 Parameter change-over For up to 32 freely selectable parameters, this function provides a change-over between four sets with different parameter values. DANGER! Changed parameter settings are effective immediately. The possible consequence is an unexpected response of the motor shaft while the inverter is enabled.
  • Page 465 Additional functions Parameter change-over Parameter Name / value range / [default setting] Info 0x4045:001 ... Parameter value set 4: Value of parameter 1 ... Value Value set 4 for the parameter list defined in 0x4041:001 ... 0x4041:032 0x4045:032 of parameter 32 (P750.01 ...
  • Page 466 Additional functions Parameter change-over Parameter Name / value range / [default setting] Info 0x2631:042 Function list: Select parameter set (bit 1) Assignment of a trigger for the "Select parameter set (bit 1)" function. (P400.42) (Function list: Sel. paramset b1) Selection bit with the valency 2 for "Parameter change-over"...
  • Page 467: Example: Selective Control Of Several Motors With One Inverter

    Additional functions Parameter change-over Example: Selective control of several motors with one inverter 11.9.1 Example: Selective control of several motors with one inverter A typical application for the parameter change-over is an application/machine in which sev- eral axes must be triggered successively but a simultaneous operation of several motors is not required.
  • Page 468 Additional functions Parameter change-over Example: Selective control of several motors with one inverter Settings required for the "parameter change-over" function The easiest way to make the required settings is via the parameterisation dialog in the »EASY Starter«: 1. Click the button to first select the 10 relevant parameters.
  • Page 469: Device Profile Cia 402

    Additional functions Device profile CiA 402 11.10 Device profile CiA 402 The CiA® 402 device profile defines the functional behaviour of stepping motors, servo drives, and frequency inverters. In order to be able to describe the different drive types, various oper- ating modes and device parameters are specified in the device profile.
  • Page 470 Additional functions Device profile CiA 402 Parameter Name / value range / [default setting] Info 0x605E Fault reaction option code Selection of the response to faults. (P791.00) (Fault reaction) -2 DC braking The motor is brought to a standstill by means of the "DC braking" func- tion.
  • Page 471 Additional functions Device profile CiA 402 Parameter Name / value range / [default setting] Info 0x6040 CiA: Controlword Mappable CiA 402 control word with bit assignment according to device 0 ... [0] ... 65535 profile CiA 402. Bit 0 Switch on 1 = switch-on Bit 1 Enable voltage 1 = DC bus: Establish readiness for operation...
  • Page 472: Holding Brake Control

    Additional functions Holding brake control 11.11 Holding brake control This function serves as a low-wear control of a holding brake. The holding is usually mounted to the motor as an option. The holding brake can be automatically released via the start com- mand for the inverter or manually via an external control signal, for instance, by a higher-level Controller.
  • Page 473: Basic Setting

    Additional functions Holding brake control Basic setting 11.11.1 Basic setting The following parameters must be set for the activation and basic setting of the holding brake control. When a power contactor is used, the response time and release time of the con- tactor are added to the brake application and release time.
  • Page 474: Automatic" Brake Mode (Automatic Operation)

    Additional functions Holding brake control "Automatic" brake mode (automatic operation) 11.11.2 "Automatic" brake mode (automatic operation) In automatic operation, the inverter automatically released the holding brake when the motor is started. In the stopped state, the holding brake is closed. DANGER! Manual release of the holding brake Also in automatic operation, a manual release of the holding brake is possible.
  • Page 475 Additional functions Holding brake control "Automatic" brake mode (automatic operation) General mode of operation The following diagram demonstrates the general functioning of the automatic operation: Input signals 60 Hz 50 Hz 40 Hz Frequency setpoint selection 30 Hz 20 Hz 10 Hz 0 Hz Trigger...
  • Page 476: Brake Holding Load

    Additional functions Holding brake control Brake holding load 11.11.3 Brake holding load Depending on the application, a torque at the motor may be required at speed "0" of the motor shaft: In order to hold loads in vertical applications and prevent "sagging". •...
  • Page 477 Additional functions Holding brake control Brake holding load General mode of operation The following diagram demonstrates the general functioning in automatic operation: Input signals 60 Hz 50 Hz 40 Hz Frequency setpoint selection 30 Hz 20 Hz 10 Hz 0 Hz Trigger Function Constant TRUE [1]...
  • Page 478: Brake Closing Level

    Additional functions Holding brake control Brake closing level 11.11.4 Brake closing level In some cases, a low speed does not make any sense from the application point of view. This includes applications with unfavorable load features, such as static friction. In such applica- tions and depending on the type of control, a low speed may cause an unwanted behaviour.
  • Page 479 Additional functions Holding brake control Brake closing level General mode of operation The following diagram demonstrates the general functioning in automatic operation: Input signals 60 Hz 50 Hz 40 Hz Frequency setpoint selection 30 Hz 20 Hz 0x2820:007 10 Hz 0 Hz Trigger Function...
  • Page 480: Manual Release Of The Holding Brake

    Additional functions Holding brake control Manual release of the holding brake 11.11.5 Manual release of the holding brake A manual release of the holding brake is possible in the modes "Automatic [0]" and "Manual [1]" via the following external triggers: Via bit 14 in the CiA 402 Controlword 0x6040.
  • Page 481: Flying Restart Circuit

    Additional functions Flying restart circuit 11.12 Flying restart circuit The flying restart function makes it possible to restart a coasting motor on the fly during oper- ation without speed feedback. Synchronicity between the inverter and the motor is coordina- ted so that the transition to the rotating drive is effected without jerk at the time of connec- tion.
  • Page 482 Additional functions Flying restart circuit Parameter Name / value range / [default setting] Info 0x2BA1:001 Flying restart circuit: Current The current set here is injected into the motor during the flying restart (P718.01) (Flying restart: Current) process for the identification of the rotating field frequency. 0 ...
  • Page 483: Timeout Für Fault Reaction

    Additional functions Timeout für fault reaction 11.13 Timeout für fault reaction If an error occurs that does not immediately cause a switch-off, the "Fault reaction active" device status becomes initially active. The motor is brought to a standstill with quick stop ramp.
  • Page 484: Automatic Restart

    Additional functions Automatic restart 11.14 Automatic restart Configuration of the restart behaviour after a fault. The settings have no impact on errors and warnings of the inverter. Parameter Name / value range / [default setting] Info 0x2839:002 Fault configuration: Restart delay If a fault occurs, a restart is possible at the earliest after the time set (P760.02) (Fault config.: Restart delay)
  • Page 485: Mains Failure Control

    Additional functions Mains failure control 11.15 Mains failure control In case of power failure, this function can decelerate the motor and use its rotational energy to maintain the DC-bus voltage for a certain period of time. This makes it possible to continue to let the motor run during a short-term failure of the mains voltage.
  • Page 486 Additional functions Mains failure control Parameter Name / value range / [default setting] Info 0x2D66:005 Mains failure control: DC voltage setpoint Voltage setpoint onto which the DC-bus voltage is to maintained. (P721.05) (Mains fail. ctrl: DC voltage setp.) • 100 % ≡ nominal DC-bus voltage 80 ...
  • Page 487: Activating The Mains Failure Control

    Additional functions Mains failure control Activating the mains failure control 11.15.1 Activating the mains failure control 1. Set the selection "Enabled [1]" in 0x2D66:001 (P721.01). 2. Set the activation threshold in [%] with reference to the nominal DC-bus voltage in 0x2D66:002 (P721.02).
  • Page 488: Restart Protection

    Additional functions Mains failure control Fast mains recovery 11.15.2 Restart protection The integrated restart protection is to prevent a restart in the lower frequency range if the mains voltage was only interrupted briefly (mains recovery before the motor stands still). In the default setting 0x2D66:008 (P721.08) = 0 Hz, the restart protection is deactivated.
  • Page 489: Commissioning The Mains Failure Control

    Additional functions Mains failure control Commissioning the mains failure control 11.15.4 Commissioning the mains failure control Commissioning should be executed with motors without load: 1. Let the motor rotate with a rated frequency of 100 %. 2. Disable the inverter and measure the time until the motor has reached standstill. The time can be measured with a stop watch or similar.
  • Page 490: Ups Operation

    Additional functions UPS operation 11.16 UPS operation This function enables the operation of a 3x400-V inverter with an uninterruptible 1x230-V power supply (UPD) to be able to operate the motor with reduced load for a certain period in the event of a power failure. NOTICE UPS operation is not suitable for a continuous operation.
  • Page 491 Additional functions UPS operation If the UPS operation is active, the device overload monitoring (i*t) is adapted accordingly. • the DC limit values are reduced. • the phase failure detection is switched off. • the warning "Operation at UPS active" (error code 12672 | 0x3180) is output.
  • Page 492 Additional functions UPS operation Example for operating mode Parameter Designation Setting for this example 0x2631:001 (P400.01) Enable inverter Constant TRUE [1] 0x2631:002 (P400.02) Digital input 1 [11] 0x2631:055 (P400.55) Activate UPS operation Digital input 5 [15] Eingangssignale 3 x 400 V Netzspannung 1 x 230 V USV-Spannung Trigger Funktion...
  • Page 493: Process Data

    Additional functions Process data Position counter 11.17 Process data This chapter describes additional functions that provide process data for a higher-level Con- troller. 11.17.1 Position counter This function counts the number of motor revolutions. The current counter content (actual position) can be output as process data value via network to implement a simple position con- trol in a higher-level Controller.
  • Page 494 Additional functions Process data Position counter Parameter Name / value range / [default setting] Info 0x2C49:002 Position counter: Reset mode Selection if the manual reset of the position counter is to be effected (P711.02) (Position counter: Reset mode) edge-controlled or status-controlled. •...
  • Page 495: Encoder Settings

    Additional functions Encoder settings 11.18 Encoder settings In general, an encoder is a measuring system which serves to detect the velocity/speed and possibly the position of a kinematics or motor. The Inverter i550 exclusively supports HTL encoders. • For details see the following subchapter. •...
  • Page 496: Htl Encoder

    Additional functions Encoder settings HTL encoder 11.18.1 HTL encoder In case of the inverter i550, the digital inputs DI3 and DI4 can be configured as HTL input to evaluate the signal of a cost-effective HTL encoder or a reference frequency ("pulse train"). An HTL encoder can be used at the Inverter i550 for the following tasks: As motor encoder for a motor speed feedback for speed control as precise as possible.
  • Page 497 Additional functions Encoder settings HTL encoder Details Encoder dimensioning: Calculate maximum number of increments per revolution of the encoder Max. encoder increments = f [Hz] * 60 s / n [rpm] Max. encoder increment = 100000 [Hz] * 60 s / 1500 [rpm] = 4000 Increments/revolution Maximum input frequency of the digital inputs = 100 kHz = 100000 Hz Maximum encoder speed (in this example: 1500 rpm) Max.
  • Page 498: Encoder Monitoring

    Additional functions Encoder settings Encoder monitoring 11.18.2 Encoder monitoring For monitoring the HTL encoder, two monitoring functions are implemented in the inverter firmware: a) Encoder signal loss monitoring: Is triggered if a failure of the encoder signal is detected (e. g. due to open circuit or failure of the encoder current supply). b) Encoder maximum frequency monitoring: Is triggered if the calculated encoder maximum frequency is beyond the permissible frequency range of the digital inputs.
  • Page 499 Additional functions Encoder settings Encoder monitoring Details on encoder signal loss monitoring The encoder signal loss monitoring distinguishes between the following signal failures: a) Complete failure (no encoder signals available at all, e. g. in case the encoder current sup- ply has failed) b) Only one track has failed (track A or track B) In order to detect a complete failure, the inverter calculates internally two trigger thresholds...
  • Page 500 Additional functions Encoder settings Encoder monitoring Details on encoder maximum frequency monitoring After the HTL encoder has been configured (or if the encoder settings are changed), the inver- ter internally calculates the maximum possible number of encoder pulses per second (herein- after referred to as "encoder maximum frequency"): encoder increments max.
  • Page 501: Firmware Download

    Carry out the firmware download with the »EASY Starter (firmware loader)«: 1. Start »EASY Navigator« (All programs à Lenze à EASY Navigator). 2. In the »EASY Navigator«, change to the "Ensuring productivity" engineering phase. 3. Click the »EASY Starter (firmware loader)« icon (see on the left).
  • Page 502: Additive Voltage Impression

    Additional functions Additive voltage impression 11.20 Additive voltage impression This function serves to boost (or lower) the motor voltage from the process via an additive voltage setpoint in order to realise a load adjustment (for instance in case of winder applica- tions).
  • Page 503: Example: Using The Function With A 400-V Inverter

    Additional functions Additive voltage impression Example: Using the function with a 400-V inverter Parameter Name / value range / [default setting] Info 0x4008:005 Process input words: NetWordIN5 Mappable data word for optionally specifying an additive voltage set- (P550.05) (NetWordINx: NetWordIN5) point via network.
  • Page 504: Sequencer

    Sequencer Sequencer The "sequencer" function serves to transfer a programmed sequence of setpoints to the motor control. The switch-over to the next setpoint can be made time-controlled or even-con- trolled. Optionally, the "sequencer" function can also trigger the digital and analog outputs. The sequencer only generates setpoints.
  • Page 505 Sequencer Commissioning For commissioning the sequencer, we recommend the following proceeding: 1. Configure segments (including end segment). Details: 4Segment configuration ^ 506 2. Configure sequences: a) Assign the segments to the single steps of a sequence. b) Set the number of cycles for the respective sequence. Details: 4Sequence configuration ^ 516...
  • Page 506: Segment Configuration

    Sequencer Segment configuration 12.1 Segment configuration Each step of a sequence can call a "segment". A segment contains, among other things preset setpoints (speed setpoint, PID control value, torque setpoint), a combined acceleration/decel- eration for the speed setpoint and optionally a configuration for the digital and analog out- puts.
  • Page 507 Sequencer Segment configuration Parameter Name / value range / [default setting] Info 0x4026:001 Sequencer segment 1: Frequency setpoint Frequency setpoint for the segment. (P801.01) (Segment 1: Frequency setp.) • Only relevant for operating mode 0x6060 (P301.00) = "MS: Velocity -599.0 ... [0.0] ... 599.0 Hz mode [-2]".
  • Page 508 Sequencer Segment configuration Parameter Name / value range / [default setting] Info 0x4027:002 Sequencer segment 2: Acceleration/deceleration Acceleration/deceleration for the segment. (P802.02) (Segment 2: Accel./decel.) • Only relevant for operating mode 0x6060 (P301.00) = "MS: Velocity 0.0 ... [5.0] ... 3600.0 s mode [-2]".
  • Page 509 Sequencer Segment configuration Parameter Name / value range / [default setting] Info 0x4028:003 Sequencer segment 3: Time Runtime for the segment after the expiry of which it is switched over to (P803.03) (Segment 3: Time) the next step of the sequence. 0.0 ...
  • Page 510 Sequencer Segment configuration Parameter Name / value range / [default setting] Info 0x4029:004 Sequencer segment 4: Digital outputs Optionally: Set digital outputs to the level set here for the execution (P804.04) (Segment 4: Digital outp.) time of the segment. 0 ... [0] ... 255 Note! •...
  • Page 511 Sequencer Segment configuration Parameter Name / value range / [default setting] Info 0x402A:004 Sequencer segment 5: Digital outputs Optionally: Set digital outputs to the level set here for the execution (P805.04) (Segment 5: Digital outp.) time of the segment. 0 ... [0] ... 255 Note! •...
  • Page 512 Sequencer Segment configuration Parameter Name / value range / [default setting] Info 0x402B:004 Sequencer segment 6: Digital outputs Optionally: Set digital outputs to the level set here for the execution (P806.04) (Segment 6: Digital outp.) time of the segment. 0 ... [0] ... 255 Note! •...
  • Page 513 Sequencer Segment configuration Parameter Name / value range / [default setting] Info 0x402C:004 Sequencer segment 7: Digital outputs Optionally: Set digital outputs to the level set here for the execution (P807.04) (Segment 7: Digital outp.) time of the segment. 0 ... [0] ... 255 Note! •...
  • Page 514 Sequencer Segment configuration Parameter Name / value range / [default setting] Info 0x402D:004 Sequencer segment 8: Digital outputs Optionally: Set digital outputs to the level set here for the execution (P808.04) (Segment 8: Digital outp.) time of the segment. 0 ... [0] ... 255 Note! •...
  • Page 515 Sequencer Segment configuration Parameter Name / value range / [default setting] Info 0x402E:003 End segment: Time Delay time for activating the output states configured for the end seg- (P822.03) (End segment: Time) ment. 0.0 ... [0.0] ... 100000.0 s • This parameter has a different meaning than the time settings for the •...
  • Page 516: Sequence Configuration

    Sequencer Sequence configuration 12.2 Sequence configuration As a total, 8 sequences can be configured (with the numbers 1 to 8). Each sequence consists of 16 configurable steps. Each step of a sequence can call a segment or a complete sequence (with a higher number).
  • Page 517 Sequencer Sequence configuration In the following, all parameters relevant for the sequence configuration are given. If the sequencer is active, write accessed to all parameters are blocked that con- cern the active sequence configuration! Parameter Name / value range / [default setting] Info 0x4030:001 ...
  • Page 518 Sequencer Sequence configuration Parameter Name / value range / [default setting] Info 0x4034:001 ... Sequence 3: Step 1 ... Step 16 Configuration of the steps 1 ... 16 for sequence 3. 0x4034:016 (Sequence 3: Step 1 ... Step 16) • Alternatively to calling a single segment, a complete sequence (with a (P840.01 ...
  • Page 519 Sequencer Sequence configuration Parameter Name / value range / [default setting] Info 0x403A:001 ... Sequence 6: Step 1 ... Step 16 Configuration of the steps 1 ... 16 for sequence 6. 0x403A:016 (Sequence 6: Step 1 ... Step 16) • Alternatively to calling a single segment, a complete sequence (with a (P855.01 ...
  • Page 520: Sequencer Basic Settings

    Sequencer Sequencer basic settings 12.3 Sequencer basic settings In the presetting, the sequencer is disabled. In order to enable the sequencer, the desired sequencer mode (time and/or step operation) must be set. Moreover, different end of sequence modes and start of sequences modes are available. Details Sequencer mode 0x4025 (P800.00)
  • Page 521 Sequencer Sequencer basic settings Start of sequence mode 0x4040 (P820.00) The start of sequence mode defines the action after the motor is stopped and restarted or • after the motor has been restarted after an error occurred. In the default setting "Restart sequencer [0]", the currently selected sequence is restarted. •...
  • Page 522 Sequencer Sequencer basic settings Parameter Name / value range / [default setting] Info 0x4040 Start of sequence mode Selection of the action after the motor has been stopped and restarted (P820.00) (StartOfSeq. mode) or after the motor has been restarted after an error occurred. •...
  • Page 523: Safety Functions

    Safety functions Safety functions 13.1 Safe torque off (STO) With this safety function, the drive can be switch off safely immediately. DANGER! Automatic restart if the request of the safety function is deactivated. Possible consequences: Death or severe injuries ▶ You must provide external measures according to EN ISO 13849−1 which ensure that the drive only restarts after a confirmation.
  • Page 524 Safety functions Safe torque off (STO) Parameter Name / value range / [default setting] Info 0x282A:004 Status words: Extended status word Bit-coded status word. • Read only Bit 8 Reverse rotational direction 1 ≡ reversal active. Bit 10 Safe torque off (STO) active 1 ≡...
  • Page 525: Flexible I/O Configuration

    Flexible I/O configuration Flexible I/O configuration Use parameter 0x2631 (P400xx) to individually adapt the inverter control to the respective application. This is basically effected by assigning digital signal sources ("triggers") to functions of the inverter. NOTICE A digital signal source can be assigned to several functions. Possible consequence: unforeseeable behaviour of the drive in case of incorrect assignment ▶...
  • Page 526: Control Source Change-Over

    Flexible I/O configuration Control source change-over 14.1 Control source change-over The term "control sources" in this connection refers to the digital signal sources from which the inverter receives its start, stop, and reversal commands. Possible control sources are: Digital inputs •...
  • Page 527 Flexible I/O configuration Control source change-over The "Enable inverter" 0x2631:001 (P400.01) function must be set to TRUE to start the motor. Either via digital input or by default setting "Constant TRUE [1]". If the function is set to FALSE, the inverter is disabled. The motor becomes tor- queless (coasts).
  • Page 528 Flexible I/O configuration Control source change-over Parameter Name / value range / [default setting] Info 0x2824 Control selection Selection of the type of inverter control. (P200.00) (Control select.) 0 Flexible I/O configuration This selection enables a flexible assignment of the start, stop, and rotat- ing direction commands with digital signal sources.
  • Page 529: Example 1: Change-Over From Terminal Control To Keypad Control

    Flexible I/O configuration Control source change-over Example 1: Change-over from terminal control to keypad control 14.1.1 Example 1: Change-over from terminal control to keypad control The control is executed primarily via the I/O terminals: Switch S1 serves to start and stop •...
  • Page 530: Example 2: Change-Over From Terminal Control To Network Control

    Flexible I/O configuration Control source change-over Example 2: Change-over from terminal control to network control 14.1.2 Example 2: Change-over from terminal control to network control The control is executed primarily via the I/O terminals: Switch S1 serves to start and stop •...
  • Page 531: Start / Stop Motor

    Flexible I/O configuration Start / stop motor 14.2 Start / stop motor Configuration of the triggers for the basic functions for controlling the motor. Details The following table contains a short overview of the basic functions. For more details see the following parameter descriptions.
  • Page 532 Flexible I/O configuration Start / stop motor Parameter Name / value range / [default setting] Info 0x2631:001 Function list: Enable inverter Assignment of a trigger for the "Enable inverter" function. (P400.01) (Function list: Enable inverter) Trigger = TRUE: The inverter is enabled (unless there is another cause for •...
  • Page 533 Flexible I/O configuration Start / stop motor Parameter Name / value range / [default setting] Info 71 Actual speed = 0 TRUE if current output frequency = 0 Hz (± 0.01 Hz), irrespective of the operating mode. Otherwise FALSE. • Display of the current output frequency in 0x2DDD (P100.00).
  • Page 534 Flexible I/O configuration Start / stop motor Parameter Name / value range / [default setting] Info 0x2631:002 Function list: Run Assignment of a trigger to the "Run" function. (P400.02) (Function list: Run) • Setting can only be changed if the inverter is inhibi- Function 1: Start / stop motor (default setting) ted.
  • Page 535 Flexible I/O configuration Start / stop motor Parameter Name / value range / [default setting] Info 0x2631:008 Function list: Run forward (CW) Assignment of a trigger for the "Run forward (CW)" function. (P400.08) (Function list: Run forward) Trigger = TRUE: Let motor rotate forward. •...
  • Page 536 Flexible I/O configuration Start / stop motor Parameter Name / value range / [default setting] Info 0x2631:011 Function list: Jog reverse (CCW) Assignment of a trigger for the "Jog reverse (CCW)" function. (P400.11) (Function list: Jog reverse) Trigger = TRUE: Let motor rotate backward with preset 6. •...
  • Page 537: Example 1: Start/Stop (1 Signal) And Reversal

    Flexible I/O configuration Start / stop motor Example 1: Start/stop (1 signal) and reversal 14.2.1 Example 1: Start/stop (1 signal) and reversal This example shows a simple control option via two switches which should be sufficient for many applications: Switch S1 starts the motor in forward direction of rotation. Switch S1 in the initial position •...
  • Page 538: Example 2: Start Forward/Start Reverse/Stop (Edge-Controlled)

    Flexible I/O configuration Start / stop motor Example 2: Start forward/start reverse/stop (edge-controlled) 14.2.2 Example 2: Start forward/start reverse/stop (edge-controlled) The "Run" function automatically becomes a "start enable" if the functions "Start forward (CW)"/ "Start reverse (CCW)" are connected to triggers. This example shows an edge-controlled start/stop via three buttons: In the non-operating state of button S1 (normally-closed contact), there is already a start •...
  • Page 539 Flexible I/O configuration Start / stop motor Example 2: Start forward/start reverse/stop (edge-controlled) Input signals 60 Hz 50 Hz 40 Hz Frequency setpoint selection 30 Hz 20 Hz 10 Hz 0 Hz Trigger Function Constant TRUE [1] Enable inverter Digital input 1 [11] Start enable Digital input 2 [12] Start forward (CW)
  • Page 540: Example 3: Run Forward/Run Reverse/Stop (Status-Controlled)

    Flexible I/O configuration Start / stop motor Example 3: Run forward/Run reverse/stop (status-controlled) 14.2.3 Example 3: Run forward/Run reverse/stop (status-controlled) The "Run" function automatically becomes a "start enable" if the functions "Run forward (CW)"/"Run reverse (CCW)" are connected to triggers. This example shows a status-controlled start/stop via three switches: Switch S1 enables the start.
  • Page 541 Flexible I/O configuration Start / stop motor Example 3: Run forward/Run reverse/stop (status-controlled) Input signals 60 Hz 50 Hz 40 Hz Frequency setpoint selection 30 Hz 20 Hz 10 Hz 0 Hz Trigger Function Constant TRUE [1] Enable inverter Digital input 1 [11] Start enable Digital input 2 [12] Run forward (CW)
  • Page 542: Example 4: Quick Stop

    Flexible I/O configuration Start / stop motor Example 4: Quick stop 14.2.4 Example 4: Quick stop This example illustrates the "quick stop" function. If quick stop is activated, the motor is brought to a standstill within the deceleration time set in 0x291C (P225.00).
  • Page 543: Example 5: Jog Forward/Jog Reverse

    Flexible I/O configuration Start / stop motor Example 5: Jog forward/Jog reverse 14.2.5 Example 5: Jog forward/Jog reverse This example illustrates the functions "Jog forward (CW)" and "Jog reverse (CCW)" for Jog operation. Switch S1 starts the motor in forward direction of rotation. Switch S1 in the initial position •...
  • Page 544 Flexible I/O configuration Start / stop motor Example 5: Jog forward/Jog reverse Input signals 60 Hz 50 Hz 40 Hz Frequency setpoint selection 30 Hz 20 Hz 10 Hz 0 Hz Trigger Function Constant TRUE [1] Enable inverter Digital input 1 [11] Digital input 2 [12] Jog foward (CW) Digital input 3 [13]...
  • Page 545: Example 6: Enable Inverter

    Flexible I/O configuration Start / stop motor Example 6: Enable inverter 14.2.6 Example 6: Enable inverter This example shows how to use the "Enable inverter" function for a separate enable input. In idle state of switch S1 (normally-closed contact), "Enable inverter" is already available. •...
  • Page 546: Setpoint Change-Over

    Flexible I/O configuration Setpoint change-over 14.3 Setpoint change-over The inverter receives its setpoint from the selected standard setpoint source. Corresponding functions make it possible to change over to other setpoint sources during operation. Possible setpoint sources are: Analog inputs • Keypad •...
  • Page 547 Flexible I/O configuration Setpoint change-over The following signal flow shows the internal setpoint logics: Motor control Modes of operation 0x6060 Process controller: operating mode 0x4020:001 0x2860:001 Frequency setpoint [Hz] MS: Velocity mode [-2] 0x2B0E (default setting) 0x2860:002 PID setpoint PID Unit 0x2631:045 0x401F:001 1...4...
  • Page 548: Priority Of The Setpoint Sources

    Flexible I/O configuration Setpoint change-over Priority of the setpoint sources 14.3.1 Priority of the setpoint sources Since only one setpoint source can be active at a time, the following priorities apply: Flexible I/O configuration or keypad control active Network control active 0x2631:037 (P400.37) = FALSE 0x2631:017 (P400.17)
  • Page 549 Flexible I/O configuration Setpoint change-over Analog input setpoint source Parameter Name / value range / [default setting] Info 0x2631:015 Function list: Activate AI2 setpoint Assignment of a trigger for the "Activate AI2 setpoint" function. (P400.15) (Function list: Setp: AI2) Trigger = TRUE: analog input 2 is used as setpoint source (if the trigger •...
  • Page 550 Flexible I/O configuration Setpoint change-over Analog input setpoint source Input signals 60 Hz 50 Hz Frequency setpoint selection 40 Hz via keypad 30 Hz (standard setpoint source) 20 Hz 10 Hz 0 Hz 60 Hz 50 Hz 40 Hz Frequency setpoint selection 30 Hz via analog input 1 20 Hz...
  • Page 551: Keypad Setpoint Source

    Flexible I/O configuration Setpoint change-over Keypad setpoint source 14.3.3 Keypad setpoint source The following function is used to select the keypad as setpoint source. Preconditions A setpoint change-over to the keypad is only effected if no setpoint source with a higher prior- ity has been selected.
  • Page 552 Flexible I/O configuration Setpoint change-over Keypad setpoint source Input signals 60 Hz 50 Hz Frequency setpoint selection 40 Hz via analog input 1 30 Hz (standard setpoint source) 20 Hz 10 Hz 0 Hz 60 Hz 50 Hz Manual 40 Hz frequency setpoint selection 30 Hz via keypad...
  • Page 553: Network Setpoint Source

    Flexible I/O configuration Setpoint change-over Network setpoint source 14.3.4 Network setpoint source The following function is used to select the network as setpoint source. Preconditions The setpoint change-over to the network is only effected if • no setpoint source with a higher priority has been selected. 4Priority of the setpoint sour- ^ 548 no network control is active...
  • Page 554: Setpoint Source Of Preset Setpoints

    Flexible I/O configuration Setpoint change-over Setpoint source of preset setpoints 14.3.5 Setpoint source of preset setpoints The four functions "Activate preset (bit 0)" ... " Activate preset (bit 3)" enable change-over of the setpoint to a parameterisable setpoint (preset value). Preconditions A setpoint change-over to the respective preset is only effected if no setpoint source with a higher priority has been selected.
  • Page 555 Flexible I/O configuration Setpoint change-over Setpoint source of preset setpoints Parameter Name / value range / [default setting] Info 0x2911:001 Frequency setpoint presets: Preset 1 Parameterisable frequency setpoints (presets) for operating mode "MS: (P450.01) (Freq. presets: Freq. preset 1) Velocity mode". 0.0 ...
  • Page 556 Flexible I/O configuration Setpoint change-over Setpoint source of preset setpoints Parameter Name / value range / [default setting] Info 0x4022:001 PID setpoint presets: Preset 1 Parameterisable process controller setpoints (presets) for PID control. (P451.01) (PID presets: PID preset 1) -300.00 ... [0.00] ... 300.00 PID unit 0x4022:002 PID setpoint presets: Preset 2 (P451.02)
  • Page 557 Flexible I/O configuration Setpoint change-over Setpoint source of preset setpoints Example for operating mode The keypad is set as standard setpoint source. • Switch S1 starts the motor in forward direction of rotation. Switch S1 in the initial position • stops the motor again.
  • Page 558 Flexible I/O configuration Setpoint change-over Setpoint source of preset setpoints Input signals 60 Hz 50 Hz Frequency setpoint selection 40 Hz via keypad 30 Hz (standard setpoint source) 20 Hz 10 Hz 0 Hz Presets 0x2911:1 0x2911 2 : 0x2911 3 : 0x2911 4 : 0x2911 5 : 0x2911 6 :...
  • Page 559: Motor Potentiometer Setpoint Source (Mop)

    Flexible I/O configuration Setpoint change-over Motor potentiometer setpoint source (MOP) 14.3.6 Motor potentiometer setpoint source (MOP) The "Motor potentiometer" function can be used as an alternative setpoint control that is controlled via two functions: "MOP setpoint up" and "MOP setpoint down". The "Activate MOP setpoint"...
  • Page 560 Flexible I/O configuration Setpoint change-over Motor potentiometer setpoint source (MOP) Parameter Name / value range / [default setting] Info 0x4003 MOP starting mode Selection of the initial value which is used after activation of the func- (P413.00) (MOP startmode) tion. 0 Last value The last MOP value is used as initial value.
  • Page 561 Flexible I/O configuration Setpoint change-over Motor potentiometer setpoint source (MOP) Parameter Name / value range / [default setting] Info 0x291A Deceleration time 2 Deceleration time 2 for the operating mode "MS: Velocity mode". (P223.00) (Decelerat.time 2) • The deceleration time set refers to the deceleration from the maxi- 0.0 ...
  • Page 562 Flexible I/O configuration Setpoint change-over Motor potentiometer setpoint source (MOP) Input signals 60 Hz 50 Hz Frequency setpoint selection 40 Hz via analog input 1 30 Hz (standard setpoint source) 20 Hz 10 Hz 0 Hz Trigger Function Constant TRUE [1] Enable inverter Digital input 1 [11] Digital input 2 [12]...
  • Page 563: Setpoint Source Segment Setpoints

    Flexible I/O configuration Setpoint change-over Setpoint source segment setpoints 14.3.7 Setpoint source segment setpoints The four functions "Activate segment setpoint (bit 0)" ... " Activate segment setpoint´(bit 3)" enable a setpoint change-over to a segment setpoint parameterised for the "sequencer" func- tion during normal operation.
  • Page 564 Flexible I/O configuration Setpoint change-over Setpoint source segment setpoints Parameter Name / value range / [default setting] Info 0x2631:028 Function list: Activate segment setpoint (bit 2) Assignment of a trigger for the "Activate segment setpoint (bit 2)" func- (P400.28) (Function list: Setp: Segment b2) tion.
  • Page 565: Htl Input Setpoint Source

    Flexible I/O configuration Setpoint change-over HTL input setpoint source 14.3.8 HTL input setpoint source In case of the inverter i550, the digital inputs DI3 and DI4 can be configured as HTL input to evaluate the signal of a cost-effective HTL encoder or a reference frequency ("pulse train"). Many cost-effective control systems have a pulse-train output as an alternative to a real ana- log output.
  • Page 566 Flexible I/O configuration Setpoint change-over HTL input setpoint source Details For detecting a pulse train, the following two configurations are supported: a) input function 0x2630:002 (P410.02) = "Pulse train [2]" (DI4 = input for pulse train, DI3 = normal digital input) Controller Inverter Pulse 1 Pulse 2 Pulse 3...
  • Page 567 Flexible I/O configuration Setpoint change-over HTL input setpoint source Configuration examples Detailed configuration examples can be found in the following subchapters: 4Example 1: Input range 10 ... 85 kHz ≡ setting range 0 ... 50 Hz ^ 569 4Example 2: Input range 10 ... 85 kHz ≡ setting range -50 ... 50 Hz ^ 569 Parameter Name / value range / [default setting]...
  • Page 568 Flexible I/O configuration Setpoint change-over HTL input setpoint source Parameter Name / value range / [default setting] Info 0x2641:005 HTL input monitoring: Monitoring conditions Monitoring condition for HTL input. (P416.05) (HTL inp. monit.: Monit. condition) • If the selected condition is fulfilled, the response set in 0x2641:006 •...
  • Page 569: Example 1: Input Range 10

    Flexible I/O configuration Setpoint change-over HTL input setpoint source 14.3.8.1 Example 1: Input range 10 ... 85 kHz ≡ setting range 0 ... 50 Hz In this configuration, a frequency setpoint between 0 and 50 Hz can be set with an HTL input frequency between 10 and 85 kHz.
  • Page 570: Reset Error

    Flexible I/O configuration Reset error 14.4 Reset error By means of the "Reset fault" function, an active error can be reset (acknowledged). Preconditions The error can only be reset if the error cause has been eliminated. Parameter Name / value range / [default setting] Info 0x2631:004 Function list: Reset fault...
  • Page 571 Flexible I/O configuration Reset error The following signal flow illustrates the reset of an error both with the "Reset error" function and by cancelling the start command ② ④ Input signals 60 Hz 50 Hz 40 Hz Frequency setpoint selection 30 Hz 20 Hz 10 Hz...
  • Page 572: Activating Dc Braking Manually

    Flexible I/O configuration Activating DC braking manually 14.5 Activating DC braking manually By means of the "Activate DC braking" function, DC braking can be activated manually. Preconditions The current for DC braking must be set > 0 % so that the function can be executed. Parameter Name / value range / [default setting] Info...
  • Page 573 Flexible I/O configuration Activating DC braking manually Input signals 60 Hz 50 Hz 40 Hz Frequency setpoint selection 30 Hz 20 Hz 10 Hz 0 Hz Trigger Function Constant TRUE [1] Enable inverter Digital input 1 [11] Digital input 2 [12] Activate DC braking Output signals 60 Hz...
  • Page 574: Releasing Holding Brake Manually

    Flexible I/O configuration Releasing holding brake manually 14.6 Releasing holding brake manually The "Release holding brake" function serves to release the holding brake immediately. Brake application time and brake opening time as well as the conditions for the automatic operation are not effective.
  • Page 575 Flexible I/O configuration Releasing holding brake manually Input signals 60 Hz 50 Hz 40 Hz Frequency setpoint selection 30 Hz 20 Hz 10 Hz 0 Hz Trigger Function Constant TRUE [1] Enable inverter Digital input 1 [11] Digital input 2 [12] Release holding brake Output signals 60 Hz...
  • Page 576: Activating Ramp 2 Manually

    Flexible I/O configuration Activating ramp 2 manually 14.7 Activating ramp 2 manually The "Activate ramp 2" function serves to manually activate acceleration time 2 and decelera- tion time 2. Parameter Name / value range / [default setting] Info 0x2631:039 Function list: Activate ramp 2 Assignment of a trigger for the "Activate ramp 2"...
  • Page 577 Flexible I/O configuration Activating ramp 2 manually Example for operating mode Switch S1 starts the motor in forward direction of rotation. Switch S1 in the initial position • stops the motor again. Switch S2 activates the acceleration time 2 and deceleration time 2. •...
  • Page 578: Triggering A User-Defined Fault

    Flexible I/O configuration Triggering a user-defined fault 14.8 Triggering a user-defined fault The "Activate fault 1" and "Activate fault 2" functions serve to set the inverter from the proc- ess to the error status. Details If, for instance, sensors or switches are provided for process monitoring, which are designed to stop the process (and thus the drive) under certain conditions, these sensors/switches can be connected to free digital inputs of the inverter.
  • Page 579: Functions For Parameter Change-Over

    Flexible I/O configuration Functions for parameter change-over 14.9 Functions for parameter change-over The inverter supports several parameter sets. The parameter set can be selected by means of the "Select parameter set (bit 0)" and "Select parameter set (bit 1)" functions. DANGER! Changed parameter settings can become effective immediately depending on the activating method set in...
  • Page 580 Flexible I/O configuration Functions for parameter change-over Parameter Name / value range / [default setting] Info 0x4046 Activation of parameter set Selection of the activation method for the parameter change-over. (P755.00) (PSet activation) • If the selection is changed from "Via command... [0]/[1]" to "If the selection is changed...[2]/[3]"...
  • Page 581: Example 1: Activation Via Command (Only When Disabled)

    Flexible I/O configuration Functions for parameter change-over Example 1: Activation via command (only when disabled) 14.9.1 Example 1: Activation via command (only when disabled) Activation method 0x4046 (P755.00) = "Via command (disable required) [0]": Switches S3 and S4 serve to select the parameter set (see the following table). •...
  • Page 582: Example 2: Activation Via Command (Immediately)

    Flexible I/O configuration Functions for parameter change-over Example 2: Activation via command (immediately) 14.9.2 Example 2: Activation via command (immediately) Activation method 0x4046 (P755.00) = "Via command (immediately) [1]": Switches S3 and S4 serve to select the parameter set (see the following table). •...
  • Page 583: Example 3: Activation If The Selection Is Changed (Only If The Inverter Is Disabled)

    Flexible I/O configuration Functions for parameter change-over Example 3: Activation if the selection is changed (only if the inverter is disabled) 14.9.3 Example 3: Activation if the selection is changed (only if the inverter is disabled) Activation method 0x4046 (P755.00) = "If the selection is changed (disable required) [2]": Switches S3 and S4 serve to select the parameter set (see the following table).
  • Page 584: Example 4: Activation If The Selection Is Changed (Immediately)

    Flexible I/O configuration Functions for parameter change-over Example 4: Activation if the selection is changed (immediately) 14.9.4 Example 4: Activation if the selection is changed (immediately) Activation method 0x4046 (P755.00) = "If the selection is changed (immediately) [3]": Switches S3 and S4 serve to select the parameter set (see the following table). At the same •...
  • Page 585: Process Controller Function Selection

    Flexible I/O configuration Process controller function selection 14.10 Process controller function selection By means of the following functions, the response of the inverter can be controlled when PID control is activated. 4Configuring the process controller ^ 407 Parameter Name / value range / [default setting] Info 0x2631:045 Function list: Deactivate PID controller...
  • Page 586 Flexible I/O configuration Process controller function selection Example for operating mode In the following example, the "Deactivate PID controller" function is used to deactivate the PID control temporarily: As standard setpoint source, the frequency preset 1 is set to 20 Hz. •...
  • Page 587 Flexible I/O configuration Process controller function selection Input signals 60 Hz 50 Hz 40 Hz Frequency setpoint selection 30 Hz 20 Hz 10 Hz 0 Hz 100 % Process setpoint 80 % 60 % 40 % 20 % Trigger Function Constant TRUE [1] Enable inverter Digital input 1 [11]...
  • Page 588: Sequencer Control Functions

    Flexible I/O configuration Sequencer control functions 14.11 Sequencer control functions The following functions serve to control the sequencer. 4Sequencer ^ 504 Select sequence A sequence is selected in a binary-coded fashion via the triggers assigned to the four functions "Select sequence (bit 0)" ... " Select sequence (bit 3)" in compliance with the following truth table: Select sequence Selection...
  • Page 589 Flexible I/O configuration Sequencer control functions Parameter Name / value range / [default setting] Info 0x2631:031 Function list: Start sequence Assignment of a trigger for the "Start sequence" function. (P400.31) (Function list: Seq: Start) Trigger = FALSE↗TRUE (edge): Start selected sequence. •...
  • Page 590 Flexible I/O configuration Sequencer control functions Parameter Name / value range / [default setting] Info 0x2631:051 Function list: Select sequence (bit 1) Assignment of a trigger for the "Select sequence (bit 1)" function. (P400.51) (Function list: Seq: Select. b1) Selection bit with the valency 2 for the bit-coded selection of a •...
  • Page 591 Flexible I/O configuration Sequencer control functions Example for operating mode In the following example, the digital inputs 2 and 3 are used for controlling the sequencer. The analog input 1 is set as standard setpoint source. • Switch S1 starts the motor in forward direction of rotation. Switch S1 in the initial position •...
  • Page 592 Flexible I/O configuration Sequencer control functions Input signals 60 Hz 50 Hz 40 Hz Frequency setpoint selection 30 Hz 20 Hz 10 Hz 0 Hz Trigger Function Constant TRUE [1] Enable inverter Constant TRUE [1] Select sequence (bit 0) Bit 0 = 1 and bit 1 ... 3 = 0: sequence 1 is selected. Digital input 1 [11] Digital input 2 [12] Start sequence...
  • Page 593: Frequency Threshold For "Frequency Threshold Exceeded" Trigger

    Flexible I/O configuration Frequency threshold for "Frequency threshold exceeded" trigger 14.12 Frequency threshold for "Frequency threshold exceeded" trigger As a function of the current output frequency, the adjustable frequency threshold serves to trigger a certain function or set a digital output. Parameter Name / value range / [default setting] Info...
  • Page 594: Configuration Of Digital Inputs

    Flexible I/O configuration Configuration of digital inputs 14.13 Configuration of digital inputs Settings for digital inputs 1 ... 7. Preconditions Digital input 6 and digital input 7 are only available for a Control Unit (CU) with application I/O. Details The digital inputs are used for control tasks. For this purpose, the digital inputs are available as selectable triggers for functions.
  • Page 595 Flexible I/O configuration Configuration of digital inputs Assertion level "HIGH active" or "LOW active" The digital inputs can be configured in 0x2630:001 (P410.01) HIGH active (default setting) or LOW active: HIGH active (default setting) LOW active • Internally, the digital input terminals are set to LOW level via pull- •...
  • Page 596 Flexible I/O configuration Configuration of digital inputs Parameter Name / value range / [default setting] Info 0x2632:004 Inversion of digital inputs: Digital input 4 Inversion of digital input 4 (P411.04) (DI inversion: DI4 inversion) 0 Not inverted 1 Inverted 0x2632:005 Inversion of digital inputs: Digital input 5 Inversion of digital input 5 (P411.05)
  • Page 597: Configuration Of Analog Inputs

    Flexible I/O configuration Configuration of analog inputs Analog input 1 14.14 Configuration of analog inputs 14.14.1 Analog input 1 Settings for analog input 1. Details The analog input 1 can be used as setpoint source.4Selection of setpoint source ^ 148 For the process controller, the analog input can be used for the feedback of the variable (actual value) or speed feedforward control.
  • Page 598 Flexible I/O configuration Configuration of analog inputs Analog input 1 Parameter Name / value range / [default setting] Info 0x2636:002 Analog input 1: Min frequency value Definition of the setting range for operating mode "MS: Velocity mode". (P430.02) (Analog input 1: AI1 freq @ min) •...
  • Page 599: Example 1: Input Range 0

    Flexible I/O configuration Configuration of analog inputs Analog input 1 14.14.1.1 Example 1: Input range 0 ... 10 V ≡ setting range 0 ... 50 Hz In this configuration, for instance, a frequency setpoint between 0 and 50 Hz can be set with a potentiometer connected to the analog input.
  • Page 600: Example 3: Input Range -10

    Flexible I/O configuration Configuration of analog inputs Analog input 1 14.14.1.3 Example 3: Input range -10 ... +10 V ≡ setting range -40 ... +40 Hz In this example, the input range of the analog input is bipolar. For the setting range that is bipolar as well, a dead band with 2 % is configured.
  • Page 601 Flexible I/O configuration Configuration of analog inputs Analog input 2 14.14.2 Analog input 2 Settings for analog input 2. Preconditions Control Unit (CU) with application I/O Details The analog input 2 can be used as setpoint source.4Selection of setpoint source ^ 148 For the process controller, the analog input can be used for the feedback of the variable (actual value) or speed feedforward control.
  • Page 602 Flexible I/O configuration Configuration of analog inputs Analog input 2 Parameter Name / value range / [default setting] Info 0x2637:006 Analog input 2: Filter time PT1 time constant for low-pass filter. (P431.06) (Analog input 2: AI2 filter time) • By the use of a low-pass filter, the impacts of noise to an analog signal 0 ...
  • Page 603: Configuration Of Digital Outputs

    Flexible I/O configuration Configuration of digital outputs Relay 14.15 Configuration of digital outputs Parameter Name / value range / [default setting] Info 0x404D:003 PID alarms: Monitoring bandwidth PID feedback sig- Hysteresis for status signal "PID feedback = setpoint [73]". (P608.03) •...
  • Page 604 Flexible I/O configuration Configuration of digital outputs Relay Parameter Name / value range / [default setting] Info 17 Digital input 7 State of X3/DI7, taking an inversion set in 0x2632:007 (P411.07) into consideration. Digital input 7 is only available in the Control Unit (CU) with application I/O.
  • Page 605 Flexible I/O configuration Configuration of digital outputs Relay Parameter Name / value range / [default setting] Info 67 DC braking active TRUE if DC braking is active. Otherwise FALSE. 4DC braking ^ 437 69 Rotational direction reversed TRUE if output frequency is negative. Otherwise FALSE. 70 Frequency threshold exceeded TRUE if current output frequency >...
  • Page 606 Flexible I/O configuration Configuration of digital outputs Relay Parameter Name / value range / [default setting] Info 101 Sequence active Status signal of the "sequencer" function: (from version 03.00) TRUE if the sequence is running and is currently not suspended. 4Sequencer ^ 504 102 Sequence suspended...
  • Page 607: Digital Output 1

    Flexible I/O configuration Configuration of digital outputs Digital output 1 Parameter Name / value range / [default setting] Info 0x4018:006 Relay: Trigger signal state Display of the logic state of the trigger signal for the relay (without tak- • Read only ing a ON/OFF delay set and inversion into consideration).
  • Page 608 Flexible I/O configuration Configuration of digital outputs Digital output 2 14.15.3 Digital output 2 Settings for digital output 2. Preconditions Control Unit (CU) with application I/O Details The digital output 2 is controlled with the trigger selected in 0x2634:003 (P420.03). The following settings are possible for the digital output: Inversion •...
  • Page 609: Networdout1 Status Word

    Flexible I/O configuration Configuration of digital outputs NetWordOUT1 status word 14.15.4 NetWordOUT1 status word Assignment of digital triggers to bit 0 ... bit 15 of the NetWordOUT1 status word. Details The following table shows the preset status assignment of the NetWordOUT1 data word: Default setting For details and configuration, see Ready for operation...
  • Page 610 Flexible I/O configuration Configuration of digital outputs NetWordOUT1 status word Parameter Name / value range / [default setting] Info 0x2634:016 Digital outputs function: NetWordOUT1 - bit 6 Assignment of a trigger to bit 6 of NetWordOUT1. (P420.16) (Dig.out.function: NetWordOUT1.06) Trigger = FALSE: bit set to 0. •...
  • Page 611 Flexible I/O configuration Configuration of digital outputs NetWordOUT1 status word Parameter Name / value range / [default setting] Info 0x2635:013 Inversion of digital outputs: NetWordOUT1.03 Inversion of bit 3 of NetWordOUT1. 0 Not inverted 1 Inverted 0x2635:014 Inversion of digital outputs: NetWordOUT1.04 Inversion of bit 4 of NetWordOUT1.
  • Page 612: Htl Output

    Flexible I/O configuration Configuration of digital outputs HTL output 14.15.5 HTL output The digital output 1 can be configured for the output of a reference frequency ("pulse train") to transfer an internal actual value signal (e. g. current output frequency or current torque) to a higher-level Controller or other inverters.
  • Page 613 Flexible I/O configuration Configuration of digital outputs HTL output Configure the digital output 1 as pulse train output In the default setting 0x2644:003 (P423.03) = "Not connected [0]", the digital output 1 is con- figured as a "normal" digital output: The digital output 1 is controlled with the trigger selected 0x2634:002 (P420.02).
  • Page 614 Flexible I/O configuration Configuration of digital outputs HTL output Parameter Name / value range / [default setting] Info 0x2644:003 DO1 frequency setup: Function Selection of the signal to be provided at the digital output 1 as pulse (P423.03) (DO1 freq. setup: Function) train.
  • Page 615: Example 1: Pulse Train 0

    Flexible I/O configuration Configuration of digital outputs HTL output 14.15.5.1 Example 1: Pulse train 0 ... 10 kHz ≡ output frequency 0 ... 100 Hz In this configuration, a pulse train is provided at the digital output 1 proportionately to the current output frequency of the inverter (1 kHz pulse train ≡...
  • Page 616: Example 2: Pulse Train 2

    Flexible I/O configuration Configuration of digital outputs HTL output 14.15.5.2 Example 2: Pulse train 2 ... 10 kHz ≡ output frequency 30 ... 60 Hz In this configuration, the output range 2 ... 10 kHz is used for the output of the output fre- quency (resolution: 0.1 Hz).
  • Page 617: Configuration Of Analog Outputs

    Flexible I/O configuration Configuration of analog outputs Analog output 1 14.16 Configuration of analog outputs 14.16.1 Analog output 1 Settings for analog input 1. Details The analog output 1 is controlled with the signal selected in 0x2639:002 (P440.02). The following settings are possible for the analog output: Definition of the signal range •...
  • Page 618: Analog Output 1

    Flexible I/O configuration Configuration of analog outputs Analog output 1 Parameter Name / value range / [default setting] Info 0x2639:002 Analog output 1: Function Selection of the signal to be shown at analog output 1. (P440.02) (Analog output 1: AO1 function) 0 Not active No output signal.
  • Page 619: Example 1: Output Voltage 0

    Flexible I/O configuration Configuration of analog outputs Analog output 1 14.16.1.1 Example 1: Output voltage 0 ... 10 V ≡ output frequency 0 ... 100 Hz In this configuration, a voltage is provided at the analog output proportionately to the current output frequency of the inverter (1 V ≡...
  • Page 620 Flexible I/O configuration Configuration of analog outputs Analog output 2 14.16.2 Analog output 2 Settings for analog input 2. Preconditions Control Unit (CU) with application I/O Details The analog output 2 is controlled with the signal selected in 0x263A:002 (P441.02). The following settings are possible for the analog output: Definition of the signal range •...
  • Page 621: Analog Output 2

    Flexible I/O configuration Configuration of analog outputs Analog output 2 Parameter Name / value range / [default setting] Info 0x263A:003 Analog output 2: Min. signal Definition of the signal value that corresponds to the minimum value at (P441.03) (Analog output 2: AO2 min. signal) analog output 2.
  • Page 622: Technical Data

    Technical data EMC data Technical data 15.1 Standards and operating conditions 15.1.1 Conformities/approvals Conformity 2014/35/EU Low-Voltage Directive 2014/30/EU EMC Directive (reference: CE-typical drive system) TR TC 004/2011 Eurasian conformity: safety of low voltage equipment TP TC 020/2011 Eurasian conformity: electromagnetic compatibility of technical means RoHS 2 2011/65/EU...
  • Page 623: Motor Connection

    U = r.m.s. value external conductor/external conductor 15.1.5 Environmental conditions Energy efficiency Class IE2 EN 50598-2 Reference: Lenze setting (switching frequency 8 kHz variable) Climate 1K3 (-25 ... +60 °C) EN 60721-3-1 Storage 2K3 (-25 ... +70 °C) EN 60721-3-2 Transport 3K3 (-10 ...
  • Page 624: 1-Phase Mains Connection

    Technical data 1-phase mains connection 120 V Rated data 15.2 1-phase mains connection 120 V 15.2.1 Rated data The output currents apply to these operating conditions: At a switching frequency of 2 kHz or 4 kHz: Max. ambient temperature 45°C. •...
  • Page 625: 1-Phase Mains Connection 230/240

    The output currents apply to these operating conditions: At a switching frequency of 2 kHz or 4 kHz: Max. ambient temperature 45°C. • At a switching frequency of 8 kHz or 16 kHz: Max. ambient temperature 40 °C. • Inverter I55AE125B I55AE125D I55AE137B I55AE137D I55AE155B I55AE155D...
  • Page 626: 3-Phase Mains Connection 230/240

    Technical data 3-phase mains connection 230/240 V Rated data 15.4 3-phase mains connection 230/240 V 15.4.1 Rated data The output currents apply to these operating conditions: At a switching frequency of 2 kHz or 4 kHz: Max. ambient temperature 45°C. •...
  • Page 627: 3-Phase Mains Connection

    Technical data 3-phase mains connection 400 V Rated data 15.5 3-phase mains connection 400 V 15.5.1 Rated data The output currents apply to these operating conditions: At a switching frequency of 2 kHz or 4 kHz: Max. ambient temperature 45°C. •...
  • Page 628: 3-Phase Mains Connection 400 V "Light Duty

    Technical data 3-phase mains connection 400 V "light duty" Rated data Inverter I55AE330F I55AE337F I55AE345F I55AE355F I55AE375F Rated power Rated power Mains voltage range 3/PE AC 340 V ... 528 V, 45 Hz ... 65 Hz Output voltage 3 AC 0 V … 400 V Rated mains current without mains choke with mains choke...
  • Page 629: 3-Phase Mains Connection

    Technical data 3-phase mains connection 480 V Rated data 15.7 3-phase mains connection 480 V 15.7.1 Rated data The output currents apply to these operating conditions: At a switching frequency of 2 kHz or 4 kHz: Max. ambient temperature 45°C. •...
  • Page 630: 3-Phase Mains Connection 480 V "Light Duty

    Technical data 3-phase mains connection 480 V "Light Duty" Rated data Inverter I55AE330F I55AE337F I55AE345F I55AE355F I55AE375F Rated power Rated power Mains voltage range 3/PE AC 340 V ... 528 V, 45 Hz ... 65 Hz Output voltage 3 AC 0 V … 480 V Rated mains current without mains choke with mains choke...
  • Page 631: Appendix

    Appendix Appendix 16.1 Operate and parameterise the inverter with keypad The keypad is an easy means for the local operation, parameterisation, and diagnostics of the inverter. The keypad is simply connected to the diagnostic interface on the front of the inverter. •...
  • Page 632: Keypad Operating Mode

    Appendix Operate and parameterise the inverter with keypad Keypad operating mode 16.1.1 Keypad operating mode After switching on the inverter, the keypad plugged in is in "Operating mode" after a short initialisation phase. 16.1.1.1 Keypad status display In the operating mode, the keypad displays information on the status of the inverter. Keypad display Display Meaning...
  • Page 633: Function Of Keypad Keys In Operating Mode

    Appendix Operate and parameterise the inverter with keypad Keypad operating mode 16.1.1.2 Function of keypad keys in operating mode In the operating mode, the keypad can be used for local control and for manual setpoint selec- tion. Function of keypad keys in operating mode Actuation Condition Action...
  • Page 634: Error Reset With Keypad

    Appendix Operate and parameterise the inverter with keypad Keypad operating mode 16.1.1.3 Error reset with keypad Use the keypad key to reset a resettable error if the error condition no longer exists and no blocking time is active. "Error codes" table gives the blocking time (if available) for each error. •...
  • Page 635: Keypad Parameterisation Mode

    Appendix Operate and parameterise the inverter with keypad Keypad parameterisation mode 16.1.2 Keypad parameterisation mode In the parameterisation mode of the keypad you can have actual values of the inverter dis- played for purposes of diagnostics and change settings of the inverter. Use the to change from operating mode to the parameterisation mode.
  • Page 636: Function Of The Keypad Keys In The Parameterisation Mode

    Appendix Operate and parameterise the inverter with keypad Keypad parameterisation mode 16.1.2.2 Function of the keypad keys in the parameterisation mode In the parameterisation mode, the arrow keys serve to select and change parameters. Function of the keypad keys in the parameterisation mode Actuation Condition Action...
  • Page 637: Save Parameter Settings With Keypad

    Appendix Operate and parameterise the inverter with keypad Keypad parameterisation mode Changing inverter settings by means of the keypad (general operation) Operating mode VEL: FLEX: AIN1 0 0 0 S T O P AUTO SET Change to parameterisation Back to the operating mode mode Group level Favorites...
  • Page 638: Display Of Status Words On Keypad

    Appendix Operate and parameterise the inverter with keypad Keypad parameterisation mode 16.1.2.4 Display of status words on keypad Some diagnostics parameters contain bit-coded status words. Each single bit has a certain meaning. Display of 16-bit status words on the keypad Bit 15 Bit 0 b.0000.0000.0000.0100...
  • Page 639: Error Codes

    Appendix Error codes 16.2 Error codes The following table contains the most important error codes of the inverter in ascending order. Clicking the error code shows you a detailed description of the error message. • If the inverter indicates an "internal error" that is not listed here, restart the inverter. If the •...
  • Page 640 Appendix Error codes Error code Error message Error type Configurable in 30338 0x7682 Memory module: invalid user data Fault 30340 0x7684 Data not completely saved before switch-off Warning 30342 0x7686 Internal communication error Fault 30345 0x7689 Memory module: invalid OEM data Warning 30346 0x768A...
  • Page 641 Appendix Error codes Details regarding the individual error messages 8784 0x2250 CiA: continuous overcurrent (inside the device) Keypad display: PU over current Cause Error type/response Remedy • Continuous overcurrent on the inverter/ Fault • Check motor and wiring for short circuits. motor side.
  • Page 642 Appendix Error codes 9091 0x2383 I*t warning Keypad display: Ixt warning Cause Error type/response Remedy Device utilisation (I*t) too high by frequent and Warning Check drive dimensioning. too long acceleration processes. Related topics 4Device overload monitoring (i*t) ^ 136 9095 0x2387 Imax: Clamp responded too often Keypad display: Clamp timeout Cause Error type/response...
  • Page 643 Appendix Error codes 12817 0x3211 DC bus overvoltage warning Keypad display: Warn.DC Bus OV Cause Error type/response Remedy DC-bus voltage has exceeded the warning Warning • Reduce dynamic performance of the load threshold for overvoltage set in 0x2540:005 profile. (P208.05) due to a too high braking energy or a •...
  • Page 644 Appendix Error codes 17024 0x4280 Thermal sensor heatsink error Keypad display: Heatsink sensor Cause Error type/response Remedy Sensor for the temperature monitoring of the Fault Hardware error: it is necessary to contact the power unit is defective. The failure of the tem- manufacturer, since the device must be perature monitoring function poses the risk of replaced.
  • Page 645 Appendix Error codes 21376 0x5380 OEM hardware incompatible Keypad display: Incomp. OEM HW Cause Error type/response Remedy The control unit (OEM hardware) is not compat- Fault • Use compatible hardware. ible with the power unit (OEM hardware). • The inverter is inhibited immediately. The •...
  • Page 646 Appendix Error codes 25232 0x6290 Reversal warning Keypad display: Invert rotation Cause Error type/response Remedy • Negative setpoint selection with an active Warning • Check setpoint selection and trigger. limitation of rotation 0x283A (P304.00). • The motor is brought to a standstill, since a •...
  • Page 647 Appendix Error codes 25505 0x63A1 CU: load error ID tag Keypad display: CU ID tag error Cause Error type/response Remedy Calibration data of the control unit not compati- Fault • Update firmware of the inverter to the most ble or faulty. •...
  • Page 648 Appendix Error codes 28803 0x7083 HTL input fault Keypad display: HTL input fault Cause Error type/response Remedy The monitoring of the input signal configured No response • Check input signal at the HTL input. for the HTL input has been triggered. •...
  • Page 649 Appendix Error codes 29573 0x7385 Feedback system: speed limitation Keypad display: F.fdb spd limit Cause Error type/response Remedy The feedback system exceeds the maximum Warning Check feedback system. permissible frequency range of the digital inputs. Related topics 4Encoder monitoring ^ 498 30336 0x7680 Memory module is full Keypad display: EPM full Cause...
  • Page 650 Appendix Error codes 30345 0x7689 Memory module: invalid OEM data Keypad display: OEM data invalid Cause Error type/response Remedy The OEM memory contains invalid parameter Warning • Execute device command "Save OEM data" settings or is empty. • The user parameter settings were automati- 0x2022:006 (P700.06).
  • Page 651 Appendix Error codes 30356 0x7694 EPM data: new PU size detected Keypad display: EPM new PU size Cause Error type/response Remedy The parameter settings saved in the memory Fault 1. Check parameter settings. module comply with a different hardware. • The data have been loaded into the RAM 2.
  • Page 652 Appendix Error codes 33045 0x8115 Time-out (PZÜ) Keypad display: Time-out (PAM) Cause Error type/response Remedy The parameter access monitoring (PAM) func- No response • Check communication. tion has been activated. For a time longer than • The error type can be configured in •...
  • Page 653 Appendix Error codes 33156 0x8184 CAN: heartbeat time-out consumer 1 Keypad display: CAN heartb. C1 Cause Error type/response Remedy Within the heartbeat time 0x1016:001 Fault • Check communication with the heartbeat (P520.01), no heartbeat telegram was received • The error type can be configured in producer.
  • Page 654 Appendix Error codes 33170 0x8192 Network: initialisation error Keypad display: Net. Init. error Cause Error type/response Remedy The initialisation of the communication stack Trouble Check master/slave configuration and restart has been interrupted due to an incorrect • The error type can be configured in the devices.
  • Page 655 Appendix Error codes 33414 0x8286 Network: PDO mapping error Keypad display: PDO map error Cause Error type/response Remedy • Invalid PDO assignment by the master. Trouble Check data mapping in the master and slave. • Internal PDO assignment was changed and •...
  • Page 656 Appendix Error codes 65282 0xFF02 Brake resistor: overload warning Keypad display: BrkResistor OL.F Cause Error type/response Remedy The calculated thermal load of the brake resis- Fault • Check drive dimensioning. tor has reached the error threshold set in • The inverter is inhibited immediately. The •...
  • Page 657 Appendix Error codes 65291 0xFF0B Motor phase failure phase V Keypad display: Phase V failure Cause Error type/response Remedy A failure of the motor phase V has been detec- No response • Check wiring between inverter and motor. ted. • The error can only be reset after a blocking •...
  • Page 658 Appendix Error codes 65413 0xFF85 Keypad full control active Keypad display: Keypad full ctrl Cause Error type/response Remedy If the "Keypad Full Control" control mode is Warning Clicking the CTRL keypad key stops the control active. • Both the activity of controlling and the set- mode again.
  • Page 659: Parameter Attribute List

    Appendix Parameter attribute list 16.3 Parameter attribute list The parameter attribute list in particular contains some information required for reading and writing parameters via network. The parameter attribute list contains all parameters of the inverter. • The parameter attribute list is sorted by addresses (index:subindex) in ascending order. •...
  • Page 660 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x1003:003 ERR_History_ADOM: ErrorEntry_DOM 3 - (Read only) POWERLINK 0x1003:004 ERR_History_ADOM: ErrorEntry_DOM 4 - (Read only) POWERLINK 0x1003:005 ERR_History_ADOM: ErrorEntry_DOM 5 - (Read only) POWERLINK 0x1003:006 ERR_History_ADOM: ErrorEntry_DOM 6 - (Read only) POWERLINK 0x1003:007...
  • Page 661 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x1030:002 NMT_InterfaceGroup_0h_REC: InterfaceDescrip- - (Read only) POWERLINK STRING[3] tion_VSTR 0x1030:003 NMT_InterfaceGroup_0h_REC: InterfaceType_U8 - (Read only) POWERLINK 0x1030:004 NMT_InterfaceGroup_0h_REC: InterfaceMtu_U32 - (Read only) POWERLINK 0x1030:005 NMT_InterfaceGroup_0h_REC: InterfacePhysAd- - (Read only) POWERLINK OCTET[6] dress_ OSTR...
  • Page 662 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x1600:007 RPDO1 mapping parameter: Application object 7 0x00000000 CANopen PH - 0x1600:008 RPDO1 mapping parameter: Application object 8 0x00000000 CANopen PH - 0x1601:000 RPDO2 mapping parameter: Number of mapped CANopen application objects in PDO 0x1601:001...
  • Page 663 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x1801:001 TPDO2 communication parameter: COB-ID 0xC0000280 CANopen PH - (P551.01) 0x1801:002 TPDO2 communication parameter: Transmission CANopen (P551.02) type 0x1801:003 TPDO2 communication parameter: Inhibit time 0.0 ms CANopen (P551.03) 0x1801:005 TPDO2 communication parameter: Event timer 0 ms...
  • Page 664 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x1A05:004 TPDO6 mapping parameter: Application object 4 - (Read only) EtherCAT XH - 0x1A05:005 TPDO6 mapping parameter: Application object 5 - (Read only) EtherCAT XH - 0x1A05:006 TPDO6 mapping parameter: Application object 6 - (Read only) EtherCAT XH -...
  • Page 665 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x1F82 NMT_FeatureFlags_U32 - (Read only) POWERLINK 0x1F83 NMT_EPLVers_U8 - (Read only) POWERLINK 0x1F8C NMT_CurrState_U8 - (Read only) POWERLINK 0x1F8D:001 ... NMT_MNPResPayloadList: PResPayload 1 ... PRe- POWERLINK 0x1F8D:254 sPayload 254 0x1F93:001 NMT_EPLNodeID_REC: NodeID_U8 - (Read only)
  • Page 666 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2002:006 Device module: CU serial number - (Read only) general STRING[23] (P192.06) 0x2002:007 Device module: PU serial number - (Read only) general STRING[23] (P192.07) 0x2006:000 Error history buffer: Keypad display - (Read only) general (P155.00)
  • Page 667 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2022:006 Device commands: Save OEM data Off / ready [0] general (P700.06) 0x2022:007 Device commands: Load parameter set 1 Off / ready [0] general (P700.07) 0x2022:008 Device commands: Load parameter set 2 Off / ready [0] general (P700.08)
  • Page 668 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x230A:003 CANopen statistics: PDO3 received - (Read only) CANopen (P580.03) 0x230A:005 CANopen statistics: PDO1 transmitted - (Read only) CANopen (P580.05) 0x230A:006 CANopen statistics: PDO2 transmitted - (Read only) CANopen (P580.06) 0x230A:007...
  • Page 669 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x232E:003 Modbus diagnostics of last Rx data: Data byte 1 - (Read only) Modbus RTU U8 (P583.03) 0x232E:004 Modbus diagnostics of last Rx data: Data byte 2 - (Read only) Modbus RTU U8 (P583.04) 0x232E:005...
  • Page 670 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x232F:015 Modbus diagnostics of last Tx data: Data byte 13 - (Read only) Modbus RTU U8 (P585.15) 0x232F:016 Modbus diagnostics of last Tx data: Data byte 14 - (Read only) Modbus RTU U8 (P585.16) 0x232F:017...
  • Page 671 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2369 EtherCAT error - (Read only) EtherCAT (P517.00) 0x2380 PROFINET communication No action/no error [0] PROFINET (P508.00) 0x2381:001 PROFINET settings: IP address PROFINET PE - (P510.01) 0x2381:002 PROFINET settings: Subnet PROFINET PE - (P510.02)
  • Page 672 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x23A2:003 Active EtherNet/IP settings: Gateway - (Read only) EtherNet/IP (P511.03) 0x23A2:005 Active EtherNet/IP settings: MAC address - (Read only) EtherNet/IP OCTET[6] (P511.05) 0x23A2:006 Active EtherNet/IP settings: Multicast address - (Read only) EtherNet/IP (P511.06)
  • Page 673 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x23B6:001 Time-out monitoring: Time-out time 2.0 s Modbus TCP U16 (P514.01) 0x23B6:002 Time-out monitoring: Keep alive time-out time 2.0 s Modbus TCP U16 (P514.02) 0x23B6:005 Time-out monitoring: Keep alive register Modbus TCP U16 (P514.05) 0x23B8...
  • Page 674 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2441:011 WLAN settings: WLAN channel Channel 1 [1] WLAN 0x2441:012 WLAN settings: WLAN SSID broadcast Activated [0] WLAN 0x2442:001 Active WLAN settings: Active IP address - (Read only) WLAN 0x2442:002 Active WLAN settings: Active netmask...
  • Page 675 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2540:004 Mains settings: Undervoltage reset threshold x V (Read only) general (P208.04) 0x2540:005 Mains settings: Overvoltage warning threshold 0 V * general (P208.05) 0x2540:006 Mains settings: Overvoltage error threshold x V (Read only) general (P208.06)
  • Page 676 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2602:003 Keypad setup: Keypad Full Control Off [0] general (P708.03) 0x261C:001 Favorites settings: Parameter 1 0x2DDD0000 general PH - (P740.01) 0x261C:002 Favorites settings: Parameter 2 0x60780000 general PH - (P740.02) 0x261C:003 Favorites settings: Parameter 3...
  • Page 677 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x261C:029 Favorites settings: Parameter 29 0x26310500 general PH - (P740.29) 0x261C:030 Favorites settings: Parameter 30 0x26310600 general PH - (P740.30) 0x261C:031 Favorites settings: Parameter 31 0x26310700 general PH - (P740.31) 0x261C:032 Favorites settings: Parameter 32...
  • Page 678 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2631:006 Function list: Start forward (CW) Not connected [0] general PC - (P400.06) 0x2631:007 Function list: Start reverse (CCW) Not connected [0] general PC - (P400.07) 0x2631:008 Function list: Run forward (CW) Not connected [0] general PC -...
  • Page 679 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2631:035 Function list: Stop sequence Not connected [0] general PC - (P400.35) 0x2631:036 Function list: Abort sequence Not connected [0] general PC - (P400.36) 0x2631:037 Function list: Activate network control Not connected [0] general (P400.37)
  • Page 680 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2633:006 Digital input debounce time: Digital input 6 1 ms Appl. I/O 0x2633:007 Digital input debounce time: Digital input 7 1 ms Appl. I/O 0x2634:001 Digital outputs function: Relay Ready for operation [51] general (P420.01)
  • Page 681 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2635:022 Inversion of digital outputs: NetWordOUT1.12 Not inverted [0] general 0x2635:023 Inversion of digital outputs: NetWordOUT1.13 Not inverted [0] general 0x2635:024 Inversion of digital outputs: NetWordOUT1.14 Not inverted [0] general 0x2635:025 Inversion of digital outputs: NetWordOUT1.15...
  • Page 682 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2639:002 Analog output 1: Function Output frequency [1] general (P440.02) 0x2639:003 Analog output 1: Min. signal general (P440.03) 0x2639:004 Analog output 1: Max. signal 1000 general (P440.04) 0x263A:001 Analog output 2: Output range 0 ...
  • Page 683 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2644:003 DO1 frequency setup: Function Not connected [0] general (P423.03) 0x2644:004 DO1 frequency setup: Minimum signal general (P423.04) 0x2644:005 DO1 frequency setup: Maximum signal 1000 general (P423.05) 0x2645:001 DO2 frequency setup: Minimum frequency 0.0 Hz general...
  • Page 684 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x282B:001 Inverter diagnostics: Active control source - (Read only) general (P125.01) 0x282B:002 Inverter diagnostics: Active setpoint source - (Read only) general (P125.02) 0x282B:003 Inverter diagnostics: Keypad LCD status - (Read only) general (P125.03)
  • Page 685 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2859:001 EtherNet/IP monitoring: Watchdog elapsed Trouble [2] EtherNet/IP (P515.01) 0x2859:001 PROFINET monitoring: Watchdog elapsed Trouble [2] PROFINET (P515.01) 0x2859:001 EtherCAT monitoring: Watchdog elapsed Trouble [2] EtherCAT (P515.01) 0x2859:001 POWERLINK monitoring: Watchdog elapsed Trouble [2] POWERLINK...
  • Page 686 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2863 Keypad language selection English [1] general (P705.00) 0x2864 Keypad status display 0x00000000 general PH - (P703.00) 0x2900:001 Speed controller settings: Gain 0.00193 Nm/rpm * MCTRL 100000 P (P332.01) 0x2900:002 Speed controller settings: Reset time...
  • Page 687 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2912:007 Torque setpoint presets: Preset 7 100.0 % general (P452.07) 0x2912:008 Torque setpoint presets: Preset 8 100.0 % general (P452.08) 0x2915 Minimum frequency 0.0 Hz general (P210.00) 0x2916 Maximum frequency Device for 50-Hz mains: general...
  • Page 688 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2946:006 Speed limitation: Lower frequency limit Device for 50-Hz mains: general (P340.06) -50.0 Hz Device for 60-Hz mains: -60.0 Hz 0x2946:007 Speed limitation: Actual upper speed limit x.x Hz (Read only) general (P340.07) 0x2946:008...
  • Page 689 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2B0D:006 Cos phi actual value - (Read only) general (P330.06) 0x2B0E Frequency setpoint x.x Hz (Read only) general (P102.00) 0x2B0F VFC output frequency x.x Hz (Read only) MCTRL 0x2B12:001 Fixed boost 2.5 % *...
  • Page 690 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2C01:010 Motor parameters: Motor name MCTRL STRING[25] 0x2C02:001 Motor parameter (ASM): Rotor resistance 8.8944 Ω * MCTRL 10000 (P351.01) 0x2C02:002 Motor parameter (ASM): Mutual inductance 381.9 mH * MCTRL (P351.02) 0x2C02:003...
  • Page 691 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2D4B:002 Motor overload monitoring (i²*t): Speed compensa- On [0] general (P308.02) tion 0x2D4B:003 Motor overload monitoring (i²*t): Response Fault [3] general (P308.03) 0x2D4B:005 Motor overload monitoring (i²*t): Thermal load - (Read only) general 0x2D4F...
  • Page 692 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2DA2:002 Output power: Apparent power x.xxx kVA (Read only) general 1000 (P108.02) 0x2DA3:001 Output energy: Motor x.xx kWh (Read only) general (P109.01) 0x2DA3:002 Output energy: Generator x.xx kWh (Read only) general (P109.02) 0x2DA4:001...
  • Page 693 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2DD5 Torque setpoint x.xx Nm (Read only) general 0x2DDD Output frequency x.x Hz (Read only) general (P100.00) 0x2DDF:001 Axis information: Rated current x.xx A (Read only) general 0x2DDF:002 Axis information: Maximum current x.xx A (Read only) general...
  • Page 694 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x400B:009 Process input data: Torque scaling general OK - (P592.09) 0x400B:010 AC Drive mode Speed control (open EtherNet/IP loop) [1] 0x400B:011 Process input data: PID feedback 0.00 PID unit general OK r (P592.11)
  • Page 695 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x400E:015 NetWordIN1 function: Bit 14 Not active [0] general PC - (P505.15) 0x400E:016 NetWordIN1 function: Bit 15 Not active [0] general PC - (P505.16) 0x4016:003 Digital output 1: Cutout delay 0.000 s general 1000...
  • Page 696 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x4022:008 PID setpoint presets: Preset 8 0.00 PID unit general (P451.08) 0x4023:001 PID sleep mode: Activation Disabled [0] general (P610.01) 0x4023:002 PID sleep mode: Stop method Coasting [0] general (P610.02) 0x4023:003...
  • Page 697 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x4027:008 Sequencer segment 2: NetWordOUT2 general 0x4027:009 Sequencer segment 2: Reserved general 0x4028:001 Sequencer segment 3: Frequency setpoint 0.0 Hz general (P803.01) 0x4028:002 Sequencer segment 3: Acceleration/deceleration 5.0 s general (P803.02) 0x4028:003...
  • Page 698 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x402B:005 Sequencer segment 6: Analog outputs 0.00 VDC general (P806.05) 0x402B:006 Sequencer segment 6: PID setpoint 0.00 PID unit general (P806.06) 0x402B:007 Sequencer segment 6: Torque setpoint 100.0 % general (P806.07) 0x402B:008...
  • Page 699 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x4030:001 ... Sequence 1: Step 1 ... Step 16 Skip step [0] general 0x4030:016 (P830.01 ... 16) 0x4031 Number of cycles sequence 1 general (P831.00) 0x4032:001 ... Sequence 2: Step 1 ... Step 16 Skip step [0] general 0x4032:016...
  • Page 700 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x4047:002 Parameter change-over error message: List entry - (Read only) general (P756.02) 0x4048 PID P-component 5.0 % general (P601.00) 0x4049 PID I- component 400 ms general (P602.00) 0x404A PID D-component 0.0 s general...
  • Page 701 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x6073 Max current 200.0 % general (P324.00) 0x6074 Torque demand value x.x % (Read only) MCTRL 0x6075 Motor rated current 1.700 A * MCTRL 1000 PC - (P323.00) 0x6076 Motor rated torque 1.650 Nm *...
  • Page 702 © 06/2017 | 13535404 | 8.0 Ö Lenze Drives GmbH Postfach 10 13 52, D-31763 Hameln Breslauer Straße 3, D-32699 Extertal Germany HR Lemgo B 6478 +49 5154 82-0 Ü Ø +49 5154 82-2800 lenze@lenze.com Ù www.lenze.com Ú Û Lenze Service GmbH Breslauer Straße 3, D-32699 Extertal...

Table of Contents

Save PDF