YASKAWA MP2000 Series User Manual

YASKAWA MP2000 Series User Manual

Machine controller, motion module
Hide thumbs Also See for MP2000 Series:
Table of Contents

Advertisement

Machine Controller MP2000 Series
SVA-01 Motion Module
USER'S MANUAL
Model: JAPMC-MC2300 (-E)
MANUAL NO. SIEP C880700 32F
ERR
RUN
CH1
CH2
+24V 
ON 
DC IN 
Settings and Installation
Operation Modes
Motion Parameters
Motion Parameter Setting Examples
Motion Commands
Switching Commands during Execution
Control Block Diagram
Absolute Position Detection
Utility Functions
Troubleshooting
1
Overview
2
3
Setup
4
5
6
7
8
9
10
11
12
App
Appendices

Advertisement

Table of Contents
loading
Need help?

Need help?

Do you have a question about the MP2000 Series and is the answer not in the manual?

Questions and answers

Summary of Contents for YASKAWA MP2000 Series

  • Page 1 Machine Controller MP2000 Series SVA-01 Motion Module USER’S MANUAL Model: JAPMC-MC2300 (-E) Overview Settings and Installation Setup Operation Modes Motion Parameters Motion Parameter Setting Examples Motion Commands Switching Commands during Execution Control Block Diagram +24V  Absolute Position Detection ON  Utility Functions DC IN ...
  • Page 2 Yaskawa. No patent liability is assumed with respect to the use of the information contained herein. Moreover, because Yaskawa is constantly striving to improve its high-quality products, the information contained in this manual is subject to change without notice.
  • Page 3 Using this Manual Read this manual to ensure correct usage of the MP2000-series Machine Controller (hereinafter referred to as Machine Controller unless otherwise specified) and the SVA-01 Module. Keep this manual in a safe place so that it can be referred to whenever necessary.
  • Page 4 Describes the instructions used in MP900/MP2000 User’s Manual SIEZ-C887-1.3 motion programming. Motion Programming Engineering Tool for MP2000 Series Describes how to install and operate the programming Machine Controller SIEP C880700 30 tool MPE720 version 6 for MP2000-series Machine MPE720 Version 6 User’s Manual Controllers.
  • Page 5 Linear Servomotors. Describes the programming instructions of the New Lad- Machine Controller MP900/MP2000 Series SIEZ-C887-13.1 der Editor, which assists MP900/MP2000 Series design New Ladder Editor Programming Manual and maintenance. Describes the operating methods of the New Ladder Edi- Machine Controller MP900/MP2000 Series SIEZ-C887-13.2...
  • Page 6 Safety Information The following conventions are used to indicate precautions in this manual. These precautions are provided to ensure the safe operation of the Machine Controller and connected devices. Information marked as shown below is important for the safety of the user. Always read this information and heed the precautions that are provided. The conventions are as follows: Indicates precautions that, if not heeded, could possibly result in loss of life, serious inju- WARNING...
  • Page 7 Safety Precautions The following precautions are for checking products on delivery, storage, transportation, installation, wiring, operation, inspection, and disposal. These precautions are important and must be observed.  General Precautions WARNING  Before connecting the machine and starting operation, ensure that an emergency stop procedure has been provided and is working correctly.
  • Page 8  Storage and Transportation CAUTION  Do not store or install the Machine Controller in the following locations. There is a risk of fire, electrical shock, or device damage. • Direct sunlight • Ambient temperature exceeds the storage or operating conditions •...
  • Page 9  Wiring CAUTION  Check the wiring to be sure it has been performed correctly. There is a risk of motor overrun, injury, or an accident.  Always use a power supply of the specified voltage. There is a risk of burning. ...
  • Page 10  The drawings presented in this manual are typical examples and may not match the product you received.  If the manual must be ordered due to loss or damage, inform your nearest Yaskawa representative or one of the offices listed on the back of this manual.
  • Page 11 6. Events for which Yaskawa is not responsible, such as natural or human-made disasters ( 2 ) Limitations of Liability 1. Yaskawa shall in no event be responsible for any damage or loss of opportunity to the customer that arises due to failure of the delivered product.
  • Page 12 1. It is the customer’s responsibility to confirm conformity with any standards, codes, or regulations that apply if the Yaskawa product is used in combination with any other products. 2. The customer must confirm that the Yaskawa product is suitable for the systems, machines, and equipment used by the customer.
  • Page 13: Table Of Contents

    Contents Using this Manual - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - iii Safety Information - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - vi Safety Precautions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - vii Warranty - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - xi...
  • Page 14 5.3.3 Monitoring Parameter List - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-13 5.4 MP2000 Series Machine Controller Parameter Details - - - - - - - - - - - - - - - - - - 5-17 5.4.1 Motion Fixed Parameter Details - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-17...
  • Page 15 6 Motion Parameter Setting Examples - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-1 6.1 Example Setting of Motion Parameters for the Machine - - - - - - - - - - - - - - - - - 6-2 6.1.1 Reference Unit - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-2 6.1.2 Electronic Gear - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-2 6.1.3 Axis Type Selection - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-4...
  • Page 16 12.1.1 Basic Flow of Troubleshooting - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12-2 12.1.2 MP2000 Series Machine Controller Error Check Flowchart - - - - - - - - - - - - - - - - - - - - - - 12-3 12.1.3 LED Indicators (MP2200/MP2300) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12-4...
  • Page 17 12.3 Motion Program Alarms- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12-27 12.3.1 Motion Program Alarm Configuration - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12-27 12.3.2 Motion Program Alarm Code List - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12-27 12.4 Troubleshooting Motion Errors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12-28...
  • Page 18: Overview

    Overview This chapter provides an overview and the features of the SVA-01 Module. 1.1 SVA-01 Module Overview and Features - - - - - - - - - - - - - - - - - - - - - - - - -1-2 1.1.1 Overview - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-2 1.1.2 Features - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-3 1.1.3 System Configuration Example - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-4...
  • Page 19: Module Overview And Features

    1.1 SVA-01 Module Overview and Features 1.1.1 Overview 1.1 SVA-01 Module Overview and Features 1.1.1 Overview The SVA-01 Module is a motion control module with analog outputs. Each Module can control Servos or Invert- ers for up to 2 axes. The Module has two connectors (CN1 and CN2) for connecting SERVOPACKs and external I/O.
  • Page 20: Features

    1.1 SVA-01 Module Overview and Features 1.1.2 Features 1.1.2 Features The SVA-01 Module has the following features. • Servo control module with analog outputs to control up to two axes • You can connect two axes with an Inverter or Analog Servo Drive (SGDA, SGDB, SGDM, SGDH, SGDS, SGDV, or SGD7S).
  • Page 21: System Configuration Example

    1.1 SVA-01 Module Overview and Features 1.1.3 System Configuration Example 1.1.3 System Configuration Example The following diagram shows a system configuration example. MP2300 YASKAWA STOP INIT CNFG TEST OFF ON M-4/10 BATTERY CPU I/O DC24V DC 0V POWER Servos for 2 axes ...
  • Page 22: Specifications

    1.2 Specifications 1.2.1 Hardware Specifications 1.2 Specifications 1.2.1 Hardware Specifications Item Specifications Model Number JAPMC-MC2300 (-E) LED indicators CN1: Servo connector Module Appearance CN2: Servo connector CN3: 24-V input connector +24V DC IN MP2300: 2 Modules Max. Number of Modules to be connected MP2200: 16 Modules RUN (green) Indicators...
  • Page 23 1.2 Specifications 1.2.1 Hardware Specifications Item Specifications Ambient Operating 0 to +55°C Temperature Ambient Storage −25 to +85°C Temperature Ambient Operating 30 to 95% (with no condensation) Environment Humidity Conditions Ambient Storage 5 to 95% (with no condensation) Humidity Pollution Level Pollution level 2 (conforming to JIS B 3502) Corrosive Gas There must be no combustible or corrosive gas.
  • Page 24: Functional Specifications

    1.2 Specifications 1.2.2 Functional Specifications 1.2.2 Functional Specifications Details Item Function Remarks Torque Reference According to the torque unit selection parameter Torque Reference (Open-loop) Speed Limit at Torque Reference Rated speed percentage designation [0.01%] Speed Reference According to the speed unit selection parameter According to the acceleration/deceleration unit Acceleration selection parameter...
  • Page 25: Performance Specifications

    1.2 Specifications 1.2.3 Performance Specifications Details Item Function Remarks Positioning, external positioning, zero point return, interpolation, interpolation with posi- Motion Commands tion detection function, JOG operation, STEP operation, speed reference, torque/thrust reference, phase control, etc. A c c e l e r a t i o n / D e c e l e ra ti o n 1-step asymmetrical trapezoidal acceleration/deceleration, exponential acceleration/ Methods deceleration filter, moving average filter...
  • Page 26: Applicable Servopacks

    1.2 Specifications 1.2.4 Applicable SERVOPACKs 1.2.4 Applicable SERVOPACKs SERVOPACK Model Remarks SGDA -S Σ-I series AC SERVOPACK SGDB -AD- -DD SGDM -DA -AD Σ-II series SERVOPACK SGDH -DE -AE SGDS --01 --02 Σ-III series SERVOPACK --05 SGDV -01 Σ-V series SERVOPACK -05 SGD7S -00 Σ-7 series SERVOPACK...
  • Page 27: Settings And Installation

    Settings and Installation This chapter explains the LED indicators of the SVA-01 Module, how to install or remove it, and how to connect SERVOPACKs to it. 2.1 External Appearance and LED Indicators - - - - - - - - - - - - - - - - - - - - - - - -2-2 2.1.1 External Appearance - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-2 2.1.2 LED Indicators - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-2 2.1.3 SVA-01 Module Status Indication - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-3...
  • Page 28: External Appearance And Led Indicators

    2.1 External Appearance and LED Indicators 2.1.1 External Appearance 2.1 External Appearance and LED Indicators 2.1.1 External Appearance The following figure illustrates the external appearance of the SVA-01 Module. LED indicators CN1: Servo connector CN2: Servo connector CN3: 24-V input connector +24V DC IN 2.1.2 LED Indicators...
  • Page 29: Module Status Indication

    2.1 External Appearance and LED Indicators 2.1.3 SVA-01 Module Status Indication 2.1.3 SVA-01 Module Status Indication The SVA-01 Module status is indicated by the combination of LED indicators as shown in the following table. Indication Status SVA-01 Module Status Description Indicates that the hardware is being reset by the Machine Con- ...
  • Page 30: Applicable Machine Controllers For Sva-01 Modules

    2.2 Applicable Machine Controllers for SVA-01 Modules 2.2 Applicable Machine Controllers for SVA-01 Modules The following table lists the MP2000-series Machine Controllers on which the SVA-01 Module can be mounted. Applicable Version Max. No. of Name Model Connectable Remarks MPE720 Modules Module Ver.
  • Page 31: Mounting/Removing Sva-01 Modules

    2.3 Mounting/Removing SVA-01 Modules 2.3.1 Mounting a SVA-01 Module 2.3 Mounting/Removing SVA-01 Modules This section describes how to mount and remove a SVA-01 Module. 2.3.1 Mounting a SVA-01 Module Mount a SVA-01 Module by using the following procedure.  Remove the SVA-01 Module to be replaced, in advance of replacement, by referring to 2.3.2 Removing SVA-01 Modules for Replacement on page 2-7.
  • Page 32 2.3 Mounting/Removing SVA-01 Modules 2.3.1 Mounting a SVA-01 Module ( 3 ) Mounting SVA-01 Modules Insert a SVA-01 Module. Guide rails can be seen or are located at the top and bottom of the optional module mounting slot, as shown in the following diagram.
  • Page 33: Removing Sva-01 Modules For Replacement

    2.3 Mounting/Removing SVA-01 Modules 2.3.2 Removing SVA-01 Modules for Replacement 2.3.2 Removing SVA-01 Modules for Replacement Use the following procedure to remove a SVA-01 Module. ( 1 ) Preparation Create a backup file of the programs. Use the MPE720 to save the programs of the Machine Controller to a personal computer. ...
  • Page 34 2.3 Mounting/Removing SVA-01 Modules 2.3.2 Removing SVA-01 Modules for Replacement Remove the SVA-01 Module from the mounting base. Pull the top of the panel of the SVA-01 Module towards you to remove it. A notch on the SVA-01 Module will be visible from the gap in the cover.
  • Page 35: Module Connections

    2.4 SVA-01 Module Connections 2.4.1 Connectors 2.4 SVA-01 Module Connections 2.4.1 Connectors ( 1 ) Servo Interface Connectors CN1 and CN2 These connectors connect the SVA-01 Module to two SERVOPACKs. Use the following standard cable to connect each SERVOPACK to the SVA-01 Module. •...
  • Page 36: Connection Procedure For 24-V Input Cable

    2.4 SVA-01 Module Connections 2.4.2 Connection Procedure for 24-V Input Cable 2.4.2 Connection Procedure for 24-V Input Cable Prepare a 0.2 mm to 0.51 mm (AWG24 to AWG20) twisted-pair cable. Use the following connection procedure. Remove the sheath to approximately 6.5 mm from the cable end. Core 6.5 mm Sheath...
  • Page 37: Cn1 And Cn2 Connector Pin Arrangement

    2.4 SVA-01 Module Connections 2.4.3 CN1 and CN2 Connector Pin Arrangement 2.4.3 CN1 and CN2 Connector Pin Arrangement The following figures show the 36-pin arrangement, each pin name and assignment for connectors CN1 and CN2. Pin Arrangement Viewing from the Cable-Side Ground Ground (analog)
  • Page 38: Cable Specifications And Connections

    2.5 Cable Specifications and Connections 2.5.1 Cables 2.5 Cable Specifications and Connections 2.5.1 Cables The following standard cables are available for use with the SVA-01 Module. These cables are used to connect the SVA-01 Module to SERVOPACKs, overtravel limit switches, and other machines. Name Model Length...
  • Page 39 2.5 Cable Specifications and Connections 2.5.2 JEPMC-W2040--E Details ( 3 ) Connections Diagram Analog input ground General-purpose analog input General purpose analog input SGDM / SGDH / SGDS / SGDV / SGD7S SVA-01 SERVOPACK CN1/CN2 AO_0 ( V-REF NREF AI_0 ( AO_1 ( T-REF TREF...
  • Page 40: Jepmc-W2041--E Details

    2.5 Cable Specifications and Connections 2.5.3 JEPMC-W2041--E Details 2.5.3 JEPMC-W2041-  -E Details The JEPMC-W2041--E are the standard cables to connect to servo drives from other companies and the following SERVOPACKs: SGDA-S and SGDB-. ( 1 ) Appearance ( 2 ) Cable Specifications and Wiring Table ...
  • Page 41 2.5 Cable Specifications and Connections 2.5.3 JEPMC-W2041--E Details ( 3 ) SGDA-S Connection Diagram Analog input ground General-purpose analog input General-purpose analog input SVA-01 SGDA SERVOPACK CN1/CN2 AO_0 ( V-REF NREF AI_0 ( VMON AO_1 ( T-REF TREF ALM-SG (for 24V) (for 24V) DO_2 ( /P-CON...
  • Page 42 2.5 Cable Specifications and Connections 2.5.3 JEPMC-W2041--E Details ( 4 ) SGDB- Connection Diagram SVA-01 SGDB SERVOPACK CN1/CN2 AO_0 ( V-REF NREF (Speed monitor AI_0 ( VTG-M output) AO_1 ( T-REF TREF ALM- (For 24 V) (For 24 V) (Control mode DO_2 ( /P-CON PCON...
  • Page 43: Restrictions For Feedback Pulse Inputs

    2.6 Restrictions for Feedback Pulse Inputs 2.6.1 Restrictions for SERVOPACK Pulse Output Frequency 2.6 Restrictions for Feedback Pulse Inputs 2.6.1 Restrictions for SERVOPACK Pulse Output Frequency The upper limit to the SERVOPACK pulse output frequency is shown below. Σ -II, Σ -III, Σ -V, or Σ -7 SERVO- Upper limit (actual value) of phase-A/B divided output pulse frequency for PACK = 1.6 MHz (before multiplication) ...
  • Page 44: Restrictions In Sva-01 Module Pulse Input Frequency

    2.6 Restrictions for Feedback Pulse Inputs 2.6.2 Restrictions in SVA-01 Module Pulse Input Frequency (cont’d) Pn212 Setting Motor Speed (min ) at a Divided Output Encoder Bits Pn212 Setting Range Example Pulse Frequency of 1.6 MHz 16384 6000 16 to 16384 (in increments of pulses) 32768 3000 16386 to 32768 (in increments of pulses)
  • Page 45: Setup

    Setup This chapter describes the items that must be set to use the SVA-01 Module. 3.1 Setting Items - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -3-2 3.2 Module Configuration Definition of Machine Controller - - - - - - - - - - - - - - -3-3 3.2.1 How to Execute Self-configuration - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-3 3.2.2 Opening the Module Configuration Window - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-4...
  • Page 46: Setting Items

    3.1 Setting Items 3.1 Setting Items The settings in the following definition files are required to control the SERVOPACKs by using the SVA-01 Module mounted on the Machine Controller. • Module Configuration Definition of Machine Controller • SVA Definition of SVA-01 Module Additionally, the parameters of the connected SERVOPACK must be set for the SVA-01 Module.
  • Page 47: Module Configuration Definition Of Machine Controller

    3.2 Module Configuration Definition of Machine Controller 3.2.1 How to Execute Self-configuration 3.2 Module Configuration Definition of Machine Controller Define the SVA-01 Module as an optional module of Machine Controller. The details of the definition can be checked in the Module Configuration Window. Use the self-configuration function of Machine Controller to automatically allocate the SVA-01 Module, or manually allocate the SVA-01 Module in the Module Configuration Window.
  • Page 48: Opening The Module Configuration Window

    Start the MPE720 installed in the personal computer that is connected to the Machine Controller, and then open the target project file.  Refer to Engineering Tool for MP2000 Series Machine Controller MPE720 Version 6 User’s Manual (Manual No.: SIEP C880700 30) for information on how to start the MPE720.
  • Page 49: Module Configuration Window

    3.2 Module Configuration Definition of Machine Controller 3.2.3 Module Configuration Window 3.2.3 Module Configuration Window The Module Configuration Window slightly differs depending on the Machine Controller model. <MP2300> <MP2100M, MP2200, and MP2500MD> After executing self-configuration, all the optional modules connected to the Machine Controller will be dis- played in the Controller field.
  • Page 50: Manually Allocating Modules

    3.2 Module Configuration Definition of Machine Controller 3.2.4 Manually Allocating Modules The following table lists the items shown in the Module Configuration Window. Item Description Modification Specifies whether the expansion rack (JEPMC-BU2200 and JEPMC- Select Rack BU2210) is used or not. (Only for MP2100M, MP2200, Possible ...
  • Page 51: Sva Definition

    3.3 SVA Definition 3.3.1 Opening the SVA Definition Window 3.3 SVA Definition The SVA definition file defines the motion parameters (motion fixed parameters, motion setting parameters, and motion monitoring parameters) to control the motion axes such as the SERVOPACK.  Refer to 5 Motion Parameters on page 5-1 for details on the motion parameters. 3.3.1 Opening the SVA Definition Window Open the SVA Definition Window by the following procedure.
  • Page 52 3.3 SVA Definition 3.3.1 Opening the SVA Definition Window Click the Fixed Parameters, Setup Parameters, or Monitor tab to display the desired page. Fig. 3.1 Fixed Parameters Tab Fig. 3.2 Setup Parameters Tab Fig. 3.3 Monitor Parameters Tab (read only)
  • Page 53: Setting The Sva-01 Module Fixed Parameters

    3.3 SVA Definition 3.3.2 Setting the SVA-01 Module Fixed Parameters 3.3.2 Setting the SVA-01 Module Fixed Parameters Set the SVA-01 Module fixed parameters according to the connected SERVOPACK model and parameters and the con- nected servomotor type as shown in the table below. ...
  • Page 54: Servopack Parameter Settings

    3.4 SERVOPACK Parameter Settings 3.4.1 SGDA SERVOPACK Parameter Settings 3.4 SERVOPACK Parameter Settings The SERVOPACK parameters must be set as described in this section when using a SERVOPACK in combination with an SVA-01 Module. 3.4.1 SGDA SERVOPACK Parameter Settings Set the parameters as shown below. Parameter Default Name...
  • Page 55: Sgdb Servopack Parameter Settings

    3.4 SERVOPACK Parameter Settings 3.4.2 SGDB SERVOPACK Parameter Settings 3.4.2 SGDB SERVOPACK Parameter Settings Set the parameters as shown below. Parameter Default Name Setting Contents Remarks Value Value Servo ON input (/S-ON) enable/ Enables the Servo ON input (/S- Used by SVA-01 Cn-01, bit 0 disable ON).
  • Page 56: Sgdm, Sgdh, Sgds, Sgdv, And Sgd7S Servopack Parameter Settings

    3.4 SERVOPACK Parameter Settings 3.4.3 SGDM, SGDH, SGDS, SGDV, and SGD7S SERVOPACK Parameter Settings 3.4.3 SGDM, SGDH, SGDS, SGDV, and SGD7S SERVOPACK Parameter Settings Set the parameters as shown below. Parameter Default Name Setting Contents Remarks Value Value Torque control (analog reference) ↔ Control method selection Pn000.1 Speed control (analog reference)
  • Page 57: Servopack Reference Offset Adjustment

    3.5 SERVOPACK Reference Offset Adjustment 3.5.1 Automatic Adjustment of the Analog Reference Offset 3.5 SERVOPACK Reference Offset Adjustment When the SVA-01 Module connected SERVOPACK is used for speed control mode, the servomotor may rotate slowly even if 0 V is specified as the analog reference. This happens if the SVA-01 Module has a slight offset in the reference voltage.
  • Page 58: Manual Servo Tuning Of The Speed Reference Offset

    3.5 SERVOPACK Reference Offset Adjustment 3.5.2 Manual Servo Tuning of the Speed Reference Offset Press the DATA/ Key for a minimum of one second. "rEF_o" will be displayed. Press the MODE/SET Key. The analog reference offset will be automatically adjusted and the display will change as shown below. Blinks one second Press the DATA/...
  • Page 59 3.5 SERVOPACK Reference Offset Adjustment 3.5.2 Manual Servo Tuning of the Speed Reference Offset Press the DATA/ Key for a minimum of one second. "= SPd" will be displayed. The manual servo tuning mode for the speed reference offset will be entered. Press the DATA/ Key for less than one second to display the speed reference offset amount.
  • Page 60: Operation Modes

    Operation Modes This chapter describes three operation modes available with the SVA-01 Module. 4.1 SVA-01 Module Operation Mode Selection - - - - - - - - - - - - - - - - - - - - - - -4-2 4.2 Normal Operation Mode - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -4-3 4.2.1 Motion Parameters That Can be Used in Normal Operation Mode - - - - - - - - - - - - - - - 4-3 4.2.2 DI/DO Signals in Normal Operation Mode - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-3...
  • Page 61: Module Operation Mode Selection

    4.1 SVA-01 Module Operation Mode Selection 4.1 SVA-01 Module Operation Mode Selection With the SVA-01, one of the following three operation modes can be selected. • Normal Operation Mode • Simulation Mode • General I/O Mode Select an operation mode by setting the fixed parameter No. 0 (Selection of Operation Modes) in the Fixed Parameter Tab Page of SVA Definition Window.
  • Page 62: Normal Operation Mode

    4.2 Normal Operation Mode 4.2.1 Motion Parameters That Can be Used in Normal Operation Mode 4.2 Normal Operation Mode Set the fixed parameter No. 0 (Selection of Operation Modes) to 0 to select the normal operation mode. In normal operation mode, the SVA-01 Module is used as an ordinary motion module. 4.2.1 Motion Parameters That Can be Used in Normal Operation Mode Refer to 5.3 Motion Parameter Lists on page 5-5 for the motion parameters that can be used in normal operation mode.
  • Page 63: Simulation Mode

    4.3 Simulation Mode 4.3.1 Motion Parameters That Can be Used in Simulation Mode 4.3 Simulation Mode Set the fixed parameter No. 0 (Selection of Operation Modes) to 2 to select the simulation mode. In simulation mode, the normal operation can be simulated. A simulation of operation processes using the feedback position and speed of the actual operation is carried out and the result will be written in the monitoring parameters.
  • Page 64: Output Signals In Simulation Mode

    4.3 Simulation Mode 4.3.5 Output Signals in Simulation Mode ( 2 ) AI Inputs All AI inputs are treated as 0 (zero). Therefore, 0 (zero) will be always stored in the following monitoring parameters. Register No. Name Range Unit IW59 −32768 to 32767 General-purpose AI monitor 1 1 = 0.001 V...
  • Page 65: General-Purpose I/O Mode

    4.4 General-purpose I/O Mode 4.4.1 Motion Parameters That Can be Used in General-purpose I/O Mode 4.4 General-purpose I/O Mode Set the fixed parameter No. 0 (Selection of Operation Modes) to 4 to select the general-purpose I/O mode. In general-purpose I/O mode, the following functions are enabled. •...
  • Page 66 4.4 General-purpose I/O Mode 4.4.1 Motion Parameters That Can be Used in General-purpose I/O Mode  Monitoring Parameters Register Name Description Run Status IW00 Bit 0: Motion Controller Operation Ready Parameter Number Setting parameters: 0 and onward When Range Over is IW01 Fixed parameters: 1000 and onward Generated...
  • Page 67: Correspondence Between Motion Parameter And Connector Pin Number

    4.4 General-purpose I/O Mode 4.4.2 Correspondence Between Motion Parameter and Connector Pin Number 4.4.2 Correspondence Between Motion Parameter and Connector Pin Number Each motion parameter for general-purpose DO/DI and AO/AI corresponds to the connector pin number as shown below.  General-purpose DO Outputs (6 Points/Axis) Setting Parameter CN1/CN2...
  • Page 68: General-Purpose I/O Signal Connection Example

    4.4 General-purpose I/O Mode 4.4.3 General-purpose I/O Signal Connection Example 4.4.3 General-purpose I/O Signal Connection Example The following diagram illustrates an example of general-purpose I/O signal connection.  The CH2 pin assignment is the same as of CH1.  The connector CN3 for external 24-V power supply is commonly used. CN3-2 (Orange connector) 24-VDC...
  • Page 69: Pulse Input Modes

    4.4 General-purpose I/O Mode 4.4.4 Pulse Input Modes 4.4.4 Pulse Input Modes The following three pulse input modes are supported in general-purpose I/O mode of the SVA-01 Module. • Sign mode • Up/Down mode • Pulse A/B mode Each pulse input mode is explained below. ( 1 ) Sign Mode In sign mode, the counter counts pulses in the following manner.
  • Page 70 4.4 General-purpose I/O Mode 4.4.4 Pulse Input Modes ( 3 ) Pulse A/B Mode In pulse A/B mode, the counter counts pulses in the following manner. Polarity: Positive logic The counter counts up when the phase of pulse A input is delayed from pulse B. The counter counts down when the phase of pulse A input is advanced to pulse B.
  • Page 71: Pulse Counter Connection Example

    4.4 General-purpose I/O Mode 4.4.5 Pulse Counter Connection Example 4.4.5 Pulse Counter Connection Example The following diagram illustrates an example of pulse counter connection. Pulse generator SVA-01 5-V linedriver output CN1/CN2 Ω Pulse A P AL Pulse B Ω P BL Ω...
  • Page 72: Motion Parameters

    5.3.3 Monitoring Parameter List - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-13 5.4 MP2000 Series Machine Controller Parameter Details - - - - - - - - - - - - - - 5-17 5.4.1 Motion Fixed Parameter Details - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-17...
  • Page 73: Motion Parameters Register Numbers

    5.1 Motion Parameters Register Numbers 5.1.1 Motion Parameter Register Numbers for MP2000 Series Machine Controllers 5.1 Motion Parameters Register Numbers 5.1.1 Motion Parameter Register Numbers for MP2000 Series Machine Controllers The leading motion parameter register numbers (I or O register numbers) are determined by the module number and axis number.
  • Page 74: Motion Parameters Setting Window

    5.2 Motion Parameters Setting Window 5.2.1 How to Open the Motion Parameter Setting Windows 5.2 Motion Parameters Setting Window Set or monitor the motion parameters in the Fixed Parameters, Setup Parameters, and Monitor tabs of the SVA Defini- tion Window. Fig.
  • Page 75: Selecting A Motor Type

    5.2 Motion Parameters Setting Window 5.2.2 Selecting a Motor Type 5.2.2 Selecting a Motor Type The motor type, rotary or linear, can be selected from the Servo Type pull-down list in the SVA Definition Window. Some of the fixed parameters will differ and some of the setting parameters will be disabled depending on the selected motor type.
  • Page 76: Motion Parameter Lists

    5.3 Motion Parameter Lists 5.3.1 Fixed Parameter List 5.3 Motion Parameter Lists 5.3.1 Fixed Parameter List The following table provides a list of SVA motion fixed parameters.  The commands marked with in the Normal Operation Mode, Simulation Mode, and General-purpose I/O Mode columns can be used in the corresponding operation mode.
  • Page 77 5.3 Motion Parameter Lists 5.3.1 Fixed Parameter List Refer- Name Description ence Page 0: pulse 1: mm 2: deg Reference Unit Selection 3: inch   For linear type, either 0 (pulse) or 1 (mm) can be selected. If 2 (deg) or 3 (inch) is selected, the selected unit will be con- verted to mm.
  • Page 78 5.3 Motion Parameter Lists 5.3.1 Fixed Parameter List Refer- Name Description ence Page Reserved for system use 0: Σ-I series Servo Driver Type Selection 1: Σ-II, Σ-III, Σ-V, or Σ-7 series  2: Reserved for system use 0: Incremental encoder 1: Absolute encoder P.5-23 Encoder Selection...
  • Page 79: Setting Parameter List

    The following table provides a list of SVA motion setting parameters.  The register number “OW00” indicates the leading output register number + 00. Refer to 5.1.1 Motion Parameter Register Numbers for MP2000 Series Machine Controllers on page 5-2 for information on how to obtain the leading output register number.
  • Page 80 5.3 Motion Parameter Lists 5.3.2 Setting Parameter List Refer- Register Name Description ence Page Bits 0 to 3: Latch Detection Signal Selection 0: DI_5 (DEC/EXT)   1: DI_2 (ZERO/HOME LS) 2: Phase-C pulse input signal OW04 Function Setting 2 Bits 4 to 7: External Positioning Signal Setting P.5-28 0: DI_5 (DEC/EXT)
  • Page 81 5.3 Motion Parameter Lists 5.3.2 Setting Parameter List Refer- Register Name Description ence Page Torque/Thrust OL0C Unit depends on OW03, bits C to F (Torque Unit Selection).   Reference Setting Speed Limit Setting at the OW0E 1 = 0.01% (percentage of rated speed) ...
  • Page 82 5.3 Motion Parameter Lists 5.3.2 Setting Parameter List Refer- Register Name Description ence Page Speed Feedforward OW30 1 = 0.01% (percentage of distribution segment)   Amends Speed Compensa- OW31 1 = 0.01% (percentage of rated speed)   tion P.5-36 Position Integra- OW32...
  • Page 83 5.3 Motion Parameter Lists 5.3.2 Setting Parameter List Refer- Register Name Description ence Page Zero Point Position in Machine Coordi- OL48 1 = 1 reference unit    nate System Offset P.5-40 Work Coordinate OL4A 1 = 1 reference unit ...
  • Page 84: Monitoring Parameter List

    The following table provides a list of SVA motion monitoring parameters.  The register number “IW00” indicates the leading input register number + 00. Refer to 5.1.1 Motion Parameter Register Numbers for MP2000 Series Machine Controllers on page 5-2 for information on how to obtain the leading input register number.
  • Page 85 5.3 Motion Parameter Lists 5.3.3 Monitoring Parameter List Refer- Register Name Description ence Page Bit 0: Command Execution Flag (BUSY)   Bit 1: Command Hold Completed (HOLD)   Bit 2: Reserved for system use Motion Command Sta- Bit 3: Command Error Completed Status IW09 ...
  • Page 86 5.3 Motion Parameter Lists 5.3.3 Monitoring Parameter List Refer- Register Name Description ence Page Target Position in Machine Coordinate IL0E   1 = 1 reference unit System (TPOS) Calculated Position in Machine Coordinate IL10 1 = 1 reference unit ...
  • Page 87 5.3 Motion Parameter Lists 5.3.3 Monitoring Parameter List Refer- Register Name Description ence Page Fixed Parameter Stores the result of execution of the motion subcommand IL56   P.5-51 Monitor FIXPRM_RD. Bit 0: General-purpose DI_0   Bit 1: General-purpose DI_1 ...
  • Page 88: Mp2000 Series Machine Controller Parameter Details

    5.4 MP2000 Series Machine Controller Parameter Details 5.4.1 Motion Fixed Parameter Details 5.4 MP2000 Series Machine Controller Parameter Details This section provides details for each motion parameter (fixed parameters, setting parameters, and monitoring parame- ters). 5.4.1 Motion Fixed Parameter Details The following tables provide details of motion fixed parameters.
  • Page 89 5.4 MP2000 Series Machine Controller Parameter Details 5.4.1 Motion Fixed Parameter Details ( 2 ) Function Selection 1 No. 1 Setting Range Setting Unit Default Value − − Function Selection Flag 1 0000H Axis Selection Set whether or not there is a limit on controlled axis travel.
  • Page 90 5.4 MP2000 Series Machine Controller Parameter Details 5.4.1 Motion Fixed Parameter Details No. 1 Setting Range Setting Unit Default Value Function Selection Flag 1 (cont’d) − − 0000H Simple ABS Rotary Pos. Mode Set whether or not the infinite length position control function is used, on the condition that the number of turns that the encoder can count is a multiple of the number of turns corresponding to the reference unit reset fre- quency.
  • Page 91 5.4 MP2000 Series Machine Controller Parameter Details 5.4.1 Motion Fixed Parameter Details No. 5 Setting Range Setting Unit Default Value Number of Digits Below Decimal Point − 0 to 5 Set the number of digits below the decimal point in the reference unit.
  • Page 92 5.4 MP2000 Series Machine Controller Parameter Details 5.4.1 Motion Fixed Parameter Details ( 6 ) Software Limits Setting Range Setting Unit Default Value No. 12 Positive Software Limit Value user units −2 −1 −1 to 2 Set the position to be detected for the software limit in the positive direction at the Machine Controller.
  • Page 93 5.4 MP2000 Series Machine Controller Parameter Details 5.4.1 Motion Fixed Parameter Details ( 8 ) Hardware Signal Setting No. 20 Setting Unit Default Value Range Hardware Signal Selection 1 − − 0000H A/B Pulse Input Signal Polarity Selection 0: Positive logic (default)
  • Page 94 5.4 MP2000 Series Machine Controller Parameter Details 5.4.1 Motion Fixed Parameter Details No. 24 Setting Range Setting Unit Default Value D/A Output Voltage at 100% Torque Limit 1 to 10000 0.001 V 3000 Set the D/A output voltage at 100% torque limit reference (and torque limit at speed reference).
  • Page 95 5.4 MP2000 Series Machine Controller Parameter Details 5.4.1 Motion Fixed Parameter Details ( 13 ) Encoder Settings Setting Range Setting Unit Default Value No. 34 (Rotary Motor) −1 Rated Motor Speed 1 to 32000 3000 −1 Set the rated motor speed in 1 min units.
  • Page 96: Motion Setting Parameter Details

    5.4 MP2000 Series Machine Controller Parameter Details 5.4.2 Motion Setting Parameter Details 5.4.2 Motion Setting Parameter Details The following tables provide details of motion setting parameters.  Refer to 5.3.2 Setting Parameter List on page 5-8 for a list of the motion setting parameters.
  • Page 97 5.4 MP2000 Series Machine Controller Parameter Details 5.4.2 Motion Setting Parameter Details Setting Range Setting Unit Default Value OW00 Phase Position − − RUN Command Setting (cont’d) 0000H Speed Torque Latch Detection Demand 0: OFF (default) 1: ON When this bit is set to 1 (Latch Request ON), the position at the moment the latch signal turns ON will be reported to the monitoring parameter IL18 "Machine Coordinate System Latch Position."...
  • Page 98 5.4 MP2000 Series Machine Controller Parameter Details 5.4.2 Motion Setting Parameter Details ( 2 ) Mode 1 Setting Range Setting Unit Default Value OW01 Phase Position Mode Setting 1 − − 0000H Speed Torque Excessive Deviation Error Level Setting Set whether excessively following errors are treated as warnings or as alarms.
  • Page 99 5.4 MP2000 Series Machine Controller Parameter Details 5.4.2 Motion Setting Parameter Details ( 4 ) Function 2 Setting Range Setting Unit Default Value OW04 Position Phase Function Setting 2 − − 0000H Speed Torque Latch Detection Signal Selection Set the latch signal type.
  • Page 100 5.4 MP2000 Series Machine Controller Parameter Details 5.4.2 Motion Setting Parameter Details ( 6 ) Motion Commands Setting Range Setting Unit Default Value OW08 Phase Position Motion Command − 0 to 25 Speed Torque Set motion command. 0: NOP No Command...
  • Page 101 5.4 MP2000 Series Machine Controller Parameter Details 5.4.2 Motion Setting Parameter Details Setting Range Setting Unit Default Value OW09 Phase Position − − Motion Command Control Flag (cont’d) 0000H Speed Torque Phase Compensation Type (Valid with SVA-01 version 1.01 or later) Select a setting method for Phase Correct Setting (OL28).
  • Page 102 5.4 MP2000 Series Machine Controller Parameter Details 5.4.2 Motion Setting Parameter Details ( 9 ) Torque Reference Setting Range Setting Unit Default Value Depends on the torque unit set OL0C Position Phase in Function Setting 1 (setting Torque/Thrust Reference Setting −2...
  • Page 103 5.4 MP2000 Series Machine Controller Parameter Details 5.4.2 Motion Setting Parameter Details ( 10 ) Speed Reference Setting Range Setting Unit Default Value Depends on the speed OL10 Position Phase unit set in Function Speed Reference Setting 3000 −2 −1...
  • Page 104 5.4 MP2000 Series Machine Controller Parameter Details 5.4.2 Motion Setting Parameter Details ( 13 ) Speed Override Setting Range Setting Unit Default Value OW18 Phase Position Override 0 to 32767 0.01% 10000 Speed Torque Set the percentage of the Speed Reference Setting (OL10) to output in units of 0.01%.
  • Page 105 5.4 MP2000 Series Machine Controller Parameter Details 5.4.2 Motion Setting Parameter Details ( 16 ) Positioning Completed Width Setting Range Setting Unit Default Value OL1E Position Phase Width of Positioning Completed 0 to 65535 Reference unit Speed Torque The Positioning Completed signal (IW0C, bit 1) turns ON when the absolute value of the difference between the reference position and the feedback position is less than the value set here after completion of position refer- ence distribution during position control.
  • Page 106 5.4 MP2000 Series Machine Controller Parameter Details 5.4.2 Motion Setting Parameter Details ( 18 ) Deviation Abnormal Detection Value Setting Range Setting Unit Default Value OL22 Position Phase Error Count Alarm Detection Reference unit 0 to 2 −1 −1 Speed Torque Set the value to detect an excessively following error during position control.
  • Page 107 5.4 MP2000 Series Machine Controller Parameter Details 5.4.2 Motion Setting Parameter Details ( 22 ) Latch Setting Range Setting Unit Default Value OL2A Position Phase Latch Zone Lower Limit Setting Reference unit −2 −1 −2 to 2 Speed Torque Set the range in which the latch signal is valid (position from the zero position) for external positioning.
  • Page 108 5.4 MP2000 Series Machine Controller Parameter Details 5.4.2 Motion Setting Parameter Details ( 24 ) Acceleration/Deceleration Settings Setting Range Setting Unit Default Value OL36 Depends on the acceleration/ Position Phase Straight Line Acceleration/Acceleration deceleration unit set in Function −1 0 to 2...
  • Page 109 5.4 MP2000 Series Machine Controller Parameter Details 5.4.2 Motion Setting Parameter Details ( 25 ) Filter Setting Range Setting Unit Default Value OW3A Position Phase Filter Time Constant 0 to 65535 0.1 ms Speed Torque Set the acceleration/deceleration filter time constant.
  • Page 110 5.4 MP2000 Series Machine Controller Parameter Details 5.4.2 Motion Setting Parameter Details ( 26 ) Zero Point Return Setting Range Setting Unit Default Value OW3C Position Phase Zero Point Return Method − 0 to 19 Speed Torque Set the operation method when the Zero Point Return (ZRET) motion command is executed.
  • Page 111 5.4 MP2000 Series Machine Controller Parameter Details 5.4.2 Motion Setting Parameter Details ( 27 ) Step Distance Setting Range Setting Unit Default Value OL44 Position Phase STEP Travel Distance Reference unit 1000 −1 0 to 2 Speed Torque Set the moving amount for STEP commands.
  • Page 112 5.4 MP2000 Series Machine Controller Parameter Details 5.4.2 Motion Setting Parameter Details ( 30 ) Supplemental Setting Setting Range Setting Unit Default Value OW5C Phase Position Fixed Parameter Number − 0 to 65535 Speed Torque Set the fixed parameter number to be read out by executing the motion subcommand FIXPRM_RD.
  • Page 113 5.4 MP2000 Series Machine Controller Parameter Details 5.4.2 Motion Setting Parameter Details ( 32 ) Absolute Infinite Length Axis Position Control Information OL5E Setting Range Setting Unit Default Value Position Phase Encoder Position when Power is OFF pulse −2 to 2 −1...
  • Page 114: Motion Monitoring Parameter Details

     Register number IW00 indicates the leading input register number + 00. Other register numbers listed below indicate input register numbers in the same way.  Refer to 5.1.1 Motion Parameter Register Numbers for MP2000 Series Machine Controllers on page 5-2 for informa- tion on how to find the leading input register number.
  • Page 115 5.4 MP2000 Series Machine Controller Parameter Details 5.4.3 Motion Monitoring Parameter Details ( 3 ) Warning IL02 Range Unit − − Warning Excessive Deviation 0: In normal deviation range 1: Abnormal deviation detected Bit 0 This bit turns ON if the following error exceeds the value set for the Error Count Alarm Detection (setting parameter OL22) when Excessive Deviation is set to be treated as an warning by setting the Excessive...
  • Page 116 5.4 MP2000 Series Machine Controller Parameter Details 5.4.3 Motion Monitoring Parameter Details ( 4 ) Alarm IL04 Range Unit − − Alarm Servo Driver Error 0: No Servo Driver alarm 1: Servo Driver alarm occurred Bit 0 This bit turns ON when there is a alarm in the SERVOPACK. Connect a digital operator to the SERVOPACK to check the content of the alarm.
  • Page 117 5.4 MP2000 Series Machine Controller Parameter Details 5.4.3 Motion Monitoring Parameter Details IL04 Range Unit Alarm (cont’d) − − Zero Point Unsetting 0: Zero point set Bit D 1: Zero point not set error This bit turns ON if a move command (except for JOG or STEP) is performed when an infinite length axis is set and the zero point has not been set.
  • Page 118 5.4 MP2000 Series Machine Controller Parameter Details 5.4.3 Motion Monitoring Parameter Details ( 7 ) Motion Subcommand Response Code IW0A Range Unit − Motion Subcommand Response Code 0 to 65535 Stores the motion subcommand code for the command that is being executed.
  • Page 119 5.4 MP2000 Series Machine Controller Parameter Details 5.4.3 Motion Monitoring Parameter Details IW0C Range Unit Position Management Status (cont’d) − − Zero Point Return (Setting) Completed (ZRNC) 0: Zero point return (setting) not completed. 1: Zero point return (setting) completed.
  • Page 120 5.4 MP2000 Series Machine Controller Parameter Details 5.4.3 Motion Monitoring Parameter Details Range Unit IL12 Machine Coordinate System Reference Position (MPOS) Reference unit −2 to 2 −1 Stores the reference position in the machine coordinate system managed by the Motion Module.
  • Page 121 5.4 MP2000 Series Machine Controller Parameter Details 5.4.3 Motion Monitoring Parameter Details ( 11 ) Speed Information Range Unit IL20 Depends on the speed unit set in Function Setting 1 Speed Reference Output Monitor −2 −1 to 2  (setting parameter OW 03, bits 0 to 3) Stores the speed reference that is being output.
  • Page 122 5.4 MP2000 Series Machine Controller Parameter Details 5.4.3 Motion Monitoring Parameter Details ( 14 ) Supplemental Information 1 Range Unit IL56 Fixed Parameter Monitor − −2 −1 to 2 Stores the data of the specified fixed parameter number. Description This parameter stores the data of the fixed parameter when the Read Fixed Parameter (FIXPRM-RD) is selected in the Motion Subcommand (setting parameter OW0A).
  • Page 123 5.4 MP2000 Series Machine Controller Parameter Details 5.4.3 Motion Monitoring Parameter Details <DI Block Diagram in Normal Operation Mode> I/O Inputs CN1/CN2 04, bit 0: Servo driver error /ALM 58, bit 0: General-purpose DI_0 00, bit 3: Servo Ready /S-RDY...
  • Page 124: Motion Parameter Setting Examples

    Motion Parameter Setting Examples This chapter gives setting examples of the motion parameters for each machine. 6.1 Example Setting of Motion Parameters for the Machine - - - - - - - - - - - - - -6-2 6.1.1 Reference Unit - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-2 6.1.2 Electronic Gear - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-2 6.1.3 Axis Type Selection - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-4 6.1.4 Position Reference - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-5...
  • Page 125: Example Setting Of Motion Parameters For The Machine

    6.1 Example Setting of Motion Parameters for the Machine 6.1.1 Reference Unit 6.1 Example Setting of Motion Parameters for the Machine Set the following eight motion parameters to enable motion control that suits the machine’s specifications. • Reference unit • Electronic gear •...
  • Page 126 6.1 Example Setting of Motion Parameters for the Machine 6.1.2 Electronic Gear ( 1 ) Parameter Setting Example Using Ball Screw • Machine specifications: Ball screw axis rotates 5 times for each 7 rotations of the motor axis (Refer to the follow- ing figure.) •...
  • Page 127: Axis Type Selection

    6.1 Example Setting of Motion Parameters for the Machine 6.1.3 Axis Type Selection 6.1.3 Axis Type Selection There are two types of position control: finite length position control for return and other operations that are per- formed only within a specified range, and infinite length position control, which is used for moving in one direction only.
  • Page 128: Position Reference

    6.1 Example Setting of Motion Parameters for the Machine 6.1.4 Position Reference 6.1.4 Position Reference The target position value for position control is set for the Position Reference Setting (motion setting parameter OL1C). There are two methods that can be set for using the Position Reference Setting: directly setting the coordi- nate of the target position value as an absolute value or adding the moving amount from the previous command posi- tion as a incremental value.
  • Page 129 6.1 Example Setting of Motion Parameters for the Machine 6.1.4 Position Reference ( 1 ) Setting the Target Position When Using an Infinite Length Axis: Method 1 Executing a POSING command while no command (NOP) is being executed • When the incremental addition mode is selected for the Position Reference Setting (OW09, bit 5 = 0), execute a POSING command in distribution completed status (IW0C, bit 0 = 1).
  • Page 130 6.1 Example Setting of Motion Parameters for the Machine 6.1.4 Position Reference ( 2 ) Setting the Target Position When Using an Infinite Length Axis: Method 2 Changing the target position while a POSING command is being executed by specifying another target position on the base of the original target position •...
  • Page 131 6.1 Example Setting of Motion Parameters for the Machine 6.1.4 Position Reference ( 3 ) Setting the Target Position When Using an Infinite Length Axis: Method 3 Changing the target position while a POSING command is being executed by specifying another target position on the base of the current position •...
  • Page 132: Speed Reference

    6.1 Example Setting of Motion Parameters for the Machine 6.1.5 Speed Reference 6.1.5 Speed Reference There are two methods of setting the speed reference for the feed speed or other speeds. One method involves using reference units and the other method involves setting the percentage (%) of the rated speed. The settings method depends on the related parameter settings.
  • Page 133 6.1 Example Setting of Motion Parameters for the Machine 6.1.5 Speed Reference ( 2 ) Speed Reference (OL10) Setting Examples • Fixed parameter No. 5: Number of digits below decimal point = 3 • Fixed parameter No. 34: Rated motor speed = 3000 R/min •...
  • Page 134: Acceleration/Deceleration Settings

    6.1 Example Setting of Motion Parameters for the Machine 6.1.6 Acceleration/Deceleration Settings 6.1.6 Acceleration/Deceleration Settings The acceleration/deceleration can be set to either the rate of acceleration/deceleration or the time required to reach the rated speed from 0. The settings method depends on the related parameter settings. ( 1 ) Related Parameters The parameters related to acceleration/deceleration settings are listed in the following table.
  • Page 135: Acceleration/Deceleration Settings

    6.1 Example Setting of Motion Parameters for the Machine 6.1.6 Acceleration/Deceleration Settings ( 2 ) Acceleration/Deceleration Units and Speed Changes Over Time The Straight Line Acceleration /Acceleration Time Constant (OL36) and Straight Line Deceleration /Deceleration Time Constant (OL38) settings change depending on the Acceleration/Deceleration Degree Unit Selection (OW03, bits 4 to 7) setting as shown in the following figure.
  • Page 136: Acceleration/Deceleration Filter Settings

    6.1 Example Setting of Motion Parameters for the Machine 6.1.7 Acceleration/Deceleration Filter Settings 6.1.7 Acceleration/Deceleration Filter Settings There are two types of acceleration/deceleration filter: The exponential acceleration/deceleration filter and the moving average filter. These filter settings can be used to set non-linear acceleration/deceleration curves. The table below shows the applicable filter for each motion command.
  • Page 137 6.1 Example Setting of Motion Parameters for the Machine 6.1.7 Acceleration/Deceleration Filter Settings The following figure shows the relationship between acceleration/deceleration patterns and each parameter. Filter Type 03, bits 8 to B = 0 03, bits 8 to B = 1 03, bits 8 to B = 2 (No filter) (Moving average filter)
  • Page 138: Linear Scale Pitch And Rated Motor Speed

    6.1 Example Setting of Motion Parameters for the Machine 6.1.8 Linear Scale Pitch and Rated Motor Speed 6.1.8 Linear Scale Pitch and Rated Motor Speed When using a linear motor, set the number of digits below decimal point (fixed parameter No. 5), the linear scale pitch (fixed parameter No.
  • Page 139 6.1 Example Setting of Motion Parameters for the Machine 6.1.8 Linear Scale Pitch and Rated Motor Speed ( 2 ) Setting Example 2 The following tables give setting examples for these linear motor, linear scale, and SERVOPACK specifications.  Linear Motor Specifications •...
  • Page 140 Motion Commands This chapter describes each motion command parameters and the parameter setting examples. 7.1 Motion Commands - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -7-2 7.1.1 Motion Command Table - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-2 7.2 Motion Command Details - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -7-3 7.2.1 Positioning (POSING) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-3...
  • Page 141: Motion Command Table

    7.1.1 Motion Command Table 7.1 Motion Commands 7.1.1 Motion Command Table The SVA-01 Module supports the following motion commands provided for the MP2000 series Machine Controllers. Refer to Reference Page in the Table for details on each motion command. Command...
  • Page 142: Motion Command Details

    7.2 Motion Command Details 7.2.1 Positioning (POSING) 7.2 Motion Command Details The following describes the procedure for executing motion commands. 7.2.1 Positioning (POSING) The POSING command positions the axis to the target position using the specified target position and speed. Parame- ters related to acceleration and deceleration are set in advance.
  • Page 143 7.2 Motion Command Details 7.2.1 Positioning (POSING) Set OW 08 to 0 to execute the NOP motion command to complete the positioning operation.  Speed POSING Operation Pattern Rated Speed 100 (%) Speed Reference Setting Position Reference Setting Time Acceleration Time Constant Deceleration Time Constant NEAR Position 0C, bit 3)
  • Page 144 7.2 Motion Command Details 7.2.1 Positioning (POSING) ( 4 ) Related Parameters [ a ] Setting Parameters Parameter Name Setting Turn the power to the Servomotor ON and OFF. OW00 Servo ON 1: Power ON to Servomotor, 0: Power OFF to Servomotor Bit 0 Set this bit to 1 before setting the Motion Command (OW08) to 1.
  • Page 145 7.2 Motion Command Details 7.2.1 Positioning (POSING) [ b ] Monitoring Parameters Parameter Name Monitor Contents IW00 Running Indicates the Servo ON status. Bit 1 (At Servo ON) ON: Power supplied to Servomotor, OFF: Power not supplied to Servomotor IL02 Warning Stores the most current warning.
  • Page 146 7.2 Motion Command Details 7.2.1 Positioning (POSING) [ b ] Execution when Aborted 08 = 1 (POSING) 09, bit 1 (ABORT) 08 = 1 (POSING) 09, bit 0 (BUSY) 09, bit 3 (FAIL) 09, bit 8 (COMPLETE) 0C, bit 0 (DEN) 0C, bit 1 (POSCOMP) 1 scan Undefined length of time...
  • Page 147 7.2 Motion Command Details 7.2.1 Positioning (POSING) [ e ] Execution when an Alarm Occurs 08 = 1 (POSING) 08 = 1 (POSING) 09, bit 0 (BUSY) 09, bit 3 (FAIL) 09, bit 8 (COMPLETE) 0C, bit 0 (DEN) 0C, bit 1 (POSCOMP) 1 scan Undefined length of time Alarm...
  • Page 148: External Positioning (Ex_Posing)

    7.2 Motion Command Details 7.2.2 External Positioning (EX_POSING) 7.2.2 External Positioning (EX_POSING) The EX_POSING command positions the axis to the target position using the specified target position and speed. Parameters related to acceleration and deceleration are set in advance. If the external positioning signal turns ON during axis movement, the axis will move the distance specified for the External Positioning Move Distance from the point at which the external positioning signal turned ON, and then stop.
  • Page 149 7.2 Motion Command Details 7.2.2 External Positioning (EX_POSING) When the sign of the External Positioning Final Travel Distance is opposite to the direction of positioning to the target position, the axis will be decelerated to a stop and then starts moving in the reverse direction as illustrated below.
  • Page 150 7.2 Motion Command Details 7.2.2 External Positioning (EX_POSING) ( 4 ) Related Parameters [ a ] Setting Parameters Parameter Name Setting Turn the power to the Servomotor ON and OFF. OW00 Servo ON 1: Power ON to Servomotor, 0: Power OFF to Servomotor Bit 0 Set this bit to 1 before setting the Motion Command (OW08) to 2.
  • Page 151 7.2 Motion Command Details 7.2.2 External Positioning (EX_POSING) [ b ] Monitoring Parameters Parameter Name Monitor Contents IW00 Running Indicates the Servo ON status. Bit 1 (At Servo ON) ON: Power supplied to Servomotor, OFF: Power not supplied to Servomotor IL02 Warning Stores the most current warning.
  • Page 152 7.2 Motion Command Details 7.2.2 External Positioning (EX_POSING) ( 5 ) Timing Charts [ a ] Normal Execution This position is stored. (IL Travel distance 08 = 2 (EX_POSING) 08 = 2 (EX_POSING) 09, bit 0 (BUSY) 09, bit 3 (FAIL) 09, bit 8 (COMPLETE) 0C, bit 0 (DEN) 0C, bit 1 (POSCOMP)
  • Page 153 7.2 Motion Command Details 7.2.2 External Positioning (EX_POSING) [ d ] Execution when an Alarm Occurs 08 = 2 (EX_POSING) 08 = 2 (EX_POSING) 09, bit 0 (BUSY) 09, bit 3 (FAIL) 09, bit 8 (COMPLETE) 0C, bit 0 (DEN) 0C, bit 1 (POSCOMP) 1 scan Undefined length of time...
  • Page 154: Zero Point Return (Zret)

    ON again to establish a new coordinate system. The following table lists the 17 zero point return methods that are supported by the MP2000 Series Machine Controller. Select the best method for the machine according to the setting parameters. Refer to the page in the Table for additional command information.
  • Page 155 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET) Setting Reference Parameter Name Method Signal Meaning Page OW3C Uses the negative overtravel signal and N-OT & C pulse N-OT: DI_4 7-51 phase-C pulse. N-OT: DI_4 N-OT Only Uses only the negative overtravel signal. This method must not be used if repeat 7-52 accuracy is required.
  • Page 156 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET) ( 3 ) Executing/Operating Procedure Check to see if all the following conditions are satisfied. Execution Conditions Confirmation Method There are no alarms. IL04 is 0. The Servo ON condition. IW00, bit 1 is ON. IW08 is 0 and IW09, bit 0 is OFF.
  • Page 157 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET) ( 6 ) Related Parameters [ a ] Setting Parameters Parameter Name Setting Turns the power to the Servomotor ON and OFF. OW00 Servo ON 1: Power ON to Servomotor, 0: Power OFF to Servomotor Bit 0 Set this bit to 1 before setting the Motion Command (OW08) to 3.
  • Page 158 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET) ( 7 ) Timing Charts [ a ] Normal Execution Depends on zero point return method. 08 = 3 (ZRET) 08 = 3 (ZRET) 09, bit 0 (BUSY) 09, bit 3 (FAIL) 09, bit 8 (COMPLETE) 0C, bit 0 (DEN) 0C, bit 1 (POSCOMP)
  • Page 159 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET) [ d ] Execution when an Alarm Occurs 08 = 3 (ZRET) 08 = 3 (ZRET) 09, bit 0 (BUSY) 09, bit 3 (FAIL) 09, bit 8 (COMPLETE) 0C, bit 0 (DEN) 0C, bit 1 (POSCOMP) 1 scan Undefined length of time...
  • Page 160 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET) ( 8 ) Zero Point Return Operation and Parameters With an incremental encoder, there are 17 different methods that can be performed for the zero point return operation. This section explains the operation that occurs after starting a zero point return and the parameters that need to be set before executing the command.
  • Page 161 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET) [ b ] ZERO Signal Method (OW3C = 1)  Operation after Zero Point Return Starts Travel is started at the approach speed in the direction specified in the parameters. When the rising edge of the ZERO signal is detected, the speed is reduced to the creep speed and positioning is per- formed.
  • Page 162 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET) [ c ] DEC1 + ZERO Signal Method (OW3C = 2)  Operation after Zero Point Return Starts Travel is started at the zero point return speed in the direction specified in the parameters. When the rising edge of the DEC1 signal is detected, the speed is reduced to the approach speed.
  • Page 163 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET) [ d ] Phase-C Method (OW3C = 3)  Operation after Zero Point Return Starts Travel is started at the approach speed in the direction specified in the parameters. When the rising edge of the phase-C pulse is detected, the speed is reduced to the creep speed and positioning is per- formed.
  • Page 164 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET) [ e ] DEC2 + ZERO Signal Method (OW3C = 4) With this method, the machine's position is confirmed by the ON/OFF status of the DEC2 signal and the retracting operation is performed automatically, so the zero point return is always performed with the same conditions. ...
  • Page 165 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET)  Starting the Zero Point Return in the Low Region The axis travels in the reverse direction at the Approach Speed (setting parameter OL3E). When the rising edge of the DEC2 signal is detected, the axis decelerates to a stop. After decelerating to a stop, the axis travels in the forward direction at the Creep Rate (setting parame- ter OL40).
  • Page 166 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET)  Related Parameters Parameter Name Setting Set whether or not to inverse the polarity of DI_5 signal used as DEC2 sig- nal. Fixed Parameter Deceleration LS 0: Do not invert Inversion Selection No.
  • Page 167 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET) [ f ] DEC1 + LMT + ZERO Signal Method (OW3C = 5) With this method, the machine's position is confirmed by the ON/OFF status of the DEC1, Reverse Limit, and Forward Limit signals and the retracting operation is performed automatically, so the zero point return is always performed with the same conditions.
  • Page 168 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET)  Starting the Zero Point Return in Region B The axis travels in the reverse direction at the Approach Speed (setting parameter OL3E). When the falling edge of the Reverse Limit signal is detected, the axis decelerates to a stop. After decelerating to a stop, travel starts in the forward direction at the speed specified by the Speed Reference Setting (setting parameter OL10).
  • Page 169 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET)  Starting the Zero Point Return in Region C The axis travels in the reverse direction at the Creep Rate (setting parameter OL40). When the rising edge of the DEC1 signal is detected, the axis decelerates to a stop. After decelerating to a stop, the axis travels in the forward direction at the Creep Rate (setting parame- ter OL40).
  • Page 170 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET)  Starting the Zero Point Return in Region D The axis travels in the reverse direction at the Approach Speed (setting parameter OL3E). When the rising edge of the DEC1 signal is detected, the axis decelerates to a stop. After decelerating to a stop, the axis travels in the forward direction at the Creep Rate (setting parame- ter OL40).
  • Page 171 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET)  Starting the Zero Point Return in Region E The axis travels in the reverse direction at the Approach Speed (setting parameter OL3E). When the rising edge of the DEC1 signal is detected, the axis decelerates to a stop. After decelerating to a stop, the axis travels in the forward direction at the Creep Rate (setting parame- ter OL40).
  • Page 172 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET)  Related Parameters Parameter Name Setting Set whether or not to inverse the polarity of DI_5 signal used as DEC1 sig- nal. Fixed Parameter Deceleration LS 0: Do not invert Inversion Selection No.
  • Page 173 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET) [ g ] DEC2 + Phase-C Signal Method (OW3C = 6) With this method, the machine's position is confirmed by the ON/OFF status of the DEC2 signal and the retracting operation is performed automatically, so the zero point return is always performed with the same conditions. ...
  • Page 174 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET)  Starting the Zero Point Return in the Low Region The axis travels in the reverse direction at the Approach Speed (setting parameter OL3E). When the rising edge of the DEC2 signal is detected, the axis decelerates to a stop. After decelerating to a stop, the axis travels in the forward direction at the Creep Rate (setting parame- ter OL40).
  • Page 175 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET)  Related Parameters Parameter Name Setting Set whether or not to invert the polarity of DI_5 signal used as DEC2 signal. 0: Do not invert Deceleration LS Fixed Parameter 1: Invert Inversion Selection No.
  • Page 176 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET) [ h ] DEC1 + LMT + Phase-C Signal Method (OW3C = 7) With this method, the machine's position is confirmed by the ON/OFF status of the DEC1, Reverse Limit, and Forward Limit signals and the retracting operation is performed automatically, so the zero point return is always performed with the same conditions.
  • Page 177 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET)  Starting the Zero Point Return in Region B The axis travels in the reverse direction at the Approach Speed (setting parameter OL3E). When the falling edge of the Reverse Limit signal is detected, the axis decelerates to a stop. After decelerating to a stop, travel starts in the forward direction at the speed specified by the Speed Reference Setting (setting parameter OL10).
  • Page 178 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET)  Starting the Zero Point Return in Region C The axis travels in the reverse direction at the Creep Rate (setting parameter OL40). When the rising edge of the DEC1 signal is detected, the axis decelerates to a stop. After decelerating to a stop, the axis travels in the forward direction at the Creep Rate (setting parame- ter OL40).
  • Page 179 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET)  Starting the Zero Point Return in Region D The axis travels in the reverse direction at the Approach Speed (setting parameter OL3E). When the rising edge of the DEC1 signal is detected, the axis decelerates to a stop. After decelerating to a stop, the axis travels in the forward direction at the Creep Rate (setting parame- ter OL40).
  • Page 180 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET)  Starting the Zero Point Return in Region E The axis travels in the reverse direction at the Approach Speed (setting parameter OL3E). When the rising edge of the DEC1 signal is detected, the axis decelerates to a stop. After decelerating to a stop, the axis travels in the forward direction at the Creep Rate (setting parame- ter OL40).
  • Page 181 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET)  Related Parameters Parameter Name Setting Set whether or not to invert the polarity of DI_5 signal used as DEC1 signal. 0: Do not invert Deceleration LS Fixed Parameter 1: Invert Inversion Selection No.
  • Page 182 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET) [ i ] C Pulse Only Method (OW3C = 11)  Operation after Zero Point Return Starts Travel is started at the creep speed in the direction specified by the sign of the creep speed. When the rising edge of the phase-C pulse is detected, positioning is performed at the positioning speed.
  • Page 183 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET)  Parameters to be Set Parameter Name Setting Select the setting unit for OL10 (Speed Reference Setting) and OL40 (Creep Rate). OW03, 0: Reference unit/s Speed Unit Selection Bits 0 to 3 1: 10 reference units/min 2: Percentage of rated speed (1 = 0.01%)
  • Page 184 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET)  Parameters to be Set Parameter Name Setting Select the setting unit for OL10 (Speed Reference Setting), OL3E (Approach Speed), and OL40 (Creep Rate). OW03, 0: Reference unit/s Speed Unit Selection Bits 0 to 3 1: 10 reference units/min...
  • Page 185 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET) <Starting on the Positive Stroke Limit (P-OT)> Start Zero Point Zero Point Return Travel Distance Speed Reference Setting P-OT (DI_3) N-OT (DI_4)  The stopping method when the OT signal is detected depends on the setting of SERVOPACK parameters. ...
  • Page 186 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET) [ l ] HOME LS & Phase-C Pulse Method (OW3C = 14)  Operation after Zero Point Return Starts Travel is started at the approach speed in the direction specified by the sign of the approach speed. When the rising edge of HOME signal is detected, the speed is reduced to the creep speed.
  • Page 187 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET)  Parameters to be Set Parameter Name Setting Set whether or not to invert the polarity of DI_2 signal that is used for HOME signal. Deceleration LS Fixed Parameter 0: Do not invert Inversion Selection 1: Invert No.1, Bit 5...
  • Page 188 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET) [ m ] HOME LS Signal Method (OW3C = 15)  Operation after Zero Point Return Starts Travel is started at the creep speed in the direction specified by the sign of the creep speed. When the rising edge of the HOME signal is detected, positioning is performed at the positioning speed.
  • Page 189 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET)  Parameters to be Set Parameter Name Setting Set whether or not to invert the polarity of DI_2 signal that is used for HOME signal. Deceleration LS Fixed Parameter 0: Do not invert Inversion Selection 1: Invert No.1, Bit 5...
  • Page 190 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET) [ n ] N-OT & Phase-C Pulse Method (OW3C = 16)  Operation after Zero Point Return Starts Travel is started at the approach speed in the negative direction until the stroke limit is reached. When the N-OT signal is detected, the direction is reversed to return at the creep speed.
  • Page 191 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET) [ o ] N-OT Signal Method (OW3C = 17)  Operation after Zero Point Return Starts Travel is started at the approach speed in the negative direction until the stroke limit is reached. When the N-OT signal is detected, the direction is reversed to return at the positioning speed.
  • Page 192 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET) [ p ] INPUT & Phase-C Pulse Method (OW3C = 18)  Operation after Zero Point Return Starts Travel is started at the approach speed in the direction specified by the sign of the approach speed. When the rising edge of the INPUT signal is detected, the speed is reduced to the creep speed.
  • Page 193 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET)  Parameters to be Set Parameter Name Setting Select the setting unit for OL10 (Speed Reference Setting), OL3E (Approach Speed), and OL40 (Creep Rate). 0: Reference unit/s OW03, Speed Unit Selection Bits 0 to 3 1: 10 reference units/min...
  • Page 194 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET) [ q ] INPUT Signal Method (OW3C = 19)  Operation after Zero Point Return Starts Travel is started at the creep speed in the direction specified by the sign of the creep speed. When the rising edge of the INPUT signal is detected, the positioning is performed at the positioning speed.
  • Page 195 7.2 Motion Command Details 7.2.3 Zero Point Return (ZRET)  Parameters to be Set Parameter Name Setting Select the setting unit for OL10 (Speed Reference Setting) and OL40 (Creep Rate). 0: Reference unit/s OW03, Speed Unit Selection Bits 0 to 3 1: 10 reference units/min 2: Percentage of rated speed (1 = 0.01%)
  • Page 196: Interpolation (Interpolate)

    7.2 Motion Command Details 7.2.4 Interpolation (INTERPOLATE) 7.2.4 Interpolation (INTERPOLATE) The INTERPOLATE command positions the axis according to the target position that changes in sync with the high- speed scan. The positioning data is generated by a ladder program.  Speed feed forward compensation can be applied. ( 1 ) Executing/Operating Procedure Check to see if all the following conditions are satisfied.
  • Page 197 7.2 Motion Command Details 7.2.4 Interpolation (INTERPOLATE) ( 3 ) Related Parameters [ a ] Setting Parameters Parameter Name Setting Turns the power to the Servomotor ON and OFF. OW00 Servo ON 1: Power ON to Servomotor, 0: Power OFF to Servomotor Bit 0 Set this bit to 1 before setting the Motion Command (OW08) to 4.
  • Page 198 7.2 Motion Command Details 7.2.4 Interpolation (INTERPOLATE) ( 4 ) Timing Charts [ a ] Normal Execution The target position is refreshed every high-speed scan. 08 = 4 (INTERPOLATE) 08 = 4 (INTERPOLATE) 09, bit 0 (BUSY) 09, bit 3 (FAIL) 09, bit 8 (COMPLETE) 0C, bit 0 (DEN) 0C, bit 1 (POSCOMP)
  • Page 199: Latch (Latch)

    7.2 Motion Command Details 7.2.5 Latch (LATCH) 7.2.5 Latch (LATCH) The LATCH command saves in a register the current position when the latch signal is detected during interpolation positioning. The latch signal type is set in setting register OW04 and can be set to the EXT, ZERO, or phase-C signal. ...
  • Page 200 7.2 Motion Command Details 7.2.5 Latch (LATCH) ( 3 ) Related Parameters [ a ] Setting Parameters Parameter Name Setting Turns the power to the Servomotor ON and OFF. OW00 Servo ON 1: Power ON to Servomotor, 0: Power OFF to Servomotor Bit 0 Set this bit to 1 before setting the Motion Command (OW08) to 6.
  • Page 201 7.2 Motion Command Details 7.2.5 Latch (LATCH) Parameter Name Monitor Contents Machine Coordi- Stores the current position in the machine coordinate system when the latch signal turned IL18 nate System Latch Position ( 4 ) Timing Charts [ a ] Normal Execution The target position is refreshed every high-speed scan.
  • Page 202: Jog Operation (Feed)

    7.2 Motion Command Details 7.2.6 JOG Operation (FEED) 7.2.6 JOG Operation (FEED) The FEED command starts movement in the specified travel direction at the specified travel speed. Execute the NOP motion command to stop the operation. Parameters related to acceleration and deceleration are set in advance. ( 1 ) Executing/Operating Procedure Check to see if all the following conditions are satisfied.
  • Page 203 7.2 Motion Command Details 7.2.6 JOG Operation (FEED) ( 3 ) Aborting Axis travel can be stopped during FEED command execution by aborting execution of a command. A command is aborted by setting the Interrupt A Command bit (OW09, bit 1) to 1. •...
  • Page 204 7.2 Motion Command Details 7.2.6 JOG Operation (FEED) [ b ] Monitoring Parameters Parameter Name Monitor Contents IW00 Running Indicates the Servo ON status. Bit 1 (At Servo ON) ON: Power supplied to Servomotor, OFF: Power not supplied to Servomotor IL02 Warning Stores the most current warning.
  • Page 205 7.2 Motion Command Details 7.2.6 JOG Operation (FEED) [ b ] Execution when Aborted 08 = 7 (FEED) 09, bit 1 (ABORT) 08 = 7 (FEED) 09, bit 0 (BUSY) 09, bit 3 (FAIL) 09, bit 8 (COMPLETE) 0C, bit 0 (DEN) 1 scan [ c ] Execution when an Alarm Occurs 08 = 7 (FEED)
  • Page 206: Step Operation (Step)

    7.2 Motion Command Details 7.2.7 STEP Operation (STEP) 7.2.7 STEP Operation (STEP) The STEP command executes a positioning for the specified travel direction, moving amount, and travel speed. Parameters related to acceleration and deceleration are set in advance. ( 1 ) Executing/Operating Procedure Check to see if all the following conditions are satisfied.
  • Page 207 7.2 Motion Command Details 7.2.7 STEP Operation (STEP) ( 3 ) Aborting Axis travel can be stopped during command execution and the remaining travel canceled by aborting execution of a command. A command is aborted by setting the Interrupt A Command bit (OW09, bit 1) to 1. •...
  • Page 208 7.2 Motion Command Details 7.2.7 STEP Operation (STEP) [ b ] Monitoring Parameters Parameter Name Monitor Contents IW00 Running Indicates the Servo ON status. Bit 1 (At Servo ON) ON: Power supplied to Servomotor, OFF: Power not supplied to Servomotor IL02 Warning Stores the most current warning.
  • Page 209 7.2 Motion Command Details 7.2.7 STEP Operation (STEP) [ b ] Execution when Aborted 08 = 8 (STEP) 09, bit 1 (ABORT) 08 = 8 (STEP) 09, bit 0 (BUSY) 09, bit 3 (FAIL) 09, bit 8 (COMPLETE) 0C, bit 0 (DEN) 0C, bit 1 (POSCOMP) 1 scan Undefined length of time...
  • Page 210: Zero Point Setting (Zset)

    7.2 Motion Command Details 7.2.8 Zero Point Setting (ZSET) 7.2.8 Zero Point Setting (ZSET) The ZSET command sets the current position as the zero point of the machine coordinate system. This enables setting the zero point without performing a zero point return operation. ...
  • Page 211 7.2 Motion Command Details 7.2.8 Zero Point Setting (ZSET) ( 4 ) Timing Charts [ a ] Normal Execution 08 = 9 (ZSET) 08 = 9 (ZSET) 09, bit 0 (BUSY) 09, bit 3 (FAIL) 09, bit 8 (COMPLETE) 0C, bit 5 (ZRNC) 7-72...
  • Page 212: Speed Reference (Velo)

    7.2 Motion Command Details 7.2.9 Speed Reference (VELO) 7.2.9 Speed Reference (VELO) The VELO command is used to operate the SERVOPACK in the speed control mode. ( 1 ) Executing/Operating Procedure Check to see if all the following conditions are satisfied. Execution Conditions Confirmation Method There are no alarms.
  • Page 213 7.2 Motion Command Details 7.2.9 Speed Reference (VELO) ( 3 ) Aborting The VELO command can be canceled by aborting execution of a command. A command is aborted by setting the Inter- rupt A Command bit (OW09, bit 1) to 1. •...
  • Page 214 7.2 Motion Command Details 7.2.9 Speed Reference (VELO) [ b ] Monitoring Parameters Parameter Name Monitor Contents IW00 Running Indicates the Servo ON status. Bit 1 (At Servo ON) ON: Power supplied to Servomotor, OFF: Power not supplied to Servomotor IL02 Warning Stores the most current warning.
  • Page 215 7.2 Motion Command Details 7.2.9 Speed Reference (VELO) [ b ] Execution when Aborted 08 = 23 (VELO) 09, bit 1 (ABORT) 08 = 23 (VELO) 09, bit 0 (BUSY) 09, bit 3 (FAIL) 09, bit 8 (COMPLETE) 0C, bit 0 (DEN) Speed Control Mode Position Control Mode [ c ] Command Hold...
  • Page 216: Torque Reference (Trq)

    7.2 Motion Command Details 7.2.10 Torque Reference (TRQ) 7.2.10 Torque Reference (TRQ) The TRQ command is used to operate the SERVOPACK in the torque control mode. ( 1 ) Executing/Operating Procedure Check to see if all the following conditions are satisfied. Execution Conditions Confirmation Method There are no alarms.
  • Page 217 7.2 Motion Command Details 7.2.10 Torque Reference (TRQ) ( 3 ) Aborting The TRQ command can be canceled by aborting execution of a command. A command is aborted by setting the Inter- rupt A Command bit (OW09 bit1) to 1. •...
  • Page 218 7.2 Motion Command Details 7.2.10 Torque Reference (TRQ) [ b ] Monitoring Parameters Parameter Name Monitor Contents IW00 Running Indicates the Servo ON status. Bit 1 (At Servo ON) ON: Power supplied to Servomotor, OFF: Power not supplied to Servomotor IL02 Warning Stores the most current warning.
  • Page 219 7.2 Motion Command Details 7.2.10 Torque Reference (TRQ) [ b ] Execution when Aborted 08 = 24 (TRQ) 09, bit 1 (ABORT) 08 = 24 (TRQ) 09, bit 0 (BUSY) 09, bit 3 (FAIL) 09, bit 8 (COMPLETE) 0C, bit 0 (DEN) 0C, bit 1 (POSCOMP) 1 scan Torque control mode...
  • Page 220: Phase References (Phase)

    7.2 Motion Command Details 7.2.11 Phase References (PHASE) 7.2.11 Phase References (PHASE) The PHASE command is used for the synchronized operation of multiple axes under phase control mode, using the specified speed, phase bias, and speed compensation value. ( 1 ) Executing/Operating Procedure Check to see if all the following conditions are satisfied.
  • Page 221 7.2 Motion Command Details 7.2.11 Phase References (PHASE) ( 3 ) Related Parameters [ a ] Setting Parameters Parameter Name Setting Turns the power to the Servomotor ON and OFF. OW00 Servo ON 1: Power ON to Servomotor, 0: Power OFF to Servomotor Bit 0 Set this bit to 1 before setting the Motion Command (OW08) to 25.
  • Page 222 7.2 Motion Command Details 7.2.11 Phase References (PHASE) (cont’d) Parameter Name Monitor Contents The operation depends on the setting of NEAR Signal Output Width (setting param- eter OL20). OL20 = 0:Turns ON when pulse distribution has been completed (DEN = IW0C ON).
  • Page 223 7.2 Motion Command Details 7.2.11 Phase References (PHASE) [ c ] Execution when an Alarm Occurs 08 = 25 (PHASE) Alarm 08 = 25 (PHASE) 09, bit 0 (BUSY) 09, bit 3 (FAIL) 09, bit 8 (COMPLETE) 0C, bit 0 (DEN) 0C, bit 1 (POSCOMP) 1 scan Undefined length of time...
  • Page 224: Motion Subcommands

    7.3 Motion Subcommands 7.3.1 No Command (NOP) 7.3 Motion Subcommands With the SVA-01 Module, two motion subcommands can be used: NOP and FIXPRM_RD. The following provides a detailed description of these two subcommands. 7.3.1 No Command (NOP) Set this command when a subcommand is not being specified. ( 1 ) Related Parameters [ a ] Setting Parameters Parameter...
  • Page 225: Read Fixed Parameters (Fixprm_Rd)

    7.3 Motion Subcommands 7.3.2 Read Fixed Parameters (FIXPRM_RD) 7.3.2 Read Fixed Parameters (FIXPRM_RD) The FIXPRM_RD command reads the current value of the specified fixed parameter and stores the value in the moni- toring parameter IL56 (Fixed Parameter Monitor). ( 1 ) Executing/Operating Procedure Check to see if all the following conditions are satisfied.
  • Page 226 7.3 Motion Subcommands 7.3.2 Read Fixed Parameters (FIXPRM_RD) ( 3 ) Timing Charts [ a ] Normal End 0A = 5 (FIXPRM_RD) 0A = 5 (FIXPRM_RD) 0B, bit 0 (BUSY) 0B, bit 3 (FAIL) 0B. bit 8 (COMPLETE) Undefined Monitoring result [ b ] Error End 0A = 5 (FIXPRM_RD) 0A = 5 (FIXPRM_RD)
  • Page 227: Switching Commands During Execution

    Switching Commands during Execution This chapter describes motion commands that can be switched during execution and how the axis will move when they are switched. 8.1 Switchable Motion Commands - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -8-2 8.1.1 Switching Between Motion Commands - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8-2 8.1.2 Switching from POSING - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8-3 8.1.3 Switching from EX_POSING - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8-7...
  • Page 228: Switchable Motion Commands

    8.1 Switchable Motion Commands 8.1.1 Switching Between Motion Commands 8.1 Switchable Motion Commands 8.1.1 Switching Between Motion Commands The following table shows motion commands that can be switched during execution. Switched To (Newly Set Command) EX_P ZRET INTE ENDO LATC FEED STEP ZSET...
  • Page 229: Switching From Posing

    8.1 Switchable Motion Commands 8.1.2 Switching from POSING 8.1.2 Switching from POSING Switched From Switched To Operation POSING will switch to NOP when the axis stops after deceleration. Cancelled POSING operation POSING Motion command POSING Motion command POSING response POSING POSING operation will continue.
  • Page 230 8.1 Switchable Motion Commands 8.1.2 Switching from POSING Switched From Switched To Operation POSING will immediately switch to INTERPOLATE. The moving amount stored in the accel/decel filter will be reset to 0. The value of Position Reference Setting (OL1C) when the motion command is switched will be as follows.
  • Page 231 8.1 Switchable Motion Commands 8.1.2 Switching from POSING Switched From Switched To Operation POSING will immediately switch to STEP, and the moving amount stored in the accel/ decel filter will be maintained. The speed will smoothly change. The speed at the time the motion command is switched will increase/ decrease until it reaches the STEP target speed.
  • Page 232 8.1 Switchable Motion Commands 8.1.2 Switching from POSING Switched From Switched To Operation (2) When Not Using the Accel/Decel Filter for VELO Command Cancelled POSING The speed will smoothly change. operation The speed at the time the motion The accel/decel filter for command is switched will increase/ POSING command will be decrease until it reaches the VELO...
  • Page 233: Switching From Ex_Posing

    8.1 Switchable Motion Commands 8.1.3 Switching from EX_POSING 8.1.3 Switching from EX_POSING Switched From Switched To Operation EX_POSING will switch to NOP when the axis stops after deceleration. Cancelled EX_POSING operation EX_POSING Motion command EX_POSING Motion command EX_POSING response EX_POSING will immediately switch to POSING. The moving amount stored in the accel/decel filter will be reset to 0.
  • Page 234 8.1 Switchable Motion Commands 8.1.3 Switching from EX_POSING Switched From Switched To Operation EX_POSING will immediately switch to INTERPOLATE. The moving amount stored in the accel/decel filter will be reset to 0. The value of Position Reference Setting (OL1C) when the motion command is switched will be as follows.
  • Page 235 8.1 Switchable Motion Commands 8.1.3 Switching from EX_POSING Switched From Switched To Operation EX_POSING will immediately switch to STEP, and the moving amount stored in the accel/decel filter will be maintained. The speed will smoothly change. The speed at the time the motion command Cancelled is switched will increase/decrease until EX_POSING...
  • Page 236 8.1 Switchable Motion Commands 8.1.3 Switching from EX_POSING Switched From Switched To Operation EX_POSING will immediately switch to TRQ, and the control mode will be changed from position control mode to torque control mode. The moving amount stored in the accel/decel filter will be reset to 0. The reference value of the TRQ command will be output as it is regardless of the speed at the time...
  • Page 237: Switching From Zret

    8.1 Switchable Motion Commands 8.1.4 Switching from ZRET 8.1.4 Switching from ZRET Switched From Switched To Operation ZRET will switch to NOP when the axis stops after deceleration. Cancelled ZRET operation ZRET ZRET Motion command Motion command ZRET response ZRET will switch to POSING when the axis stops after deceleration. Cancelled ZRET operation ZRET...
  • Page 238 8.1 Switchable Motion Commands 8.1.4 Switching from ZRET Switched From Switched To Operation ZRET will switch to STEP when the axis stops after deceleration. Cancelled ZRET operation ZRET STEP STEP Motion command ZRET STEP Motion command ZRET STEP response ZRET will switch to ZSET when the axis stops after deceleration. A machine coordinate system will be established on the base of the position...
  • Page 239: Switching From Interpolate

    8.1 Switchable Motion Commands 8.1.5 Switching from INTERPOLATE 8.1.5 Switching from INTERPOLATE Switched From Switched To Operation INTERPOLATE will immediately switch to NOP, and the moving amount stored in the accel/decel filter will be maintained. The amount stored in the accel/decel filter will be output.
  • Page 240 8.1 Switchable Motion Commands 8.1.5 Switching from INTERPOLATE Switched From Switched To Operation INTERPOLATE will immediately switch to ENDOF_INTERPOLATE, and the moving amount stored in the accel/decel filter will be maintained. The reference value of the ENDOF_INTERPOLATE command will be output as it is regardless of the speed at the time the motion command is switched to ENDOF_INTERPOLATE.
  • Page 241 8.1 Switchable Motion Commands 8.1.5 Switching from INTERPOLATE Switched From Switched To Operation INTERPOLATE will immediately switch to ZSET, and the moving amount stored in the accel/decel filter will be reset to 0. The distribution of moving amount stored in the accel/decel filter will be cancelled.
  • Page 242: Switching From Endof_Interpolate Or Latch

    8.1 Switchable Motion Commands 8.1.6 Switching from ENDOF_INTERPOLATE or LATCH Switched From Switched To Operation INTERPOLATE will immediately switch to TRQ, and the control mode will be changed from position control mode to torque control mode. The moving amount stored in the accel/decel filter will be reset to 0. The reference value of the TRQ command will be output as it is regardless of the speed at the time the motion command is switched...
  • Page 243: Switching From Feed

    8.1 Switchable Motion Commands 8.1.7 Switching from FEED 8.1.7 Switching from FEED Switched From Switched To Operation FEED will switch to NOP when the axis stops after deceleration. FEED Motion command FEED Motion command FEED response FEED will immediately switch to POSING, and the moving amount stored in the accel/ decel filter will be maintained.
  • Page 244 8.1 Switchable Motion Commands 8.1.7 Switching from FEED Switched From Switched To Operation FEED will switch to ZRET when the axis stops after deceleration. FEED ZRET ZRET Motion command FEED ZRET Motion command FEED ZRET response FEED will immediately switch to INTERPOLATE, and the moving amount stored in the accel/decel will be reset to 0.
  • Page 245 8.1 Switchable Motion Commands 8.1.7 Switching from FEED Switched From Switched To Operation FEED will immediately switch to STEP, and the moving amount stored in the accel/decel filter will be maintained. The speed will smoothly change. The speed at the time the motion command is switched will increase/decrease until it reaches the STEP target speed.
  • Page 246 8.1 Switchable Motion Commands 8.1.7 Switching from FEED Switched From Switched To Operation (2) When Not Using the Accel/Decel Filter for VELO Command The speed will smoothly change. The speed at the time the motion command is switched will increase/decrease until it reaches the VELO target speed. The accel/decel filter for FEED command will be cancelled.
  • Page 247: Switching From Step

    8.1 Switchable Motion Commands 8.1.8 Switching from STEP 8.1.8 Switching from STEP Switched From Switched To Operation STEP will switch to NOP when the axis stops after deceleration. STEP Motion command STEP Motion command STEP response STEP will immediately switch to POSING, and the moving amount stored in the accel/ decel filter will be maintained.
  • Page 248 8.1 Switchable Motion Commands 8.1.8 Switching from STEP Switched From Switched To Operation STEP will switch to ZRET when the axis stops after deceleration. STEP ZRET ZRET Motion command STEP ZRET Motion command STEP ZRET response STEP will immediately switch to INTERPOLATE, and the moving amount stored in the accel/decel filter will be reset to 0.
  • Page 249 8.1 Switchable Motion Commands 8.1.8 Switching from STEP Switched From Switched To Operation STEP will immediately switch to FEED, and the moving amount stored in the accel/decel filter will be maintained. The speed will smoothly change. The speed at the time the motion com- mand is switched will increase/decrease until it reaches the FEED target speed.
  • Page 250: Switching From Zset

    8.1 Switchable Motion Commands 8.1.9 Switching from ZSET Switched From Switched To Operation STEP will immediately switch to TRQ, and the control mode will be changed from posi- tion control mode to torque/thrust control mode. The moving amount stored in the accel/decel filter will be reset to 0. The reference value of TRQ command will be output as it is regardless of the speed at the time the motion command is...
  • Page 251: Switching From Velo

    8.1 Switchable Motion Commands 8.1.10 Switching from VELO 8.1.10 Switching from VELO Switched From Switched To Operation VELO will switch to NOP when the axis stops after deceleration, and the control mode will be changed from speed control mode to position control mode. VELO Motion command VELO...
  • Page 252 8.1 Switchable Motion Commands 8.1.10 Switching from VELO Switched From Switched To Operation VELO will immediately switch to EX_POSING, and the control mode will be changed from speed control mode to position control mode. The moving amount stored in the accel/decel filter will be reset to 0.
  • Page 253 8.1 Switchable Motion Commands 8.1.10 Switching from VELO Switched From Switched To Operation VELO will switch to INTERPOLATE when the axis stops after deceleration, and the con- trol mode will be changed from speed control mode to position control mode after the axis deceleration is completed.
  • Page 254 8.1 Switchable Motion Commands 8.1.10 Switching from VELO Switched From Switched To Operation VELO will immediately switch to STEP, and the control mode will be changed from speed control mode to position control mode. The moving amount stored in the accel/decel filter will be reset to 0.
  • Page 255 8.1 Switchable Motion Commands 8.1.10 Switching from VELO Switched From Switched To Operation VELO will immediately switch to TRQ, and the control mode will be changed from speed control mode to torque/thrust control mode. The moving amount stored in the accel/decel filter will be reset to 0.
  • Page 256: Switching From Trq

    8.1 Switchable Motion Commands 8.1.11 Switching from TRQ 8.1.11 Switching from TRQ Switched From Switched To Operation The axis will decelerate to a stop from the speed when the motion command is switched in position control mode. TRQ will switch to NOP when the axis stops after deceleration. In speed control mode, the axis will decelerate to a stop from the speed when the motion command is switched.
  • Page 257 8.1 Switchable Motion Commands 8.1.11 Switching from TRQ Switched From Switched To Operation TRQ will immediately switch to EX_POSING, and the control mode will be changed from torque/thrust control mode to position control mode. The moving amount stored in the accel/decel filter will be reset to 0.
  • Page 258 8.1 Switchable Motion Commands 8.1.11 Switching from TRQ Switched From Switched To Operation The axis will decelerate to a stop in speed control mode, and the control mode will be changed from speed control mode to position control mode when the axis stops. TRQ will switch to INTERPOLATE when the axis stops after deceleration.
  • Page 259 8.1 Switchable Motion Commands 8.1.11 Switching from TRQ Switched From Switched To Operation (2) When Not Using the Accel/Decel Filter for FEED Command The speed will smoothly change. The speed at the time the motion command is switched will increase/ decrease until it reaches the FEED target speed.
  • Page 260 8.1 Switchable Motion Commands 8.1.11 Switching from TRQ Switched From Switched To Operation The axis will decelerate to a stop in speed control mode, and the control mode will be changed from speed control mode to position control mode when the axis stops. TRQ will switch to ZSET when the axis stops after deceleration.
  • Page 261 8.1 Switchable Motion Commands 8.1.11 Switching from TRQ Switched From Switched To Operation TRQ will immediately switch to PHASE, and the control mode will be changed from torque/thrust control mode to phase control mode. The moving amount stored in the accel/ decel filter will be reset to 0.
  • Page 262: Switching From Phase

    8.1 Switchable Motion Commands 8.1.12 Switching from PHASE 8.1.12 Switching from PHASE Switched From Switched To Operation The axis will decelerate to a stop in speed control mode, and the control mode will be changed from speed control mode to position control mode when the axis stops. PHASE will switch to NOP when the axis stops after deceleration.
  • Page 263 8.1 Switchable Motion Commands 8.1.12 Switching from PHASE Switched From Switched To Operation PHASE will immediately switch to EX_POSING, and the control mode will be changed from phase control mode to position control mode. The value of the Position Reference Setting (OL1C) when the motion command is switched will be as follows.
  • Page 264 8.1 Switchable Motion Commands 8.1.12 Switching from PHASE Switched From Switched To Operation The axis will decelerate to a stop in speed control mode, and the control mode will be changed from speed control mode to position control mode when the axis stops. PHASE will switch to INTERPOLATE when the axis stops after deceleration.
  • Page 265 8.1 Switchable Motion Commands 8.1.12 Switching from PHASE Switched From Switched To Operation (2) When Not Using the Accel/Decel Filter for FEED Command The speed will smoothly change. The speed at the time the motion command is switched will increase/decrease until it reaches the FEED target speed.
  • Page 266 8.1 Switchable Motion Commands 8.1.12 Switching from PHASE Switched From Switched To Operation The axis will decelerate to a stop in speed control mode, and the control mode will be changed from speed control mode to position control mode when the axis stops. PHASE will switch to ZSET when the axis stops after deceleration.
  • Page 267 8.1 Switchable Motion Commands 8.1.12 Switching from PHASE Switched From Switched To Operation PHASE will immediately switched to TRQ, and the control mode will be changed from phase control mode to torque/thrust control mode. The reference value of the TRQ command will be output as it is regardless of the speed at the time the motion command is switched to TRQ.
  • Page 268: Control Block Diagram

    Control Block Diagram This chapter explains the SVA-01 Module control block diagram. 9.1 SVA-01 Module Control Block Diagram - - - - - - - - - - - - - - - - - - - - - - - - - -9-2...
  • Page 269: Module Control Block Diagram

    9.1 SVA-01 Module Control Block Diagram 9.1 SVA-01 Module Control Block Diagram 14: Positive Side Limiting Torque/ Thrust Setting at the Speed Reference Machine lock status Torque Reference (TRQ) Commands 0C, bit 6) 0C: Torque/Thrust Reference Setting 0E: Speed Limit Setting at the Torque/Thrust Reference Acceleration/ Asymmetrical Trapezoidal...
  • Page 270 9.1 SVA-01 Module Control Block Diagram Torque Reference I/O Outputs (In General-purpose I/O Mode) CN1/CN2 1st-order Lag Filter 5D, bit 0: General-purpose DO_0 ¹ TRQ 5D, bit 1: General-purpose DO_1 5D, bit 2: General-purpose DO_2 General-purpose ¹ 0 5D, bit 3: General-purpose DO_3 outputs 5D, bit 4:...
  • Page 271: Absolute Position Detection

    Absolute Position Detection This chapter explains an absolute position detection system that uses an absolute encoder. Be sure to read this chapter carefully when using a Servomotor equipped with an absolute encoder. 10.1 Absolute Position Detection Function - - - - - - - - - - - - - - - - - - - - - - - - - 10-2 10.1.1 Outline of the Function - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10-2 10.1.2 Reading Absolute Data - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10-2 10.1.3 Finite Length/Infinite Length Axes and Absolute Position Detection - - - - - - - - - - - - 10-3...
  • Page 272: Absolute Position Detection Function

    10.1 Absolute Position Detection Function 10.1.1 Outline of the Function 10.1 Absolute Position Detection Function This section explains the Absolute Position Detection Function in the SVA-01 Module.  Refer to Appendix C Fixed Parameter Setting According to Encoder Type and Axis Type on page A-10 together with this section.
  • Page 273: Finite Length/Infinite Length Axes And Absolute Position Detection

    10.1 Absolute Position Detection Function 10.1.3 Finite Length/Infinite Length Axes and Absolute Position Detection This way the absolute machine position can be detected and automatic operation can begin immediately after power is turned ON with an automatic position detection system. ...
  • Page 274: Setting Procedure Of Absolute Position Detection Function

    10.2 Setting Procedure of Absolute Position Detection Function 10.2.1 System Startup Flowchart 10.2 Setting Procedure of Absolute Position Detection Function This section explains the procedure for setting the Absolute Position Detection Function. 10.2.1 System Startup Flowchart Start up the system using the following procedure. Check Devices Check to see if the SERVOPACK, Servomotor, and cables are the right products and models for the absolute encoder.
  • Page 275: Initializing The Absolute Encoder

    10.2 Setting Procedure of Absolute Position Detection Function 10.2.2 Initializing the Absolute Encoder 10.2.2 Initializing the Absolute Encoder Absolute encoders can be initialized as follows: • SERVOPACK Procedure  Refer to the manual for the SERVOPACK for details. • Panel Operator or Digital Operator Procedure ...
  • Page 276: Absolute Position Detection For Finite Length Axes

    10.3 Absolute Position Detection for Finite Length Axes 10.3.1 Parameter Settings for Finite Length Axes 10.3 Absolute Position Detection for Finite Length Axes This section describes the procedure for setting parameters and precautions on setting zero-point and turning ON the power supply when using the axis as a finite length axis.
  • Page 277 10.3 Absolute Position Detection for Finite Length Axes 10.3.1 Parameter Settings for Finite Length Axes ( 2 ) SERVOPACK Parameters for Absolute Position Detection SERVOPACK Parameter Name Setting Range Units Reference Caution Model 0: Sets counterclockwise (CCW) rotation as forward direction. Pn000.0 –...
  • Page 278: Detailed Descriptions On Parameter Settings For Finite Length Axes

    10.3 Absolute Position Detection for Finite Length Axes 10.3.2 Detailed Descriptions on Parameter Settings for Finite Length Axes 10.3.2 Detailed Descriptions on Parameter Settings for Finite Length Axes ( 1 ) Axis Selection (Machine Controller Fixed Parameter No.1, Bit 0) This setting is used to select either an finite or infinite length axis.
  • Page 279 10.3 Absolute Position Detection for Finite Length Axes 10.3.2 Detailed Descriptions on Parameter Settings for Finite Length Axes  Σ When a -7 Series SERVOPACK is Connected Fixed Parameter No. 36 Fixed Parameter No. 22 Number of Bits Number of Pulses per Motor Rotation Pulse Counting Mode Selection ∗...
  • Page 280: Setting The Zero Point For A Finite Length Axis

    10.3 Absolute Position Detection for Finite Length Axes 10.3.3 Setting the Zero Point for a Finite Length Axis 10.3.3 Setting the Zero Point for a Finite Length Axis This section describes the procedure for setting the zero point (i.e., the absolute zero point or the zero point of the machine coordinate system) for a finite length axis.
  • Page 281: Setting The Zero Point For A Finite Length Axis

    10.3 Absolute Position Detection for Finite Length Axes 10.3.3 Setting the Zero Point for a Finite Length Axis ( 3 ) Saving OL48 Values before Power OFF After having set the zero point, save the value of OL48 before turning OFF the power of Machine Controller so that the value will be written in OL48 the next time the power is turned ON.
  • Page 282 10.3 Absolute Position Detection for Finite Length Axes 10.3.3 Setting the Zero Point for a Finite Length Axis  Method 2: Saving in an M Register with a Ladder Program Saves the value of the zero point offset for the machine coordinate system when the zero point is set in an M register backed up by a battery.
  • Page 283: Turning On The Power After Setting The Zero Point Of Machine Coordinate System

    10.3 Absolute Position Detection for Finite Length Axes 10.3.4 Turning ON the Power after Setting the Zero Point of Machine Coordinate System 10.3.4 Turning ON the Power after Setting the Zero Point of Machine Coordinate System The Zero Point Return (Setting) Completed bit (IW0C, bit 5) will turn OFF when the power supply to the Machine Controller is turned OFF and ON or the communication is interrupted by turning OFF and ON the power supply to the SERVOPACK after the zero point has been set.
  • Page 284: Absolute Position Detection For Infinite Length Axes

    10.4 Absolute Position Detection for Infinite Length Axes 10.4.1 Simple Absolute Infinite Length Position Control 10.4 Absolute Position Detection for Infinite Length Axes Infinite length axis positioning is a function that automatically resets the machine position, program position (absolute values in the program coordinate system), and current position at regular intervals according to the Infinite Length Axis Reset Position (POSMAX) (fixed parameter 10).
  • Page 285 10.4 Absolute Position Detection for Infinite Length Axes 10.4.1 Simple Absolute Infinite Length Position Control  System That Satisfies the Above Condition The following example shows the system that can use the Simple Absolute Infinite Length Position Control function. Fixed Parameter Name Setting Value 2 (deg)
  • Page 286: Parameters Setting For Simple Absolute Infinite Length Position Control

    10.4 Absolute Position Detection for Infinite Length Axes 10.4.2 Parameters Setting for Simple Absolute Infinite Length Position Control 10.4.2 Parameters Setting for Simple Absolute Infinite Length Position Control Set the following parameters to use the Simple Absolute Infinite Length Position Control for an infinite length axis. ...
  • Page 287 10.4 Absolute Position Detection for Infinite Length Axes 10.4.2 Parameters Setting for Simple Absolute Infinite Length Position Control ( 3 ) SERVOPACK Parameters for Absolute Position Detection SERVOPACK Parameter Name Setting Range Units Reference Caution Model 0: Sets counterclockwise (CCW) rotation as forward direction.
  • Page 288: Detailed Descriptions On Parameter Settings For Simple Absolute Infinite Length Axes

    10.4 Absolute Position Detection for Infinite Length Axes 10.4.3 Detailed Descriptions on Parameter Settings for Simple Absolute Infinite Length Axes 10.4.3 Detailed Descriptions on Parameter Settings for Simple Absolute Infinite Length Axes ( 1 ) Encoder Selection/Encoder Selection/ Absolute Encoder Usage For an axis performing absolute position detection, set the parameters as shown in the table below.
  • Page 289 10.4 Absolute Position Detection for Infinite Length Axes 10.4.3 Detailed Descriptions on Parameter Settings for Simple Absolute Infinite Length Axes  Σ When a -7 Series SERVOPACK is Connected Fixed Parameter No. 36 Fixed Parameter No. 22 Number of Bits Number of Pulses per Motor Rotation Pulse Counting Mode Selection ∗...
  • Page 290: Setting The Zero Point And Turning On Power As Simple Absolute Positions

    10.4 Absolute Position Detection for Infinite Length Axes 10.4.4 Setting the Zero Point and Turning ON Power as Simple Absolute Positions 10.4.4 Setting the Zero Point and Turning ON Power as Simple Absolute Positions ( 1 ) Calculating the Zero Point of the Machine Coordinate System If using the simple absolute infinite length position control, the Machine Controller calculates the axis position (i.e., current position for the machine coordinate system) as follows when the power is turned ON.
  • Page 291: Turning On The Power After Setting The Zero Point For Simple Absolute Infinite Length Axes

    10.4 Absolute Position Detection for Infinite Length Axes 10.4.5 Turning ON the Power after Setting the Zero Point for Simple Absolute Infinite Length Axes ( 3 ) Saving OL48 Values at Power OFF After having set the zero point, save the value of OL48 before turning OFF the power of Machine Controller so that the value will be written in OL48 the next time the power is turned ON.
  • Page 292: Infinite Length Position Control Without Simple Absolute Positions

    10.4 Absolute Position Detection for Infinite Length Axes 10.4.6 Infinite Length Position Control without Simple Absolute Positions 10.4.6 Infinite Length Position Control without Simple Absolute Positions ( 1 ) Parameter Settings for Infinite Length Position Control without Simple Absolute Positions Set the infinite length position control without simple absolute positions by setting the fixed parameters No.
  • Page 293 10.4 Absolute Position Detection for Infinite Length Axes 10.4.6 Infinite Length Position Control without Simple Absolute Positions ( 4 ) Ladder Program for Infinite Length Axis Position Control If the Simple Absolute Infinite Length Position Control Function is not used, a special ladder program is needed for normal operation and for operation when system power is turned ON.
  • Page 294 10.4 Absolute Position Detection for Infinite Length Axes 10.4.6 Infinite Length Position Control without Simple Absolute Positions Use the following flowchart to store values in buffers. High-speed scan drawing starts 1st scan after the drawing starts ? Operation is not ready and an alarm is occurring ? Position Data Save Request Flag is set to 0.
  • Page 295 10.4 Absolute Position Detection for Infinite Length Axes 10.4.6 Infinite Length Position Control without Simple Absolute Positions The following programming example (ladder program) is for the flowchart shown on the previous page. The axis used here is axis 1 of circuit number 1. Change the motion parameter register number if the circuit and axis numbers are dif- ferent.
  • Page 296 10.4 Absolute Position Detection for Infinite Length Axes 10.4.6 Infinite Length Position Control without Simple Absolute Positions Values of monitoring parameters saved in buffer 0. Values of monitoring parameters saved in buffer 1. Toggle Buffer Selection Flag inverted. [ b ] Turning the System Back ON (Turning the Servo Back ON) Set up position data again from the ladder program using high-speed scan timing as shown below.
  • Page 297 10.4 Absolute Position Detection for Infinite Length Axes 10.4.6 Infinite Length Position Control without Simple Absolute Positions Use the following flowchart for storing the position data in the setting parameters and for Request ABS Rotary Pos. Load requests. High-speed scan drawing starts 1st scan after the drawing starts ? Or, Servo power reset signal is set to 1?
  • Page 298 10.4 Absolute Position Detection for Infinite Length Axes 10.4.6 Infinite Length Position Control without Simple Absolute Positions The following programming example (ladder program) is for the flowchart shown above. The axis used here is axis 1 of circuit number 1. Change the motion parameter register number if the circuit and axis numbers are different. Main Program Absolute System Infinite Length Mode Axis: Axis 1 Leading address of toggle buffer: MW30000 ON for only the first scan after...
  • Page 299 10.4 Absolute Position Detection for Infinite Length Axes 10.4.6 Infinite Length Position Control without Simple Absolute Positions Main Program Save values in buffer 1 to setting parameters. Absolute System Infinite Length Position Control Data Initialization Request Flag ON Position Information SAVE bit Absolute System Infinite Length Position Control Data Initialization Request Flag ON...
  • Page 300: Utility Functions

    Utility Functions This chapter describes MP2000-series Machine Controller and SERVOPACK utility functions such as vertical axis control, overtravel, and software limits, and the utility functions the SVA-01 Module is provided with. 11.1 Controlling Vertical Axes - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11-2 11.1.1 Holding Brake Function of the SERVOPACK - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11-2 11.1.2 Connections to Σ-II, Σ-III, Σ-V, or Σ-7 Series SGDM, SGDH, SGDS, SGDV, and SGD7S SERVOPACKs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11-2...
  • Page 301: Controlling Vertical Axes

    11.1 Controlling Vertical Axes 11.1.1 Holding Brake Function of the SERVOPACK 11.1 Controlling Vertical Axes This section explains connection methods and parameter settings required to use the SERVOPACK to control a vertical axis. 11.1.1 Holding Brake Function of the SERVOPACK When using a SERVOPACK to control a vertical axis or an axis to which an external force is being applied, a Servomo- tor with a brake must be used to prevent the axis from dropping or moving due to gravity or the external force when the system power is turned OFF.
  • Page 302 11.1 Controlling Vertical Axes 11.1.2 Connections to Σ-II, Σ-III, Σ-V, or Σ-7 Series SGDM, SGDH, SGDS, SGDV, and SGD7S SERVOPACKs ( 2 ) Parameter Settings The SERVOPACK parameters related to control the holding brake are described below. Parameter Name Unit Setting/Range Default Control Mode...
  • Page 303: Connections To Σ-I Series Sgdb Servopack

    11.1 Controlling Vertical Axes 11.1.3 Connections to Σ-I Series SGDB SERVOPACK 11.1.3 Connections to Σ-I Series SGDB SERVOPACK ( 1 ) Example of a Brake ON and OFF Circuit A circuit is configured to turn the brake ON and OFF using the /BK contact output signal from the SERVOPACK and a brake power supply.
  • Page 304 11.1 Controlling Vertical Axes 11.1.3 Connections to Σ-I Series SGDB SERVOPACK ( 2 ) Parameter Settings The SERVOPACK parameters related to control the holding brake are described below. Parameter Name Unit Setting/Range Default Control Mode Cn-2D OUTSEL Output Signal Selection –...
  • Page 305: Connections To Σ-I Series Sgda Servopack

    11.1 Controlling Vertical Axes 11.1.4 Connections to Σ-I Series SGDA SERVOPACK 11.1.4 Connections to Σ-I Series SGDA SERVOPACK ( 1 ) Brake ON and OFF Circuit Example A circuit is configured to turn the brake ON and OFF using the /BK contact output signal from the SERVOPACK and a brake power supply.
  • Page 306 11.1 Controlling Vertical Axes 11.1.4 Connections to Σ-I Series SGDA SERVOPACK ( 2 ) Parameter Settings The SERVOPACK parameters related to controlling the brake are described below. Parameter Name Unit Setting/Range Default Control Mode Brake ON Timing after Speed, torque, position Cn-12 10 ms 0 to 50...
  • Page 307: Overtravel Function

    11.2 Overtravel Function 11.2.1 Connections to Σ-II, Σ-III, Σ-V, or Σ-7 Series SGDH, SGDS, SGDV, and SGD7S SERVOPACKs 11.2 Overtravel Function The overtravel function forces the machine to stop when the moving part of the machine exceeds the range of move- ment.
  • Page 308 11.2 Overtravel Function 11.2.1 Connections to Σ-II, Σ-III, Σ-V, or Σ-7 Series SGDH, SGDS, SGDV, and SGD7S SERVOPACKs ( 2 ) Parameter Settings [ a ] Use/Not Use Overtravel Input Signals The following parameters are used to enable and disable the overtravel input signals. Parameter Name Set Value...
  • Page 309: Connections To Σ-I Series Sgdb Or Sgda Servopack

    11.2 Overtravel Function 11.2.2 Connections to Σ-I Series SGDB or SGDA SERVOPACK 11.2.2 Connections to Σ-I Series SGDB or SGDA SERVOPACK The following parameters must be set to ensure the overtravel input signals are connected correctly for the overtravel function. ( 1 ) Overtravel Input Signal Connections Connect the input signals for the overtravel limit switches to the corresponding pins on the SERVOPACK CN1 or 1CN connector as shown below.
  • Page 310 11.2 Overtravel Function 11.2.2 Connections to Σ-I Series SGDB or SGDA SERVOPACK ( 2 ) Parameter Settings [ a ] Use/Not Use Overtravel Input Signals The following parameters are used to enable and disable the overtravel input signals. Parameter Name Set Value Item Default...
  • Page 311: Rotation Direction Selection

    11.2 Overtravel Function 11.2.3 Rotation Direction Selection 11.2.3 Rotation Direction Selection The SVA-01 Module provides a rotation direction selection that can be used to reverse the direction of rotation of the servomotor without changing the motor wiring at the SGDA, SGDB, SGDH, SGDM, SGDS, SGDV, or SGD7S SERVOPACK.
  • Page 312: Software Limit Function

    11.3 Software Limit Function 11.3.1 Parameter Settings 11.3 Software Limit Function The software limit function is used to set upper and lower limits for the range of machine movement in fixed parame- ters so the SVA-01 Module can constantly monitor the operating range of the machine. When the software limit func- tion is enabled, the SVA-01 Module will generate an alarm to stop the axis if it receives a position reference value that exceeds the software upper and lower limits.
  • Page 313: Axis Stopping Operation At Alarm Occurrence

    11.3 Software Limit Function 11.3.3 Axis Stopping Operation at Alarm Occurrence 11.3.3 Axis Stopping Operation at Alarm Occurrence The way the axis stops at occurrence of alarm differs depending on the motion command that is being executed as shown in the table below. Motion Command Stop Operation POSING...
  • Page 314: Other Utility Functions

    11.4 Other Utility Functions 11.4.1 Modal Latch Function 11.4 Other Utility Functions 11.4.1 Modal Latch Function The Modal Latch function can be executed to latch a position independently from the motion command being executed as long as the motion command being executed is not a motion command with latch function such as EX_POSING, ZRET, and LATCH.
  • Page 315: Reading Absolute Data After Power Is Turned On

    11.4 Other Utility Functions 11.4.2 Reading Absolute Data After Power is Turned ON 11.4.2 Reading Absolute Data After Power is Turned ON When using an absolute encoder, the absolute data can be read out from the absolute encoder when the power supply is turned ON and when saving the fixed parameters.
  • Page 316: General-Purpose Do_2 Signal Selection

    11.4 Other Utility Functions 11.4.4 General-purpose DO_2 Signal Selection 11.4.4 General-purpose DO_2 Signal Selection In normal operation mode, the general-purpose DO_2 signal (pin No. 12 of CN1/CN2) can be used as a general-pur- pose output signal by setting the General-purpose DO_2 Signal Selection bit (fixed parameter No. 21, bit 5) to 1 (Use as a general-purpose signal).
  • Page 317 11.4 Other Utility Functions 11.4.4 General-purpose DO_2 Signal Selection ( 3 ) Precautions When Using the General-purpose DO_2 Signal (Pin No. 12 of CN1/CN2) as a General-purpose Output Signal Always set the parameters of the connected SERVOPACK as follows when using the general-purpose DO_2 signal (pin No.
  • Page 318 11.4 Other Utility Functions 11.4.4 General-purpose DO_2 Signal Selection  SGDM, SGDH, SGDS, SGDV, and SGD7S SERVOPACK Parameter Settings Parame- Default Name Setting Contents Remarks ter No. Value Value Pn000.1 Control method selection Speed control (analog voltage reference) Pn002.0 Speed control option Use T-REF as external torque limit input.
  • Page 319: Troubleshooting

    12.1.1 Basic Flow of Troubleshooting - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12-2 12.1.2 MP2000 Series Machine Controller Error Check Flowchart - - - - - - - - - - - - - - - - - - 12-3 12.1.3 LED Indicators (MP2200/MP2300) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12-4...
  • Page 320: Basic Flow Of Troubleshooting

    12.1 Troubleshooting 12.1.1 Basic Flow of Troubleshooting 12.1 Troubleshooting This section describes the basic troubleshooting methods and provides a list of errors. 12.1.1 Basic Flow of Troubleshooting When problems occur, it is important to quickly find the cause of the problems and get the system running again as soon as possible.
  • Page 321: Mp2000 Series Machine Controller Error Check Flowchart

    12.1 Troubleshooting 12.1.2 MP2000 Series Machine Controller Error Check Flowchart 12.1.2 MP2000 Series Machine Controller Error Check Flowchart Find the correction to the problem using the following flowchart if the cause of the problem is thought to be the Machine Controller or SERVOPACK.
  • Page 322: Led Indicators (Mp2200/Mp2300)

    12.1 Troubleshooting 12.1.3 LED Indicators (MP2200/MP2300) 12.1.3 LED Indicators (MP2200/MP2300)  For explanations of the LED indicators on MP2100M and MP2500MD respectively, refer to Machine Controller MP2100/MP2100M User’s Manual Design and Maintenance (manual number SIEP C880700 01) and Machine Con- troller MP2500/MP2500M/MP2500D/MP2500MD User’s Manual (manual number SIEP C880752 00).
  • Page 323 12.1 Troubleshooting 12.1.3 LED Indicators (MP2200/MP2300) (cont’d) LED Indicator Classification Indicator Details Countermeasures Not lit Not lit Not lit Not lit Refer to 12.2.3 Correcting User Pro- A serious error has occurred. gram Errors on page 12-10. Not lit Not lit Not lit Not lit Software Error...
  • Page 324: Troubleshooting System Errors

    12.2 Troubleshooting System Errors 12.2.1 Outline of System Errors 12.2 Troubleshooting System Errors This section provides troubleshooting information for system errors. 12.2.1 Outline of System Errors The LED indicators on the front of the Basic Module can be used to determine Machine Controller operating status and error status.
  • Page 325: Outline Of System Errors

    12.2 Troubleshooting System Errors 12.2.1 Outline of System Errors ( 2 ) Accessing System Registers To access the contents of system registers, start the MPE720 Programming Tool and use the Register List or Quick Ref- erence function. The Register List on the MPE720 version 5. is displayed differently from that on the MPE720 version 6.. The display of each version is as follows.
  • Page 326 12.2 Troubleshooting System Errors 12.2.1 Outline of System Errors [ b ] Displaying a Register List with the Quick Reference (MPE720 Version 5.) Register lists can also be accessed with the Quick Reference. − Select View Quick Reference from the MPE720 Engineering Manager Window. The Quick Reference will be displayed at the bottom of the Engineering Manager Window.
  • Page 327: Troubleshooting Flowchart For System Errors

    12.2 Troubleshooting System Errors 12.2.2 Troubleshooting Flowchart for System Errors 12.2.2 Troubleshooting Flowchart for System Errors A troubleshooting flowchart for system errors is provided below. START Use the LED indicator pattern to classify the error. Battery alarm indicator Replace battery. BAT lit? Classifications = Warning Alarm...
  • Page 328: Correcting User Program Errors

    12.2 Troubleshooting System Errors 12.2.3 Correcting User Program Errors 12.2.3 Correcting User Program Errors A serious error may have occurred if the ALM and ERR indicators on the front of the Machine Controller Basic Mod- ule are lit red. Set the Machine Controller in stop status (STOP switch on DIP switch 6: ON) and investigate the error. Use the following procedure to investigate ladder program errors.
  • Page 329: System Register Configuration And Error Status

    12.2 Troubleshooting System Errors 12.2.4 System Register Configuration and Error Status 12.2.4 System Register Configuration and Error Status ( 1 ) System Status System operating status and error status is stored in registers SW00040 to SW00048. Checking of system status details are used to determine whether hardware or software is the cause of an error.
  • Page 330 12.2 Troubleshooting System Errors 12.2.4 System Register Configuration and Error Status ( 2 ) System Error Status System error status is stored in registers SW00050 to SW00060. Name Register No. Description 0001H Watchdog timer timeout error 0041H ROM diagnosis error 0042H RAM diagnosis error 0043H...
  • Page 331 12.2 Troubleshooting System Errors 12.2.4 System Register Configuration and Error Status ( 3 ) Ladder Program User Operation Error Status Error information for user operation errors in ladder programs is stored in registers SW00080 to SW00089 (Error Sta- tus 1) and SW00110 to SW00189 (Error Status 2). [ a ] Ladder Program User Operation Error Status 1 Name Register No.
  • Page 332 12.2 Troubleshooting System Errors 12.2.4 System Register Configuration and Error Status [ c ] Ladder Program User Operation Error Codes 1 Error Error Contents User* System Default Value Code 0001H −32768 [−32768] Integer operation - underflow 0002H Integer operation - overflow 32767 [32767] 0003H Integer operation - division error...
  • Page 333 12.2 Troubleshooting System Errors 12.2.4 System Register Configuration and Error Status ( 4 ) System Service Execution Status [ a ] Data Trace Execution Status Name Register No. Remarks SW00090 to Reserved by the system SW00097 Bits 0 to 3 = Group 1 to 4 Existence Of Data Trace Definition SW00098 Definition exists = 1, No definition = 0...
  • Page 334 12.2 Troubleshooting System Errors 12.2.4 System Register Configuration and Error Status ( 6 ) System I/O Error Status [ a ] MP2100M Machine Controller Name Register No. Remarks I/O Error Count SW00200 Number of I/O error occurrences Number of Input Errors SW00201 Number of input error occurrences Address of the latest input error (IW...
  • Page 335 12.2 Troubleshooting System Errors 12.2.4 System Register Configuration and Error Status [ b ] MP2200 Machine Controller Name Register No. Remarks I/O Error Count SW00200 Number of I/O error occurrences Number of Input Errors SW00201 Number of input error occurrences Address of the latest input error (IW...
  • Page 336 12.2 Troubleshooting System Errors 12.2.4 System Register Configuration and Error Status ( 7 ) Details on I/O Error Status When a system I/O error occurs, the error status will be written in the system register. [ a ] Modules Whose I/O Error Status Are Written in the System Register The table below shows whether the I/O error status of each module is written in the system register or not.
  • Page 337 12.2 Troubleshooting System Errors 12.2.4 System Register Configuration and Error Status  Register Allocation Details: Slot 0 (Reserved for Basic Module) (Bit No.) SW00208 Error code (I/O error = 2) Subslot No. (= 2) SW00209 Error code (Station error = 1) Subslot No.
  • Page 338 12.2 Troubleshooting System Errors 12.2.4 System Register Configuration and Error Status  SVB-01 Module Error Status (Slot 2) (Bit No.) SW00232 Error code (Station error = 1) Subslot No. (= 1) SW00233 ST#15 ST#2 ST#1 Not used SW00234 Not used ST#30 ST#17 ST#16...
  • Page 339 12.2 Troubleshooting System Errors 12.2.4 System Register Configuration and Error Status ( 8 ) Module Information [ a ] MP2100M Machine Controller Name Register No. Description SW00800 MP2100M ID (C181H) SW00801 Reserved by the system SW00802 CPU Software version (BCD) Number of subslots SW00803 (Version 2.45 or before: 0004H, Version 2.46 or later:...
  • Page 340 12.2 Troubleshooting System Errors 12.2.4 System Register Configuration and Error Status Name Register No. Description Rack 2, Slot 8 SW00888 to SW00895 Same as above Information Rack 2, Slot 9 SW00896 to SW00903 Same as above Information SW00904 Module ID SW00905 Hardware version (BCD) SW00906...
  • Page 341 12.2 Troubleshooting System Errors 12.2.4 System Register Configuration and Error Status [ b ] MP2200 Machine Controller Name Register No. Description CPU-01: (C280H) SW00800 Module ID CPU-02: (C281H) SW00801 Reserved by the system SW00802 CPU Software version (BCD) CPU-01: (0002H) SW00803 Number of subslots CPU-02: (0004H)
  • Page 342 12.2 Troubleshooting System Errors 12.2.4 System Register Configuration and Error Status Name Register No. Description Rack 2, Slot 6 SW00920 to SW00927 Same as above Information Rack 2, Slot 7 SW00928 to SW00935 Same as above Information Rack 2, Slot 8 SW00936 to SW00943 Same as above Information...
  • Page 343 12.2 Troubleshooting System Errors 12.2.4 System Register Configuration and Error Status [ c ] MP2300 Machine Controller Name Register No. Description SW00800 Basic Module (C380H) SW00801 Reserved by the system SW00802 CPU Software version (BCD) SW00803 Number of subslots (0004H) SW00804 CPU Function Module ID (C310H) SW00805...
  • Page 344 12.2 Troubleshooting System Errors 12.2.4 System Register Configuration and Error Status ( 9 ) Motion Program Execution Information Motion Program Alarm Main Pro- Program Parallel 0 Parallel 1 Parallel 2 Parallel 3 Parallel 4 Parallel 5 Parallel 6 Parallel 7 System gram No.
  • Page 345: Motion Program Alarms

    12.3 Motion Program Alarms If the result of investigation using 12.1.2 MP2000 Series Machine Controller Error Check Flowchart on page 12-3 indicates that a motion program alarm has occurred, use the alarm code to determine the cause of the error.
  • Page 346: Troubleshooting Motion Errors

    12.4 Troubleshooting Motion Errors 12.4.1 Overview of Motion Errors 12.4 Troubleshooting Motion Errors This section explains the details and corrective actions for errors that occur in motion control functions. 12.4.1 Overview of Motion Errors Motion errors in the MP2000-series Machine Controller include axis alarms detected for individual SERVOPACKs. The failure location can be determined and appropriate corrections can be taken simply by checking the contents of the Warning (IL02) and Alarm (IL04) monitoring parameters.
  • Page 347: Axis Alarm Details And Corrections

    12.4 Troubleshooting Motion Errors 12.4.2 Axis Alarm Details and Corrections 12.4.2 Axis Alarm Details and Corrections The following tables show the details of the axis alarms (IL04). ( 1 ) Bit 0: Servo Driver Error Detection Timing • SERVOPACK alarms are continuously monitored by the alarm management section. •...
  • Page 348 12.4 Troubleshooting Motion Errors 12.4.2 Axis Alarm Details and Corrections ( 3 ) Bit 3: Positive Direction Software Limit and Bit 4: Negative Direction Software Limit • Enabled when using a motion command and detected by the position management section. Detection Timing •...
  • Page 349 12.4 Troubleshooting Motion Errors 12.4.2 Axis Alarm Details and Corrections ( 7 ) Bit 9: Excessive Deviation Detection Timing • Always, except during speed control and torque control Processing when • The move command is not executed. Alarm Occurs • The Command Error Completed Status in the Motion Command Status (IW09, bit 3) will turn ON. One of the following is possible.
  • Page 350: Analog Servo Alarm List

    12.4 Troubleshooting Motion Errors 12.4.3 Analog Servo Alarm List 12.4.3 Analog Servo Alarm List The Servo Driver Error Flag (IL04, bit 0) turns ON when an alarm has occurred in a SERVOPACK connected to the SVA-01 Module. The content of the alarm can be confirmed by connecting a Digital Operator to the SERVOPACK. The following tables show the alarms that can occur in the SGDA, SGDB, SGDM, SGDH, SGDS, SGDV, and SGD7S SERVOPACKs.
  • Page 351 12.4 Troubleshooting Motion Errors 12.4.3 Analog Servo Alarm List Alarm Alarm Name Alarm Content SGDA SGDB SGDM SGDH Display Absolute Encoder The encoder power supplies are all down and the posi-     A.81 Backup Error tion data was cleared. Absolute Encoder A checksum error was detected in the encoder's mem- ...
  • Page 352 12.4 Troubleshooting Motion Errors 12.4.3 Analog Servo Alarm List ( 2 ) Alarm List for the SGDS, SGDV, and SGD7S SERVOPACKs : Alarm displayed  ×: No alarm displayed Code Alarm Name Alarm Content SGDS SGDV SGD7S There is an error in the parameter data in the SER- Parameter Checksum Error ...
  • Page 353 12.4 Troubleshooting Motion Errors 12.4.3 Analog Servo Alarm List Code Alarm Name Alarm Content SGDS SGDV SGD7S Abnormal oscillation was detected in the motor Vibration Alarm    A.520 speed. Vibration was detected during autotuning for the Autotuning Alarm ...
  • Page 354 12.4 Troubleshooting Motion Errors 12.4.3 Analog Servo Alarm List Code Alarm Name Alarm Content SGDS SGDV SGD7S Current Detection Error 2 ×   A.b32 The current detection circuit for phase V is faulty. Current Detection Error 3   ...
  • Page 355 12.4 Troubleshooting Motion Errors 12.4.3 Analog Servo Alarm List Code Alarm Name Alarm Content SGDS SGDV SGD7S Motor-Load Position Deviation There was too much position deviation between the ×   A.d10 Overflow motor and load during fully-closed loop control. The position feedback data exceeded Position Data Overflow ×...
  • Page 356 Appendices A System Registers Lists - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -A-2 A.1 System Service Registers- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A-2 A.2 Scan Execution Status and Calendar - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A-4 A.3 Program Software Numbers and Remaining Program Memory Capacity - - - - - - - - - - - - A-4...
  • Page 357: Appendix A System Registers Lists

    Appendix A System Registers Lists A.1 System Service Registers Appendix A System Registers Lists System Service Registers ( 1 ) Shared by All Drawings Name Register No. Remarks Reserved (Reserved for the system) SB000000 (Not used) ON for only the first scan after high-speed scan is First High-speed Scan SB000001 started.
  • Page 358 Appendix A System Registers Lists A.1 System Service Registers ( 3 ) DWG.L Only Operation starts when low-speed scan starts. Name Register No. Remarks 1 scan 1-scan Flicker Relay SB000030 1 scan 0.5s 0.5s 0.5-s Flicker Relay SB000031 1.0s 1.0s 1.0-s Flicker Relay SB000032 2.0s...
  • Page 359: Scan Execution Status And Calendar

    Appendix A System Registers Lists A.2 Scan Execution Status and Calendar Scan Execution Status and Calendar Name Register No. Remarks High-speed Scan Set Value SW00004 High-speed Scan Set Value (0.1 ms) High-speed Scan Current Value SW00005 High-speed Scan Current Value (0.1 ms) High-speed Scan Maximum Value SW00006 High-speed Scan Maximum Value (0.1 ms)
  • Page 360: Appendix B Initializing The Absolute Encoder

    Appendix B Initializing the Absolute Encoder B.1 Σ-III, Σ-V, or Σ-7 Series SERVOPACK Appendix B Initializing the Absolute Encoder The procedure for initializing an absolute encoder for a Σ-I, Σ-II, or Σ-III series SERVOPACK is given below.  Refer to 10.2.1 System Startup Flowchart on page 10-4 for the procedure for absolute-position detection. Σ...
  • Page 361: Σ-Ii Series Servopacks

    Appendix B Initializing the Absolute Encoder B.2 Σ-II Series SERVOPACKs Press the Key. The display returns to the Utility Function Mode main menu. This completes setting up the absolute encoder. Turn the power supply OFF and then back ON to reset the SERVO- PACK.
  • Page 362 Appendix B Initializing the Absolute Encoder B.2 Σ-II Series SERVOPACKs ( 2 ) Initialization Using the Built-in Panel Operator Press the MODE/SET Key to select the Auxiliary Function Mode. Press the UP ( ) and DOWN ( ) Keys to select parameter Fn008. Press the DATA/ <...
  • Page 363: Σ-I Series Servopack

    Appendix B Initializing the Absolute Encoder B.3 Σ-I Series SERVOPACK Σ-I Series SERVOPACK  Refer to the following manual for information on Σ-I series SERVOPACKs: Σ  Series SGM /SGD User’s Manual (Manual No. SIE-S800-26.3) ( 1 ) Initializing a 12-bit Absolute Encoder Use the following procedure to initialize a 12-bit absolute encoder.
  • Page 364 Appendix B Initializing the Absolute Encoder B.3 Σ-I Series SERVOPACK ( 2 ) Initializing a 15-bit Absolute Encoder Use the following procedure to initialize a 15-bit absolute encoder. Turn OFF the SERVOPACK and Machine Controller. Discharge the large-capacity capacitor in the encoder using one of the following methods. ...
  • Page 365 Appendix C Fixed Parameter Setting According to Encoder Type and Axis Type Appendix C Fixed Parameter Setting According to Encoder Type and Axis Type The method of setting or changing the coordinate zero point differs depending on the encoder type, motor type, and axis type (infinite length axis or finite length axis) to be used.
  • Page 366: C Fixed Parameter Setting According To Encoder Type And Axis Type

    Appendix C Fixed Parameter Setting According to Encoder Type and Axis Type Precautions How to Change the Coordinate Zero Point is Setting Mode When Turning the Power ON/OFF Coordinate Zero Point Determined By Requires zero point return Either Absolute mode or in Zero point return method and operation after turning ON the power.
  • Page 367: Appendix D Terminology

    Appendix D Terminology  Phase-C Pulse The encoders mounted on Yaskawa’s servomotors output three types of pulse data, phase-A, -B, and -C. Phase-C pulse is a signal that reverses once per motor rotation and is called Zero-point Pulse.  POSMAX Reset position of infinite length axis Refer to 5.4.1 Motion Fixed Parameter Details on page 5-17 for details.
  • Page 368 The coordinate system used in motion programs. It is called the Work Coordinate System to distinguish it from the Machine Coordinate System. The work coordinate system can be set by executing the Change Current Value (POS) instruction of the motion program. Refer to Machine Controller MP900/MP2000 Series User’s Manual Motion Program (Manual No. SIE-C887-1.2) for de- tails. A-13...
  • Page 369 Index INDEX connector pin arrangement - - - - - - - - - - - - - - - - - - - - - - - - - - 2-11 control block diagram - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9-2 controlling vertical axes - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11-2 correcting user program errors - - - - - - - - - - - - - - - - - - - - - - 12-10 CPOS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-48...
  • Page 370 Index general-purpose AO1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-33 machine coordinate target position - - - - - - - - - - - - - - - - - - - - 5-48 general-purpose AO2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-33 machine lock - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-25 general-purpose DI Monitor - - - - - - - - - - - - - - - - - - - - - - - - - 5-51...
  • Page 371 Index phase compensation type with an electronic cam - - - - - - - - - - - 5-30 SERVOPACK connection cables - - - - - - - - - - - - - - - - - - - - - - 2-12 phase references - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-81 SERVOPACK parameter settings - - - - - - - - - - - - - - - - - - - - - 3-10 phase-C method - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-24...
  • Page 372 Index torque unit selection - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-27 torque/force setting at the speed reference - - - - - - - - - - - - - - - 5-32 torque/thrust reference - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-31 TPOS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-48 TPRSE - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-48...
  • Page 373: Revision History

    Revision History The date of publication, revision number, and web revision number are given at the bottom right of the back cover. Refer to the following example. MANUAL NO. SIEP S880700 32B <1>-1 Web revision number Revision number Published in Japan September 2009 Date of publication Rev.
  • Page 374 Rev. Date of Publication Rev. Section Revised Contents August 2013 <1> 7.2.11 (1) Revision: Description of phase references (PHASE) Revision: Diagram of phase reference generation (when using an electronic shaft) Back cover Revision: Address May 2012 2.4.2 Revision: Values for the tightening torque in step 3 Back cover Revision: Address December 2011...
  • Page 375 Phone: +81-4-2962-5151 Fax: +81-4-2962-6138 www.yaskawa.co.jp YASKAWA AMERICA, INC. 2121, Norman Drive South, Waukegan, IL 60085, U.S.A. Phone: +1-800-YASKAWA (927-5292) or +1-847-887-7000 Fax: +1-847-887-7310 www.yaskawa.com YASKAWA ELÉTRICO DO BRASIL LTDA. 777, Avenida Piraporinha, Diadema, São Paulo, 09950-000, Brasil Phone: +55-11-3585-1100 Fax: +55-11-3585-1187 www.yaskawa.com.br...

Table of Contents