Tm Interrupt; Lvd Interrupt; Eeprom Interrupt; Serial Interface Module Interrupt - Holtek HT67F2350 Manual

Advanced a/d flash mcu with lcd & eeprom
Table of Contents

Advertisement

TM Interrupt

The Standard and Periodic TMs have two interrupts, one comes from the comparator A match
situation and the other comes from the comparator P match situation. All of the TM interrupts are
contained within the Multi-function Interrupts. For all of the TM types there are two interrupt request
flags and two enable control bits. A TM interrupt request will take place when any of the TM request
flags are set, a situation which occurs when a TM comparator P or A match situation happens.
To allow the program to branch to its respective interrupt vector address, the global interrupt enable
bit, EMI, respective TM Interrupt enable bit, and relevant Multi-function Interrupt enable bit, MFnE,
must first be set. When the interrupt is enabled, the stack is not full and a TM comparator match
situation occurs, a subroutine call to the relevant Multi-function Interrupt vector locations, will take
place. When the TM interrupt is serviced, the EMI bit will be automatically cleared to disable other
interrupts. However, only the related MFnF flag will be automatically cleared. As the TM interrupt
request flags will not be automatically cleared, they have to be cleared by the application program.

LVD Interrupt

The Low Voltage Detector Interrupt is contained within the Multi-function Interrupt. An LVD
Interrupt request will take place when the LVD Interrupt request flag, LVF, is set, which occurs
when the Low Voltage Detector function detects a low power supply voltage. To allow the program
to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, Low Voltage
Interrupt enable bit, LVE, and associated Multi-function interrupt enable bit, must first be set. When
the interrupt is enabled, the stack is not full and a low voltage condition occurs, a subroutine call to
the Multi-function Interrupt vector, will take place. When the Low Voltage Interrupt is serviced, the
EMI bit will be automatically cleared to disable other interrupts. However, only the Multi-function
interrupt request flag will be also automatically cleared. As the LVF flag will not be automatically
cleared, it has to be cleared by the application program.

EEPROM Interrupt

The EEPROM Write Interrupt is contained within the Multi-function Interrupt. An EEPROM
Write Interrupt request will take place when the EEPROM Write Interrupt request flag, DEF, is set,
which occurs when an EEPROM Write cycle ends. To allow the program to branch to its respective
interrupt vector address, the global interrupt enable bit, EMI, EEPROM Write Interrupt enable bit,
DEE, and associated Multi-function interrupt enable bit must first be set. When the interrupt is
enabled, the stack is not full and an EEPROM Write cycle ends, a subroutine call to the respective
Multi-function Interrupt vector will take place. When the EEPROM Write Interrupt is serviced, the
EMI bit will be automatically cleared to disable other interrupts. However, only the Multi-function
interrupt request flag will be automatically cleared. As the DEF flag will not be automatically
cleared, it has to be cleared by the application program.

Serial Interface Module Interrupt

The Serial Interface Module Interrupt, also known as the SIM interrupt, is contained within the
Multi-function Interrupt. A SIM Interrupt request will take place when the SIM Interrupt request
flag, SIMF, is set, which occurs when a byte of data has been received or transmitted by the SIM
interface, an I
C slave address match or I
2
branch to its respective interrupt vector address, the global interrupt enable bit, EMI, the Serial
Interface Interrupt enable bit, SIME, and Multi-function interrupt enable bit must first be set. When
the interrupt is enabled, the stack is not full and any of the above described situations occurs, a
subroutine call to the respective Multi-function Interrupt vector, will take place. When the Serial
Interface Interrupt is serviced, the EMI bit will be automatically cleared to disable other interrupts,
however only the Multi-function interrupt request flag will be also automatically cleared. As the
SIMF flag will not be automatically cleared, it has to be cleared by the application program.
Rev. 1.60
Advanced A/D Flash MCU with LCD & EEPROM
C bus time-out occurrence. To allow the program to
2
260
HT67F2350/HT67F2360
HT67F2370/HT67F2390
May 16, 2019

Advertisement

Table of Contents
loading
Need help?

Need help?

Do you have a question about the HT67F2350 and is the answer not in the manual?

Questions and answers

This manual is also suitable for:

Ht67f2360Ht67f2370Ht67f2390

Table of Contents