Emerson Micro Motion 2700 Configuration And Use Manual

Emerson Micro Motion 2700 Configuration And Use Manual

With profibus-pa
Hide thumbs Also See for Micro Motion 2700:
Table of Contents

Advertisement

Configuration and Use Manual
P/N 20000327, Rev. FB
June 2011
Micro Motion
Model 2700 Transmitter
with PROFIBUS-PA
Configuration and Use Manual
®

Advertisement

Table of Contents
loading

Summary of Contents for Emerson Micro Motion 2700

  • Page 1 Configuration and Use Manual P/N 20000327, Rev. FB June 2011 ® Micro Motion Model 2700 Transmitter with PROFIBUS-PA Configuration and Use Manual...
  • Page 2 © 2011 Micro Motion, Inc. All rights reserved. The Emerson logo is a trademark and service mark of Emerson Electric Co. Micro Motion, ELITE, ProLink, MVD and MVD Direct Connect are marks of one of the Emerson Process Management family of companies. All other trademarks are property of their...
  • Page 3: Table Of Contents

    Contents Chapter 1 Before You Begin ........1 Overview .
  • Page 4 Contents Performing meter validation ......... . . 35 Performing zero calibration .
  • Page 5 Contents Viewing transmitter status and alarms ........86 5.7.1 With the display .
  • Page 6 Contents Appendix B Using the Display ........121 Overview .
  • Page 7 Contents Appendix G NE53 History ........189 Overview .
  • Page 8 viii Model 2700 Transmitter with PROFIBUS-PA...
  • Page 9: Chapter 1 Before You Begin

    Chapter 1 Before You Begin Overview This chapter provides an orientation to the use of this manual, and includes a configuration overview flowchart and a pre-configuration worksheet. This manual describes the procedures required to start, ® configure, use, maintain, and troubleshoot Micro Motion Model 2700 transmitters with PROFIBUS-PA.
  • Page 10: Profibus-Pa Functionality

    Before You Begin PROFIBUS-PA functionality The transmitter supports the following methods of configuration and operation: • Configuration methods: ® Device description (EDD) for use with a PROFIBUS configuration tool such as Siemens ® Simatic Process Device Manager (PDM). In this manual, the term “EDD” is used to refer to this type of configuration.
  • Page 11: Communication Tools

    Before You Begin Table 1-1 Obtaining version information (continued) Component Tool Method Core processor software With ProLink II Not available With EDD Not available With display OFF-LINE MAINT > VER ProLink II With ProLink II Help > About ProLink II GSD version Text editor Open file V3x_057A.gsd or PA139742.GSD and...
  • Page 12: Planning The Configuration

    Before You Begin Planning the configuration Refer to the configuration overview flowchart in Figure 1-1 to plan transmitter configuration. In general, perform configuration steps in the order shown here. Note: Depending on your installation and application, some configuration tasks may be optional. Note: This manual provides information on topics that are not included in the configuration overview flowchart, e.g., using the transmitter, troubleshooting, and calibration procedures.
  • Page 13: Pre-Configuration Worksheet

    Before You Begin Pre-configuration worksheet The pre-configuration worksheet provides a place to record information about your flowmeter and your application. This information will affect your configuration options as you work through this manual. You may need to consult with transmitter installation or application process personnel to obtain the required information.
  • Page 14: Flowmeter Documentation

    • In Europe: In the U.K., phone 0870 240 1978 (toll-free) In other locations, phone +31 (0) 318 495 555 (The Netherlands) Customers outside the U.S.A. can also email Micro Motion customer service at: flow.support@emerson.com. Model 2700 Transmitter with PROFIBUS-PA...
  • Page 15: Chapter 2 Startup

    Chapter 2 Startup Overview This chapter describes the procedures you should perform the first time you start the flowmeter. You do not need to use these procedures every time you cycle power to the flowmeter. The procedures in this section will enable you to: •...
  • Page 16: Setting The Node Address

    Startup Setting the node address The factory default setting for the node address is 126. To set the node address: • With the display, choose OFF-LINE MAINT > CONFG > ADDRESS PBUS • With ProLink II, choose ProLink > Configuration > Device (Profibus) > Profibus Address •...
  • Page 17 Startup Table 2-2 Process variables by transducer block channel (continued) 12 (0x0C) 51 (0x33) 0x0C33 Concentration measurement – net volume flow 12 (0x0C) 52 (0x34) 0x0C34 Concentration measurement – concentration 12 (0x0C) 53 (0x35) 0x0C35 Concentration measurement – Baume To configure the AI function block channels: •...
  • Page 18: Setting The I/O Mode

    Startup Setting the I/O mode The transmitter can function in two different I/O modes: Profile-specific and Manufacturer-specific. The factory default is Manufacturer-specific. The two modes control which function blocks are available for use, and whether the format of the status byte is “classic” or “condensed.” (See Appendix D for more information on the format of the status byte.) •...
  • Page 19: Overriding The Status Byte Format

    Startup Note: Set the I/O mode in the Physical Block before loading the GSD file. Table 2-4 PROFIBUS GSD file names Identification number GSD file name Profile specific PA139742.GSD Manufacturer specific V3x_057A.gsd 2.5.1 Overriding the status byte format Each I/O mode has a default status byte format – classic or condensed. To override this default: •...
  • Page 20 Startup Figure 2-4 Configuring totalizer function block mode MMI Coriolis Flow > Function Block Totalizer 1 > Totalizer 2 > Totalizer 3 > Totalizer 4 > Parameter Parameter Parameter Parameter Integrator Function Block Selection Bus parameters Block: Totalizer 1 (Slot 4) Index 52 (set to Mode value from table) Block: Totalizer 1 (Slot 4) Index 52 (set to Mode value from table)
  • Page 21: Configuring Pressure Compensation

    Startup Configuring pressure compensation Due to process pressure change away from calibration pressure, there can be a change in sensor flow and density sensitivity. This change is called pressure effect. Pressure compensation corrects for these changes. Not all sensors and applications require pressure compensation. Contact Micro Motion Customer Service before you configure pressure compensation.
  • Page 22: Enabling Pressure Compensation

    Startup 2.7.2 Enabling pressure compensation To enable pressure compensation, see the menu flowcharts in Figure 2-5. You will need the three pressure compensation values from Section 2.7.1. Figure 2-5 Enabling pressure compensation Bus parameters Enable pressure Block: Transducer Block 1 (Slot 11) comp.
  • Page 23: Configuring A Pressure Source

    Startup 2.7.3 Configuring a pressure source You will need to choose one of two sources for pressure data: • Analog Output function block – This option allows you to poll for pressure data from an external pressure source. • Fixed pressure data – This option uses a known, constant pressure value. Note: If you configure a fixed pressure value, ensure that it is accurate.
  • Page 24: Configuring Temperature Compensation

    Startup Figure 2-7 Configuring an AO function block for pressure compensation – Bus parameters Block: Transducer Block 1 (Slots 11) Configure channel Index 121 (AO Compensation), value = 1 Block: Analog Output Block (Slots 9 and 10) Configure channel Index 37 (IN channel), value = 0x0b72 Index 38 (OUT channel), value = 0x0b72 Configuring temperature compensation External temperature compensation can be used with the petroleum measurement application or the...
  • Page 25: Configuring A Temperature Source

    Startup 2.8.2 Configuring a temperature source External temperature data is reported through an analog output (AO) function block. The transmitter has two AO blocks, each of which can be assigned to a compensation variable channel. To configure an AO function block for temperature compensation: •...
  • Page 26 Model 2700 Transmitter with PROFIBUS-PA...
  • Page 27: Chapter 3 Calibration

    Chapter 3 Calibration Overview This chapter describes the following procedures: • Characterization (Section 3.3) • Smart Meter Verification (Section 3.4) • Meter validation and adjusting meter factors (Section 3.5) • Zero calibration (Section 3.6) • Density calibration (Section 3.7) • Temperature calibration (Section 3.8) Note: All procedures provided in this chapter assume that you have established communication with the transmitter and that you are complying with all applicable safety requirements.
  • Page 28: Characterization

    Calibration 3.2.1 Characterization Characterizing the flowmeter adjusts the transmitter to compensate for the unique traits of the sensor it is paired with. Characterization parameters (sometimes called “calibration factors”) describe the sensor’s sensitivity to flow, density, and temperature. If the transmitter and the sensor were ordered together as a Coriolis flowmeter, then the flowmeter has already been characterized.
  • Page 29: Comparison And Recommendations

    Calibration Zero calibration requires only that flow through the sensor is stopped. Flowmeters are calibrated at the factory, and normally do not need to be calibrated in the field. Calibrate the flowmeter only if you must do so to meet regulatory requirements. Contact Micro Motion before calibrating your flowmeter.
  • Page 30: Performing A Characterization

    Calibration Performing a characterization Characterizing a flowmeter involves entering parameters that are printed on the sensor tag. 3.3.1 Characterization parameters The characterization parameters that must be entered depend on the sensor type: “T-Series” or “Other,” as listed in Table 3-1. The “Other” category includes all Micro Motion sensors except T-Series.
  • Page 31 Calibration Figure 3-1 Sample calibration tags – All sensors except T-Series Newer tag Older tag 19.0005.13 12502142824.44 12502.000 19.0005.13 0.0010 0.9980 14282.000 12500142864.44 4.44000 Figure 3-2 Sample calibration tags – T-Series sensors Newer tag Older tag Density calibration factors If your sensor tag does not show a D1 or D2 value: •...
  • Page 32: How To Characterize

    Calibration Flow calibration values Two separate values are used to describe flow calibration: a 6-character FCF value (including one decimal point) and a 4-character FT value (including one decimal point). During characterization, these are entered as a single 10-character string that includes two decimal points. In ProLink II, this value is called the Flowcal parameter.
  • Page 33 Calibration Figure 3-3 Characterizing the flowmeter ProLink II ProLink > MMI Coriolis Flow > Configuration Transducer Block Device tab Flow tab Calibration > Device Information Density Sensor Type Enter values from sensor tag Sensor Type Code Enter values from • Curved Tube sensor tag •...
  • Page 34: Performing Smart Meter Verification

    Calibration Performing Smart Meter Verification Note: To use Smart Meter Verification, the transmitter must be paired with an enhanced core processor, and the Smart Meter Verification option must be purchased for the transmitter. 3.4.1 Preparing for the Smart Meter Verification test The Smart Meter Verification procedure can be performed on any process fluid.
  • Page 35 Calibration Figure 3-4 Smart Meter Verification – EDD Device > Meter Verification Start/Abort Meter Verification Start Meter Verification Abort Meter Verification Select Alarm Manual Abort by Meter verification Last Value End User error Fault Mode Continue measurement Start Meter Verification Meter Verification in Enable MV Progress...
  • Page 36 Calibration Figure 3-5 Smart Meter Verification – bus parameters Step 1 Set output state (optional) Step 2 Manual abort (optional) Start/abort procedure Step 3 Check current algorithm state Step 4 Running? Yes (>0) Read percent complete No (=0) Step 8 Step 5 Check abort code Check algorithm abort state...
  • Page 37 Calibration Table 3-2 PROFIBUS parameters for Smart Meter Verification Step number Step description Parameters Set output state Block: Transducer block 1 Index: 182 Value: • 0: Last measured value (default) • 1: Fault Start/abort procedure Block: Transducer block 1 Index: 72 (Start/Stop Meter Verification) •...
  • Page 38 Calibration Figure 3-6 Smart Meter Verification – ProLink II Tools > Meter Verification > Run Meter Verification Verify configuration View Previous Results parameters Next Enter descriptive data (optional) Next Configuration Changed or Zero Changed? View details (optional) Select output behavior Start Meter Verification --------------------- Fail...
  • Page 39: Reading And Interpreting Smart Meter Verification Test Results

    Calibration 3.4.3 Reading and interpreting Smart Meter Verification test results Pass/Fail/Abort When the Smart Meter Verification test is completed, the result will be reported as Pass, Fail/Caution (depending on the tool you are using), or Abort: • Pass – The test result is within the specification uncertainty limit. In other words, the stiffness of the left and right pickoffs match the factory values plus or minus the specification uncertainty limit.
  • Page 40 Calibration Detailed test data with ProLink II For each test, the following data is stored on the transmitter: • Powered-on seconds at the time of the test • Test result • Stiffness of the left and right pickoffs, shown as percentage variation from the factory value. If the test aborted, 0 is stored for these values.
  • Page 41 Calibration Figure 3-7 Test result chart Initiated from ProLink II Initiated from the display or other tool The test result chart shows the results for all tests in the ProLink II database, plotted against the specification uncertainty limit. The inlet stiffness and the outlet stiffness are plotted separately. This helps to distinguish between local and uniform changes to the sensor tubes.
  • Page 42: Setting Up Automatic Or Remote Execution Of The Smart Meter Verification Test

    Calibration Note the following: • The test result chart may not show all test results, and test counters may not be continuous. ProLink II stores information about all tests initiated from ProLink II and all tests available on the transmitter when the test database is synchronized. However, the transmitter stores only the twenty most recent test results.
  • Page 43: Performing Meter Validation

    Calibration Performing meter validation To perform meter validation: 1. Determine the meter factor(s) to use. You may set any combination of the mass flow, volume flow, and density meter factors. Note that all three meter factors are independent: • The mass flow meter factor affects only the value reported for mass flow. •...
  • Page 44 Calibration Example The flowmeter is installed and proved for the first time. The flowmeter mass measurement is 250.27 lb; the reference device measurement is 250 lb. A mass flow meter factor is determined as follows: × ----------------- - MeterFactor 0.9989 MassFlow 250.27 The first mass flow meter factor is 0.9989.
  • Page 45: Performing Zero Calibration

    Calibration Performing zero calibration Zeroing the flowmeter establishes the flowmeter’s point of reference when there is no flow. The meter was zeroed at the factory, and should not require a field zero. However, you may wish to perform a field zero to meet local requirements or to confirm the factory zero. When you zero the flowmeter, you may need to adjust the zero time parameter.
  • Page 46 Calibration Figure 3-9 Zeroing procedure – EDD Calibration > Zero Cal Modify zero time if desired Zero in progress Start Zero Cal Zeroing success Troubleshoot Execute Stop flow through sensor Figure 3-10 Zeroing procedure – Bus parameters Modify zero time Block: Transducer Block 1 (Slot 11) (if desired) Index 83 (zero time)
  • Page 47: Performing Density Calibration

    Calibration Figure 3-11 Zeroing procedure – ProLink II ProLink > Calibration > Zero Calibration Modify zero time if required Perform Auto Zero Calibration in Progress LED turns red Wait until Calibration in Progress LED turns green Calibration Green Failure LED Done Troubleshoot Performing density calibration...
  • Page 48: Preparing For Density Calibration

    Calibration Note: Before performing the calibration, record your current calibration parameters. If you are using ProLink II, you can do this by saving the current configuration to a file on the PC. If the calibration fails, restore the known values. 3.7.1 Preparing for density calibration Before beginning density calibration, review the requirements in this section.
  • Page 49 Calibration Figure 3-12 D1 and D2 density calibration – EDD Calibration > Density Cal D1 calibration D2 calibration Fill sensor with D1 Fill sensor with D2 fluid fluid D1 = density of D1 D2 = density of D2 fluid fluid Start Lo Density Cal Start Hi Density Cal Execute...
  • Page 50 Calibration Figure 3-14 D1 and D2 density calibration – ProLink II D1 Calibration D2 Calibration Close shutoff valve Fill sensor with D1 fluid Fill sensor with D2 fluid downstream from sensor ProLink Menu > ProLink Menu > Calibration > Calibration > Density cal –...
  • Page 51 Calibration Figure 3-15 D3 or D3-and-D4 density calibration – EDD Calibration > T-Series Density Cal D3 calibration D4 calibration Fill sensor with D3 Fill sensor with D4 fluid fluid D3 = density of D3 D4 = density of D4 fluid fluid Start D3 Density Cal Start D4 Density Cal...
  • Page 52: Performing Temperature Calibration

    Calibration Figure 3-17 D3 or D3-and-D4 density calibration – ProLink II D3 Calibration D4 Calibration Close shutoff valve Fill sensor with D3 fluid Fill sensor with D4 fluid downstream from sensor ProLink Menu > ProLink Menu > Calibration > Calibration > Density cal –...
  • Page 53 Calibration Figure 3-18 Temperature calibration – ProLink II Temperature Offset calibration Temperature Slope calibration Fill sensor with low-temperature fluid Fill sensor with high-temperature fluid Wait until sensor achieves thermal Wait until sensor achieves thermal equilibrium equilibrium ProLink Menu > ProLink Menu > Calibration >...
  • Page 54 Model 2700 Transmitter with PROFIBUS-PA...
  • Page 55: Configuration

    Chapter 4 Configuration Overview This section describes how to change the operating settings of the transmitter. Note: All procedures provided in this chapter assume that you have established communication with the transmitter and that you are complying with all applicable safety requirements. See Appendix C or the documentation for your PROFIBUS host or configuration tool.
  • Page 56: Configuring Standard Volume Flow Measurement For Gas

    Configuration Configuring standard volume flow measurement for gas Two types of volume flow measurement are available: • Liquid volume (the default) • Gas standard volume Only one type of volume flow measurement can be performed at a time (i.e., if liquid volume flow measurement is enabled, gas standard volume flow measurement is disabled, and vice versa).
  • Page 57 Configuration Figure 4-1 Enabling and configuring gas standard volume – EDD Enabling GSV Configuring GSV MMI Coriolis Flow > MMI Coriolis Flow > Transducer Block > Transducer Block > Measurement > Measurement > Process Variable > Process Variable > Volume Flow Type Volume Flow Gas Std Density Set Volume Flow Type to...
  • Page 58 Configuration Figure 4-3 Enabling and configuring gas standard volume – ProLink II ProLink > Configuration Gas in Enter Other Gas Gas Wizard Choose Gas Flow tab Property list? Select method: Set Vol Flow Type to Std Gas Volume Molecular Weight Specific Gravity Compared to Air Select gas from...
  • Page 59: Changing The Measurement Units

    Configuration Changing the measurement units The transmitter is able to store measurement units in two different places: in the transducer block and in the AI blocks. These two units locations are independent and can be set to different values. This affects configuration in the following ways: •...
  • Page 60 Configuration Table 4-3 Volume flow measurement units – Liquid Volume flow unit ProLink II Display Unit description ft3/sec CUFT/S Cubic feet per second ft3/min CUF/MN Cubic feet per minute ft3/hr CUFT/H Cubic feet per hour ft3/day CUFT/D Cubic feet per day m3/sec M3/S Cubic meters per second...
  • Page 61 Configuration Table 4-4 Volume flow measurement units – Gas (continued) Volume flow unit ProLink II Display Unit description Nm3/day NM3/D Normal cubic meters per day NL/s NLPS NLPS Normal liter per second NL/m NLPM NLPM Normal liter per minute NL/h NLPH NLPH Normal liter per hour...
  • Page 62 Configuration Table 4-6 Temperature measurement units Temperature unit PROFIBUS-PA ProLink II Display Unit description ° ° ° Degrees Celsius ° ° ° Degrees Fahrenheit ° ° ° Degrees Rankine ° ° Kelvin Although pressure units are listed in Table 4-7, the transmitter does not measure pressure. These units are for configuring external pressure compensation.
  • Page 63: Configuring The Petroleum Measurement Application

    Configuration Configuring the petroleum measurement application The petroleum measurement parameters determine the values that will be used in petroleum measurement-related calculations. The petroleum measurement parameters are available only if the petroleum measurement application is enabled on your transmitter. Note: The petroleum measurement application requires liquid volume measurement units. If you plan to use petroleum measurement process variables, ensure that liquid volume flow measurement is specified.
  • Page 64 Configuration Petroleum measurement reference tables Reference tables are organized by reference temperature, CTL derivation method, liquid type, and density unit. The table selected here controls all the remaining options. • Reference temperature: If you specify a 5x, 6x, 23x, or 24x table, the default reference temperature is 60 °F, and cannot be changed.
  • Page 65: Configuration Procedure

    Configuration Table 4-8 Petroleum measurement reference temperature tables Density unit and range derivation Table method Base temperature Degrees API Base density Relative density Method 1 60 °F, non-configurable 0 to +100 Method 1 60 °F, non-configurable 0 to +85 Method 1 60 °F, non-configurable –10 to +40 Method 1...
  • Page 66 Configuration Figure 4-4 Setting the petroleum measurement table type Bus parameters MMI Coriolis Flow > Block: Transducer Block 2 (Slot 12) Table type Transducer Block > Index 40 (API2540 CTL table type) ProLink II API2540 CTL Table Type ProLink > Configuration Select table type from the API Table Type...
  • Page 67: Configuring The Concentration Measurement Application

    Configuration Configuring the concentration measurement application Micro Motion sensors provide direct measurements of density, but not of concentration. The concentration measurement application calculates process variables such as concentration or density at reference temperature, using density process data appropriately corrected for temperature. Note: For a detailed description of the concentration measurement application, see the manual entitled Micro Motion Enhanced Density Application: Theory, Configuration, and Use.
  • Page 68 Configuration Table 4-10 Standard curves and associated measurement units (continued) Name Description Density unit Temperature unit HFCS 42 Curve represents a hydrometer scale for HFCS 42 g/cm °C (high fructose corn syrup) solutions that indicates the percent by mass of HFCS in solution. HFCS 55 Curve represents a hydrometer scale for HFCS 55 g/cm...
  • Page 69: Configuration Procedure

    Configuration Table 4-11 Derived variables and available process variables (continued) Available process variables Density at Standard Specific Concentration Net Derived variable – ProLink II label reference volume gravity mass volume and definition temperature flow rate flow rate flow rate ✓ ✓...
  • Page 70: Changing The Output Scale

    Configuration Changing the output scale The AI function blocks can be configured to scale their output. The output scale is established by defining a process variable value at 0% of scale and at 100% of scale. The output of the AI block will be translated to a value between these two limits.
  • Page 71: Changing Process Alarms

    Configuration Changing process alarms The transmitter uses process alarms to indicate that a process value has exceeded its user-defined limits. The transmitter maintains four alarm values for each process variable. In addition, the transmitter has an alarm hysteresis function to prevent erratic alarm reports. Note: Process alarms are only posted through the AI function blocks and totalizer blocks and are not shown on the display or in ProLink II.
  • Page 72 Configuration Figure 4-8 Changing alarm values Bus parameters Model 2700 Transmitter with PROFIBUS-PA...
  • Page 73: Alarm Hysteresis

    Configuration 4.9.2 Alarm hysteresis The alarm hysteresis value is a percentage of the output scale. After a process alarm is created, the transmitter will not create new alarms unless the process first returns to a value within the range of the alarm hysteresis percentage.
  • Page 74: Configuring Status Alarm Severity

    Configuration 4.10 Configuring status alarm severity The severity level of some status alarms can be reclassified. For example: • The default severity level for Alarm A020 (calibration factors unentered) is Fault, but you can reconfigure it to either Informational or Ignore. •...
  • Page 75 Configuration Table 4-12 Status alarms and severity levels (continued) Default Alarm code Index severity Configurable Description A103 Data loss possible Informational A104 Calibration in progress Informational A105 Slug flow Informational A107 Power reset occurred Informational A116 API temperature outside standard range Informational A117 API density out of limits...
  • Page 76: Changing The Damping Values

    Configuration 4.11 Changing the damping values A damping value is a period of time, in seconds, over which the process variable value will change to reflect 63% of the change in the actual process. Damping helps the transmitter smooth out small, rapid measurement fluctuations.
  • Page 77 Configuration Figure 4-12 Changing the damping values Bus parameters Block: Transducer Block 1 (Slot 11) Index 33 (flow damping) Damping Index 34 (temperature damping) Index 35 (density damping) ProLink II ProLink > Configuration Flow tab Density tab Temperature tab Enter a damping value in the Enter a damping value in the Enter a damping value in the Flow Damp box...
  • Page 78: Damping And Volume Measurement

    Configuration When you specify a new damping value, it is automatically rounded down to the nearest valid damping value. Valid damping values are listed in Table 4-13. Table 4-13 Valid damping values Process variable Valid damping values Flow (mass and volume) 0, 0.04, 0.08, 0.16, ...
  • Page 79: Configuring Cutoffs

    Configuration Figure 4-13 Configuring slug flow limits and duration ProLink II MMI Coriolis Flow > ProLink > Transducer Block Configuration Calibration Slug Limit Density tab Set the density limits: Slug Duration Slug Low Limit Slug High Limit • Slug Low Limit •...
  • Page 80 Configuration Figure 4-14 Configuring cutoffs MMI Coriolis Flow > Transducer Block > Measurement > Process Variable Mass Flow Volume Flow Density Volume Flow Low Mass Flow Low Cutoff Density Cutoff Cutoff Notes: ProLink II (1) When Gas Standard Volume is configured, this option will be ProLink >...
  • Page 81: Changing The Measurement Mode Parameter

    Configuration 4.14 Changing the measurement mode parameter The measurement mode parameter defines how the flow is added to or subtracted from the totalizers. • Forward flow moves in the direction of the arrow on the sensor. • Reverse flow moves in the direction opposite from the arrow on the sensor. Table 4-15 shows the possible values for the measurement mode parameter and the transmitter’s behavior when the flow is positive or negative.
  • Page 82: Configuring Sensor Parameters

    Configuration 4.15 Configuring sensor parameters The sensor parameters are used to describe the sensor component of your flowmeter. These sensor parameters are not used in transmitter processing, and are not required: • Serial number • Sensor material • Liner material •...
  • Page 83: Configuring The Display

    Configuration 4.16 Configuring the display You can restrict the display functionality or change the variables that are shown on the display. 4.16.1 Enabling and disabling display functions Each display function and its associated parameter are listed in Table 4-16. Table 4-16 Display functions and parameters Display Display function...
  • Page 84 Configuration Figure 4-17 Configuring the display – EDD menus Figure 4-18 Configuring the display – bus parameters Block: Transducer Block 1 (Slot 11) Index 220 (Totalizer reset) Index 221 (Totalizer start/stop) Index 222 (Auto scroll enabled/disabled) Index 223 (Offline menu enabled/disabled) Index 224 (Offline password enabled/disabled) Display options Index 225 (Alarm menu enabled/disabled)
  • Page 85: Changing The Scroll Rate

    Configuration 4.16.2 Changing the scroll rate The scroll rate is used to control the speed of scrolling when auto scroll is enabled. Scroll rate defines how long each display variable will be shown on the display. The time period is defined in seconds (e.g., if scroll rate is set to 10, each display variable will be shown on the display for 10 seconds).
  • Page 86: Changing The Display Variables And Precision

    Configuration 4.16.6 Changing the display variables and precision The display can scroll through up to 15 process variables in any order. You can select the process variables you wish to see and the order in which they should appear. Additionally, you can configure display precision for each display variable. Display precision controls the number of digits to the right of the decimal place.
  • Page 87 Configuration Figure 4-20 Changing the display variables and precision ProLink II ProLink > Configuration For each display variable, select a process variable from the list Display tab Enter a precision in the Number of Decimals box Apply Bus parameters Block: Transducer Block 1 (Slot 11) Display variables Indices 232 through 246 Block: Transducer Block 1 (Slot 11)
  • Page 88: Enabling Ld Optimization

    Configuration 4.17 Enabling LD Optimization LD Optimization is a special compensation is that is specifically for hydrocarbon liquids. LD Optimization should not be used with any other process fluids. LD Optimization is available only with certain large sensor sizes. If your sensor can benefit from LD Optimization, the enable/disable option will appear in ProLink II or on the display.
  • Page 89 Configuration Figure 4-22 LD Optimization – Display Scroll and Select simultaneously for 4 seconds Scroll OFF-LINE MAINT Select Scroll CONFG Select FACTOR LD Scroll Select Select Scroll LD OPT MTR F Configuration and Use Manual...
  • Page 90 Model 2700 Transmitter with PROFIBUS-PA...
  • Page 91: Chapter 5 Operation

    Chapter 5 Operation Overview This chapter describes how to use the transmitter in everyday operation. The following topics and procedures are discussed: • Using the I&M functions (Section 5.2) • Recording process variables (Section 5.3) • Viewing process variables (Section 5.4) •...
  • Page 92: Viewing Process Variables

    Operation Record the following process variables: • Flow rate • Density • Temperature • Tube frequency • Pickoff voltage • Drive gain To view these values, refer to Section 5.4. Viewing process variables Process variables include measurements such as mass flow rate, volume flow rate, temperature, and density.
  • Page 93: With Prolink Ii

    Operation 5.4.2 With ProLink II The Process Variables window opens automatically when you first connect to the transmitter. This window displays current values for the standard process variables (mass, volume, density, temperature, external pressure, and external temperature). If you have closed the Process Variables window, select ProLink >...
  • Page 94: Accessing Diagnostic Information With A Profibus Host

    Operation Figure 5-1 Sensor simulation mode – ProLink II ProLink > Configuration Select a wave form for mass flow, density, and temperature from the Wave Form lists Sensor Simulation tab Triangular or Select Enable Fixed wave sine wave Simulation Mode Enter a value in the Enter period in the Fixed Value box...
  • Page 95: With Prolink Ii

    Operation The status LED is located at the top of the display (Figure 5-2). The status LED can be in one of six possible states, as listed in Table 5-1. The procedure for responding to alarms is shown in Figure B-5. Figure 5-2 Status LED Status LED...
  • Page 96: With Edd

    Operation Note: The location of alarms in the Status and Alarm Log windows is not affected by the configured alarm severity (see Section 4.10). Alarms in the Status window are predefined as Critical, Informational, or Operational. Alarms in the Alarm Log window are predefined as High Priority or Low Priority.
  • Page 97 Operation Table 5-2 Totalizer and inventory display unit names Totalizer/inventory Unit name on display Mass total Mass unit Mass inventory Mass unit alternating with MASSI Volume total (liquid) Volume unit Volume inventory (liquid) Volume unit alternating with LVOLI Gas standard volume total Volume unit Gas standard volume inventory Volume unit alternating with...
  • Page 98: Controlling The Totalizers And Inventories

    Operation With EDD To view the current value of the totalizers and inventories: • For standard mass, liquid standard volume, and gas standard volume, select View > Process and then select . (If the transmitter is configured to use Variables > Totalizer Mass Volume gas standard volume, then...
  • Page 99 Operation With Prolink II To control concentration measurement totalizers and inventories, choose ProLink > CM Totalizer Control . To control all other totalizer and inventory functions, choose ProLink > Totalizer Control To reset inventories using ProLink II, you must first enable this capability. To enable inventory reset using ProLink II: 1.
  • Page 100 Model 2700 Transmitter with PROFIBUS-PA...
  • Page 101: Troubleshooting

    Chapter 6 Troubleshooting Overview This section describes guidelines and procedures for troubleshooting the flowmeter. The information in this section will enable you to: • Categorize the problem • Determine whether you are able to correct the problem • Take corrective measures (if possible) Note: All procedures provided in this chapter assume that you have established communication with the transmitter and that you are complying with all applicable safety requirements.
  • Page 102: Transmitter Does Not Communicate

    Troubleshooting Transmitter does not communicate If the transmitter does not appear to be communicating on the network, then: • Make sure the PROFIBUS network has proper termination. • Check the PROFIBUS wiring between the transmitter and the DP/PA coupler, and between the DP/PA coupler and the host system.
  • Page 103: Output Problems

    Troubleshooting Output problems Micro Motion suggests that you make a record of the process variables listed below, under normal operating conditions. This will help you recognize when the process variables are unusually high or low. • Flow rate • Density •...
  • Page 104 Troubleshooting Table 6-3 Output problems and possible remedies (continued) Symptom Cause Possible remedies Erratic non-zero flow rate under Wiring problem Verify all sensor-to-transmitter wiring and no-flow conditions ensure the wires are making good contact. Refer to the installation manual. Incorrectly grounded 9-wire cable Verify 9-wire cable installation.
  • Page 105 Troubleshooting Table 6-3 Output problems and possible remedies (continued) Symptom Cause Possible remedies Inaccurate flow rate Bad flow cal factor Verify characterization. See Section 6.7.4. Inappropriate measurement unit Check measurement units using a PROFIBUS host or configuration tool. Bad sensor zero Rezero the flowmeter.
  • Page 106: Damping

    Troubleshooting 6.7.1 Damping An incorrectly set damping value may make the transmitter’s output appear too sluggish or too jumpy. Adjust the damping parameters in the transducer block to achieve the damping effect you want. See Section 4.11. Other damping problems If the transmitter appears to be applying damping values incorrectly or the damping effects do not appear to be changed by adjustments to the damping parameters, then the AI PV Filter Time parameter in an AI function block may be improperly set.
  • Page 107: Status Alarms

    Troubleshooting Status alarms Status alarms are reported by a PROFIBUS host, the display, and ProLink II software. Remedies for the alarm states appear in Table 6-4. Note: Some status alarms will cause all of the function blocks (AI, AO, and totalizer) to change to Out of Service mode.
  • Page 108 Troubleshooting Table 6-4 Status alarms and remedies (continued) Display code Description Possible remedies A010 Calibration failure If alarm appears during zero, ensure there is no flow through the sensor, then retry. Cycle power to the flowmeter, then retry. A011 Calibration too low Ensure there is no flow through sensor, then retry.
  • Page 109 Troubleshooting Table 6-4 Status alarms and remedies (continued) Display code Description Possible remedies A028 Sensor/transmitter write failure Cycle power to the meter. The flowmeter might need service. Contact Micro Motion Customer Service. A030 Hardware/software incompatible The loaded software is not compatible with the programmed board type.
  • Page 110: Diagnosing Wiring Problems

    Troubleshooting Diagnosing wiring problems Use the procedures in this section to check the transmitter installation for wiring problems. Installation procedures are provided in the manual entitled Model 1700 and Model 2700 Transmitters: Installation Manual. Removing the wiring compartment covers in explosive atmospheres while the power is on can cause an explosion.
  • Page 111: Checking The Grounding

    Troubleshooting 6.9.3 Checking the grounding The sensor and the transmitter must be grounded. If the core processor is installed as part of the transmitter or the sensor, it is grounded automatically. If the core processor is installed separately, it must be grounded separately. Refer to the installation manual. 6.9.4 Checking the communication wiring To check the communication wiring, verify that:...
  • Page 112: Checking The Test Points

    Troubleshooting 6.12 Checking the test points You can diagnose sensor failure or overrange status alarms by checking the flowmeter test points. The test points include left and right pickoff voltages, drive gain, and tube frequency. 6.12.1 Obtaining the test points You can obtain the test points with the PROFIBUS EDD, PROFIBUS bus parameters, or ProLink II.
  • Page 113: Excessive Drive Gain

    Troubleshooting Table 6-6 Sensor pickoff values (continued) Sensor model Pickoff value Model F200 sensors 2.0 mV peak to peak per Hz based on flow tube frequency Model H025, H050, and H100 sensors 3.4 mV peak to peak per Hz based on flow tube frequency Model H200 sensors 2.0 mV peak to peak per Hz based on flow tube frequency Model R025, R050, or R100 sensor...
  • Page 114: Low Pickoff Voltage

    Troubleshooting 6.12.5 Low pickoff voltage The causes and possible solutions of low pickoff voltage are listed in Table 6-9. Table 6-9 Low pickoff voltage causes and solutions Cause Solution Faulty wiring runs between the sensor and core Refer to the sensor manual and transmitter installation processor manual.
  • Page 115: Checking The Core Processor

    Troubleshooting 6.13 Checking the core processor Two core processor procedures are available: • You can check the core processor LED. The core processor has an LED that indicates different flowmeter conditions. • You can perform the core processor resistance test to check for a damaged core processor. For both tests you will need to expose the core processor.
  • Page 116: Checking The Core Processor Led

    Troubleshooting 6.13.2 Checking the core processor LED Do not shut off power to the transmitter when checking the core processor LED. To check the core processor LED: 1. Expose the core processor according to the instructions in Section 6.13.1. 2. Check the core processor LED against the conditions listed in Table 6-10 (standard core processor) or Table 6-11 (enhanced core processor).
  • Page 117: Core Processor Resistance Test

    Troubleshooting Table 6-11 Enhanced core processor LED behavior, meter conditions, and remedies (continued) LED behavior Condition Possible remedy Solid red High severity alarm Check alarm status. Flashing red (80% on, Tubes not full If alarm A105 (slug flow) is active, see Section 6.10. 20% off) If alarm A033 (tubes not full) is active, verify process.
  • Page 118: Checking Sensor Coils And Rtd

    Troubleshooting 6.14 Checking sensor coils and RTD Problems with sensor coils can cause several alarms, including sensor failure and a variety of out-of-range conditions. Checking the sensor coils involves testing the terminal pairs and testing for shorts to the case. 6.14.1 9-wire remote or remote core processor with remote transmitter installation If you have a 9-wire remote or a remote core processor with remote transmitter installation:...
  • Page 119: 4-Wire Remote Or Integral Installation

    Troubleshooting 8. Test the terminal pairs as follows: • Brown against all other terminals except Red • Red against all other terminals except Brown • Green against all other terminals except White • White against all other terminals except Green •...
  • Page 120 Troubleshooting 5. If you have a standard core processor, loosen the captive screw (2,5 mm) at the center of the core processor. Carefully remove the core processor from the sensor by grasping it and lifting it straight up. Do not twist or rotate the core processor. 6.
  • Page 121 Troubleshooting Figure 6-2 Sensor pins – Standard core processor Right pickoff ( – ) Right pickoff Lead length compensator ( + ) ( + ) Left pickoff ( – ) Resistance temperature detector return / Lead length compensator (common) Left pickoff ( + ) Resistance temperature detector Drive...
  • Page 122 Troubleshooting Reinstalling the core processor If you removed the core processor, replace the core processor according to the instructions below. 1. If you have a standard core processor: a. Align the three guide pins on the bottom of the core processor with the corresponding holes in the base of the core processor housing.
  • Page 123: Appendix A Flowmeter Installation Types And Components

    Appendix A Flowmeter Installation Types and Components Overview This appendix provides illustrations of different flowmeter installations and components for the Model 2700 transmitter. Installation diagrams Model 2700 transmitters can be installed in four different ways (see Figure A-1): • Integral •...
  • Page 124 Flowmeter Installation Types and Components Figure A-1 Installation types Transmitter Integral Core processor (standard only) Sensor 4-wire remote Transmitter Sensor 4-wire cable Core processor (standard or enhanced) Transmitter 9-wire remote Sensor Core processor (standard only) 9-wire cable Junction box Transmitter Remote core processor with remote transmitter 4-wire cable...
  • Page 125 Flowmeter Installation Types and Components Figure A-2 Transmitter and core processor components — Integral installations Transmitter Transition ring Core processor 4 X Cap screws (4 mm) Base Sensor Figure A-3 Transmitter components, junction end-cap removed — 4-wire remote and remote core processor with remote transmitter installations –...
  • Page 126 Flowmeter Installation Types and Components Figure A-4 Transmitter/core processor assembly exploded view — 9-wire remote installations Transmitter Core processor 4 X Cap screws (4 mm) Core processor housing Conduit opening for 9-wire cable End-cap Mounting bracket Figure A-5 Remote core processor components Core processor lid 4 X Cap screws (4 mm) Conduit opening...
  • Page 127 Flowmeter Installation Types and Components Figure A-6 4-wire cable between Model 2700 transmitter and standard core processor Core processor User-supplied or Mating connector terminals factory-supplied 4-wire cable (transmitter) VDC+ (Red) RS-485/B (Green) RS-485/A (White) VDC– (Black) Figure A-7 4-wire cable between Model 2700 transmitter and enhanced core processor Core processor User-supplied or Mating connector...
  • Page 128 Flowmeter Installation Types and Components Figure A-8 9-wire cable between sensor junction box and core processor 9-wire cable 9-wire terminal connections (core processor) Ground screw Black Black to sensor junction box (Drains from all wire sets) Brown Violet Green Green White Yellow White...
  • Page 129: Appendix B Using The Display

    Appendix B Using the Display Overview This appendix describes the basic use of the display and provides a menu tree for the display. You can use the menu tree to locate and perform display commands quickly. Note that Model 2700 transmitters can be ordered with or without displays. Not all configuration and use functions are available through the display.
  • Page 130: Using The Optical Switches

    Using the Display Using the optical switches optical switches are used to navigate the display menus. To activate an optical Scroll Select switch, touch the lens in front of the optical switch or move your finger over the optical switch close to the lens.
  • Page 131: Using Display Menus

    Using the Display B.4.3 Using display menus Note: The display menu system provides access to basic transmitter functions and data. It does not provide access to all functions and data. To access all functions and data, use a PROFIBUS host, PROFIBUS configuration tool, or ProLink II To enter the display menu system: 1.
  • Page 132: Entering Floating-Point Values With The Display

    Using the Display B.4.5 Entering floating-point values with the display Certain configuration values, such as meter factors or output ranges, are entered as floating-point values. When you first enter the configuration screen, the value is displayed in decimal notation (as shown in Figure B-2) and the active digit is flashing.
  • Page 133 Using the Display Figure B-3 Numeric values in exponential notation SX.XXXEYY Sign Digit (0–9) Digits Enter a four-digit Sign or Digit (0–3) number; three digits must fall to the right of the decimal point. Exponent indicator To change from exponential to decimal notation: until the is flashing.
  • Page 134: Abbreviations

    Using the Display Abbreviations The display uses a number of abbreviations. Table B-1 lists the abbreviations used by the display. Table B-1 Display codes and abbreviations Abbreviation Definition Abbreviation Definition ACK ALARM Acknowledge alarm LPO_A Left pickoff amplitude ACK ALL Acknowledge all alarms LVOLI Volume inventory...
  • Page 135: Display Menus

    Using the Display Display menus Figures B-4 through B-16 show the commands accessible through the display. Figure B-4 Display menu – Main Scroll and Select simultaneously for 4 seconds ENTER SEE ALARM Scroll Scroll OFF-LINE MAINT METER/VERFY Figure B-5 Display menu – Alarms SEE ALARM Select ACK ALL...
  • Page 136 Using the Display Figure B-6 Display menu – Smart Meter Verification: Run verification ENTER METER/VERFY Select RUN VERFY RESULTS READ SCHEDULE VERFY Scroll Scroll Select OUTPUTS Select CONTINUE MEASR Scroll FAULT Scroll LAST VALUE Select Select Select ARE YOU SURE/YES? Select .
  • Page 137 Using the Display Figure B-7 Display menu – Smart Meter Verification: Read results ENTER METER/VERFY Select RUN VERFY RESULTS READ SCHEDULE VERFY Scroll Scroll Select RUNCOUNT x Select Scroll Pass Result type Abort Fail xx HOURS xx HOURS xx HOURS Select Select Select...
  • Page 138 Using the Display Figure B-8 Display menu – Smart Meter Verification: Scheduling ENTER METER/VERFY Select RUN VERFY RESULTS READ SCHEDULE VERFY Scroll Scroll Select Schedule set? SCHED IS OFF TURN OFF SCHED/YES? Scroll Scroll Select Schedule deleted SET NEXT SET RECUR Scroll HOURS LEFT Select...
  • Page 139 Using the Display Figure B-10 Display menu – Off-line Maintenance: Configuration OFF-LINE MAINT Select SWREV Scroll CONFG Scroll ZERO Scroll SENSOR VERFY Select UNITS Scroll MTR F Scroll DISPLAY Scroll ADDRESS PBUS Scroll IDENT SEL Scroll CONFIG AI Scroll CONFIG AO Scroll CONFIG TOT Figure B-11...
  • Page 140 Using the Display Figure B-13 Display menu – Off-line Maiintenance: Configuration: Display DISPLAY Select TOTALS RESET Scroll TOTALS STOP Scroll DISPLAY OFFLN Scroll DISPLAY ALARM Scroll DISPLAY ACK Scroll AUTO SCRLL Scroll SCROLL RATE Scroll CODE OFFLN Scroll CODE ALARM Scroll CHANGE CODE Scroll...
  • Page 141 Using the Display Figure B-15 Display menu – Off-line Maintenance: Configuration: AO blocks CONFG AO Select AO1 INCH Scroll AO1 PV UNITS Scroll AO1 OUTCH Scroll AO1 OUT UNITS Scroll AO2 INCH Scroll AO2 PV UNITS Scroll AO2 OUTCH Scroll AO2 OUT UNITS Figure B-16 Display menu –...
  • Page 142 Using the Display Figure B-17 Display menu – Off-line Maintenance: Zeroing OFF-LINE MAINT Select SWREV Scroll CONFG Scroll ZERO Scroll SENSOR VERFY Select CAL ZERO …………………. Select ZERO/YES? CAL FAIL CAL PASS Select Model 2700 Transmitter with PROFIBUS-PA...
  • Page 143: Appendix C Connecting With Prolink Ii

    Appendix C Connecting with ProLink II Overview The instructions in this manual assume that users are already familiar with ProLink II software and can perform the following tasks: • Start and navigate in ProLink II software • Establish communication between ProLink II software and compatible devices •...
  • Page 144: Connecting To The Service Port

    Connecting with ProLink II C.2.1 Connecting to the service port To temporarily connect to the service port, which is located in the non-intrinsically safe power-supply compartment: 1. Open the cover to the intrinsically safe wiring compartment. Opening the wiring compartment in a hazardous area can cause an explosion. The service port should only be used for temporary connections.
  • Page 145: Appendix Dprofibus-Pa Status Byte

    Appendix D PROFIBUS-PA Status Byte Overview This appendix describes the status byte reported by the transmitter to a PROFIBUS host. The output of each AI, AO, and totalizer function block is a 5-byte package: four bytes of process information and one byte indicating measurement quality, also called the status byte. The format of the status byte depends on whether the transmitter is configured for classic mode or condensed mode.
  • Page 146 PROFIBUS-PA Status Byte Table D-3 Sub-status format – Uncertain status Bits Meaning Comment 0000 Non-specific TRUE if the following alarm codes are active: A005, A008, A010, A011, A012, A013, A021, A033, or A102. 0011 Initial value TRUE if the following alarm codes are active: A006 or A120.
  • Page 147: Condensed-Mode Status Byte Format

    PROFIBUS-PA Status Byte Condensed-mode status byte format Table D-7 describes the format of the status byte when the transmitter is configured for condensed mode. Refer to the PROFIBUS Specification Profile for Process Control Devices Version v3.01 December 2004 and the PROFIBUS Specification June 2005 Amendment 2 to the PROFIBUS Profile for Process Control Devices v3.01, Condensed Status and Diagnostic Messages v1.0 for additional information.
  • Page 148 PROFIBUS-PA Status Byte Table D-7 Condensed-mode status byte format (continued) Expanded status Condensed status Alarms Totalizer Fail Safe: UC_NON_SPECIFIC C_UNCERTAINC_SUBSTITUTE_SET Failsafe – (0x40) (0x4B) MEMORY mode UC_INITIAL_VAL (0x4C) C_UNCERTAIN_INITIAL_VALUE (0x4F) When reset or preset totals. UC_SUBSTITUTE_VAL (0x48) C_UNCERTAIN_SUBSTITUTE_SET (0x4B) AO failsafe active.
  • Page 149: Appendix E Slave Diagnostic Response Bytes

    Appendix E Slave Diagnostic Response Bytes Overview This appendix describes the diagnostic bytes reported by the transmitter to a PROFIBUS host. There are two sets of diagnostic bytes sent: • Bytes 1–6 conform to the standard PROFIBUS specification. • Byte 7 is the extended diagnostic header byte. •...
  • Page 150 Slave Diagnostic Response Bytes Table E-2 Byte 2 Indication Slave must be parameterized Static diagnostic: master requesting diagnostics until bit is reset This bit is always set to 1 Response monitoring/watchdog (1 = ON; 0 = OFF) Slave is in freeze mode (1 = ON; 0 = OFF) Slave is in sync mode (1 = ON;...
  • Page 151 Slave Diagnostic Response Bytes Table E-5 Byte 5 Indication Ident number (MSB) (1) The identification number will be 0x9742 when in profile-specific I/O mode and 0x057A when in manufacturing-specific I/O mode. Refer to Section 2.5 for information about I/O modes. Table E-6 Byte 6 Indication...
  • Page 152 Slave Diagnostic Response Bytes Table E-8 Byte 8 Indication Status type = manufacturer-specific (32 decimal, 0x20 hex) Identifier for status—always set to 1 Table E-9 Byte 9 Indication Slot number of physical block (per Profile 3.01 this is 0) Table E-10 Byte 10 Indication Error appears (when any new alarm is activated)
  • Page 153 Slave Diagnostic Response Bytes Table E-11 Byte 11 Indication Reserved (always set to 0) Reserved (always set to 0) Reserved (always set to 0)—Not used Reserved (always set to 0) Reserved (always set to 0) Reserved (always set to 0) Reserved (always set to 0) Reserved (always set to 0) Table E-12...
  • Page 154 Slave Diagnostic Response Bytes Table E-14 Byte 14 Indication Reserved (always set to 0) Reserved (always set to 0) Reserved (always set to 0) Reserved (always set to 0) Reserved (always set to 0) Reserved (always set to 0) Reserved (always set to 0) Extension available Table E-15 Byte 15...
  • Page 155 Slave Diagnostic Response Bytes Table E-17 Byte 17 Indication Line RTD temperature out-of-range (A016) Meter RTD temperature out-of-range (A017) Reserved Reserved Calibration factors unentered (A020) Unrecognized/unentered sensor type (A021) Reserved Reserved Table E-18 Byte 18 Indication Reserved Reserved Sensor/xmtr communication failure (A026) Reserved Sensor/xmtr write failure (A028) Internal communication failure (A029)
  • Page 156 Slave Diagnostic Response Bytes Table E-20 Byte 20 Indication Reserved Reserved Drive overrange/partially full tube (A102) Data loss possible (A103) Calibration in progress (A104) Slug flow (A105) Reserved Power reset occurred (A107) Table E-21 Byte 21 Indication Reserved Reserved Reserved Reserved Reserved Reserved...
  • Page 157 Slave Diagnostic Response Bytes Table E-23 Byte 23 Indication Reserved Reserved Reserved Reserved Reserved Reserved Reserved Meter verification info alarm (A131) Table E-24 Byte 24 Indication Simulation mode active (A132) Reserved Reserved Reserved Reserved Reserved Reserved Reserved Configuration and Use Manual...
  • Page 158 Model 2700 Transmitter with PROFIBUS-PA...
  • Page 159: Appendix F Model 2700 Profibus Block Parameters

    Appendix F Model 2700 PROFIBUS Block Parameters Overview This appendix describes the block parameters of the Model 2700 transmitter with PROFIBUS-PA. Slot identification Table F-1 shows the slot assignment for blocks. Table F-1 Block slot assignment Slot Assigned block Physical block Analog input block 1 Analog input block 2 Analog input block 3...
  • Page 160 Model 2700 PROFIBUS Block Parameters Table F-2 Physical block parameters (continued) Index Parameter Mnemonic Definition Message Data Type/ Size Store Default Access Enumerated List of Modbus Type Structure /Rate Value Values / Range Register / (HZ) Coil ALERT_KEY This parameter contains the SIMPLE Unsigned8 identification number of the plant...
  • Page 161: Physical Block Object

    Model 2700 PROFIBUS Block Parameters Table F-2 Physical block parameters (continued) Index Parameter Mnemonic Definition Message Data Type/ Size Store Default Access Enumerated List of Modbus Type Structure /Rate Value Values / Range Register / (HZ) Coil COND_STATUS_DIAG Condensed Status Diagnostics Simple Unsigned-8 0: Status and...
  • Page 162: Physical Block Views

    Model 2700 PROFIBUS Block Parameters F.3.2 Physical block views Table F-4 shows the physical block views. Table F-4 Physical block views Parameter Mnemonic View 1 View 2 View 3 View 4 Index Standard Parameters BLOCK_OBJECT ST_REV TAG_DESC STRATEGY ALERT_KEY TARGET_MODE MODE_BLK ALARM_SUM Overall sum of bytes in View Object...
  • Page 163 Model 2700 PROFIBUS Block Parameters Table F-5 Transducer block 1 parameters (continued) Index Parameter Mnemonic Definition Message Data Type/ Size Store Default Access Enumerated List of Modbus Type Structure /Rate Value Values / Range Register / (HZ) Coil CALIBR_FACTOR Gain compensation value for the SIMPLE Float R-0407...
  • Page 164 Model 2700 PROFIBUS Block Parameters Table F-5 Transducer block 1 parameters (continued) Index Parameter Mnemonic Definition Message Data Type/ Size Store Default Access Enumerated List of Modbus Type Structure /Rate Value Values / Range Register / (HZ) Coil DENSITY_UNITS Selected unit code for DENSITY, SIMPLE Unsigned16 1103...
  • Page 165 Model 2700 PROFIBUS Block Parameters Table F-5 Transducer block 1 parameters (continued) Index Parameter Mnemonic Definition Message Data Type/ Size Store Default Access Enumerated List of Modbus Type Structure /Rate Value Values / Range Register / (HZ) Coil SNS_VolTotalUnits Standard or special volume total ENUM Unsigned16 0000 = None...
  • Page 166 Model 2700 PROFIBUS Block Parameters Table F-5 Transducer block 1 parameters (continued) Index Parameter Mnemonic Definition Message Data Type/ Size Store Default Access Enumerated List of Modbus Type Structure /Rate Value Values / Range Register / (HZ) Coil CALIBRATION BLOCK SNS_FlowCalTempCoeff Temperature coefficient for flow VARIABLE...
  • Page 167 Model 2700 PROFIBUS Block Parameters Table F-5 Transducer block 1 parameters (continued) Index Parameter Mnemonic Definition Message Data Type/ Size Store Default Access Enumerated List of Modbus Type Structure /Rate Value Values / Range Register / (HZ) Coil SNS_EnablePresComp Enable/Disable Pressure ENUM Unsigned 8 0x00 = disabled...
  • Page 168 Model 2700 PROFIBUS Block Parameters Table F-5 Transducer block 1 parameters (continued) Index Parameter Mnemonic Definition Message Data Type/ Size Store Default Access Enumerated List of Modbus Type Structure /Rate Value Values / Range Register / (HZ) Coil EMPTY Alarm Status PA_StatusWords1 Status Word 1 ENUM...
  • Page 169 Model 2700 PROFIBUS Block Parameters Table F-5 Transducer block 1 parameters (continued) Index Parameter Mnemonic Definition Message Data Type/ Size Store Default Access Enumerated List of Modbus Type Structure /Rate Value Values / Range Register / (HZ) Coil PA_StatusWords5 Status Word 5 ENUM BIT_ENUM D/20...
  • Page 170 Model 2700 PROFIBUS Block Parameters Table F-5 Transducer block 1 parameters (continued) Index Parameter Mnemonic Definition Message Data Type/ Size Store Default Access Enumerated List of Modbus Type Structure /Rate Value Values / Range Register / (HZ) Coil UNI_Alarm_Index Alarm Index ENUM Unsigned8 0 = Reserved...
  • Page 171 Model 2700 PROFIBUS Block Parameters Table F-5 Transducer block 1 parameters (continued) Index Parameter Mnemonic Definition Message Data Type/ Size Store Default Access Enumerated List of Modbus Type Structure /Rate Value Values / Range Register / (HZ) Coil Diagnostics SNS_DriveGain Drive Gain RECORD ----...
  • Page 172 Model 2700 PROFIBUS Block Parameters Table F-5 Transducer block 1 parameters (continued) Index Parameter Mnemonic Definition Message Data Type/ Size Store Default Access Enumerated List of Modbus Type Structure /Rate Value Values / Range Register / (HZ) Coil FRF_AbortCode Abort Code ENUM 0=No error R-3002...
  • Page 173 Model 2700 PROFIBUS Block Parameters Table F-5 Transducer block 1 parameters (continued) Index Parameter Mnemonic Definition Message Data Type/ Size Store Default Access Enumerated List of Modbus Type Structure /Rate Value Values / Range Register / (HZ) Coil EMPTY EMPTY EMPTY EMPTY EMPTY...
  • Page 174 Model 2700 PROFIBUS Block Parameters Table F-5 Transducer block 1 parameters (continued) Index Parameter Mnemonic Definition Message Data Type/ Size Store Default Access Enumerated List of Modbus Type Structure /Rate Value Values / Range Register / (HZ) Coil 22= CM: Density (Fixed SG Units) 23= CM: Standard Volume Flow Rate...
  • Page 175 Model 2700 PROFIBUS Block Parameters Table F-5 Transducer block 1 parameters (continued) Index Parameter Mnemonic Definition Message Data Type/ Size Store Default Access Enumerated List of Modbus Type Structure /Rate Value Values / Range Register / (HZ) Coil 78= Not used 79= Not used 80= Not used 81= Not used...
  • Page 176 Model 2700 PROFIBUS Block Parameters Table F-5 Transducer block 1 parameters (continued) Index Parameter Mnemonic Definition Message Data Type/ Size Store Default Access Enumerated List of Modbus Type Structure /Rate Value Values / Range Register / (HZ) Coil 51 = Board Temperature 52 = Input Voltage 53 = Ext.
  • Page 177 Model 2700 PROFIBUS Block Parameters Table F-5 Transducer block 1 parameters (continued) Index Parameter Mnemonic Definition Message Data Type/ Size Store Default Access Enumerated List of Modbus Type Structure /Rate Value Values / Range Register / (HZ) Coil UI_ProcessVariables Display the Variable#2 ENUM Unsigned16 0 = Mass Flow Rate...
  • Page 178: Transducer Block 1 Object

    Model 2700 PROFIBUS Block Parameters Table F-5 Transducer block 1 parameters (continued) Index Parameter Mnemonic Definition Message Data Type/ Size Store Default Access Enumerated List of Modbus Type Structure /Rate Value Values / Range Register / (HZ) Coil UI_ProcessVariables Display the Variable#7 ENUM Unsigned16 Same as...
  • Page 179: And Diagnosis) Views

    Model 2700 PROFIBUS Block Parameters Table F-6 Transducer block 1 object Slot/Index Element name Data type Size in bytes Value Slot 11/Index 0 Reserved Unsigned 8 250 (default) Block_Object Unsigned 8 Parent_Class Unsigned 8 Class Unsigned 8 DD_Refrence Unsigned 32 00 ,00, 00, 00 (reserved) DD_Revision Unsigned 16...
  • Page 180: Transducer Block 2 (Device Information, Api, Cm) Parameters

    Model 2700 PROFIBUS Block Parameters F.4.3 Transducer block 2 (device information, API, CM) parameters Table F-8 shows the parameters for transducer block 2. Table F-8 Transducer block 2 parameters Index Parameter Mnemonic Definition Message Type Data Type/ Size Store Default Acce Enumerated List of Modbus...
  • Page 181 Model 2700 PROFIBUS Block Parameters Table F-8 Transducer block 2 parameters (continued) Index Parameter Mnemonic Definition Message Type Data Type/ Size Store Default Acce Enumerated List of Modbus Structure /Rate Value Values / Range Register / Coil (HZ) SNS_FlangeType Flange Type ENUM Unsigned16 0 = ANSI 150...
  • Page 182 Model 2700 PROFIBUS Block Parameters Table F-8 Transducer block 2 parameters (continued) Index Parameter Mnemonic Definition Message Type Data Type/ Size Store Default Acce Enumerated List of Modbus Structure /Rate Value Values / Range Register / Coil (HZ) SNS_API2540TableType API 2540 CTLTable Type ENUM Unsigned16 API_...
  • Page 183 Model 2700 PROFIBUS Block Parameters Table F-8 Transducer block 2 parameters (continued) Index Parameter Mnemonic Definition Message Type Data Type/ Size Store Default Acce Enumerated List of Modbus Structure /Rate Value Values / Range Register / Coil (HZ) SNS_ED_CurveLock Lock Enhanced Density ENUM Unsigned8 0x00 = not locked...
  • Page 184: Transducer Block 2 Object

    Model 2700 PROFIBUS Block Parameters Table F-8 Transducer block 2 parameters (continued) Index Parameter Mnemonic Definition Message Type Data Type/ Size Store Default Acce Enumerated List of Modbus Structure /Rate Value Values / Range Register / Coil (HZ) SNS_ED_ConcUnitCode Curven Concentration Units ENUM Unsigned16 ----...
  • Page 185: Transducer Block 2 (Device Information, Api, Cm) Views

    Model 2700 PROFIBUS Block Parameters F.4.5 Transducer block 2 (device information, API, CM) views Table F-10 shows the views for transducer block 2. Table F-10 Transducer block 2 views Parameter Mnemonic View 1 View 2 View 3 View 4 Index Standard Parameters BLOCK_OBJECT ST_REV...
  • Page 186 Model 2700 PROFIBUS Block Parameters Table F-11 I & M parameters (continued) Index Sub-Index Parameter Mnemonic Definition Message Type Data Type/ Size Store/ Default Access Modbus Structure Rate Value mera Register / Coil (HZ) List Valu PROFILE_ID –Profile type VARIABLE Unsigned16 0x9700 Hard Coded...
  • Page 187: Ai Function Block Parameters

    Model 2700 PROFIBUS Block Parameters F.4.7 AI function block parameters Table F-12 shows the parameters for the AI function blocks. Table F-12 AI function block parameters Index Parameter Mnemonic Definition Message Data Type/ Size Store Default Access Enumerated List of Modbus Type Structure...
  • Page 188 Model 2700 PROFIBUS Block Parameters Table F-12 AI function block parameters (continued) Index Parameter Mnemonic Definition Message Data Type/ Size Store Default Access Enumerated List of Modbus Type Structure /Rate Value Values / Range Register / (HZ) Coil ALARM_HYS Hysteresis SIMPLE FLOAT 0.5%...
  • Page 189: Analog Input Block Objects

    Model 2700 PROFIBUS Block Parameters F.4.8 Analog input block objects Table F-13 shows the analog input block objects. Table F-13 Analog input block objects Slot/Index Element name Data type Size in bytes Value Slot 11/Index 0 Reserved Unsigned 8 250 (default) Block_Object Unsigned 8 02 (function block)
  • Page 190: Ao Function Block Parameters

    Model 2700 PROFIBUS Block Parameters F.4.10 AO function block parameters Table F-15 lists the parameters for the AO function blocks. Table F-15 AO function block parameters Index Parameter Mnemonic Definition Message Data Type/ Size Store Default Access Enumerated List of Modbus Type Structure...
  • Page 191 Model 2700 PROFIBUS Block Parameters Table F-15 AO function block parameters (continued) Index Parameter Mnemonic Definition Message Data Type/ Size Store Default Access Enumerated List of Modbus Type Structure /Rate Value Values / Range Register / Coil (HZ) IN_CHANNEL Reference to the active SIMPLE Unsigned16 R-2297...
  • Page 192: Analog Output Block Objects

    Model 2700 PROFIBUS Block Parameters Table F-15 AO function block parameters (continued) Index Parameter Mnemonic Definition Message Data Type/ Size Store Default Access Enumerated List of Modbus Type Structure /Rate Value Values / Range Register / Coil (HZ) RESERVED RESERVED RESERVED RESERVED AO BLOCK VIEW 1...
  • Page 193: Totalizer Block Parameters

    Model 2700 PROFIBUS Block Parameters Table F-17 AO function block views ST_REV TAG_DESC STRATEGY ALERT_KEY TARGET_MODE MODE_BLK ALARM_SUM Overall sum of bytes in View Object Parameter Mnemonic View 1 View 2 View 3 View 4 Index Standard Parameters READBACK POS_D CHECK_BACK Overall sum of bytes in View Object 10+13...
  • Page 194 Model 2700 PROFIBUS Block Parameters Table F-18 Totalizer block parameters (continued) Index Parameter Mnemonic Definition Message Data Type/ Size Store Default Access Enumerated List of Modbus Type Structure /Rate Value Values / Range Register / (HZ) Coil RESERVED Totalizer Function Block Standard Parameters TOTAL The Function Block RECORD...
  • Page 195: Totalizer Block Objects

    Model 2700 PROFIBUS Block Parameters Table F-18 Totalizer block parameters (continued) Index Parameter Mnemonic Definition Message Data Type/ Size Store Default Access Enumerated List of Modbus Type Structure /Rate Value Values / Range Register / (HZ) Coil RESERVED Totalizer Selection Selection of Totalizer SIMPLE Unsigned8...
  • Page 196 Model 2700 PROFIBUS Block Parameters Table F-20 Totalizer function block views Parameter Mnemonic View 1 View 2 View 3 View 4 Index Standard Parameters BLOCK_OBJECT ST_REV TAG_DESC STRATEGY ALERT_KEY TARGET_MODE MODE_BLK ALARM_SUM Overall sum of bytes in View Object Parameter Mnemonic View 1 View 2 View 3...
  • Page 197: Appendix G Ne53 History

    Appendix G NE53 History Overview This appendix documents the change history of the Model 2700 transmitter with PROFIBUS-PA software. Software change history Table G-1 describes the change history of the transmitter software. Operating instructions are English versions. Instructions in other languages have different part numbers but matching revision letters. Table G-1 Transmitter software change history Software...
  • Page 198 20000327 Rev. FA Improved EDD more closely matches ProLink II. Added petroleum measurement application. Added enhanced density application. Improved consistency with other Micro Motion 2700 transmitters. Feature additions Added compatibility with enhanced core processor. Added gas standard volume measurement. Added configurable alarm severity.
  • Page 199: Index

    Index Core processor 116, 117, 118 Address LED 108 node address 8 sensor pins 113 AI function block terminals 119, 120 channels 8, 9 troubleshooting 107 Alarm log 87 Customer service 6 Alarm menu password 123 Cutoffs 71 Alarms 63, 86, 99 display codes 99 high 63 Damping 68...
  • Page 200 Index Meter factors 19, 20, 35 EDD 2, 3 Meter verification Engineering units 51 See Smart Meter Verification Errors Micro Motion customer service 6 see Alarms Exponential notation 125 Node address 8 Fault configuring alarms for 66 Off-line password 77, 123 Flanges 74 Operation 83 Flow calibration values 24...
  • Page 201 Index Transducer block Safety 1 channels 8, 9, 12 Scale 62 meter factor parameters 36 Scroll rate 77 Transmitter components 117, 118 Sensor material 74 Transmitter startup 7 Serial number 74 Troubleshooting 93 Service port 135, 136 calibration failure 94 Simulation mode drive gain 105 sensor 85...
  • Page 202 Model 2700 Transmitter with PROFIBUS-PA...
  • Page 204 +31 (0) 318 495 555 +65 6777-8211 +31 (0) 318 495 556 +65 6770-8003 Micro Motion United Kingdom Micro Motion Japan Emerson Process Management Limited Emerson Process Management Horsfield Way 1-2-5, Higashi Shinagawa Bredbury Industrial Estate Shinagawa-ku Stockport SK6 2SU U.K.

Table of Contents