Download Print this page

The First Oscillator - Access VIRUS CLASSIC User Manual

Virtual analog synthesizer

Advertisement

Available languages

Available languages

The First Oscillator

To this point, we have turned our attention exclusively to sound-shaping functions and have always
started with the same basic material: a so-called sawtooth wave. This waveshape is especially well-
suited as a neutral starting point as it contains all of the so-called natural scale of overtones, which
give the filter plenty of quality material to work with.
The filters, with the exception of a notch filter or band stop (BS), trim the far reaches of the tonal
spectrum, so for instance a signal sounds muddier after it has been routed through a low pass filter.
You can well imagine that this type of sound modification is substantial but insufficient for shaping
more subtle differences in tone. For instance the tone of a trumpet differs significantly from that of a
saxophone even though no one would seriously claim that either of the instruments has a muddier
tone than the other.
What you need is a sound-shaping option for the portion of a signal that a filter allows to pass. And
of course you also need a tool for determining the pitch of a signal. In synthesizers, both of these
tasks are executed by oscillators. They oscillate at a variable pitch that can be modulated and they
also generate different waveshapes which give the filters a wider variety of material to work with.
The Virus is equipped with two main oscillators and a so-called suboscillator. We will first take a
look at Oscillator 1, which is the oscillator you have already heard in action during your experiments
thus far.
Dial in the same basic sound that you started with at the very beginning. Now modify the amplifier
envelope so you are working with a less grating sound, but hold back on any other filter or satura-
tion modifications so you can hear the purest oscillator signal possible.
Locate the section labeled "1", it is bordered off in a separate area at the far left of the section
labeled OSCILLATORS. No check out the two pots labeled SHAPE and WAVE SEL/PW. These ena-
ble you determine the waveshape and consequently the tonal spectrum of Oscillator 1.
In the sound program, SHAPE is preset to the center position (12 o'clock), which is equivalent to a
value of 64. On the pot, this position is identified via a graphic depiction of a sawtooth wave. You
can definitely see why this waveshape bears the name "sawtooth." Press and hold a key and slowly
turn the pot clockwise. You should be able to hear how the tone becomes increasingly more hollow-
sounding. You might say this effect thins the sound out, but in any case, the entire tonal spectrum is
affected by an equal measure, which is an audio result filters are unable to achieve.
The waveshape that is audible when you turn the SHAPE pot to the far right is a so-called pulse
wave. The graphical representation of this waveshape on the control panel gives you a good idea of
its appearance. It is unique because the duration of the negative pulse is equal to the duration of the
positive pulse: It has a so-called pulse width of 50%. The tone of a pulse wave is different to that of
a sawtooth wave because it does not contain all overtones in the natural overtone scale, only the
28

Hide quick links:

Advertisement

Chapters

loading