Chrysler PT Cruiser Service & Repair Manual page 332

Hide thumbs Also See for PT Cruiser:
Table of Contents

Advertisement

8E - 18
ELECTRONIC CONTROL MODULES
TRANSMISSION CONTROL MODULE (Continued)
• Output Shaft Speed Sensor
Some examples of indirect inputs to the TCM
are:
• Engine/Body Identification
• Manifold Pressure
• Target Idle
• Torque Reduction Confirmation
• Speed Control ON/OFF Switch
• Engine Coolant Temperature
• Ambient/Battery Temperature
• Brake Switch Status
• DRB Communication
Based on the information received from these var-
ious inputs, the TCM determines the appropriate
shift schedule and shift points, depending on the
present operating conditions and driver demand.
This is possible through the control of various direct
and indirect outputs.
Some examples of TCM direct outputs are:
• Transmission Control Relay
• Solenoids (LR/CC, 2/4, OD and UD)
• Vehicle Speed (to PCM)
• Torque Reduction Request (to PCM)
An example of a TCM indirect output is:
• Transmission Temperature (to PCM)
In addition to monitoring inputs and controlling
outputs, the TCM has other important responsibili-
ties and functions:
• Storing and maintaining Clutch Volume Indices
(CVI)
• Storing and selecting appropriate Shift Sched-
ules
• System self-diagnostics
• Diagnostic capabilities (with DRB scan tool)
CLUTCH VOLUME INDEX (CVI)
An important function of the TCM is to monitor
Clutch Volume Index (CVI). CVIs represent the vol-
ume of fluid needed to compress a clutch pack.
The TCM monitors gear ratio changes by monitor-
ing the Input and Output Speed Sensors. The Input,
or Turbine Speed Sensor sends an electrical signal to
the TCM that represents input shaft rpm. The Out-
put Speed Sensor provides the TCM with output
shaft speed information.
By comparing the two inputs, the TCM can deter-
mine transaxle gear ratio. This is important to the
CVI calculation because the TCM determines CVIs
by monitoring how long it takes for a gear change to
occur (Fig. 27).
Gear ratios can be determined by using the DRB
Scan Tool and reading the Input/Output Speed Sen-
sor values in the "Monitors" display. Gear ratio can
Fig. 27 Example of CVI Calculation
1 - OUTPUT SPEED SENSOR
2 - OUTPUT SHAFT
3 - CLUTCH PACK
4 - SEPARATOR PLATE
5 - FRICTION DISCS
6 - INPUT SHAFT
7 - INPUT SPEED SENSOR
8 - PISTON AND SEAL
be obtained by dividing the Input Speed Sensor value
by the Output Speed Sensor value.
For example, if the input shaft is rotating at 1000
rpm and the output shaft is rotating at 500 rpm,
then the TCM can determine that the gear ratio is
2:1. In direct drive (3rd gear), the gear ratio changes
to 1:1. The gear ratio changes as clutches are applied
and released. By monitoring the length of time it
takes for the gear ratio to change following a shift
request, the TCM can determine the volume of fluid
used to apply or release a friction element.
The volume of transmission fluid needed to apply
the friction elements are continuously updated for
adaptive controls. As friction material wears, the vol-
ume of fluid need to apply the element increases.
Certain mechanical problems within the clutch
assemblies (broken return springs, out of position
snap rings, excessive clutch pack clearance, improper
assembly, etc.) can cause inadequate or out-of-range
clutch volumes. Also, defective Input/Output Speed
Sensors and wiring can cause these conditions. The
following chart identifies the appropriate clutch vol-
umes and when they are monitored/updated:
PT

Hide quick links:

Advertisement

Table of Contents
loading

Table of Contents