MikroTik RouterOS v2.9 Reference Manual page 319

Reference manual
Table of Contents

Advertisement

Internet Key Exchange
The Internet Key Exchange (IKE) is a protocol that provides authenticated keying material for
Internet Security Association and Key Management Protocol (ISAKMP) framework. There are
other key exchange schemes that work with ISAKMP, but IKE is the most widely used one.
Together they provide means for authentication of hosts and automatic management of security
associations (SA).
Most of the time IKE daemon is doing nothing. There are two possible situations when it is
activated:
There is some traffic caught by a policy rule which needs to become encrypted or
authenticated, but the policy doesn't have any SAs. The policy notifies IKE daemon about that,
and IKE daemon initiates connection to remote host.
IKE daemon responds to remote connection.
In both cases, peers establish connection and execute 2 phases:
• Phase 1 - The peers agree upon algorithms they will use in the following IKE messages and
authenticate. The keying material used to derive keys for all SAs and to protect following
ISAKMP exchanges between hosts is generated also.
• Phase 2 - The peers establish one or more SAs that will be used by IPsec to encrypt data. All
SAs established by IKE daemon will have lifetime values (either limiting time, after which SA
will become invalid, or amount of data that can be encrypted by this SA, or both).
There are two lifetime values - soft and hard. When SA reaches it's soft lifetime treshold, the IKE
daemon receives a notice and starts another phase 2 exchange to replace this SA with fresh one. If
SA reaches hard lifetime, it is discarded.
IKE can optionally provide a Perfect Forward Secrecy (PFS), whish is a property of key exchanges,
that, in turn, means for IKE that compromising the long term phase 1 key will not allow to easily
gain access to all IPsec data that is protected by SAs established through this phase 1. It means an
additional keying material is generated for each phase 2.
Generation of keying material is computationally very expensive. Exempli gratia, the use of
modp8192 group can take several seconds even on very fast computer. It usually takes place once
per phase 1 exchange, which happens only once between any host pair and then is kept for long
time. PFS adds this expensive operation also to each phase 2 exchange.
Diffie-Hellman MODP Groups
Diffie-Hellman (DH) key exchange protocol allows two parties without any initial shared secret to
create one securely. The following Modular Exponential (MODP) Diffie-Hellman (also known as
"Oakley") Groups are supported:
Diffie-Hellman Group
Group 1
Group 2
Group 5
Copyright 1999-2007, MikroTik. All rights reserved. Mikrotik, RouterOS and RouterBOARD are trademarks of Mikrotikls SIA.
Other trademarks and registred trademarks mentioned herein are properties of their respective owners.
Modulus
768 bits
1024 bits
1536 bits
Reference
RFC2409
RFC2409
RFC3526
Page 305 of 695

Hide quick links:

Advertisement

Table of Contents
loading

Table of Contents