Fixed-Percent Method (FP)
FP
: depreciation charge for the j th year
j
RDV
: remaining depreciable value at the end of j th year
j
I% : depreciation ratio
Y − 1
= PV × I%
FP
×
1
100
12
RDV
= PV − FV − FP
1
1
Sum-of-the-Years'-Digits Method (SYD)
SY D
: depreciation charge for the j th year
j
RDV
: remaining depreciable value at the end of j th year
j
n n + 1
Z =
2
Y − 1
= n
SY D
×
(PV − FV )
1
Z
12
n' − n + 1 + 2
SY D
=
n + 1
Z'
RDV
= PV − FV − SY D
1
Declining-Balance Method (DB)
DB
: depreciation charge for the j th year
j
: remaining depreciable value at the end of j th year
RDV
j
I% : depreciation factor
Y − 1
= PV × I%
DB
×
1
100n
12
RDV
= RDV
− DB
j
j − 1
j
Bond Calculation
PRC: price per $100 of face value
CPN: coupon rate (%)
Y LD: annual yield (%)
M : number of coupon payments per year (1=annual, 2=semi annual)
N : number of coupon payments between settlement date and maturity date
RDV : redemption price or call price per $100 of face value
I NT: accrued interest
CST: price including interest
D : number of days in coupon period where settlement occurs
A : accrued days
B : number of days from settlement date until next coupon payment date = D − A
For one or fewer coupon period to redemption
FP
= RDV
j
RDV
= RDV
j
Y − 1
n' = n −
12
12 − Y − 1
(PV − FV − SY D
) ×
1
1
RDV
= PV − FV − DB
1
DB
= RDV
n + 1
D
A
B
+ FV × I%
j − 1
100
− FP
j − 1
j
Intg n' + 1 Intg n' + 2 × Frac n'
Z' =
2
n' − j + 2
SY D
=
(PV − FV − SY D
j
Z'
({Y − 1} ≠ 12)
12
RDV
= RDV
− SY D
j
j − 1
1
1
Y − 1 ≠ 12
n
① Issue date
② Coupon payment dates
③ Purchase date (d1)
④ Redemption date (d2)
151
FP
= RDV
Y − 1 ≠ 12
n + 1
n
RDV
= 0
Y − 1 ≠ 12
n + 1
)
1
+ FV × I%
DB
= RDV
j
j − 1
= 0
Y − 1 ≠ 12
RDV
n + 1
j ≠ 1
100n
Need help?
Do you have a question about the CLASSWIZ CG and is the answer not in the manual?
Questions and answers