ABB Relion 650 Series REB650 Technical Manual
ABB Relion 650 Series REB650 Technical Manual

ABB Relion 650 Series REB650 Technical Manual

Busbar protection
Table of Contents

Advertisement

Quick Links

®
Relion
650 series
Busbar protection REB650
Technical manual

Advertisement

Table of Contents
loading

Summary of Contents for ABB Relion 650 Series REB650

  • Page 1 ® Relion 650 series Busbar protection REB650 Technical manual...
  • Page 3 Document ID: 1MRK 505 288-UEN Issued: October 2016 Revision: A Product version: 1.3 © Copyright 2013 ABB. All rights reserved...
  • Page 4 Copyright This document and parts thereof must not be reproduced or copied without written permission from ABB, and the contents thereof must not be imparted to a third party, nor used for any unauthorized purpose. The software and hardware described in this document is furnished under a license and may be used or disclosed only in accordance with the terms of such license.
  • Page 5 In case any errors are detected, the reader is kindly requested to notify the manufacturer. Other than under explicit contractual commitments, in no event shall ABB be responsible or liable for any loss or damage resulting from the use of this manual or the application of the equipment.
  • Page 6 (EMC Directive 2004/108/EC) and concerning electrical equipment for use within specified voltage limits (Low-voltage directive 2006/95/EC). This conformity is the result of tests conducted by ABB in accordance with the product standards EN 50263 and EN 60255-26 for the EMC directive, and with the product standards EN 60255-1 and EN 60255-27 for the low voltage directive.
  • Page 7: Table Of Contents

    Table of contents Table of contents Section 1 Introduction..............25 This manual..................25 Intended audience................25 Product documentation..............26 Product documentation set............26 Document revision history............27 Related documents..............27 Symbols and conventions..............28 Symbols..................28 Document conventions..............29 Section 2 Available functions............31 Main protection functions..............31 Back-up protection functions............
  • Page 8 Table of contents Basic part for LED indication module..........54 Identification................54 Function block................54 Signals..................55 Settings..................56 LCD part for HMI function keys control module........56 Identification................56 Function block................56 Signals..................57 Settings..................57 Operation principle................58 Local HMI..................58 Display..................58 LEDs..................61 Keypad...................
  • Page 9 Table of contents Operation principle..............83 Second harmonic blocking element..........87 Technical data................88 Four step residual overcurrent protection, zero, negative sequence direction EF4PTOC ............88 Identification ................88 Functionality................89 Function block................89 Signals..................90 Settings..................91 Monitored data................93 Operation principle..............93 Operating quantity within the function........94 Internal polarizing..............
  • Page 10 Table of contents Signals..................119 Settings..................119 Monitored data................120 Operation principle..............120 Pole discordance signaling from circuit breaker....121 Unsymmetrical current detection..........121 Technical data................122 Negative sequence based overcurrent function DNSPTOC ..122 Identification................122 Functionality................123 Function block................123 Signals..................123 Settings..................124 Monitored data................125 Operation principle..............
  • Page 11 Table of contents Two step residual overvoltage protection ROV2PTOV ....140 Identification................140 Functionality................140 Function block................141 Signals..................141 Settings..................141 Monitored data................142 Operation principle..............142 Measurement principle............143 Time delay................143 Blocking................143 Design.................. 143 Technical data................145 Section 9 Secondary system supervision........147 Fuse failure supervision SDDRFUF..........
  • Page 12 Table of contents Monitored data................166 Operation principle..............167 Basic functionality..............167 Synchrocheck...............167 Synchronizing...............169 Energizing check..............170 Fuse failure supervision............171 Voltage selection..............171 Voltage selection for a single circuit breaker with double busbars.................172 Voltage selection for a 1 1/2 circuit breaker arrangement..173 Technical data................
  • Page 13 Table of contents Settings................187 Select release SELGGIO............187 Identification................. 187 Function block..............187 Signals..................187 Settings................188 Operation principle..............188 Switch controller SCSWI............188 Bay control QCBAY..............192 Local remote/Local remote control LOCREM/ LOCREMCTRL..............194 Interlocking..................195 Functionality................195 Logical node for interlocking SCILO ......... 195 Identification.................
  • Page 14 Table of contents Functionality................. 206 Function block..............207 Logic diagram...............207 Signals..................210 Settings................212 Interlocking for 1 1/2 CB BH ............. 212 Identification................. 212 Functionality................. 213 Function block..............214 Logic diagrams..............216 Signals..................221 Settings................225 Interlocking for double CB bay DB ........... 225 Identification.................
  • Page 15 Table of contents Identification................254 Functionality................254 Function block................255 Signals..................255 Settings..................256 Monitored data................257 Operation principle..............257 Selector mini switch VSGGIO............257 Identification................257 Functionality................258 Function block................258 Signals..................258 Settings..................259 Operation principle..............259 IEC 61850 generic communication I/O functions DPGGIO.... 260 Identification................
  • Page 16 Table of contents Signals..................267 Settings..................268 Function commands user defined for IEC 60870-5-103 I103USRCMD.................268 Functionality................268 Function block................268 Signals..................268 Settings..................269 Function commands generic for IEC 60870-5-103 I103GENCMD.269 Functionality................269 Function block................270 Signals..................270 Settings..................270 IED commands with position and select for IEC 60870-5-103 I103POSCMD.................270 Functionality................
  • Page 17 Table of contents Loop delay function block LOOPDELAY......286 Timer function block TIMERSET.......... 287 AND function block ..............288 Set-reset memory function block SRMEMORY....289 Reset-set with memory function block RSMEMORY... 290 Technical data................292 Fixed signals FXDSIGN..............293 Identification................293 Functionality................293 Function block................
  • Page 18 Table of contents Operation principle..............304 Elapsed time integrator with limit transgression and overflow supervision TEIGGIO..............305 Identification................305 Functionality................306 Function block................306 Signals..................306 Settings..................307 Operation principle..............307 Operation Accuracy..............308 Memory storage..............308 Technical data................309 Section 12 Monitoring..............311 Measurements................311 Functionality................
  • Page 19 Table of contents Settings................326 Monitored data..............327 Phase-neutral voltage measurement VNMMXU......327 Identification ................ 327 Function block..............327 Signals..................328 Settings................328 Monitored data..............329 Operation principle..............329 Measurement supervision............ 329 Measurements CVMMXN.............334 Phase current measurement CMMXU......... 339 Phase-phase and phase-neutral voltage measurements VMMXU, VNMMXU..............
  • Page 20 Table of contents Settings................348 Monitored data..............349 Analog input signals AxRADR........... 352 Identification................. 352 Function block..............353 Signals..................353 Settings................354 Analog input signals A4RADR...........357 Identification................. 357 Function block..............357 Signals..................358 Settings................358 Binary input signals BxRBDR............ 362 Identification................. 362 Function block..............
  • Page 21 Table of contents Operation principle..............377 Technical data................378 Event list..................378 Functionality................378 Function block................378 Signals..................379 Input signals................. 379 Operation principle..............379 Technical data................379 Trip value recorder................. 379 Functionality................379 Function block................380 Signals..................380 Input signals................. 380 Operation principle..............
  • Page 22 Table of contents Function block................388 Signals..................388 Settings..................388 Monitored data................389 Operation principle..............389 Measured value expander block MVEXP........389 Identification................389 Functionality................390 Function block................390 Signals..................390 Settings..................390 Operation principle..............391 Station battery supervision SPVNZBAT......... 391 Identification................391 Function block................391 Functionality................
  • Page 23 Table of contents Settings..................401 Monitored data................402 Operation principle..............403 Circuit breaker status............404 Circuit breaker operation monitoring........405 Breaker contact travel time...........406 Operation counter..............407 Accumulation of I t..............408 Remaining life of the circuit breaker........410 Circuit breaker spring charged indication......411 Gas pressure supervision.............412 Technical data................
  • Page 24 Table of contents Settings..................422 Supervison status for IEC 60870-5-103 I103SUPERV....422 Functionality................422 Function block................423 Signals..................423 Settings..................423 Status for user defined signals for IEC 60870-5-103 I103USRDEF423 Functionality................423 Function block................424 Signals..................424 Settings..................425 Section 13 Metering............... 427 Pulse counter PCGGIO..............427 Identification................
  • Page 25 Table of contents Settings..................440 Goose binary receive GOOSEBINRCV..........440 Identification................440 Function block................441 Signals..................441 Settings..................442 Operation principle..............442 GOOSE function block to receive a double point value GOOSEDPRCV................443 Identification................443 Functionality................443 Function block................443 Signals..................443 Settings..................444 Operation principle ..............444 GOOSE function block to receive an integer value GOOSEINTRCV................
  • Page 26 Table of contents Principle of operation..............451 Function block................452 Setting parameters..............453 Activity logging parameters ACTIVLOG......... 453 Activity logging ACTIVLOG............453 Settings..................453 Generic security application component AGSAL......454 Generic security application AGSAL......... 454 Security events on protocols SECALARM........454 Security alarm SECALARM............454 Signals..................454 Settings..................454 Section 15 Basic IED functions............
  • Page 27 Table of contents Settings................465 Time synchronization via IRIG-B..........465 Identification................. 465 Settings................465 Operation principle..............465 General concepts..............465 Real-time clock (RTC) operation.......... 467 Synchronization alternatives..........467 Technical data................469 Parameter setting group handling..........469 Functionality................469 Setting group handling SETGRPS..........469 Identification.................
  • Page 28 Table of contents Identification................477 Functionality................478 Settings..................478 Signal matrix for analog inputs SMAI..........478 Functionality................478 Identification................478 Function block................479 Signals..................479 Settings..................481 Operation principle ..............482 Summation block 3 phase 3PHSUM..........486 Identification................486 Functionality................486 Function block................486 Signals..................486 Settings..................487 Operation principle..............
  • Page 29 Table of contents Functionality................494 Denial of service, frame rate control for front port DOSFRNT...494 Identification................. 494 Function block..............494 Signals..................494 Settings................495 Monitored data..............495 Denial of service, frame rate control for LAN1 port DOSLAN1..495 Identification................. 495 Function block..............496 Signals..................496 Settings................
  • Page 30 Table of contents Environmental conditions and tests..........518 Section 18 IED and functionality tests..........519 Electromagnetic compatibility tests..........519 Insulation tests................521 Mechanical tests................521 Product safety.................521 EMC compliance................522 Section 19 Time inverse characteristics.........523 Application..................523 Operation principle................. 526 Mode of operation..............526 Inverse time characteristics............529 Section 20 Glossary...............
  • Page 31: Section 1 Introduction

    Section 1 1MRK 505 288-UEN A Introduction Section 1 Introduction This manual The technical manual contains application and functionality descriptions and lists function blocks, logic diagrams, input and output signals, setting parameters and technical data, sorted per function. The manual can be used as a technical reference during the engineering phase, installation and commissioning phase, and during normal service.
  • Page 32: Product Documentation

    Section 1 1MRK 505 288-UEN A Introduction Product documentation 1.3.1 Product documentation set Engineering manual Installation manual Commissioning manual Operation manual Application manual Technical manual Communication protocol manual IEC07000220-3-en.vsd IEC07000220 V3 EN Figure 1: The intended use of manuals throughout the product lifecycle The engineering manual contains instructions on how to engineer the IEDs using the various tools available within the PCM600 software.
  • Page 33: Document Revision History

    Section 1 1MRK 505 288-UEN A Introduction chronological order in which the IED should be commissioned. The relevant procedures may be followed also during the service and maintenance activities. The operation manual contains instructions on how to operate the IED once it has been commissioned.
  • Page 34: Symbols And Conventions

    Section 1 1MRK 505 288-UEN A Introduction 650 series manuals Identity number Cyber Security deployment guidelines 1MRK 511 285-UEN Point list manual, DNP 3.0 1MRK 511 283-UEN Engineering manual 1MRK 511 284-UEN Operation manual 1MRK 500 096-UEN Installation manual 1MRK 514 016-UEN Accessories, 650 series 1MRK 513 023-BEN MICS...
  • Page 35: Document Conventions

    Section 1 1MRK 505 288-UEN A Introduction 1.4.2 Document conventions • Abbreviations and acronyms in this manual are spelled out in the glossary. The glossary also contains definitions of important terms. • Push button navigation in the LHMI menu structure is presented by using the push button icons.
  • Page 37: Section 2 Available Functions

    Section 2 1MRK 505 288-UEN A Available functions Section 2 Available functions Main protection functions IEC 61850 or ANSI Function description Busbar Function name Differential protection HZPDIF 1Ph High impedance differential protection 1–9 Back-up protection functions IEC 61850 or ANSI Function description Busbar Function name...
  • Page 38: Control And Monitoring Functions

    Section 2 1MRK 505 288-UEN A Available functions Control and monitoring functions IEC 61850 or Function ANSI Function description Busbar name Control SESRSYN Synchrocheck, energizing check, and synchronizing 0–1 SLGGIO Logic Rotating Switch for function selection and LHMI presentation VSGGIO Selector mini switch DPGGIO IEC 61850 generic communication I/O functions double...
  • Page 39 Section 2 1MRK 505 288-UEN A Available functions IEC 61850 or Function ANSI Function description Busbar name LOCREMCTRL LHMI control of Permitted Source To Operate (PSTO) CBC3 Circuit breaker control for 3CB 0–1 Secondary system supervision SDDRFUF Fuse failure supervision 0–2 TCSSCBR Breaker close/trip circuit monitoring...
  • Page 40 Section 2 1MRK 505 288-UEN A Available functions IEC 61850 or Function ANSI Function description Busbar name IB16FCVB Integer to Boolean 16 conversion with logic node representation TEIGGIO Elapsed time integrator with limit transgression and overflow supervision Monitoring CVMMXN Measurements CMMXU Phase current measurement VMMXU...
  • Page 41: Station Communication

    Section 2 1MRK 505 288-UEN A Available functions IEC 61850 or Function ANSI Function description Busbar name I103FLTPROT Function status fault protection for IEC60870-5-103 I103IED IED status for IEC60870-5-103 I103SUPERV Supervison status for IEC60870-5-103 I103USRDEF Status for user defined signals for IEC60870-5-103 Metering PCGGIO Pulse counter...
  • Page 42: Basic Ied Functions

    Section 2 1MRK 505 288-UEN A Available functions IEC 61850 or Function ANSI Function description Busbar name RS485103 IEC60870-5-103 serial communication for RS485 GOOSEINTLKRCV Horizontal communication via GOOSE for interlocking GOOSEBINRCV GOOSE binary receive ETHFRNT Ethernet configuration of front port, LAN1 port and ETHLAN1 gateway GATEWAY...
  • Page 43 Section 2 1MRK 505 288-UEN A Available functions IEC 61850/Function Function description block name 3PHSUM Summation block 3 phase GBASVAL Global base values for settings ATHSTAT Authority status ATHCHCK Authority check AUTHMAN Authority management FTPACCS FTPS access with password DOSFRNT Denial of service, frame rate control for front port DOSLAN1 Denial of service, frame rate control for LAN1A and LAN1B ports...
  • Page 45: Section 3 Analog Inputs

    Section 3 1MRK 505 288-UEN A Analog inputs Section 3 Analog inputs Introduction Analog input channels in the IED must be set properly in order to get correct measurement results and correct protection operations. For power measuring and all directional and differential functions the directions of the input currents must be defined in order to reflect the way the current transformers are installed/connected in the field ( primary and secondary connections ).
  • Page 46: Presumptions For Technical Data

    Section 3 1MRK 505 288-UEN A Analog inputs Definition of direction Definition of direction for directional functions for directional functions Reverse Forward Forward Reverse Protected Object Line, transformer, etc e.g. P, Q, I e.g. P, Q, I Measured quantity is Measured quantity is positive when flowing positive when flowing...
  • Page 47: Settings

    Section 3 1MRK 505 288-UEN A Analog inputs Settings Dependent on ordered IED type. Table 1: AISVBAS Non group settings (basic) Name Values (Range) Unit Step Default Description PhaseAngleRef TRM - Channel 1 TRM - Channel 1 Reference channel for phase angle TRM - Channel 2 presentation TRM - Channel 3...
  • Page 48 Section 3 1MRK 505 288-UEN A Analog inputs Name Values (Range) Unit Step Default Description CTStarPoint6 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec6 0.1 - 10.0 Rated CT secondary current CTprim6 1 - 99999 1000 Rated CT primary current VTsec7 0.001 - 999.999 0.001...
  • Page 49 Section 3 1MRK 505 288-UEN A Analog inputs Name Values (Range) Unit Step Default Description CTprim7 1 - 99999 1000 Rated CT primary current CTStarPoint8 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec8 0.1 - 10.0 Rated CT secondary current CTprim8 1 - 99999 1000...
  • Page 50 Section 3 1MRK 505 288-UEN A Analog inputs Table 5: TRM_4I_6U Non group settings (basic) Name Values (Range) Unit Step Default Description CTStarPoint1 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec1 0.1 - 10.0 Rated CT secondary current CTprim1 1 - 99999 1000...
  • Page 51 Section 3 1MRK 505 288-UEN A Analog inputs Name Values (Range) Unit Step Default Description CTStarPoint3 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec3 0.1 - 10.0 Rated CT secondary current CTprim3 1 - 99999 1000 Rated CT primary current CTStarPoint4 FromObject ToObject...
  • Page 52 Section 3 1MRK 505 288-UEN A Analog inputs Name Values (Range) Unit Step Default Description CTprim4 1 - 99999 1000 Rated CT primary current CTStarPoint5 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec5 0.1 - 10.0 Rated CT secondary current CTprim5 1 - 99999 1000...
  • Page 53: Section 4 Binary Input And Output Modules

    Section 4 1MRK 505 288-UEN A Binary input and output modules Section 4 Binary input and output modules Binary input 4.1.1 Binary input debounce filter The debounce filter eliminates bounces and short disturbances on a binary input. A time counter is used for filtering. The time counter is increased once in a millisecond when a binary input is high, or decreased when a binary input is low.
  • Page 54: Settings

    Section 4 1MRK 505 288-UEN A Binary input and output modules Each binary input has an oscillation count parameter OscillationCountx and an oscillation time parameter OscillationTimex, where x is the number of the binary input of the module in question. 4.1.3 Settings 4.1.3.1...
  • Page 55: Setting Parameters For Communication Module

    Section 4 1MRK 505 288-UEN A Binary input and output modules Name Values (Range) Unit Step Default Description OscillationTime6 0.000 - 600.000 0.001 0.000 Oscillation time for input 6 Threshold7 6 - 900 Threshold in percentage of station battery voltage for input 7 DebounceTime7 0.000 - 0.100 0.001...
  • Page 56 Section 4 1MRK 505 288-UEN A Binary input and output modules Name Values (Range) Unit Step Default Description Threshold4 6 - 900 Threshold in percentage of station battery voltage for input 4 DebounceTime4 0.000 - 0.100 0.001 0.005 Debounce time for input 4 OscillationCount4 0 - 255 Oscillation count for input 4...
  • Page 57 Section 4 1MRK 505 288-UEN A Binary input and output modules Name Values (Range) Unit Step Default Description DebounceTime12 0.000 - 0.100 0.001 0.005 Debounce time for input 12 OscillationCount12 0 - 255 Oscillation count for input 12 OscillationTime12 0.000 - 600.000 0.001 0.000 Oscillation time for input 12...
  • Page 59: Section 5 Local Human-Machine-Interface Lhmi

    Section 5 1MRK 505 288-UEN A Local Human-Machine-Interface LHMI Section 5 Local Human-Machine-Interface LHMI Local HMI screen behaviour 5.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Local HMI screen behaviour SCREEN 5.1.2 Settings Table 12: SCREEN Non group settings (basic) Name Values (Range)
  • Page 60: Signals

    Section 5 1MRK 505 288-UEN A Local Human-Machine-Interface LHMI LHMICTRL CLRLEDS HMI-ON RED-S YELLOW-S YELLOW-F CLRPULSE LEDSCLRD IEC09000320-1-en.vsd IEC09000320 V1 EN Figure 3: LHMICTRL function block 5.2.3 Signals Table 13: LHMICTRL Input signals Name Type Default Description CLRLEDS BOOLEAN Input to clear the LCD-HMI LEDs Table 14: LHMICTRL Output signals Name...
  • Page 61: Signals

    Section 5 1MRK 505 288-UEN A Local Human-Machine-Interface LHMI LEDGEN BLOCK NEWIND RESET IEC09000321-1-en.vsd IEC09000321 V1 EN Figure 4: LEDGEN function block GRP1_LED1 ^HM1L01R ^HM1L01Y ^HM1L01G IEC09000322 V1 EN Figure 5: GRP1_LED1 function block The GRP1_LED1 function block is an example, all 15 LED in each of group 1 - 3 has a similar function block.
  • Page 62: Settings

    Section 5 1MRK 505 288-UEN A Local Human-Machine-Interface LHMI 5.3.4 Settings Table 18: LEDGEN Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off/On tRestart 0.0 - 100.0 Defines the disturbance length tMax 0.0 - 100.0 Maximum time for the definition of a disturbance Table 19:...
  • Page 63: Signals

    Section 5 1MRK 505 288-UEN A Local Human-Machine-Interface LHMI 5.4.3 Signals Table 20: FNKEYMD1 Input signals Name Type Default Description LEDCTL1 BOOLEAN LED control input for function key Table 21: FNKEYMD1 Output signals Name Type Description FKEYOUT1 BOOLEAN Output controlled by function key 5.4.4 Settings Table 22:...
  • Page 64: Operation Principle

    Section 5 1MRK 505 288-UEN A Local Human-Machine-Interface LHMI Operation principle 5.5.1 Local HMI IEC12000175 V1 EN Figure 7: Local human-machine interface The LHMI of the IED contains the following elements: • Display (LCD) • Buttons • LED indicators • Communication port for PCM600 The LHMI is used for setting, monitoring and controlling.
  • Page 65 Section 5 1MRK 505 288-UEN A Local Human-Machine-Interface LHMI IEC13000063-1-en.vsd IEC13000063 V1 EN Figure 8: Display layout 1 Path 2 Content 3 Status 4 Scroll bar (appears when needed) • The path shows the current location in the menu structure. If the path is too long to be shown, it is truncated from the beginning, and the truncation is indicated with three dots.
  • Page 66 Section 5 1MRK 505 288-UEN A Local Human-Machine-Interface LHMI IEC13000045-1-en.vsd IEC13000045 V1 EN Figure 9: Truncated path The number before the function instance, for example ETHFRNT:1, indicates the instance number. The function button panel shows on request what actions are possible with the function buttons.
  • Page 67: Leds

    Section 5 1MRK 505 288-UEN A Local Human-Machine-Interface LHMI GUID-D20BB1F1-FDF7-49AD-9980-F91A38B2107D V1 EN Figure 11: Alarm LED panel The function button and alarm LED panels are not visible at the same time. Each panel is shown by pressing one of the function buttons or the Multipage button. Pressing the ESC button clears the panel from the display.
  • Page 68: Led

    Section 5 1MRK 505 288-UEN A Local Human-Machine-Interface LHMI IEC11000247 V2 EN Figure 12: LHMI keypad with object control, navigation and command push- buttons and RJ-45 communication port 1...5 Function button Close Open Escape Left Down Right User Log on Enter Remote/Local Uplink LED...
  • Page 69: Status Leds

    Section 5 1MRK 505 288-UEN A Local Human-Machine-Interface LHMI Each indication LED on local HMI can be set individually to operate in 6 different sequences; two as follow type and four as latch type. Two of the latching sequence types are intended to be used as a protection indication system, either in collecting or restarting mode, with reset functionality.
  • Page 70 Section 5 1MRK 505 288-UEN A Local Human-Machine-Interface LHMI • From function input • The active indications can also be acknowledged/reset from an input, ACK_RST, to the function. This input can for example be configured to a binary input operated from an external push button. The function is positive edge triggered, not level triggered.
  • Page 71 Section 5 1MRK 505 288-UEN A Local Human-Machine-Interface LHMI Activating signal IEC01000228_2_en.vsd IEC01000228 V2 EN Figure 14: Operating Sequence 1 (Follow-S) If inputs for two or more colors are active at the same time to one LED the priority is as described above.
  • Page 72 Section 5 1MRK 505 288-UEN A Local Human-Machine-Interface LHMI Activating signal Acknow. en01000231.vsd IEC01000231 V1 EN Figure 16: Operating Sequence 3 LatchedAck-F-S When an acknowledgment is performed, all indications that appear before the indication with higher priority has been reset, will be acknowledged, independent of if the low priority indication appeared before or after acknowledgment.
  • Page 73 Section 5 1MRK 505 288-UEN A Local Human-Machine-Interface LHMI Activating signal GREEN Activating signal YELLOW Activating signal RED Acknow. IEC09000314-1-en.vsd IEC09000314 V1 EN Figure 18: Operating sequence 3, three colors involved, alternative 1 If an indication with higher priority appears after acknowledgment of a lower priority indication the high priority indication will be shown as not acknowledged according Figure Activating...
  • Page 74 Section 5 1MRK 505 288-UEN A Local Human-Machine-Interface LHMI Activating signal Reset IEC01000235_2_en.vsd IEC01000235 V2 EN Figure 20: Operating Sequence 5 LatchedColl-S That means if an indication with higher priority has reset while an indication with lower priority still is active at the time of reset, the LED will change color according to Figure Activating signal GREEN...
  • Page 75 Section 5 1MRK 505 288-UEN A Local Human-Machine-Interface LHMI Disturbance tRestart Activating signal 1 Activating signal 2 LED 1 LED 2 Automatic reset Manual reset IEC01000239_2-en.vsd IEC01000239 V2 EN Figure 22: Operating sequence 6 (LatchedReset-S), two indications within same disturbance Figure 23 shows the timing diagram for a new indication after tRestart time has elapsed.
  • Page 76 Section 5 1MRK 505 288-UEN A Local Human-Machine-Interface LHMI Figure 24 shows the timing diagram when a new indication appears after the first one has reset but before tRestart has elapsed. Disturbance tRestart Activating signal 1 Activating signal 2 LED 1 LED 2 Automatic reset...
  • Page 77: Function Keys

    Section 5 1MRK 505 288-UEN A Local Human-Machine-Interface LHMI Disturbance tRestart Activating signal 1 Activating signal 2 LED 1 LED 2 Automatic reset Manual reset IEC01000242_2_en.vsd IEC01000242 V2 EN Figure 25: Operating sequence 6 (LatchedReset-S), manual reset 5.5.3 Function keys 5.5.3.1 Functionality Local Human-Machine-Interface (LHMI) has five function buttons, directly to the left...
  • Page 78 Section 5 1MRK 505 288-UEN A Local Human-Machine-Interface LHMI Operating sequence The operation mode is set individually for each output, either OFF, TOGGLE or PULSED. Setting OFF This mode always gives the output the value. A change of the input value does not affect the output value.
  • Page 79 Section 5 1MRK 505 288-UEN A Local Human-Machine-Interface LHMI Input value Output value pulse pulse IEC09000332_1_en.vsd IEC09000332 V1 EN Figure 28: Sequence diagram for setting PULSED Input function All inputs work the same way: When the LHMI is configured so that a certain function button is of type CONTROL, then the corresponding input on this function block becomes active, and will light the yellow function button LED when high.
  • Page 81: Section 6 Differential Protection

    Section 6 1MRK 505 288-UEN A Differential protection Section 6 Differential protection 1Ph High impedance differential protection HZPDIF 6.1.1 Identification IEC 61850 IEC 60617 ANSI/IEEE C37.2 Function description identification identification device number 1Ph High impedance differential HZPDIF protection SYMBOL-CC V2 EN 6.1.2 Introduction The 1Ph High impedance differential protection HZPDIF functions can be used when...
  • Page 82: Signals

    Section 6 1MRK 505 288-UEN A Differential protection 6.1.4 Signals Table 24: HZPDIF Input signals Name Type Default Description GROUP Group signal for current input SIGNAL BLOCK BOOLEAN Block of function BLKTR BOOLEAN Block of trip Table 25: HZPDIF Output signals Name Type Description...
  • Page 83: Logic Diagram

    Section 6 1MRK 505 288-UEN A Differential protection calculated to achieve through fault stability. The used stabilizing resistor value is set by the setting SeriesResistor. See the application manual for operating voltage and sensitivity calculation. 6.1.7.1 Logic diagram The logic diagram shows the operation principles for the 1Ph High impedance differential protection function HZPDIF, see figure 30.
  • Page 85: Section 7 Current Protection

    Section 7 1MRK 505 288-UEN A Current protection Section 7 Current protection Four step phase overcurrent protection 3-phase output OC4PTOC 7.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Four step phase overcurrent protection OC4PTOC 51/67 3I>...
  • Page 86: Function Block

    Section 7 1MRK 505 288-UEN A Current protection 7.1.3 Function block OC4PTOC I3P* TRIP U3P* BLOCK BLKST1 BLKST2 BLKST3 START BLKST4 STL1 STL2 STL3 2NDHARM IEC08000002-2-en.vsd IEC08000002 V2 EN Figure 31: OC4PTOC function block 7.1.4 Signals Table 29: OC4PTOC Input signals Name Type Default...
  • Page 87: Settings

    Section 7 1MRK 505 288-UEN A Current protection Name Type Description STL1 BOOLEAN Start signal from phase L1 STL2 BOOLEAN Start signal from phase L2 STL3 BOOLEAN Start signal from phase L3 ST2NDHRM BOOLEAN Second harmonic detected 7.1.5 Settings Table 31: OC4PTOC Group settings (basic) Name Values (Range)
  • Page 88 Section 7 1MRK 505 288-UEN A Current protection Name Values (Range) Unit Step Default Description DirMode3 Non-directional Directional mode of step 3 off / non- Non-directional directional / forward / reverse Forward Reverse I3> 5 - 2500 Phase current operate level for step3 in % of IBase 0.000 - 60.000 0.001...
  • Page 89: Monitored Data

    Section 7 1MRK 505 288-UEN A Current protection Table 33: OC4PTOC Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 6 Selection of one of the Global Base Value groups MeasType Selection between DFT and RMS measurement 7.1.6 Monitored data...
  • Page 90 Section 7 1MRK 505 288-UEN A Current protection 4 step over current element faultState dirPh1Flt Direction faultState One element for each Element dirPh2Flt step START dirPh3Flt TRIP Harmonic harmRestrBlock Restraint Element enableDir Mode Selection enableStep1-4 DirectionalMode1-4 en05000740-2-en.vsd IEC05000740 V2 EN Figure 32: Functional overview of OC4PTOC The sampled analogue phase currents are processed in a pre-processing function...
  • Page 91 Section 7 1MRK 505 288-UEN A Current protection signal is common for all three phases and all steps. It shall be noted that the selection of measured value (DFT or RMS) do not influence the operation of directional part of OC4PTOC.
  • Page 92 Section 7 1MRK 505 288-UEN A Current protection IEC09000636_1_vsd IEC09000636 V1 EN Figure 33: Directional characteristic of the phase overcurrent protection 1 RCA = Relay characteristic angle 55° 2 ROA = Relay operating angle 80° 3 Reverse 4 Forward If no blockings are given the start signals will start the timers of the step. The time characteristic for step 1 and 4 can be chosen as definite time delay or inverse time characteristic.
  • Page 93: Second Harmonic Blocking Element

    Section 7 1MRK 505 288-UEN A Current protection Characteristx=DefTime a>b Ix> BLKSTx BLOCK Inverse Characteristx=Inverse STAGEx_DIR_Int DirModex=Off DirModex=Non-directional DirModex=Forward FORWARD_Int DirModex=Reverse REVERSE_Int IEC12000008.vsd IEC12000008.vsd IEC12000008 V2 EN Figure 34: Simplified logic diagram for OC4PTOC 7.1.8 Second harmonic blocking element A harmonic restrain of the Four step overcurrent protection function OC4PTOC can be chosen.
  • Page 94: Technical Data

    Section 7 1MRK 505 288-UEN A Current protection 7.1.9 Technical data Table 35: OC4PTOC technical data Function Setting range Accuracy lBase Operate current (5-2500)% of ± 1.0% of I at I ≤ I ± 1.0% of I at I > I lBase Reset ratio >...
  • Page 95: Functionality

    Section 7 1MRK 505 288-UEN A Current protection 7.2.2 Functionality The four step residual overcurrent protection, zero or negative sequence direction (EF4PTOC) has a settable inverse or definite time delay independent for step 1 and 4 separately. Step 2 and 3 are always definite time delayed. All IEC and ANSI inverse time characteristics are available.
  • Page 96: Signals

    Section 7 1MRK 505 288-UEN A Current protection 7.2.4 Signals Table 36: EF4PTOC Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL GROUP Three phase group signal for polarizing voltage SIGNAL inputs I3PPOL GROUP Three phase group signal for polarizing current SIGNAL inputs...
  • Page 97: Settings

    Section 7 1MRK 505 288-UEN A Current protection 7.2.5 Settings Table 38: EF4PTOC Group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On EnaDir Disable Enable Enabling the Directional calculation Enable AngleRCA -180 - 180 Relay characteristic angle (RCA) polMethod Voltage...
  • Page 98 Section 7 1MRK 505 288-UEN A Current protection Name Values (Range) Unit Step Default Description t1Min 0.000 - 60.000 0.001 0.000 Minimum operate time for inverse curves for step 1 HarmRestrain1 Enable block of step 1 from harmonic restrain DirMode2 Non-directional Directional mode of step 2 (off, non- Non-directional...
  • Page 99: Monitored Data

    Section 7 1MRK 505 288-UEN A Current protection Name Values (Range) Unit Step Default Description IMin4 1 - 10000 Minimum operate current for step 4 in % of IBase t4Min 0.000 - 60.000 0.001 0.000 Minimum operate time in inverse curves step 4 HarmRestrain4 Enable block of step 4 from harmonic...
  • Page 100: Operating Quantity Within The Function

    Section 7 1MRK 505 288-UEN A Current protection I3P, input used for “Operating Quantity”. U3P, input used for “Voltage Polarizing Quantity”. I3PPOL, input used for “Current Polarizing Quantity”. I3PDIR, input used for “Operating Directional Quantity”. These inputs are connected from the corresponding pre-processing function blocks in the Configuration Tool within PCM600.
  • Page 101: Internal Polarizing

    Section 7 1MRK 505 288-UEN A Current protection larger than the set operation current and the step is used in non-directional mode a signal from the comparator for this step is set to true. This signal will, without delay, activate the output signal STx (x=step 1-4) for this step and a common START signal. 7.2.7.2 Internal polarizing A polarizing quantity is used within the protection in order to determine the direction...
  • Page 102 Section 7 1MRK 505 288-UEN A Current protection where: UL1, UL2 and UL3 are fundamental frequency phasors of three individual phase voltages. alpha unit phasor with an angle of 120 degrees. The polarizing phasor is used together with the phasor of the operating directional current, in order to determine the direction to the earth fault (Forward/Reverse).
  • Page 103: External Polarizing For Earth-Fault Function

    Section 7 1MRK 505 288-UEN A Current protection × × I2 = (IL1+alpha IL2+alpha IL3)/3 (Equation 12) IECEQUATION2406 V1 EN where: IL1, IL2 and IL3 are fundamental frequency phasors of three individual phase currents. alpha phasor with an angle of 120 degrees. The polarizing current is pre-processed by a discrete fourier filter.
  • Page 104: Base Quantities Within The Protection

    Section 7 1MRK 505 288-UEN A Current protection 7.2.7.4 Base quantities within the protection The base quantities are entered as global settings for all functions in the IED. Base current (IBase) shall be entered as rated phase current of the protected object in primary amperes.
  • Page 105: Directional Supervision Element With Integrated Directional Comparison Function

    Section 7 1MRK 505 288-UEN A Current protection Characteristn=DefTime TRINx a>b INx> STINx BLKSTx BLOCK Inverse 2ndH_BLOCK_Int Characteristn=Inverse HarmRestrainx=Disabled Characteristn= Inverse will be valid STEPx_DIR_Int DirModex=Off for n = 1 and 4 DirModex=Non-directional DirModex=Forward FORWARD_Int DirModex=Reverse REVERSE_Int IEC09000638_3_en.vsd IEC09000638 V3 EN Figure 37: Simplified logic diagram for residual overcurrent The protection can be completely blocked from the binary input BLOCK.
  • Page 106 Section 7 1MRK 505 288-UEN A Current protection Operating area STRV 0.6 * IN>DIR Characteristic for reverse release of measuring steps -RCA -85 deg Characteristic for STRV 40% of IN>DIR RCA +85 deg = -3U 65° -RCA +85 deg RCA -85 deg Characteristic for forward release of measuring steps IN>DIR...
  • Page 107 Section 7 1MRK 505 288-UEN A Current protection BLKTR Characteristx=DefTime a>b Ix> BLKSTx BLOCK Inverse Characteristx=Inverse STAGEx_DIR_Int DirModex=Off DirModex=Non-directional DirModex=Forward FORWARD_Int DirModex=Reverse REVERSE_Int SimplifiedlogicdiagramforresidualOC IEC11000281-1-en.vsd stagex-IEC11000281.vsd IEC11000281 V1 EN Figure 39: Operating characteristic for earth-fault directional element using the zero sequence components Technical manual...
  • Page 108 Section 7 1MRK 505 288-UEN A Current protection Operating area STRV 0.6 * I>DIR Characteristic for reverse release of measuring steps -RCA -85 deg Characteristic for STRV 40% of RCA +85 deg I>DIR = -U 65 deg -RCA +85 deg RCA -85 deg Characteristic for forward release of measuring steps...
  • Page 109: Second Harmonic Blocking Element

    Section 7 1MRK 505 288-UEN A Current protection These signals shall be used for communication based earth-fault teleprotection communication schemes (permissive or blocking). Simplified logic diagram for directional supervision element with integrated directional comparison step is shown in figure 41: IopDir STRV a>b...
  • Page 110: Technical Data

    Section 7 1MRK 505 288-UEN A Current protection BLOCK a>b 0.07*IBase a>b Extract second harmonic current a>b component Extract fundamental current component 2ndHarmStab t=70ms 2ndH_BLOCK_Int BlkParTransf=On a>b UseStartValue IN1> IN2> IN3> IN4> IEC13000015-1-en.vsd IEC13000015 V1 EN Figure 42: Second harmonic blocking 7.2.9 Technical data Table 41:...
  • Page 111: Thermal Overload Protection, Two Time Constants Trpttr

    Section 7 1MRK 505 288-UEN A Current protection Function Range or value Accuracy UBase Minimum polarizing voltage, Zero (1–100)% of ± 0.5% of U sequence UBase Minimum polarizing voltage, (1–100)% of ± 0.5% of U Negative sequence IBase Minimum polarizing current, Zero (2–100)% of ±1.0% of I sequence...
  • Page 112: Function Block

    Section 7 1MRK 505 288-UEN A Current protection The thermal overload protection estimates the internal heat content of the transformer/ generator (temperature) continuously. This estimation is made by using a thermal model of the transformer/generator with two time constants, which is based on current measurement.
  • Page 113: Settings

    Section 7 1MRK 505 288-UEN A Current protection 7.3.5 Settings Table 44: TRPTTR Group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On IRef 10.0 - 1000.0 100.0 Reference current in % of IBase IBase1 30.0 - 250.0 100.0 Base current IBase1 without cooling input...
  • Page 114: Monitored Data

    Section 7 1MRK 505 288-UEN A Current protection 7.3.6 Monitored data Table 46: TRPTTR Monitored data Name Type Values (Range) Unit Description TTRIP REAL Estimated time to trip (in min) TTRIPCAL INTEGER Calculated time status to trip: not active/long time/ active TRESCAL INTEGER...
  • Page 115 Section 7 1MRK 505 288-UEN A Current protection > Q final (Equation 16) EQUATION1172 V1 EN æ ö Q = Q × ç ÷ final è ø (Equation 17) EQUATION1173 V1 EN < Q final (Equation 18) EQUATION1174 V1 EN Q = Q ×...
  • Page 116 Section 7 1MRK 505 288-UEN A Current protection the temperature of the object is above the set lockout release temperature setting ResLo. The time to lockout release is calculated, That is, a calculation of the cooling time to a set value. æ...
  • Page 117 Section 7 1MRK 505 288-UEN A Current protection Final Temp START > TripTemp actual heat comtent Calculation of heat content Calculation of final temperature ALARM1 Actual Temp > Alarm1,Alarm2 ALARM2 Temp Current base used TRIP Actual Temp > TripTemp LOCKOUT Binary input: Forced cooling Management of...
  • Page 118: Technical Data

    Section 7 1MRK 505 288-UEN A Current protection 7.3.8 Technical data Table 47: TRPTTR technical data Function Range or value Accuracy IBase Base current 1 and 2 (30–250)% of ± 1.0% of I Operate time: = load current before overload IEC 60255–8, ±5% + 200 ms occurs Time constant τ...
  • Page 119: Function Block

    Section 7 1MRK 505 288-UEN A Current protection Contact check criteria can be used where the fault current through the breaker is small. Breaker failure protection, 3-phase activation and output (CCRBRF) current criteria can be fulfilled by one or two phase currents the residual current, or one phase current plus residual current.
  • Page 120: Settings

    Section 7 1MRK 505 288-UEN A Current protection 7.4.5 Settings Table 50: CCRBRF Group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On FunctionMode Current Current Detection principle for back-up trip Contact Current&Contact BuTripMode 2 out of 4 1 out of 3 Back-up trip mode 1 out of 3...
  • Page 121: Operation Principle

    Section 7 1MRK 505 288-UEN A Current protection 7.4.7 Operation principle Breaker failure protection, 3-phase activation and output CCRBRF is initiated from protection trip command, either from protection functions within the IED or from external protection devices. The start signal is general for all three phases. A re-trip attempt can be made after a set time delay.
  • Page 122 Section 7 1MRK 505 288-UEN A Current protection IP> a>b FunctionMode Current Reset L1 Contact Time out L1 Current and Contact Current High L1 BFP Started L1 CB Closed L1 a>b I>BlkCont CBCLDL1 Contact Closed L1 IEC09000977-2-en.vsd IEC09000977 V2 EN Figure 47: Simplified logic scheme of the CCRBRF, CB position evaluation TRRETL3...
  • Page 123: Technical Data

    Section 7 1MRK 505 288-UEN A Current protection BUTripMode 1 out of 3 2 out of 4 1 out of 4 Current High L1 BFP Started L1 a>b IN> Contact Closed L1 Current High L2 From other Current High L3 Backup Time Out L1 phases Current High L1...
  • Page 124: Pole Discordance Protection Ccrpld

    Section 7 1MRK 505 288-UEN A Current protection Function Range or value Accuracy Timers (0.000-60.000) s ± 0.5% ±10 ms Operate time for 20 ms typically current detection Reset time for current 10 ms maximum detection Pole discordance protection CCRPLD 7.5.1 Identification Function description...
  • Page 125: Signals

    Section 7 1MRK 505 288-UEN A Current protection 7.5.4 Signals Table 55: CCRPLD Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL BLOCK BOOLEAN Block of function CLOSECMD BOOLEAN Close order to CB OPENCMD BOOLEAN Open order to CB EXTPDIND...
  • Page 126: Monitored Data

    Section 7 1MRK 505 288-UEN A Current protection 7.5.6 Monitored data Table 59: CCRPLD Monitored data Name Type Values (Range) Unit Description IMin REAL Lowest phase current IMax REAL Highest phase current 7.5.7 Operation principle The detection of pole discordance can be made in two different ways. If the contact based function is used an external logic can be made by connecting the auxiliary contacts of the circuit breaker so that a pole discordance is indicated, see figure 51.
  • Page 127: Pole Discordance Signaling From Circuit Breaker

    Section 7 1MRK 505 288-UEN A Current protection ContSel EXTPDIND tTrip 150 ms TRIP CLOSECMD tTrip+200 ms OPENCMD CurrSel Unsymmetrical current detection IEC08000014-2-en.vsd IEC08000014 V2 EN Figure 52: Simplified block diagram of pole discordance function - contact and current based The pole discrepancy protection is blocked if the input signal BLOCK is high.
  • Page 128: Technical Data

    Section 7 1MRK 505 288-UEN A Current protection • any phase current is lower than CurrUnsymLevel of the highest current in the three phases. • the highest phase current is greater than CurrRelLevel of IBase. If these conditions are true, an unsymmetrical condition is detected. This detection is enabled to generate a trip after a set time delay tTrip if the detection occurs in the next 200 ms after the circuit breaker has received a command to open trip or close and if the unbalance persists.
  • Page 129: Functionality

    Section 7 1MRK 505 288-UEN A Current protection 7.6.2 Functionality Negative sequence based overcurrent function DNSPTOC is typically used as sensitive earth-fault protection of power lines, where incorrect zero sequence polarization may result from mutual induction between two or more parallel lines. Additionally, it is applied in applications on cables, where zero sequence impedance depends on the fault current return paths, but the cable negative sequence impedance is practically constant.
  • Page 130: Settings

    Section 7 1MRK 505 288-UEN A Current protection Table 62: DNSPTOC Output signals Name Type Description TRIP BOOLEAN General trip signal TROC1 BOOLEAN Trip signal from step 1 (OC1) TROC2 BOOLEAN Trip signal from step 2 (OC2) START BOOLEAN General start signal STOC1 BOOLEAN Start signal from step 1 (OC1)
  • Page 131: Monitored Data

    Section 7 1MRK 505 288-UEN A Current protection Name Values (Range) Unit Step Default Description CurrMult_OC2 1.0 - 10.0 Multiplier for current operate level for step 2 (OC2) tDef_OC2 0.00 - 6000.00 0.01 0.50 Independent (definite) time delay for step 2 (OC2) DirMode_OC2 Non-directional...
  • Page 132: Technical Data

    Section 7 1MRK 505 288-UEN A Current protection 7.6.8 Technical data Table 66: DNSPTOC Technical data Function Range or value Accuracy IBase Operate current (2.0 - 200.0) % of ± 1.0% of I at I <I ± 1.0% of I at I > I Reset ratio >...
  • Page 133: Section 8 Voltage Protection

    Section 8 1MRK 505 288-UEN A Voltage protection Section 8 Voltage protection Two step undervoltage protection UV2PTUV 8.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Two step undervoltage protection UV2PTUV 3U< SYMBOL-R-2U-GREATER-THAN V2 EN 8.1.2 Functionality Undervoltages can occur in the power system during faults or abnormal conditions.
  • Page 134: Signals

    Section 8 1MRK 505 288-UEN A Voltage protection 8.1.4 Signals Table 67: UV2PTUV Input signals Name Type Default Description GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function BLKST1 BOOLEAN Block of step 1 BLKST2 BOOLEAN Block of step 2 Table 68:...
  • Page 135: Monitored Data

    Section 8 1MRK 505 288-UEN A Voltage protection Name Values (Range) Unit Step Default Description OperationStep2 Enable execution of step 2 OpMode2 1 out of 3 1 out of 3 Number of phases required to operate (1 2 out of 3 of 3, 2 of 3, 3 of 3) from step 2 3 out of 3 U2<...
  • Page 136: Measurement Principle

    Section 8 1MRK 505 288-UEN A Voltage protection UBase kV < ⋅ (Equation 23) EQUATION1429 V2 EN and operation for phase-to-phase voltage under: < × (%) UBase(kV) (Equation 24) EQUATION1990 V1 EN When phase-to-earth voltage measurement is selected the function automatically introduces division of the base value by the square root of three.
  • Page 137: Blocking

    Section 8 1MRK 505 288-UEN A Voltage protection The lowest voltage is always used for the inverse time delay integration. The details of the different inverse time characteristics are shown in section 19.3 "Inverse time characteristics". Voltage IDMT Voltage Time IEC12000186-1-en.vsd IEC12000186 V1 EN Figure 55:...
  • Page 138: Technical Data

    Section 8 1MRK 505 288-UEN A Voltage protection UL1 or UL12 ST1L1 Comparator Phase 1 U < U1< Voltage Phase Selector ST1L2 UL2 or UL23 Comparator OpMode1 Phase 2 U < U1< 1 out of 3 ST1L3 2 out of 3 Start Phase 3 3 out of 3...
  • Page 139: Two Step Overvoltage Protection Ov2Ptov

    Section 8 1MRK 505 288-UEN A Voltage protection Function Range or value Accuracy Definite time delay, (0.00 - 6000.00) s ± 0.5% ± 25 ms step 1 Definite time delays, (0.000-60.000) s ± 0.5% ±25 ms step 2 Minimum operate (0.000–60.000) s ±...
  • Page 140: Function Block

    Section 8 1MRK 505 288-UEN A Voltage protection 8.2.3 Function block OV2PTOV U3P* TRIP BLOCK BLKST1 BLKST2 START ST1L1 ST1L2 ST1L3 IEC09000278-2-en.vsd IEC09000278 V2 EN Figure 57: OV2PTOV function block 8.2.4 Signals Table 73: OV2PTOV Input signals Name Type Default Description GROUP Three phase group signal for voltage inputs...
  • Page 141: Settings

    Section 8 1MRK 505 288-UEN A Voltage protection 8.2.5 Settings Table 75: OV2PTOV Group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On OperationStep1 Enable execution of step 1 Characterist1 Definite time Definite time Selection of time delay curve type for step Inverse curve A Inverse curve B Inverse curve C...
  • Page 142: Operation Principle

    Section 8 1MRK 505 288-UEN A Voltage protection 8.2.7 Operation principle Two step overvoltage protection OV2PTOV is used to detect high power system voltage. OV2PTOV has two steps with separate time delays. If one-, two- or three- phase voltages increase above the set value, a corresponding START signal is issued. OV2PTOV can be set to START/TRIP, based on 1 out of 3, 2 out of 3 or 3 out of 3 of the measured voltages, being above the set point.
  • Page 143: Time Delay

    Section 8 1MRK 505 288-UEN A Voltage protection 8.2.7.2 Time delay The time delay for step 1 can be either definite time delay (DT) or inverse time delay (IDMT). Step 2 is always definite time delay (DT). For the inverse time delay three different modes are available: •...
  • Page 144: Blocking

    Section 8 1MRK 505 288-UEN A Voltage protection Voltage IDMT Voltage Time IEC05000016-2-en.vsd IEC05000016 V2 EN Figure 58: Voltage used for the inverse time characteristic integration A TRIP requires that the overvoltage condition continues for at least the user set time delay.
  • Page 145 Section 8 1MRK 505 288-UEN A Voltage protection Comparator ST1L1 UL1 or UL12 U > U1> Phase 1 Voltage Phase Selector ST1L2 Comparator OpMode1 UL2 or UL23 Phase 2 U > U1> 1 out of 3 ST1L3 2 outof 3 Start Phase 3 3 out of 3...
  • Page 146: Technical Data

    Section 8 1MRK 505 288-UEN A Voltage protection 8.2.8 Technical data Table 78: OV2PTOV technical data Function Range or value Accuracy UBase Operate voltage, (1-200)% of ± 0.5% of U at U < U step 1 and 2 ± 0.5% of U at U > U Reset ratio >98% Inverse time...
  • Page 147: Function Block

    Section 8 1MRK 505 288-UEN A Voltage protection ROV2PTOV has two voltage steps, where step 1 can be set as inverse or definite time delayed. Step 2 is always definite time delayed. 8.3.3 Function block ROV2PTOV U3P* TRIP BLOCK BLKST1 BLKST2 START IEC09000273_1_en.vsd...
  • Page 148: Monitored Data

    Section 8 1MRK 505 288-UEN A Voltage protection Name Values (Range) Unit Step Default Description U1> 1 - 200 Voltage start value (DT & IDMT) in % of UBase for step 1 0.00 - 6000.00 0.01 5.00 Definite time delay of step 1 t1Min 0.000 - 60.000 0.001...
  • Page 149: Measurement Principle

    Section 8 1MRK 505 288-UEN A Voltage protection 8.3.7.1 Measurement principle The residual voltage is measured continuously, and compared with the set values, U1> and U2>. To avoid oscillations of the output START signal, a hysteresis has been included. 8.3.7.2 Time delay 8.3.7.3 Blocking...
  • Page 150 Section 8 1MRK 505 288-UEN A Voltage protection Comparator Phase 1 UN > U1> Start START & Trip Output Logic Time integrator TRIP or Timer t1 Step 1 Comparator Phase 1 UN > U2> Start START & Trip START Output Logic Timer TRIP...
  • Page 151: Technical Data

    Section 8 1MRK 505 288-UEN A Voltage protection 8.3.8 Technical data Table 84: ROV2PTOV technical data Function Range or value Accuracy UBase Operate voltage, (1-200)% of ± 0.5% of U at U < U step 1 ± 0.5% of U at U > U UBase Operate voltage, (1–100)% of...
  • Page 153: Section 9 Secondary System Supervision

    Section 9 1MRK 505 288-UEN A Secondary system supervision Section 9 Secondary system supervision Fuse failure supervision SDDRFUF 9.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Fuse failure supervision SDDRFUF 9.1.2 Functionality The aim of the fuse failure supervision function SDDRFUF is to block voltage measuring functions at failures in the secondary circuits between the voltage transformer and the IED in order to avoid inadvertent operations that otherwise might occur.
  • Page 154: Function Block

    Section 9 1MRK 505 288-UEN A Secondary system supervision 9.1.3 Function block SDDRFUF I3P* BLKZ U3P* BLKU BLOCK CBCLOSED DLD1PH MCBOP DLD3PH DISCPOS IEC08000220 V1 EN Figure 62: SDDRFUF function block 9.1.4 Signals Table 85: SDDRFUF Input signals Name Type Default Description GROUP...
  • Page 155: Settings

    Section 9 1MRK 505 288-UEN A Secondary system supervision 9.1.5 Settings Table 87: SDDRFUF Group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On OpMode UZsIZs Operating mode selection UNsINs UZsIZs UZsIZs OR UNsINs UZsIZs AND UNsINs OptimZsNs 3U0>...
  • Page 156: Monitored Data

    Section 9 1MRK 505 288-UEN A Secondary system supervision 9.1.6 Monitored data Table 89: SDDRFUF Monitored data Name Type Values (Range) Unit Description REAL Magnitude of zero sequence current REAL Magnitude of negative sequence current REAL Magnitude of zero sequence voltage REAL Magnitude of negative sequence voltage...
  • Page 157: Delta Current And Delta Voltage Detection

    Section 9 1MRK 505 288-UEN A Secondary system supervision Sequence Detection 3I0< CurrZeroSeq Zero sequence filter 100 ms CurrNegSeq a>b Negative sequence filter FuseFailDetZeroSeq 100 ms a>b 3I2< FuseFailDetNegSeq 3U0> VoltZeroSeq Zero sequence a>b filter VoltNegSeq Negative sequence a>b filter 3U2>...
  • Page 158 Section 9 1MRK 505 288-UEN A Secondary system supervision • The magnitude of the phase current in the same phase is higher than the setting IPh> • The circuit breaker is closed (CBCLOSED = True) The first criterion means that detection of failure in one phase together with a current in the same phase greater than 50P will set the output.
  • Page 159 Section 9 1MRK 505 288-UEN A Secondary system supervision DUDI Detection DUDI detection Phase 1 One cycle delay |DI| a>b DI< One cycle delay |DU| a>b DU> 20 ms 1.5 cycle a>b UPh> DUDI detection Phase 2 Same logic as for phase 1 DUDI detection Phase 3 Same logic as for phase 1 a<b...
  • Page 160: Dead Line Detection

    Section 9 1MRK 505 288-UEN A Secondary system supervision 9.1.7.3 Dead line detection A simplified diagram for the functionality is found in figure 65. A dead phase condition is indicated if both the voltage and the current in one phase is below their respective setting values UDLD<...
  • Page 161 Section 9 1MRK 505 288-UEN A Secondary system supervision • UZsIZs OR UNsINs. Both negative and zero sequence is activated and working in parallel (OR-condition for operation). • UZsIZs AND UNsINs. Both negative and zero sequence is activated and working in series (AND-condition for operation).
  • Page 162 Section 9 1MRK 505 288-UEN A Secondary system supervision The input signal DISCPOS is supposed to be connected via a terminal binary input to the N.C. auxiliary contact of the line disconnector. The DISCPOS signal sets the output signal BLKU in order to block the voltage related functions when the line disconnector is open.
  • Page 163 Section 9 1MRK 505 288-UEN A Secondary system supervision Fuse failure detection Main logic TEST TEST ACTIVE BlocFuse = Yes intBlock BLOCK All UL < USealIn< SealIn = On Any UL < UsealIn< FuseFailDetDUDI OpDUDI = On FuseFailDetZeroSeq FuseFailDetNegSeq UNsINs UZsIZs UZsIZs OR UNsINs OpMode...
  • Page 164: Technical Data

    Section 9 1MRK 505 288-UEN A Secondary system supervision 9.1.8 Technical data Table 90: SDDRFUF technical data Function Range or value Accuracy Operate voltage, zero sequence (1-100)% of UBase ± 1.0% of U Operate current, zero sequence (1–100)% of IBase ±...
  • Page 165: Signals

    Section 9 1MRK 505 288-UEN A Secondary system supervision 9.2.4 Signals Table 91: TCSSCBR Input signals Name Type Default Description TCS_STATE BOOLEAN Trip circuit fail indication from I/O-card BLOCK BOOLEAN Block of function Table 92: TCSSCBR Output signals Name Type Description ALARM BOOLEAN...
  • Page 166: Technical Data

    Section 9 1MRK 505 288-UEN A Secondary system supervision To protect the trip circuit supervision circuits in the IED, the output contacts are provided with parallel transient voltage suppressors. The breakdown voltage of these suppressors is 400 +/– 20 V DC. Timer Once activated, the timer runs until the set value tDelay is elapsed.
  • Page 167: Section 10 Control

    Section 10 1MRK 505 288-UEN A Control Section 10 Control 10.1 Synchrocheck, energizing check, and synchronizing SESRSYN 10.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Synchrocheck, energizing check, and SESRSYN synchronizing sc/vc SYMBOL-M V1 EN 10.1.2 Functionality The Synchronizing function allows closing of asynchronous networks at the correct...
  • Page 168: Function Block

    Section 10 1MRK 505 288-UEN A Control 10.1.3 Function block SESRSYN U3PBB1* SYNOK U3PBB2* AUTOSYOK U3PLN1* AUTOENOK U3PLN2* MANSYOK BLOCK MANENOK BLKSYNCH TSTSYNOK BLKSC TSTAUTSY BLKENERG TSTMANSY B1QOPEN TSTENOK B1QCLD USELFAIL B2QOPEN B1SEL B2QCLD B2SEL LN1QOPEN LN1SEL LN1QCLD LN2SEL LN2QOPEN SYNPROGR LN2QCLD SYNFAIL...
  • Page 169 Section 10 1MRK 505 288-UEN A Control Name Type Default Description B1QCLD BOOLEAN Close status for CB or disconnector connected to bus1 B2QOPEN BOOLEAN Open status for CB or disconnector connected to bus2 B2QCLD BOOLEAN Close status for CB or disconnector connected to bus2 LN1QOPEN BOOLEAN...
  • Page 170: Settings

    Section 10 1MRK 505 288-UEN A Control Name Type Description B2SEL BOOLEAN Bus2 selected LN1SEL BOOLEAN Line1 selected LN2SEL BOOLEAN Line2 selected SYNPROGR BOOLEAN Synchronizing in progress SYNFAIL BOOLEAN Synchronizing failed FRDIFSYN BOOLEAN Frequency difference out of limit for synchronizing FRDERIVA BOOLEAN Frequency derivative out of limit for synchronizing...
  • Page 171 Section 10 1MRK 505 288-UEN A Control Name Values (Range) Unit Step Default Description FreqDiffMin 0.003 - 0.250 0.001 0.010 Minimum frequency difference limit for synchronizing FreqDiffMax 0.050 - 0.500 0.001 0.200 Maximum frequency difference limit for synchronizing FreqRateChange 0.000 - 0.500 Hz/s 0.001 0.300...
  • Page 172: Monitored Data

    Section 10 1MRK 505 288-UEN A Control Table 98: SESRSYN Non group settings (basic) Name Values (Range) Unit Step Default Description GblBaseSelBus 1 - 6 Selection of one of the Global Base Value groups, Bus GblBaseSelLine 1 - 6 Selection of one of the Global Base Value groups, Line SelPhaseBus1 Phase L1...
  • Page 173: Operation Principle

    Section 10 1MRK 505 288-UEN A Control 10.1.7 Operation principle 10.1.7.1 Basic functionality The synchrocheck function measures the conditions across the circuit breaker and compares them to set limits. The output is only given when all measured quantities are simultaneously within their set limits. The energizing check function measures the bus and line voltages and compares them to both high and low threshold detectors.
  • Page 174 Section 10 1MRK 505 288-UEN A Control use of different voltages on the bus and line, the factor is deducted from the line voltage before the comparison of the phase angle values. The frequency on both sides of the circuit breaker is also measured. The function is only released if the frequency difference is less than the fixed set value of +/-5 Hz.
  • Page 175: Synchronizing

    Section 10 1MRK 505 288-UEN A Control Note! Similar logic for Manual Synchrocheck. OperationSC = On TSTSC BLKSC BLOCK AUTOSYOK 0-60 s tSCA UDiffSC 50 ms Bus voltage >80% of GblBaseSelBus UOKSC Line voltage >80% of GblBaseSelLine UDIFFSC FRDIFFA FreqDiffA PHDIFFA PhaseDiffA UDIFFME...
  • Page 176: Energizing Check

    Section 10 1MRK 505 288-UEN A Control Measured frequencies between the settings for the maximum and minimum frequency will initiate the measuring and the evaluation of the angle change to allow operation to be sent in the right moment including the set tBreaker time. There is a phase angle release internally to block any incorrect closing pulses.
  • Page 177: Fuse Failure Supervision

    Section 10 1MRK 505 288-UEN A Control for GblBaseSelBus or GblBaseSelLine and to be considered dead it must be below 40% of set UBase selected forGblBaseSelBus or GblBaseSelLine. The frequency on both sides of the circuit breaker is also measured. The frequencies must not deviate from the rated frequency more than +/-5Hz.
  • Page 178: Voltage Selection For A Single Circuit Breaker With Double Busbars

    Section 10 1MRK 505 288-UEN A Control The voltage selection type to be used is set with the parameter CBConfig. If No voltage sel. is set the voltages used will be U-Line1 and U-Bus1. This setting is also used in the case when external voltage selection is provided. Fuse failure supervision for the used inputs must also be connected.
  • Page 179: Voltage Selection For A 1 1/2 Circuit Breaker Arrangement

    Section 10 1MRK 505 288-UEN A Control B1QOPEN B1SEL B1QCLD B2QOPEN B2SEL B2QCLD invalidSelection busVoltage bus1Voltage bus2Voltage UB1OK UB1FF selectedFuseOK UB2OK UB2FF USELFAIL ULN1OK ULN1FF BLOCK en05000779-2.vsd IEC05000779 V2 EN Figure 72: Logic diagram for the voltage selection function of a single circuit breaker with double busbars 10.1.7.8 Voltage selection for a 1 1/2 circuit breaker arrangement Note that with 1½...
  • Page 180 Section 10 1MRK 505 288-UEN A Control The fuse supervision is connected to ULN1OK-ULN1FF, ULN2OK-ULN2FF and with alternative Healthy or Failing MCB signals depending on what is available from each MCB. The tie circuit breaker is connected either to bus 1 or line 1 voltage on one side and the other side is connected either to bus 2 or line 2 voltage.
  • Page 181 Section 10 1MRK 505 288-UEN A Control LN1QOPEN LN1SEL LN1QCLD B1QOPEN LN2SEL B1QCLD B2SEL LN2QOPEN invalidSelection LN2QCLD B2QOPEN B2QCLD line1Voltage lineVoltage line2Voltage bus2Voltage UB1OK UB1FF selectedFuseOK UB2OK UB2FF USELFAIL ULN1OK ULN1FF ULN2OK ULN2FF BLOCK en05000780-2.vsd IEC05000780 V2 EN Figure 73: Simplified logic diagram for the voltage selection function for a bus circuit breaker in a 1 1/2 breaker arrangement Technical manual...
  • Page 182 Section 10 1MRK 505 288-UEN A Control LN1QOPEN LN1SEL LN1QCLD B1SEL B1QOPEN B1QCLD busVoltage line1Voltage bus1Voltage LN2QOPEN LN2SEL LN2QCLD B2SEL invalidSelection B2QOPEN B2QCLD lineVoltage line2Voltage bus2Voltage UB1OK UB1FF selectedFuseOK UB2OK UB2FF USELFAIL ULN1OK ULN1FF ULN2OK ULN2FF BLOCK en05000781-2.vsd IEC05000781 V2 EN Figure 74: Simplified logic diagram for the voltage selection function for the tie circuit breaker in 1 1/2 breaker arrangement.
  • Page 183: Technical Data

    Section 10 1MRK 505 288-UEN A Control 10.1.8 Technical data Table 100: SESRSYN technical data Function Range or value Accuracy Phase shift, j (-180 to 180) degrees line Voltage ratio, U 0.500 - 2.000 line Reset ratio, synchrocheck > 95% Frequency difference limit (0.003-1.000) Hz ±...
  • Page 184: Apparatus Control

    Section 10 1MRK 505 288-UEN A Control 10.2 Apparatus control 10.2.1 Functionality The apparatus control function APC8 for up to 8 apparatuses is used for control and supervision of circuit breakers, disconnectors and earthing switches within a bay. Permission to operate is given after evaluation of conditions from other functions such as interlocking, synchrocheck, operator place selection and external or internal blockings.
  • Page 185: Function Block

    Section 10 1MRK 505 288-UEN A Control 10.2.2.3 Function block SCSWI BLOCK EXE_OP PSTO EXE_CL L_SEL SELECTED L_OPEN START_SY L_CLOSE POSITION AU_OPEN OPENPOS AU_CLOSE CLOSEPOS BL_CMD CMD_BLK RES_EXT L_CAUSE SY_INPRO POS_INTR SYNC_OK XOUT EN_OPEN EN_CLOSE XPOS* IEC09000087_1_en.vsd IEC09000087 V1 EN Figure 75: SCSWI function block 10.2.2.4...
  • Page 186: Settings

    Section 10 1MRK 505 288-UEN A Control Name Type Description CLOSEPOS BOOLEAN Closed position indication CMD_BLK BOOLEAN Commands are blocked L_CAUSE INTEGER Latest value of the error indication during command POS_INTR BOOLEAN Stopped in intermediate position XOUT BOOLEAN Execution information to XCBR/XSWI 10.2.2.5 Settings Table 103:...
  • Page 187: Settings

    Section 10 1MRK 505 288-UEN A Control Table 105: SXCBR Output signals Name Type Description XPOS GROUP SIGNAL Group connection to CSWI EXE_OP BOOLEAN Executes the command for open direction EXE_CL BOOLEAN Executes the command for close direction OP_BLKD BOOLEAN Indication that the function is blocked for open commands CL_BLKD...
  • Page 188: Settings

    Section 10 1MRK 505 288-UEN A Control Name Type Default Description BL_CLOSE BOOLEAN Signal to block the close command BL_UPD BOOLEAN Steady signal for block of the position updating POSOPEN BOOLEAN Signal for open position of apparatus from I/O POSCLOSE BOOLEAN Signal for close position of apparatus from I/O TR_OPEN...
  • Page 189: Bay Control Qcbay

    Section 10 1MRK 505 288-UEN A Control 10.2.5 Bay control QCBAY 10.2.5.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Bay control QCBAY 10.2.5.2 Functionality The Bay control QCBAY function is used together with Local remote and local remote control functions to handle the selection of the operator place per bay.
  • Page 190: Settings

    Section 10 1MRK 505 288-UEN A Control 10.2.5.5 Settings Table 112: QCBAY Non group settings (basic) Name Values (Range) Unit Step Default Description AllPSTOValid Priority Priority Priority of originators No priority 10.2.6 Local remote LOCREM 10.2.6.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification...
  • Page 191: Settings

    Section 10 1MRK 505 288-UEN A Control Table 114: LOCREM Output signals Name Type Description BOOLEAN Control is disabled LOCAL BOOLEAN Local control is activated REMOTE BOOLEAN Remote control is activated VALID BOOLEAN Outputs are valid 10.2.6.5 Settings Table 115: LOCREM Non group settings (basic) Name Values (Range)
  • Page 192: Function Block

    Section 10 1MRK 505 288-UEN A Control 10.2.7.3 Function block LOCREMCTRL ^PSTO1 ^HMICTR1 ^PSTO2 ^HMICTR2 ^PSTO3 ^HMICTR3 ^PSTO4 ^HMICTR4 ^PSTO5 ^HMICTR5 ^PSTO6 ^HMICTR6 ^PSTO7 ^HMICTR7 ^PSTO8 ^HMICTR8 ^PSTO9 ^HMICTR9 ^PSTO10 ^HMICTR10 ^PSTO11 ^HMICTR11 ^PSTO12 ^HMICTR12 IEC09000074_1_en.vsd IEC09000074 V1 EN Figure 78: LOCREMCTRL function block 10.2.7.4 Signals...
  • Page 193: Settings

    Section 10 1MRK 505 288-UEN A Control Name Type Description HMICTR6 INTEGER Bitmask output 6 to local remote LHMI input HMICTR7 INTEGER Bitmask output 7 to local remote LHMI input HMICTR8 INTEGER Bitmask output 8 to local remote LHMI input HMICTR9 INTEGER Bitmask output 9 to local remote LHMI input...
  • Page 194: Settings

    Section 10 1MRK 505 288-UEN A Control Name Type Default Description SELECT4 BOOLEAN Select signal of control 4 SELECT5 BOOLEAN Select signal of control 5 SELECT6 BOOLEAN Select signal of control 6 SELECT7 BOOLEAN Select signal of control 7 SELECT8 BOOLEAN Select signal of control 8 SELECT9...
  • Page 195 Section 10 1MRK 505 288-UEN A Control in three steps, the selection, command evaluation and the supervision of position. Each step ends up with a pulsed signal to indicate that the respective step in the command sequence is finished. If an error occurs in one of the steps in the command sequence, the sequence is terminated and the error is mapped into the enumerated variable "cause"...
  • Page 196 Section 10 1MRK 505 288-UEN A Control Interaction with synchrocheck and synchronizing functions The Switch controller (SCSWI) works in conjunction with the synchrocheck and the synchronizing function (SESRSYN). It is assumed that the synchrocheck function is continuously in operation and gives the result to SCSWI. The result from the synchrocheck function is evaluated during the close execution.
  • Page 197 Section 10 1MRK 505 288-UEN A Control select execute command tSelect t1>tSelect, then long- timer operation-time in 'cause' is set en05000092.vsd IEC05000092 V1 EN Figure 81: tSelect The timer tExecutionFB supervises the time between the execute command and the command termination, see figure 82. execute command position L1 open...
  • Page 198: Bay Control Qcbay

    Section 10 1MRK 505 288-UEN A Control execute command SYNC_OK tSynchrocheck START_SY SY_INPRO tSynchronizing t2>tSynchronizing, then blocked-by-synchrocheck in 'cause' is set en05000095.vsd IEC05000095 V1 EN Figure 83: tSynchroCheck and tSynchronizing Error handling Depending on the error that occurs during the command sequence, the error signal will be set with a value.
  • Page 199 Section 10 1MRK 505 288-UEN A Control Local panel switch The local panel switch is a switch that defines the operator place selection. The switch connected to this function can have three positions remote/local/off. The positions are here defined so that remote means that operation is allowed from station/remote level and local from the IED level.
  • Page 200: Local Remote/Local Remote Control Locrem/Locremctrl

    Section 10 1MRK 505 288-UEN A Control • Blocking of position indications, BL_UPD. This input will block all inputs related to apparatus positions for all configured functions within the bay. • Blocking of commands, BL_CMD. This input will block all commands for all configured functions within the bay.
  • Page 201: Interlocking

    Section 10 1MRK 505 288-UEN A Control defined in the IED. Otherwise the default authority level, SuperUser, can handle the control without LogOn. The users and passwords are defined in PCM600. 10.3 Interlocking 10.3.1 Functionality The interlocking functionality blocks the possibility to operate high-voltage switching devices, for instance when a disconnector is under load, in order to prevent material damage and/or accidental human injury.
  • Page 202: Logic Diagram

    Section 10 1MRK 505 288-UEN A Control 10.3.2.4 Logic diagram The function contains logic to enable the open and close commands respectively if the interlocking conditions are fulfilled. That means also, if the switch being controlled has its position defined as open (via POSOPEN) for example, then the appropriate enable signal output (in this case EN_OPEN) is false.
  • Page 203: Settings

    Section 10 1MRK 505 288-UEN A Control 10.3.2.6 Settings The function does not have any settings available in Local HMI or Protection and Control IED Manager (PCM600). 10.3.3 Interlocking for busbar earthing switch BB_ES 10.3.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification...
  • Page 204: Signals

    Section 10 1MRK 505 288-UEN A Control 10.3.3.5 Signals Table 124: BB_ES Input signals Name Type Default Description QC_OP BOOLEAN Busbar earthing switch QC is in open position QC_CL BOOLEAN Busbar earthing switch QC is in closed position BB_DC_OP BOOLEAN All disconnectors on this busbar part are open VP_BB_DC BOOLEAN...
  • Page 205: Function Block

    Section 10 1MRK 505 288-UEN A Control WA1 (A1) WA2 (A2) en04000516.vsd A1A2_BS IEC04000516 V1 EN Figure 89: Switchyard layout A1A2_BS 10.3.4.3 Function block A1A2_BS QA1_OP QA1OPREL QA1_CL QA1OPITL QB1_OP QA1CLREL QB1_CL QA1CLITL QB2_OP QB1REL QB2_CL QB1ITL QC3_OP QB2REL QC3_CL QB2ITL QC4_OP QC3REL...
  • Page 206: Logic Diagram

    Section 10 1MRK 505 288-UEN A Control 10.3.4.4 Logic diagram A1A2_BS QA1_OP QA1_CL VPQA1 QB1_OP QB1_CL VPQB1 QB2_OP QB2_CL VPQB2 QC3_OP QC3_CL VPQC3 QC4_OP QC4_CL VPQC4 S1QC1_OP S1QC1_CL VPS1QC1 S2QC2_OP S2QC2_CL VPS2QC2 VPQB1 QB1_OP QA1OPREL & >1 QA1O_EX1 QA1OPITL VPQB2 QB2_OP &...
  • Page 207: Signals

    Section 10 1MRK 505 288-UEN A Control VPQA1 VPQC3 QB2REL >1 & VPQC4 QB2ITL VPS2QC2 QA1_OP QC3_OP QC4_OP S2QC2_OP EXDU_ES QB2_EX1 VPQC4 VPS2QC2 & QC4_CL S2QC2_CL EXDU_ES QB2_EX2 VPQB1 QC3REL VPQB2 QC3ITL & QB1_OP QC4REL QB2_OP QC4ITL QB1_OP QB1OPTR QB1_CL QB1CLTR VPQB1 VPQB1TR...
  • Page 208 Section 10 1MRK 505 288-UEN A Control Name Type Default Description EXDU_12 BOOLEAN No transmission error from any bay connected to busbar 1 and 2 EXDU_ES BOOLEAN No transmission error from bays containing earthing switches QC1 or QC2 QA1O_EX1 BOOLEAN External open condition for apparatus QA1 QA1O_EX2 BOOLEAN...
  • Page 209: Settings

    Section 10 1MRK 505 288-UEN A Control 10.3.4.6 Settings The function does not have any settings available in Local HMI or Protection and Control IED Manager (PCM600). 10.3.5 Interlocking for bus-section disconnector A1A2_DC 10.3.5.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification...
  • Page 210: Function Block

    Section 10 1MRK 505 288-UEN A Control 10.3.5.3 Function block A1A2_DC QB_OP QBOPREL QB_CL QBOPITL S1QC1_OP QBCLREL S1QC1_CL QBCLITL S2QC2_OP DCOPTR S2QC2_CL DCCLTR S1DC_OP VPDCTR S2DC_OP VPS1_DC VPS2_DC EXDU_ES EXDU_BB QBCL_EX1 QBCL_EX2 QBOP_EX1 QBOP_EX2 QBOP_EX3 IEC09000067_1_en.vsd IEC09000067 V1 EN Figure 92: A1A2_DC function block 10.3.5.4 Logic diagram...
  • Page 211: Settings

    Section 10 1MRK 505 288-UEN A Control Name Type Default Description S1QC1_CL BOOLEAN QC1 on bus section 1 is in closed position S2QC2_OP BOOLEAN QC2 on bus section 2 is in open position S2QC2_CL BOOLEAN QC2 on bus section 2 is in closed position S1DC_OP BOOLEAN All disconnectors on bus section 1 are in open...
  • Page 212: Identification

    Section 10 1MRK 505 288-UEN A Control 10.3.6.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Interlocking for bus-coupler bay ABC_BC 10.3.6.2 Functionality The interlocking for bus-coupler bay (ABC_BC) function is used for a bus-coupler bay connected to a double busbar arrangement according to figure 93.
  • Page 213: Function Block

    Section 10 1MRK 505 288-UEN A Control 10.3.6.3 Function block ABC_BC QA1_OP QA1OPREL QA1_CL QA1OPITL QB1_OP QA1CLREL QB1_CL QA1CLITL QB2_OP QB1REL QB2_CL QB1ITL QB7_OP QB2REL QB7_CL QB2ITL QB20_OP QB7REL QB20_CL QB7ITL QC1_OP QB20REL QC1_CL QB20ITL QC2_OP QC1REL QC2_CL QC1ITL QC11_OP QC2REL QC11_CL QC2ITL...
  • Page 214 Section 10 1MRK 505 288-UEN A Control VPQA1 VPQB2 QB1REL & >1 VPQC1 QB1ITL VPQC2 VPQC11 QA1_OP QB2_OP QC1_OP QC2_OP QC11_OP EXDU_ES QB1_EX1 VPQB2 VP_BC_12 & QB2_CL BC_12_CL EXDU_BC QB1_EX2 VPQC1 VPQC11 & QC1_CL QC11_CL EXDU_ES QB1_EX3 en04000534.vsd IEC04000534 V1 EN VPQA1 VPQB1 QB2REL...
  • Page 215 Section 10 1MRK 505 288-UEN A Control VPQA1 VPQB20 QB7REL & >1 VPQC1 QB7ITL VPQC2 VPQC71 QA1_OP QB20_OP QC1_OP QC2_OP QC71_OP EXDU_ES QB7_EX1 VPQC2 VPQC71 & QC2_CL QC71_CL EXDU_ES QB7_EX2 VPQA1 VPQB7 QB20REL & >1 VPQC1 QB20ITL VPQC2 VPQC21 QA1_OP QB7_OP QC1_OP QC2_OP...
  • Page 216: Signals

    Section 10 1MRK 505 288-UEN A Control 10.3.6.5 Signals Table 130: ABC_BC Input signals Name Type Default Description QA1_OP BOOLEAN QA1 is in open position QA1_CL BOOLEAN QA1 is in closed position QB1_OP BOOLEAN QB1 is in open position QB1_CL BOOLEAN QB1 is in closed position QB2_OP...
  • Page 217 Section 10 1MRK 505 288-UEN A Control Name Type Default Description QA1O_EX3 BOOLEAN External open condition for apparatus QA1 QB1_EX1 BOOLEAN External condition for apparatus QB1 QB1_EX2 BOOLEAN External condition for apparatus QB1 QB1_EX3 BOOLEAN External condition for apparatus QB1 QB2_EX1 BOOLEAN External condition for apparatus QB2...
  • Page 218: Settings

    Section 10 1MRK 505 288-UEN A Control Name Type Description BC12OPTR BOOLEAN No connection via the own bus coupler between WA1 and WA2 BC12CLTR BOOLEAN Connection exists via the own bus coupler between WA1 and WA2 BC17OPTR BOOLEAN No connection via the own bus coupler between WA1 and WA7 BC17CLTR BOOLEAN...
  • Page 219: Functionality

    Section 10 1MRK 505 288-UEN A Control 10.3.7.2 Functionality The interlocking for 1 1/2 breaker diameter (BH_CONN, BH_LINE_A, BH_LINE_B) functions are used for lines connected to a 1 1/2 breaker diameter according to figure 95. WA1 (A) WA2 (B) BH_LINE_B BH_LINE_A QB61 QB62...
  • Page 220: Function Block

    Section 10 1MRK 505 288-UEN A Control 10.3.7.3 Function block BH_CONN QA1_OP QA1CLREL QA1_CL QA1CLITL QB61_OP QB61REL QB61_CL QB61ITL QB62_OP QB62REL QB62_CL QB62ITL QC1_OP QC1REL QC1_CL QC1ITL QC2_OP QC2REL QC2_CL QC2ITL 1QC3_OP 1QC3_CL 2QC3_OP 2QC3_CL QB61_EX1 QB61_EX2 QB62_EX1 QB62_EX2 IEC09000072_1_en.vsd IEC09000072 V1 EN Figure 96: BH_CONN function block...
  • Page 221 Section 10 1MRK 505 288-UEN A Control BH_LINE_B QA1_OP QA1CLREL QA1_CL QA1CLITL QB6_OP QB6REL QB6_CL QB6ITL QB2_OP QB2REL QB2_CL QB2ITL QC1_OP QC1REL QC1_CL QC1ITL QC2_OP QC2REL QC2_CL QC2ITL QC3_OP QC3REL QC3_CL QC3ITL QB9_OP QB9REL QB9_CL QB9ITL QC9_OP QC9REL QC9_CL QC9ITL CQA1_OP QB2OPTR CQA1_CL...
  • Page 222: Logic Diagrams

    Section 10 1MRK 505 288-UEN A Control 10.3.7.4 Logic diagrams BH_CONN QA1_OP QA1_CL VPQA1 QB61_OP QB61_CL VPQB61 QB62_OP QB62_CL VPQB62 QC1_OP QC1_CL VPQC1 QC2_OP QC2_CL VPQC2 1QC3_OP 1QC3_CL VP1QC3 2QC3_OP 2QC3_CL VP2QC3 VPQB61 QA1CLREL VPQB62 & QA1CLITL VPQA1 VPQC1 QB61REL >1 &...
  • Page 223 Section 10 1MRK 505 288-UEN A Control BH_LINE_A QA1_OP QA1_CL VPQA1 QB1_OP QB1_CL VPQB1 QB6_OP QB6_CL VPQB6 QC9_OP QC9_CL VPQC9 QB9_OP QB9_CL VPQB9 QC1_OP QC1_CL VPQC1 QC2_OP QC2_CL VPQC2 QC3_OP QC3_CL VPQC3 CQA1_OP CQA1_CL VPCQA1 CQC1_OP CQC1_CL VPCQC1 CQC2_OP CQC2_CL VPCQC2 CQB61_OP CQB61_CL...
  • Page 224 Section 10 1MRK 505 288-UEN A Control VPQA1 VPQC1 QB1REL & >1 VPQC2 QB1ITL VPQC11 QA1_OP QC1_OP QC2_OP QC11_OP EXDU_ES QB1_EX1 VPQC1 VPQC11 & QC1_CL QC11_CL EXDU_ES QB1_EX2 VPQB1 QC1REL VPQB6 QC1ITL & QB1_OP QC2REL QB6_OP QC2ITL VPQB6 VPQB9 QC3REL &...
  • Page 225 Section 10 1MRK 505 288-UEN A Control BH_LINE_B QA1_OP QA1_CL VPQA1 QB2_OP QB2_CL VPQB2 QB6_OP QB6_CL VPQB6 QC9_OP QC9_CL VPQC9 QB9_OP QB9_CL VPQB9 QC1_OP QC1_CL VPQC1 QC2_OP QC2_CL VPQC2 QC3_OP QC3_CL VPQC3 CQA1_OP CQA1_CL VPCQA1 CQC1_OP CQC1_CL VPCQC1 CQC2_OP CQC2_CL VPCQC2 CQB62_OP CQB62_CL...
  • Page 226 Section 10 1MRK 505 288-UEN A Control VPQA1 VPQC1 QB2REL & >1 VPQC2 QB2ITL VPQC21 QA1_OP QC1_OP QC2_OP QC21_OP EXDU_ES QB2_EX1 VPQC1 VPQC21 & QC1_CL QC21_CL EXDU_ES QB2_EX2 VPQB2 QC1REL VPQB6 QC1ITL & QB2_OP QC2REL QB6_OP QC2ITL VPQB6 VPQB9 QC3REL &...
  • Page 227: Signals

    Section 10 1MRK 505 288-UEN A Control 10.3.7.5 Signals Table 132: BH_CONN Input signals Name Type Default Description QA1_OP BOOLEAN QA1 is in open position QA1_CL BOOLEAN QA1 is in closed position QB61_OP BOOLEAN QB61 is in open position QB61_CL BOOLEAN QB61 is in closed position QB62_OP...
  • Page 228 Section 10 1MRK 505 288-UEN A Control Name Type Default Description QC9_CL BOOLEAN QC9 is in closed position CQA1_OP BOOLEAN QA1 in module BH_CONN is in open position CQA1_CL BOOLEAN QA1 in module BH_CONN is in closed position CQB61_OP BOOLEAN QB61 in module BH_CONN is in open position CQB61_CL BOOLEAN...
  • Page 229 Section 10 1MRK 505 288-UEN A Control Name Type Default Description QC2_OP BOOLEAN QC2 is in open position QC2_CL BOOLEAN QC2 is in closed position QC3_OP BOOLEAN QC3 is in open position QC3_CL BOOLEAN QC3 is in closed position QB9_OP BOOLEAN QB9 is in open position QB9_CL...
  • Page 230 Section 10 1MRK 505 288-UEN A Control Table 135: BH_CONN Output signals Name Type Description QA1CLREL BOOLEAN Closing of QA1 is allowed QA1CLITL BOOLEAN Closing of QA1 is forbidden QB61REL BOOLEAN Switching of QB61 is allowed QB61ITL BOOLEAN Switching of QB61 is forbidden QB62REL BOOLEAN Switching of QB62 is allowed...
  • Page 231: Settings

    Section 10 1MRK 505 288-UEN A Control Table 137: BH_LINE_B Output signals Name Type Description QA1CLREL BOOLEAN Closing of QA1 is allowed QA1CLITL BOOLEAN Closing of QA1 is forbidden QB6REL BOOLEAN Switching of QB6 is allowed QB6ITL BOOLEAN Switching of QB6 is forbidden QB2REL BOOLEAN Switching of QB2 is allowed...
  • Page 232: Functionality

    Section 10 1MRK 505 288-UEN A Control 10.3.8.2 Functionality The interlocking for a double busbar double circuit breaker bay including DB_BUS_A, DB_BUS_B and DB_LINE functions are used for a line connected to a double busbar arrangement according to figure 99. WA1 (A) WA2 (B) DB_BUS_B...
  • Page 233: Function Block

    Section 10 1MRK 505 288-UEN A Control 10.3.8.3 Function block DB_BUS_A QA1_OP QA1CLREL QA1_CL QA1CLITL QB1_OP QB61REL QB1_CL QB61ITL QB61_OP QB1REL QB61_CL QB1ITL QC1_OP QC1REL QC1_CL QC1ITL QC2_OP QC2REL QC2_CL QC2ITL QC3_OP QB1OPTR QC3_CL QB1CLTR QC11_OP VPQB1TR QC11_CL EXDU_ES QB61_EX1 QB61_EX2 QB1_EX1 QB1_EX2...
  • Page 234: Logic Diagrams

    Section 10 1MRK 505 288-UEN A Control 10.3.8.4 Logic diagrams DB_BUS_A QA1_OP QA1_CL VPQA1 QB61_OP QB61_CL VPQB61 QB1_OP QB1_CL VPQB1 QC1_OP QC1_CL VPQC1 QC2_OP QC2_CL VPQC2 QC3_OP QC3_CL VPQC3 QC11_OP QC11_CL VPQC11 VPQB61 QA1CLREL VPQB1 & QA1CLITL VPQA1 VPQC1 QB61REL >1 &...
  • Page 235 Section 10 1MRK 505 288-UEN A Control DB_BUS_B QA2_OP QA2_CL VPQA2 QB62_OP QB62_CL VPQB62 QB2_OP QB2_CL VPQB2 QC4_OP QC4_CL VPQC4 QC5_OP QC5_CL VPQC5 QC3_OP QC3_CL VPQC3 QC21_OP QC21_CL VPQC21 VPQB62 QA2CLREL VPQB2 & QA2CLITL VPQA2 VPQC4 QB62REL >1 & VPQC5 QB62ITL VPQC3 QA2_OP...
  • Page 236 Section 10 1MRK 505 288-UEN A Control DB_LINE QA1_OP QA1_CL VPQA1 QA2_OP QA2_CL VPQA2 QB61_OP QB61_CL VPQB61 QC1_OP QC1_CL VPQC1 QC2_OP QC2_CL VPQC2 QB62_OP QB62_CL VPQB62 QC4_OP QC4_CL VPQC4 QC5_OP QC5_CL VPQC5 QB9_OP QB9_CL VPQB9 QC3_OP QC3_CL VPQC3 QC9_OP QC9_CL VPQC9 VOLT_OFF VOLT_ON...
  • Page 237: Signals

    Section 10 1MRK 505 288-UEN A Control VPQB61 VPQB62 QC3REL & VPQB9 QC3ITL QB61_OP QB62_OP QB9_OP VPQB9 VPVOLT QC9REL & QB9_OP QC9ITL VOLT_OFF en04000551.vsd IEC04000551 V1 EN 10.3.8.5 Signals Table 138: DB_BUS_A Input signals Name Type Default Description QA1_OP BOOLEAN QA1 is in open position QA1_CL BOOLEAN...
  • Page 238 Section 10 1MRK 505 288-UEN A Control Name Type Default Description QB62_OP BOOLEAN QB62 is in open position QB62_CL BOOLEAN QB62 is in closed position QC4_OP BOOLEAN QC4 is in open position QC4_CL BOOLEAN QC4 is in closed position QC5_OP BOOLEAN QC5 is in open position QC5_CL...
  • Page 239 Section 10 1MRK 505 288-UEN A Control Name Type Default Description QC3_CL BOOLEAN QC3 is in closed position QC9_OP BOOLEAN QC9 is in open position QC9_CL BOOLEAN QC9 is in closed position VOLT_OFF BOOLEAN There is no voltage on the line and not VT (fuse) failure VOLT_ON BOOLEAN...
  • Page 240: Settings

    Section 10 1MRK 505 288-UEN A Control Name Type Description QC5REL BOOLEAN Switching of QC5 is allowed QC5ITL BOOLEAN Switching of QC5 is forbidden QB2OPTR BOOLEAN QB2 is in open position QB2CLTR BOOLEAN QB2 is in closed position VPQB2TR BOOLEAN Switch status of QB2 is valid (open or closed) Table 143: DB_LINE Output signals...
  • Page 241 Section 10 1MRK 505 288-UEN A Control WA1 (A) WA2 (B) WA7 (C) en04000478.vsd IEC04000478 V1 EN Figure 103: Switchyard layout ABC_LINE The interlocking functionality in 650 series can not handle the transfer bus (WA7)C. Technical manual...
  • Page 242: Function Block

    Section 10 1MRK 505 288-UEN A Control 10.3.9.3 Function block ABC_LINE QA1_OP QA1CLREL QA1_CL QA1CLITL QB9_OP QB9REL QB9_CL QB9ITL QB1_OP QB1REL QB1_CL QB1ITL QB2_OP QB2REL QB2_CL QB2ITL QB7_OP QB7REL QB7_CL QB7ITL QC1_OP QC1REL QC1_CL QC1ITL QC2_OP QC2REL QC2_CL QC2ITL QC9_OP QC9REL QC9_CL QC9ITL...
  • Page 243: Logic Diagram

    Section 10 1MRK 505 288-UEN A Control 10.3.9.4 Logic diagram ABC_LINE QA1_OP QA1_CL VPQA1 QB9_OP QB9_CL VPQB9 QA1CLREL QB1_OP QA1CLITL QB1_CL VPQB1 & QB2_OP QB2_CL VPQB2 QB7_OP QB7_CL VPQB7 QC1_OP QC1_CL VPQC1 QC2_OP QC2_CL VPQC2 QC9_OP QC9_CL VPQC9 QC11_OP QC11_CL VPQC11 QC21_OP QC21_CL...
  • Page 244 Section 10 1MRK 505 288-UEN A Control QB1REL VPQA1 ³1 & VPQB2 VPQC1 QB1ITL VPQC2 VPQC11 QA1_OP QB2_OP QC1_OP QC2_OP QC11_OP EXDU_ES QB1_EX1 VPQB2 & VP_BC_12 QB2_CL BC_12_CL EXDU_BC QB1_EX2 VPQC1 & VPQC11 QC1_CL QC11_CL EXDU_ES QB1EX3 en04000528.vsd IEC04000528 V1 EN Technical manual...
  • Page 245 Section 10 1MRK 505 288-UEN A Control QB2REL VPQA1 ³1 & VPQB1 VPQC1 QB2ITL VPQC2 VPQC21 QA1_OP QB1_OP QC1_OP QC2_OP QC21_OP EXDU_ES QB2_EX1 VPQB1 & VP_BC_12 QB1_CL BC_12_CL EXDU_BC QB2_EX2 VPQC1 & VPQC21 QC1_CL QC21_CL EXDU_ES QB2_EX3 en04000529.vsd IEC04000529 V1 EN Technical manual...
  • Page 246 Section 10 1MRK 505 288-UEN A Control VPQC9 QB7REL >1 & VPQC71 VP_BB7_D QB7ITL VP_BC_17 VP_BC_27 QC9_OP QC71_OP EXDU_ES BB7_D_OP EXDU_BPB BC_17_OP BC_27_OP EXDU_BC QB7_EX1 VPQA1 & VPQB1 VPQC9 VPQB9 VPQC71 VP_BB7_D VP_BC_17 QA1_CL QB1_CL QC9_OP QB9_CL QC71_OP EXDU_ES BB7_D_OP EXDU_BPB BC_17_CL EXDU_BC...
  • Page 247 Section 10 1MRK 505 288-UEN A Control VPQA1 VPQB2 & >1 VPQC9 VPQB9 VPQC71 VP_BB7_D VP_BC_27 QA1_CL QB2_CL QC9_OP QB9_CL QC71_OP EXDU_ES BB7_D_OP EXDU_BPB BC_27_CL EXDU_BC QB7_EX3 VPQC9 VPQC71 & QC9_CL QC71_CL EXDU_ES QB7_EX4 VPQB1 QC1REL VPQB2 QC1ITL & VPQB9 QC2REL QB1_OP QC2ITL...
  • Page 248: Signals

    Section 10 1MRK 505 288-UEN A Control QB1_OP QB1OPTR QB1_CL QB1CLTR VPQB1 VPQB1TR QB2_OP QB2OPTR QB2_CL QB2CLTR VPQB2 VPQB2TR QB7_OP QB7OPTR QB7_CL QB7CLTR VPQB7 VPQB7TR QB1_OP QB12OPTR QB2_OP >1 QB12CLTR VPQB1 VPQB12TR VPQB2 & en04000532.vsd IEC04000532 V1 EN 10.3.9.5 Signals Table 144: ABC_LINE Input signals Name...
  • Page 249 Section 10 1MRK 505 288-UEN A Control Name Type Default Description QC21_CL BOOLEAN Earthing switch QC21 on busbar WA2 is in closed position QC71_OP BOOLEAN Earthing switch QC71 on busbar WA7 is in open position QC71_CL BOOLEAN Earthing switch QC71 on busbar WA7 is in closed position BB7_D_OP BOOLEAN...
  • Page 250: Settings

    Section 10 1MRK 505 288-UEN A Control Table 145: ABC_LINE Output signals Name Type Description QA1CLREL BOOLEAN Closing of QA1 is allowed QA1CLITL BOOLEAN Closing of QA1 is forbidden QB9REL BOOLEAN Switching of QB9 is allowed QB9ITL BOOLEAN Switching of QB9 is forbidden QB1REL BOOLEAN Switching of QB1 is allowed...
  • Page 251: Identification

    Section 10 1MRK 505 288-UEN A Control 10.3.10.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Interlocking for transformer bay AB_TRAFO 10.3.10.2 Functionality The interlocking for transformer bay (AB_TRAFO) function is used for a transformer bay connected to a double busbar arrangement according to figure 105.
  • Page 252: Function Block

    Section 10 1MRK 505 288-UEN A Control 10.3.10.3 Function block AB_TRAFO QA1_OP QA1CLREL QA1_CL QA1CLITL QB1_OP QB1REL QB1_CL QB1ITL QB2_OP QB2REL QB2_CL QB2ITL QC1_OP QC1REL QC1_CL QC1ITL QC2_OP QC2REL QC2_CL QC2ITL QB3_OP QB1OPTR QB3_CL QB1CLTR QB4_OP QB2OPTR QB4_CL QB2CLTR QC3_OP QB12OPTR QC3_CL QB12CLTR...
  • Page 253 Section 10 1MRK 505 288-UEN A Control VPQA1 VPQB2 QB1REL & >1 VPQC1 QB1ITL VPQC2 VPQC3 VPQC11 QA1_OP QB2_OP QC1_OP QC2_OP QC3_OP QC11_OP EXDU_ES QB1_EX1 VPQB2 VPQC3 & VP_BC_12 QB2_CL QC3_OP BC_12_CL EXDU_BC QB1_EX2 VPQC1 VPQC2 & VPQC3 VPQC11 QC1_CL QC2_CL QC3_CL QC11_CL...
  • Page 254: Signals

    Section 10 1MRK 505 288-UEN A Control VPQB1 QC1REL VPQB2 QC1ITL & VPQB3 QC2REL VPQB4 QC2ITL QB1_OP QB2_OP QB3_OP QB4_OP QB1_OP QB1OPTR QB1_CL QB1CLTR VPQB1 VPQB1TR QB2_OP QB2OPTR QB2_CL QB2CLTR VPQB2 VPQB2TR QB1_OP QB12OPTR QB2_OP >1 QB12CLTR VPQB1 VPQB12TR VPQB2 &...
  • Page 255: Settings

    Section 10 1MRK 505 288-UEN A Control Name Type Default Description QA1_EX1 BOOLEAN External condition for apparatus QA1 QA1_EX2 BOOLEAN External condition for apparatus QA1 QA1_EX3 BOOLEAN External condition for apparatus QA1 QB1_EX1 BOOLEAN External condition for apparatus QB1 QB1_EX2 BOOLEAN External condition for apparatus QB1 QB1_EX3...
  • Page 256: Position Evaluation Pos_Eval

    Section 10 1MRK 505 288-UEN A Control 10.3.11 Position evaluation POS_EVAL 10.3.11.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Position evaluation POS_EVAL 10.3.11.2 Functionality Position evaluation (POS_EVAL) function converts the input position data signal POSITION, consisting of value, time and signal status, to binary signals OPENPOS or CLOSEPOS.
  • Page 257: Signals

    Section 10 1MRK 505 288-UEN A Control 10.3.11.5 Signals Table 148: POS_EVAL Input signals Name Type Default Description POSITION INTEGER Position status including quality Table 149: POS_EVAL Output signals Name Type Description OPENPOS BOOLEAN Open position CLOSEPOS BOOLEAN Close position 10.3.11.6 Settings The function does not have any settings available in Local HMI or Protection and...
  • Page 258 Section 10 1MRK 505 288-UEN A Control The interlocking module is connected to the surrounding functions within a bay as shown in figure 108. Apparatus control Interlocking modules modules in SCILO SCSWI other bays SXSWI Apparatus control modules Interlocking SCILO SCSWI SXCBR module...
  • Page 259 Section 10 1MRK 505 288-UEN A Control When invalid data such as intermediate position, loss of a control IED, or input board error are used as conditions for the interlocking condition in a bay, a release for execution of the function will not be given. On the local HMI an override function exists, which can be used to bypass the interlocking function in cases where not all the data required for the condition is valid.
  • Page 260: Logic Rotating Switch For Function Selection And Lhmi Presentation Slggio

    Section 10 1MRK 505 288-UEN A Control tool PCM600. The inputs Qx_EXy on the interlocking modules are used to add these specific conditions. The input signals EXDU_xx shall be set to true if there is no transmission error at the transfer of information from other bays.
  • Page 261: Function Block

    Section 10 1MRK 505 288-UEN A Control 10.4.3 Function block SLGGIO BLOCK ^P01 PSTO ^P02 ^P03 DOWN ^P04 ^P05 ^P06 ^P07 ^P08 ^P09 ^P10 ^P11 ^P12 ^P13 ^P14 ^P15 ^P16 ^P17 ^P18 ^P19 ^P20 ^P21 ^P22 ^P23 ^P24 ^P25 ^P26 ^P27 ^P28 ^P29...
  • Page 262: Settings

    Section 10 1MRK 505 288-UEN A Control Name Type Description BOOLEAN Selector switch position 11 BOOLEAN Selector switch position 12 BOOLEAN Selector switch position 13 BOOLEAN Selector switch position 14 BOOLEAN Selector switch position 15 BOOLEAN Selector switch position 16 BOOLEAN Selector switch position 17 BOOLEAN...
  • Page 263: Monitored Data

    Section 10 1MRK 505 288-UEN A Control 10.4.6 Monitored data Table 153: SLGGIO Monitored data Name Type Values (Range) Unit Description SWPOSN INTEGER Switch position as integer value 10.4.7 Operation principle The logic rotating switch for function selection and LHMI presentation (SLGGIO) function has two operating inputs –...
  • Page 264: Functionality

    Section 10 1MRK 505 288-UEN A Control 10.5.2 Functionality The Selector mini switch VSGGIO function block is a multipurpose function used for a variety of applications, as a general purpose switch. VSGGIO can be controlled from the menu or from a symbol on the single line diagram (SLD) on the local HMI.
  • Page 265: Settings

    Section 10 1MRK 505 288-UEN A Control 10.5.5 Settings Table 156: VSGGIO Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On CtlModel Dir Norm Dir Norm Specifies the type for control model SBO Enh according to IEC 61850 Mode Steady...
  • Page 266: Iec 61850 Generic Communication I/O Functions Dpggio

    Section 10 1MRK 505 288-UEN A Control IPOS1 IPOS2 Name of displayed string Default string value PosUndefined Position1 Position2 PosBadState 10.6 IEC 61850 generic communication I/O functions DPGGIO 10.6.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number IEC 61850 generic communication I/O DPGGIO...
  • Page 267: Settings

    Section 10 1MRK 505 288-UEN A Control 10.6.5 Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600). 10.6.6 Operation principle Upon receiving the input signals, the IEC 61850 generic communication I/O functions (DPGGIO) function block will send the signals over IEC 61850-8-1 to the equipment or system that requests these signals.
  • Page 268: Signals

    Section 10 1MRK 505 288-UEN A Control 10.7.4 Signals Table 159: SPC8GGIO Input signals Name Type Default Description BLOCK BOOLEAN Block of function PSTO INTEGER Operator place selection Table 160: SPC8GGIO Output signals Name Type Description OUT1 BOOLEAN Output 1 OUT2 BOOLEAN Output 2...
  • Page 269: Operation Principle

    Section 10 1MRK 505 288-UEN A Control Name Values (Range) Unit Step Default Description Latched7 Pulsed Pulsed Setting for pulsed/latched mode for output Latched tPulse7 0.01 - 6000.00 0.01 0.10 Output 7 Pulse Time Latched8 Pulsed Pulsed Setting for pulsed/latched mode for output Latched tPulse8 0.01 - 6000.00...
  • Page 270: Function Block

    Section 10 1MRK 505 288-UEN A Control 10.8.3 Function block AUTOBITS BLOCK ^CMDBIT1 PSTO ^CMDBIT2 ^CMDBIT3 ^CMDBIT4 ^CMDBIT5 ^CMDBIT6 ^CMDBIT7 ^CMDBIT8 ^CMDBIT9 ^CMDBIT10 ^CMDBIT11 ^CMDBIT12 ^CMDBIT13 ^CMDBIT14 ^CMDBIT15 ^CMDBIT16 ^CMDBIT17 ^CMDBIT18 ^CMDBIT19 ^CMDBIT20 ^CMDBIT21 ^CMDBIT22 ^CMDBIT23 ^CMDBIT24 ^CMDBIT25 ^CMDBIT26 ^CMDBIT27 ^CMDBIT28 ^CMDBIT29 ^CMDBIT30...
  • Page 271: Settings

    Section 10 1MRK 505 288-UEN A Control Name Type Description CMDBIT8 BOOLEAN Command out bit 8 CMDBIT9 BOOLEAN Command out bit 9 CMDBIT10 BOOLEAN Command out bit 10 CMDBIT11 BOOLEAN Command out bit 11 CMDBIT12 BOOLEAN Command out bit 12 CMDBIT13 BOOLEAN Command out bit 13...
  • Page 272: Function Commands For Iec 60870-5-103 I103Cmd

    Section 10 1MRK 505 288-UEN A Control appropriate. ex: pulse-On, on-time=100, off-time=300, count=5 would give 5 positive 100 ms pulses, 300 ms apart. There is a BLOCK input signal, which will disable the operation of the function, in the same way the setting Operation: On/Off does. That means that, upon activation of the BLOCK input, all 32 CMDBITxx outputs will be set to 0.
  • Page 273: Settings

    Section 10 1MRK 505 288-UEN A Control 10.9.4 Settings Table 167: I103CMD Non group settings (basic) Name Values (Range) Unit Step Default Description FunctionType 1 - 255 Function type (1-255) 10.10 IED commands for IEC 60870-5-103 I103IEDCMD 10.10.1 Functionality I103IEDCMD is a command block in control direction with defined IED functions. All outputs are pulsed and they are NOT stored.
  • Page 274: Settings

    Section 10 1MRK 505 288-UEN A Control 10.10.4 Settings Table 170: I103IEDCMD Non group settings (basic) Name Values (Range) Unit Step Default Description FunctionType 1 - 255 Function type (1-255) 10.11 Function commands user defined for IEC 60870-5-103 I103USRCMD 10.11.1 Functionality I103USRCMD is a command block in control direction with user defined output signals.
  • Page 275: Settings

    Section 10 1MRK 505 288-UEN A Control Name Type Description OUTPUT6 BOOLEAN Command output 6 OUTPUT7 BOOLEAN Command output 7 OUTPUT8 BOOLEAN Command output 8 10.11.4 Settings Table 173: I103USRCMD Non group settings (basic) Name Values (Range) Unit Step Default Description FunctionType 1 - 255...
  • Page 276: Function Block

    Section 10 1MRK 505 288-UEN A Control 10.12.2 Function block I103GENCMD BLOCK ^CMD_OFF ^CMD_ON IEC10000285-1-en.vsd IEC10000285 V1 EN Figure 117: I103GENCMD function block 10.12.3 Signals Table 174: I103GENCMD Input signals Name Type Default Description BLOCK BOOLEAN Block of command Table 175: I103GENCMD Output signals Name Type...
  • Page 277: Function Block

    Section 10 1MRK 505 288-UEN A Control The BLOCK input will block only the signals in monitoring direction (the position information), not the commands via IEC 60870-5-103. The SELECT input is used to indicate that the monitored apparatus has been selected (in a select-before-operate type of control) 10.13.2 Function block...
  • Page 279: Section 11 Logic

    Section 11 1MRK 505 288-UEN A Logic Section 11 Logic 11.1 Tripping logic common 3-phase output SMPPTRC 11.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Tripping logic common 3-phase output SMPPTRC I->O SYMBOL-K V1 EN 11.1.2 Functionality A function block for protection tripping is provided for each circuit breaker involved...
  • Page 280: Signals

    Section 11 1MRK 505 288-UEN A Logic 11.1.4 Signals Table 179: SMPPTRC Input signals Name Type Default Description BLOCK BOOLEAN Block of function TRIN BOOLEAN Trip all phases SETLKOUT BOOLEAN Input for setting the circuit breaker lockout function RSTLKOUT BOOLEAN Input for resetting the circuit breaker lockout function Table 180:...
  • Page 281: Technical Data

    Section 11 1MRK 505 288-UEN A Logic BLOCK TRIP tTripMin TRIN Operation Mode = On Program = 3Ph en05000789.vsd IEC05000789 V1 EN Figure 120: Simplified logic diagram for three phase trip Lockout can be activated either by activating the input (SETLKOUT) or automatically from trip input by setting AutoLock to On.
  • Page 282: Function Block

    Section 11 1MRK 505 288-UEN A Logic TMAGGIO 3 output signals and the physical outputs allows the user to adapt the signals to the physical tripping outputs according to the specific application needs for settable pulse or steady output. 11.2.3 Function block TMAGGIO INPUT1...
  • Page 283: Settings

    Section 11 1MRK 505 288-UEN A Logic Name Type Default Description INPUT10 BOOLEAN Binary input 10 INPUT11 BOOLEAN Binary input 11 INPUT12 BOOLEAN Binary input 12 INPUT13 BOOLEAN Binary input 13 INPUT14 BOOLEAN Binary input 14 INPUT15 BOOLEAN Binary input 15 INPUT16 BOOLEAN Binary input 16...
  • Page 284: Operation Principle

    Section 11 1MRK 505 288-UEN A Logic Name Values (Range) Unit Step Default Description ModeOutput1 Steady Steady Mode for output 1, steady or pulsed Pulsed ModeOutput2 Steady Steady Mode for output 2, steady or pulsed Pulsed ModeOutput3 Steady Steady Mode for output 3, steady or pulsed Pulsed 11.2.6 Operation principle...
  • Page 285: Configurable Logic Blocks

    Section 11 1MRK 505 288-UEN A Logic PulseTime & ModeOutput1=Pulsed Input 1 Output 1 ³1 Ondelay Offdelay & ³1 PulseTime & ModeOutput2=Pulsed Input 17 Output 2 ³1 Ondelay Offdelay & ³1 PulseTime & ModeOutput3=Pulsed Output 3 ³1 Ondelay Offdelay & ³1 IEC09000612_2_en.vsd IEC09000612 V2 EN...
  • Page 286 Section 11 1MRK 505 288-UEN A Logic • PULSETIMER function block can be used, for example, for pulse extensions or limiting of operation of outputs, settable pulse time. • GATE function block is used for whether or not a signal should be able to pass from the input to the output.
  • Page 287: Or Function Block

    Section 11 1MRK 505 288-UEN A Logic • XORQT XOR function block. The function also propagates timestamp and quality of input signals. Each block has two outputs where one is inverted. • TIMERSETQT function has pick-up and drop-out delayed outputs related to the input signal.
  • Page 288: Inverter Function Block Inverter

    Section 11 1MRK 505 288-UEN A Logic Functionality The OR function is used to form general combinatory expressions with boolean variables. The OR function block has six inputs and two outputs. One of the outputs is inverted. Function block INPUT1 INPUT2 NOUT INPUT3...
  • Page 289: Pulsetimer Function Block

    Section 11 1MRK 505 288-UEN A Logic Function block INVERTER INPUT IEC09000287-1-en.vsd IEC09000287 V1 EN Figure 124: INVERTER function block Signals Table 189: INVERTER Input signals Name Type Default Description INPUT BOOLEAN Input signal Table 190: INVERTER Output signals Name Type Description BOOLEAN...
  • Page 290: Controllable Gate Function Block Gate

    Section 11 1MRK 505 288-UEN A Logic Signals Table 191: PULSETIMER Input signals Name Type Default Description INPUT BOOLEAN Input signal Table 192: PULSETIMER Output signals Name Type Description BOOLEAN Output signal Settings Table 193: PULSETIMER Non group settings (basic) Name Values (Range) Unit...
  • Page 291: Exclusive Or Function Block Xor

    Section 11 1MRK 505 288-UEN A Logic Table 195: GATE Output signals Name Type Description BOOLEAN Output signal Settings Table 196: GATE Group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off/On 11.3.1.6 Exclusive OR function block XOR Identification Function description IEC 61850...
  • Page 292: Loop Delay Function Block Loopdelay

    Section 11 1MRK 505 288-UEN A Logic Table 198: XOR Output signals Name Type Description BOOLEAN Output signal NOUT BOOLEAN Inverted output signal Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600). 11.3.1.7 Loop delay function block LOOPDELAY Function description...
  • Page 293: Timer Function Block Timerset

    Section 11 1MRK 505 288-UEN A Logic 11.3.1.8 Timer function block TIMERSET Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Timer function block TIMERSET Functionality The function block TIMERSET has pick-up and drop-out delayed outputs related to the input signal.
  • Page 294: And Function Block

    Section 11 1MRK 505 288-UEN A Logic Table 202: TIMERSET Output signals Name Type Description BOOLEAN Output signal, pick-up delayed BOOLEAN Output signal, drop-out delayed Settings Table 203: TIMERSET Group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off/On 0.000 - 90000.000 0.001...
  • Page 295: Set-Reset Memory Function Block Srmemory

    Section 11 1MRK 505 288-UEN A Logic Signals Table 204: AND Input signals Name Type Default Description INPUT1 BOOLEAN Input signal 1 INPUT2 BOOLEAN Input signal 2 INPUT3 BOOLEAN Input signal 3 INPUT4 BOOLEAN Input signal 4 Table 205: AND Output signals Name Type Description...
  • Page 296: Reset-Set With Memory Function Block Rsmemory

    Section 11 1MRK 505 288-UEN A Logic Function block SRMEMORY RESET NOUT IEC09000293-1-en.vsd IEC09000293 V1 EN Figure 132: SRMEMORY function block Signals Table 207: SRMEMORY Input signals Name Type Default Description BOOLEAN Input signal to set RESET BOOLEAN Input signal to reset Table 208: SRMEMORY Output signals Name...
  • Page 297 Section 11 1MRK 505 288-UEN A Logic Table 210: Truth table for RSMEMORY function block RESET NOUT Last Inverted last value value Function block RSMEMORY RESET NOUT IEC09000294-1-en.vsd IEC09000294 V1 EN Figure 133: RSMEMORY function block Signals Table 211: RSMEMORY Input signals Name Type Default...
  • Page 298: Technical Data

    Section 11 1MRK 505 288-UEN A Logic 11.3.2 Technical data Table 214: Configurable logic blocks Logic block Quantity Range or Accuracy with cycle value time 5 ms 20 ms 100 ms INVERTER SRMEMORY RSMEMORY GATE PULSETIMER (0.000– ± 0.5% ± 25 ms for 20 90000.000) s ms cycle time TIMERSET...
  • Page 299: Fixed Signals Fxdsign

    Section 11 1MRK 505 288-UEN A Logic 11.4 Fixed signals FXDSIGN 11.4.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Fixed signals FXDSIGN 11.4.2 Functionality The Fixed signals function FXDSIGN generates nine pre-set (fixed) signals that can be used in the configuration of an IED, either for forcing the unused inputs in other function blocks to a certain level/value, or for creating certain logic.
  • Page 300: Settings

    Section 11 1MRK 505 288-UEN A Logic 11.4.5 Settings The function does not have any settings available in Local HMI or Protection and Control IED Manager (PCM600). 11.4.6 Operation principle There are nine outputs from FXDSIGN function block: • OFF is a boolean signal, fixed to OFF (boolean 0) value •...
  • Page 301: Function Block

    Section 11 1MRK 505 288-UEN A Logic 11.5.3 Function block B16I BLOCK IN10 IN11 IN12 IN13 IN14 IN15 IN16 IEC09000035-1-en.vsd IEC09000035 V1 EN Figure 135: B16I function block 11.5.4 Signals Table 217: B16I Input signals Name Type Default Description BLOCK BOOLEAN Block of function BOOLEAN...
  • Page 302: Settings

    Section 11 1MRK 505 288-UEN A Logic 11.5.5 Settings The function does not have any parameters available in local HMI or Protection and Control IED Manager (PCM600) 11.5.6 Monitored data Table 219: B16I Monitored data Name Type Values (Range) Unit Description INTEGER Output value...
  • Page 303: Boolean 16 To Integer Conversion With Logic Node Representation B16Ifcvi

    Section 11 1MRK 505 288-UEN A Logic Name of input Type Default Description Value when Value when activated deactivated IN14 BOOLEAN Input 14 8192 IN15 BOOLEAN Input 15 16384 IN16 BOOLEAN Input 16 32768 The sum of the numbers in column “Value when activated” when all INx (where 1≤x≤16) are active that is=1;...
  • Page 304: Function Block

    Section 11 1MRK 505 288-UEN A Logic 11.6.3 Function block B16IFCVI BLOCK IN10 IN11 IN12 IN13 IN14 IN15 IN16 IEC09000624-1-en.vsd IEC09000624 V1 EN Figure 136: B16IFCVI function block 11.6.4 Signals Table 220: B16IFCVI Input signals Name Type Default Description BLOCK BOOLEAN Block of function BOOLEAN...
  • Page 305: Settings

    Section 11 1MRK 505 288-UEN A Logic Table 221: B16IFCVI Output signals Name Type Description INTEGER Output value 11.6.5 Settings The function does not have any parameters available in local HMI or Protection and Control IED Manager (PCM600) 11.6.6 Monitored data Table 222: B16IFCVI Monitored data Name...
  • Page 306: Integer To Boolean 16 Conversion Ib16A

    Section 11 1MRK 505 288-UEN A Logic Name of input Type Default Description Value when Value when activated deactivated IN10 BOOLEAN Input 10 IN11 BOOLEAN Input 11 1024 IN12 BOOLEAN Input 12 2048 IN13 BOOLEAN Input 13 4096 IN14 BOOLEAN Input 14 8192 IN15...
  • Page 307: Signals

    Section 11 1MRK 505 288-UEN A Logic 11.7.4 Signals Table 223: IB16A Input signals Name Type Default Description BLOCK BOOLEAN Block of function INTEGER Integer Input Table 224: IB16A Output signals Name Type Description OUT1 BOOLEAN Output 1 OUT2 BOOLEAN Output 2 OUT3 BOOLEAN...
  • Page 308 Section 11 1MRK 505 288-UEN A Logic This follows the general formulae: The sum of the values of all OUTx = 2 where 1≤x≤16 will be equal to the integer value on the input INP. The Integer to Boolean 16 conversion function (IB16A) will transfer an integer with a value between 0 to 65535 connected to the input INP to a combination of activated outputs OUTx where 1≤x≤16.
  • Page 309: Integer To Boolean 16 Conversion With Logic Node Representation Ib16Fcvb

    Section 11 1MRK 505 288-UEN A Logic 11.8 Integer to boolean 16 conversion with logic node representation IB16FCVB 11.8.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Integer to boolean 16 conversion with IB16FCVB logic node representation 11.8.2 Functionality Integer to boolean conversion with logic node representation function IB16FCVB is...
  • Page 310: Settings

    Section 11 1MRK 505 288-UEN A Logic Table 226: IB16FCVB Output signals Name Type Description OUT1 BOOLEAN Output 1 OUT2 BOOLEAN Output 2 OUT3 BOOLEAN Output 3 OUT4 BOOLEAN Output 4 OUT5 BOOLEAN Output 5 OUT6 BOOLEAN Output 6 OUT7 BOOLEAN Output 7 OUT8...
  • Page 311: Elapsed Time Integrator With Limit Transgression And Overflow Supervision Teiggio

    Section 11 1MRK 505 288-UEN A Logic activated outputs OUTx where 1≤x≤16. The values represented by the different OUTx are according to Table 227. When an OUTx is not activated, its value is 0. The IB16FCVB function is designed for receiving the integer input from a station computer - for example, over IEC 61850.
  • Page 312: Functionality

    Section 11 1MRK 505 288-UEN A Logic 11.9.2 Functionality Elapsed Time Integrator (TEIGGIO) function is a function that accumulates the elapsed time when a given binary signal has been high. The main features of TEIGGIO are • Applicable to long time integration (≤999 999.9 seconds). •...
  • Page 313: Settings

    Section 11 1MRK 505 288-UEN A Logic 11.9.5 Settings Table 230: TEIGGIO Group settings (basic) Name Values (Range) Unit Step Default Description Operation 0 - 1 Operation Off / On tWarning 1.00 - 999999.99 0.01 600.00 Time limit for warning supervision tAlarm 1.00 - 999999.99 0.01...
  • Page 314: Operation Accuracy

    Section 11 1MRK 505 288-UEN A Logic • applicable to long time integration (≤999 999.9 seconds) • output ACCTIME presents integrated value in seconds to all tools • integrated value is retained in non-volatile memory, if any warning, alarm or overflow occurs •...
  • Page 315: Technical Data

    Section 11 1MRK 505 288-UEN A Logic 11.9.7 Technical data Table 231: TEIGGIO Technical data Function Cycle time (ms) Range or value Accuracy Elapsed time 0 ~ 999999.9 s ±0.05% or ±0.01 s integration 0 ~ 999999.9 s ±0.05% or ±0.04 s 0 ~ 999999.9 s ±0.05% or ±0.2 s Technical manual...
  • Page 317: Section 12 Monitoring

    Section 12 1MRK 505 288-UEN A Monitoring Section 12 Monitoring 12.1 Measurements 12.1.1 Functionality Measurement functions is used for power system measurement, supervision and reporting to the local HMI, monitoring tool within PCM600 or to station level for example, via IEC 61850. The possibility to continuously monitor measured values of active power, reactive power, currents, voltages, frequency, power factor etc.
  • Page 318: Measurements Cvmmxn

    Section 12 1MRK 505 288-UEN A Monitoring • P, Q and S: three phase active, reactive and apparent power • PF: power factor • U: phase-to-phase voltage amplitude • I: phase current amplitude • F: power system frequency The output values are displayed in the local HMI under Main menu/Tests/Function status/Monitoring/CVMMXN/Outputs The measuring functions CMMXU, VNMMXU and VMMXU provide physical quantities:...
  • Page 319: Function Block

    Section 12 1MRK 505 288-UEN A Monitoring 12.1.2.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600. CVMMXN I3P* U3P* S_RANGE P_INST P_RANGE Q_INST Q_RANGE PF_RANGE ILAG ILEAD U_RANGE...
  • Page 320: Settings

    Section 12 1MRK 505 288-UEN A Monitoring Name Type Description I_RANGE INTEGER Calculated current range REAL System frequency magnitude of deadband value F_RANGE INTEGER System frequency range 12.1.2.4 Settings Table 234: CVMMXN Non group settings (basic) Name Values (Range) Unit Step Default Description...
  • Page 321 Section 12 1MRK 505 288-UEN A Monitoring Name Values (Range) Unit Step Default Description PFRepTyp Cyclic Cyclic Reporting type Dead band Int deadband UMin 0.0 - 200.0 50.0 Minimum value in % of UBase UMax 0.0 - 200.0 200.0 Maximum value in % of UBase URepTyp Cyclic Cyclic...
  • Page 322 Section 12 1MRK 505 288-UEN A Monitoring Name Values (Range) Unit Step Default Description QLimHyst 0.000 - 100.000 0.001 5.000 Hysteresis value in % of range (common for all limits) UGenZeroDb 1 - 100 Zero point clamping in % of Ubase PFDbRepInt 1 - 300 Type...
  • Page 323: Monitored Data

    Section 12 1MRK 505 288-UEN A Monitoring Name Values (Range) Unit Step Default Description UAmpComp100 -10.000 - 10.000 0.001 0.000 Amplitude factor to calibrate voltage at 100% of Ur IAmpComp5 -10.000 - 10.000 0.001 0.000 Amplitude factor to calibrate current at 5% of Ir IAmpComp30 -10.000 - 10.000...
  • Page 324: Function Block

    Section 12 1MRK 505 288-UEN A Monitoring 12.1.3.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600. CMMXU IL1RANG IL1ANGL IL2RANG IL2ANGL IL3RANG IL3ANGL IEC08000225 V1 EN Figure 142: CMMXU function block 12.1.3.3...
  • Page 325: Monitored Data

    Section 12 1MRK 505 288-UEN A Monitoring Name Values (Range) Unit Step Default Description ILMax 0 - 500000 1300 Maximum value ILRepTyp Cyclic Dead band Reporting type Dead band Int deadband ILAngDbRepInt 1 - 300 Type Cycl: Report interval (s), Db: In % of range, Int Db: In %s Table 240: CMMXU Non group settings (advanced)
  • Page 326: Phase-Phase Voltage Measurement Vmmxu

    Section 12 1MRK 505 288-UEN A Monitoring 12.1.4 Phase-phase voltage measurement VMMXU 12.1.4.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Phase-phase voltage measurement VMMXU SYMBOL-UU V1 EN 12.1.4.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600.
  • Page 327: Settings

    Section 12 1MRK 505 288-UEN A Monitoring Name Type Description UL31 REAL UL31 Amplitude UL31RANG INTEGER UL31Amplitude range UL31ANGL REAL UL31 Angle 12.1.4.4 Settings Table 244: VMMXU Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On GlobalBaseSel 1 - 6 Selection of one of the Global Base Value...
  • Page 328: Current Sequence Component Measurement Cmsqi

    Section 12 1MRK 505 288-UEN A Monitoring 12.1.5 Current sequence component measurement CMSQI 12.1.5.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Current sequence component CMSQI measurement I1, I2, I0 SYMBOL-VV V1 EN 12.1.5.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600.
  • Page 329: Settings

    Section 12 1MRK 505 288-UEN A Monitoring Name Type Description REAL I2 Amplitude I2RANG INTEGER I2 Amplitude range I2ANGL REAL I2Angle 12.1.5.4 Settings Table 249: CMSQI Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On 3I0DbRepInt 1 - 300 Type...
  • Page 330: Monitored Data

    Section 12 1MRK 505 288-UEN A Monitoring Table 250: CMSQI Non group settings (advanced) Name Values (Range) Unit Step Default Description 3I0ZeroDb 0 - 100000 Zero point clamping 3I0HiHiLim 0 - 500000 3600 High High limit (physical value) 3I0HiLim 0 - 500000 3300 High limit (physical value) 3I0LowLim...
  • Page 331: Function Block

    Section 12 1MRK 505 288-UEN A Monitoring 12.1.6.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600. VMSQI U3P* 3U0RANG 3U0ANGL U1RANG U1ANGL U2RANG U2ANGL IEC08000224-2-en.vsd IEC08000224 V2 EN Figure 145: VMSQI function block...
  • Page 332: Settings

    Section 12 1MRK 505 288-UEN A Monitoring 12.1.6.4 Settings Table 254: VMSQI Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On 3U0DbRepInt 1 - 300 Type Cycl: Report interval (s), Db: In % of range, Int Db: In %s 3U0Min 0 - 2000000...
  • Page 333: Monitored Data

    Section 12 1MRK 505 288-UEN A Monitoring Name Values (Range) Unit Step Default Description U1HiHiLim 0 - 2000000 96000 High High limit (physical value) U1HiLim 0 - 2000000 86000 High limit (physical value) U1LowLim 0 - 2000000 71000 Low limit (physical value) U1LowLowLim 0 - 2000000 66000...
  • Page 334: Signals

    Section 12 1MRK 505 288-UEN A Monitoring VNMMXU U3P* UL1RANG UL1ANGL UL2RANG UL2ANGL UL3RANG UL3ANGL IEC08000226-2-en.vsd IEC08000226 V2 EN Figure 146: VNMMXU function block 12.1.7.3 Signals Table 257: VNMMXU Input signals Name Type Default Description GROUP Three phase group signal for voltage inputs SIGNAL Table 258: VNMMXU Output signals...
  • Page 335: Monitored Data

    Section 12 1MRK 505 288-UEN A Monitoring Name Values (Range) Unit Step Default Description URepTyp Cyclic Dead band Reporting type Dead band Int deadband ULimHys 0.000 - 100.000 0.001 5.000 Hysteresis value in % of range and is common for all limits UAngDbRepInt 1 - 300 Type...
  • Page 336 Section 12 1MRK 505 288-UEN A Monitoring processing blocks. The number of processed alternate measuring quantities depends on the type of IED and built-in options. The information on measured quantities is available for the user at different locations: • Locally by means of the local HMI •...
  • Page 337 Section 12 1MRK 505 288-UEN A Monitoring X_RANGE = 3 High-high limit X_RANGE= 1 Hysteresis High limit X_RANGE=0 X_RANGE=0 Low limit X_RANGE=2 Low-low limit X_RANGE=4 en05000657.vsd IEC05000657 V1 EN Figure 147: Presentation of operating limits Each analogue output has one corresponding supervision level output (X_RANGE). The output signal is an integer in the interval 0-4 (0: Normal, 1: High limit exceeded, 3: High-high limit exceeded, 2: below Low limit and 4: below Low-low limit).
  • Page 338 Section 12 1MRK 505 288-UEN A Monitoring Value Reported Value Reported Value Reported Value Reported (1st) Value Reported t (*) t (*) t (*) t (*) en05000500.vsd (*)Set value for t: XDbRepInt IEC05000500 V1 EN Figure 148: Periodic reporting Amplitude dead-band supervision If a measuring value is changed, compared to the last reported value, and the change is larger than the ±ΔY pre-defined limits that are set by user (UDbRepIn), then the measuring channel reports the new value to a higher level.
  • Page 339 Section 12 1MRK 505 288-UEN A Monitoring Value Reported Value Reported Value Reported Value Reported (1st) 99000529.vsd IEC99000529 V1 EN Figure 149: Amplitude dead-band supervision reporting After the new value is reported, the ±ΔY limits for dead-band are automatically set around it.
  • Page 340: Measurements Cvmmxn

    Section 12 1MRK 505 288-UEN A Monitoring A1 >= pre-set value A >= A2 >= pre-set value pre-set value A3 + A4 + A5 + A6 + A7 >= pre-set value Value Reported Value (1st) Value Reported Value Reported Reported Value Reported 99000530.vsd...
  • Page 341 Section 12 1MRK 505 288-UEN A Monitoring Set value for Formula used for complex, three- Formula used for voltage and Comment parameter phase power calculation current magnitude calculation “Mode” L1L2 Used when × only U L1L2 phase-to- (Equation 36) phase EQUATION1391 V1 EN ) / 2 voltage is...
  • Page 342 Section 12 1MRK 505 288-UEN A Monitoring (Equation 50) EQUATION1405 V1 EN (Equation 51) EQUATION1406 V1 EN Additionally to the power factor value the two binary output signals from the function are provided which indicates the angular relationship between current and voltage phasors.
  • Page 343 Section 12 1MRK 505 288-UEN A Monitoring IEC05000652 V2 EN Figure 151: Calibration curves The first current and voltage phase in the group signals will be used as reference and the amplitude and angle compensation will be used for related input signals. Low pass filtering In order to minimize the influence of the noise signal on the measurement it is possible to introduce the recursive, low pass filtering of the measured values for P, Q, S, U, I...
  • Page 344 Section 12 1MRK 505 288-UEN A Monitoring Default value for parameter k is 0.00. With this value the new calculated value is immediately given out without any filtering (that is, without any additional delay). When k is set to value bigger than 0, the filtering is enabled. Appropriate value of k shall be determined separately for every application.
  • Page 345: Phase Current Measurement Cmmxu

    Section 12 1MRK 505 288-UEN A Monitoring Busbar Protected Object IEC09000038-1-en.vsd IEC09000038-1-EN V1 EN Figure 152: Internal IED directionality convention for P & Q measurements Practically, it means that active and reactive power will have positive values when they flow from the busbar towards the protected object and they will have negative values when they flow from the protected object towards the busbar.
  • Page 346: Phase-Phase And Phase-Neutral Voltage Measurements Vmmxu, Vnmmxu

    Section 12 1MRK 505 288-UEN A Monitoring compensation at 5, 30 and 100% of rated current. The compensation below 5% and above 100% is constant and linear in between, see figure 151. Phase currents (amplitude and angle) are available on the outputs and each amplitude output has a corresponding supervision level output (ILx_RANG).
  • Page 347: Event Counter Cntggio

    Section 12 1MRK 505 288-UEN A Monitoring Function Range or value Accuracy Apparent power, S 0.1 x U < U < 1.5 x U ± 1.0% of S at S ≤ S 0.2 x I < I < 4.0 x I ±...
  • Page 348: Settings

    Section 12 1MRK 505 288-UEN A Monitoring Name Type Default Description COUNTER5 BOOLEAN Input for counter 5 COUNTER6 BOOLEAN Input for counter 6 RESET BOOLEAN Reset of function Table 264: CNTGGIO Output signals Name Type Description VALUE1 INTEGER Output of counter 1 VALUE2 INTEGER Output of counter 2...
  • Page 349: Reporting

    Section 12 1MRK 505 288-UEN A Monitoring however gives as a result that it can take long time, up to several minutes, before a new value is stored in the flash memory. And if a new CNTGGIO value is not stored before auxiliary power interruption, it will be lost.
  • Page 350: Principle Of Operation

    Section 12 1MRK 505 288-UEN A Monitoring 12.3.3 Principle of operation Limit counter (L4UFCNT) counts the number of positive and/or negative flanks on the binary input signal depending on the function settings. L4UFCNT also checks if the accumulated value is equal or greater than any of its four settable limits. The four limit outputs will be activated relatively on reach of each limit and remain activated until the reset of the function.
  • Page 351: Reporting

    Section 12 1MRK 505 288-UEN A Monitoring Overflow indication ® ® ® ® Actual value Max value -1 Max value Max value +1 Max value +2 Max value +3 Counted value ® ® ® ® Max value -1 Max value IEC12000626_1_en.vsd IEC12000626 V1 EN Figure 155:...
  • Page 352: Signals

    Section 12 1MRK 505 288-UEN A Monitoring 12.3.5 Signals Table 268: L4UFCNT Input signals Name Type Default Description BLOCK BOOLEAN Block of function INPUT BOOLEAN Input for counter RESET BOOLEAN Reset of function Table 269: L4UFCNT Output signals Name Type Description ERROR BOOLEAN...
  • Page 353: Monitored Data

    Section 12 1MRK 505 288-UEN A Monitoring 12.3.7 Monitored data Table 271: L4UFCNT Monitored data Name Type Values (Range) Unit Description VALUE INTEGER Counted value 12.3.8 Technical data Table 272: L4UFCNTtechnical data Function Range or value Accuracy Counter value 0-65535 Max.
  • Page 354: Disturbance Report Drprdre

    Section 12 1MRK 505 288-UEN A Monitoring used to get information about the recordings. The disturbance report files may be uploaded to PCM600 for further analysis using the disturbance handling tool. 12.4.2 Disturbance report DRPRDRE 12.4.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification...
  • Page 355: Monitored Data

    Section 12 1MRK 505 288-UEN A Monitoring Name Values (Range) Unit Step Default Description MaxNoStoreRec 10 - 100 Maximum number of stored disturbances ZeroAngleRef 1 - 30 Trip value recorder, phasor reference channel OpModeTest Operation mode during test mode 12.4.2.5 Monitored data Table 275: DRPRDRE Monitored data...
  • Page 356 Section 12 1MRK 505 288-UEN A Monitoring Name Type Values (Range) Unit Description UnTrigStatCh10 BOOLEAN Under level trig for analog channel 10 activated OvTrigStatCh10 BOOLEAN Over level trig for analog channel 10 activated UnTrigStatCh11 BOOLEAN Under level trig for analog channel 11 activated OvTrigStatCh11 BOOLEAN...
  • Page 357 Section 12 1MRK 505 288-UEN A Monitoring Name Type Values (Range) Unit Description UnTrigStatCh22 BOOLEAN Under level trig for analog channel 22 activated OvTrigStatCh22 BOOLEAN Over level trig for analog channel 22 activated UnTrigStatCh23 BOOLEAN Under level trig for analog channel 23 activated OvTrigStatCh23 BOOLEAN...
  • Page 358: Analog Input Signals Axradr

    Section 12 1MRK 505 288-UEN A Monitoring Name Type Values (Range) Unit Description UnTrigStatCh34 BOOLEAN Under level trig for analog channel 34 activated OvTrigStatCh34 BOOLEAN Over level trig for analog channel 34 activated UnTrigStatCh35 BOOLEAN Under level trig for analog channel 35 activated OvTrigStatCh35 BOOLEAN...
  • Page 359: Function Block

    Section 12 1MRK 505 288-UEN A Monitoring 12.4.3.2 Function block A1RADR ^GRPINPUT1 ^GRPINPUT2 ^GRPINPUT3 ^GRPINPUT4 ^GRPINPUT5 ^GRPINPUT6 ^GRPINPUT7 ^GRPINPUT8 ^GRPINPUT9 ^GRPINPUT10 IEC09000348-1-en.vsd IEC09000348 V1 EN Figure 157: A1RADR function block, analog inputs, example for A1RADR, A2RADR and A3RADR 12.4.3.3 Signals A1RADR - A3RADR Input signals Tables for input signals for A1RADR, A2RADR and A3RADR are similar except for GRPINPUT number.
  • Page 360: Settings

    Section 12 1MRK 505 288-UEN A Monitoring 12.4.3.4 Settings A1RADR - A3RADR Settings Setting tables for A1RADR, A2RADR and A3RADR are similar except for channel numbers. • A1RADR, channel01 - channel10 • A2RADR, channel11 - channel20 • A3RADR, channel21 - channel30 Table 277: A1RADR Non group settings (basic) Name...
  • Page 361 Section 12 1MRK 505 288-UEN A Monitoring Name Values (Range) Unit Step Default Description FunType5 0 - 255 Function type for analog channel 5 (IEC-60870-5-103) InfNo5 0 - 255 Information number for analog channel 5 (IEC-60870-5-103) FunType6 0 - 255 Function type for analog channel 6 (IEC-60870-5-103) InfNo6...
  • Page 362 Section 12 1MRK 505 288-UEN A Monitoring Name Values (Range) Unit Step Default Description UnderTrigOp03 Use under level trigger for analog channel 3 (on) or not (off) UnderTrigLe03 0 - 200 Under trigger level for analog channel 3 in % of signal OverTrigOp03 Use over level trigger for analog channel 3 (on) or not (off)
  • Page 363: Analog Input Signals A4Radr

    Section 12 1MRK 505 288-UEN A Monitoring Name Values (Range) Unit Step Default Description UnderTrigLe08 0 - 200 Under trigger level for analog channel 8 in % of signal OverTrigOp08 Use over level trigger for analog channel 8 (on) or not (off) OverTrigLe08 0 - 5000 Over trigger level for analog channel 8 in...
  • Page 364: Signals

    Section 12 1MRK 505 288-UEN A Monitoring Channels 31-40 are not shown in LHMI. They are used for internally calculated analog signals. 12.4.4.3 Signals Table 279: A4RADR Input signals Name Type Default Description INPUT31 REAL Analog channel 31 INPUT32 REAL Analog channel 32 INPUT33 REAL...
  • Page 365 Section 12 1MRK 505 288-UEN A Monitoring Name Values (Range) Unit Step Default Description InfNo31 0 - 255 Information number for analog channel 31 (IEC-60870-5-103) FunType32 0 - 255 Function type for analog channel 32 (IEC-60870-5-103) InfNo32 0 - 255 Information number for analog channel 32 (IEC-60870-5-103) FunType33...
  • Page 366 Section 12 1MRK 505 288-UEN A Monitoring Name Values (Range) Unit Step Default Description OverTrigOp31 Use over level trigger for analog channel 31 (on) or not (off) OverTrigLe31 0 - 5000 Over trigger level for analog channel 31 in % of signal NomValue32 0.0 - 999999.9 Nominal value for analog channel 32...
  • Page 367 Section 12 1MRK 505 288-UEN A Monitoring Name Values (Range) Unit Step Default Description OverTrigLe36 0 - 5000 Over trigger level for analog channel 36 in % of signal NomValue37 0.0 - 999999.9 Nominal value for analog channel 37 UnderTrigOp37 Use under level trigger for analog channel 37 (on) or not (off) UnderTrigLe37...
  • Page 368: Binary Input Signals Bxrbdr

    Section 12 1MRK 505 288-UEN A Monitoring 12.4.5 Binary input signals BxRBDR 12.4.5.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Binary input signals B1RBDR Binary input signals B2RBDR Binary input signals B3RBDR Binary input signals B4RBDR Binary input signals B5RBDR...
  • Page 369: Settings

    Section 12 1MRK 505 288-UEN A Monitoring Table 282: B1RBDR Input signals Name Type Default Description INPUT1 BOOLEAN Binary channel 1 INPUT2 BOOLEAN Binary channel 2 INPUT3 BOOLEAN Binary channel 3 INPUT4 BOOLEAN Binary channel 4 INPUT5 BOOLEAN Binary channel 5 INPUT6 BOOLEAN Binary channel 6...
  • Page 370 Section 12 1MRK 505 288-UEN A Monitoring Name Values (Range) Unit Step Default Description SetLED02 Set LED on HMI for binary channel 2 Start Trip Start and Trip TrigDR03 Trigger operation On/Off SetLED03 Set LED on HMI for binary channel 3 Start Trip Start and Trip...
  • Page 371 Section 12 1MRK 505 288-UEN A Monitoring Name Values (Range) Unit Step Default Description TrigDR11 Trigger operation On/Off SetLED11 Set LED on HMI for binary channel 11 Start Trip Start and Trip TrigDR12 Trigger operation On/Off SetLED12 Set LED on HMI for binary channel 12 Start Trip Start and Trip...
  • Page 372 Section 12 1MRK 505 288-UEN A Monitoring Name Values (Range) Unit Step Default Description FunType5 0 - 255 Function type for binary channel 5 (IEC -60870-5-103) InfNo5 0 - 255 Information number for binary channel 5 (IEC -60870-5-103) FunType6 0 - 255 Function type for binary channel 6 (IEC -60870-5-103) InfNo6...
  • Page 373 Section 12 1MRK 505 288-UEN A Monitoring Table 284: B1RBDR Non group settings (advanced) Name Values (Range) Unit Step Default Description TrigLevel01 Trig on 0 Trig on 1 Trigger on positive (1) or negative (0) Trig on 1 slope for binary input 1 IndicationMa01 Hide Hide...
  • Page 374: Operation Principle

    Section 12 1MRK 505 288-UEN A Monitoring Name Values (Range) Unit Step Default Description TrigLevel13 Trig on 0 Trig on 1 Trigger on positive (1) or negative (0) Trig on 1 slope for binary input 13 IndicationMa13 Hide Hide Indication mask for binary channel 13 Show TrigLevel14 Trig on 0...
  • Page 375 Section 12 1MRK 505 288-UEN A Monitoring A1-4RADR Disturbance Report A4RADR DRPRDRE Analog signals Trip value rec B1-6RBDR Disturbance recorder Binary signals B6RBDR Event list Event recorder Indications IEC09000337-2-en.vsd IEC09000337 V2 EN Figure 160: Disturbance report functions and related function blocks The whole disturbance report can contain information for a number of recordings, each with the data coming from all the parts mentioned above.
  • Page 376: Disturbance Information

    Section 12 1MRK 505 288-UEN A Monitoring 12.4.6.1 Disturbance information Date and time of the disturbance, the indications, events, fault location and the trip values are available on the local HMI. To acquire a complete disturbance report the user must use a PC and - either the PCM600 Disturbance handling tool - or a FTP or MMS (over 61850) client.
  • Page 377: Analog Signals

    Section 12 1MRK 505 288-UEN A Monitoring The total recording time, tRecording, of a recorded disturbance is: PreFaultrecT + tFault + PostFaultrecT or PreFaultrecT + TimeLimit , depending on which tRecording = criterion stops the current disturbance recording Trig point TimeLimit PreFaultRecT PostFaultRecT...
  • Page 378 Section 12 1MRK 505 288-UEN A Monitoring SMAI A1RADR GRPNAME AI3P A2RADR AI1NAME GRPINPUT1 A3RADR External analog AI2NAME GRPINPUT2 signals AI3NAME GRPINPUT3 AI4NAME GRPINPUT4 GRPINPUT5 GRPINPUT6 A4RADR INPUT31 INPUT32 INPUT33 Internal analog signals INPUT34 INPUT35 INPUT36 INPUT40 en05000653-2.vsd IEC05000653 V2 EN Figure 162: Analog input function blocks The external input signals will be acquired, filtered and skewed and (after...
  • Page 379: Binary Signals

    Section 12 1MRK 505 288-UEN A Monitoring If Operation = Off, no waveform (samples) will be recorded and reported in graph. However, Trip value, pre-fault and fault value will be recorded and reported. The input channel can still be used to trig the disturbance recorder. If Operation = On, waveform (samples) will also be recorded and reported in graph.
  • Page 380: Post Retrigger

    Section 12 1MRK 505 288-UEN A Monitoring Binary-signal trigger Any binary signal state (logic one or a logic zero) can be selected to generate a trigger (Triglevel = Trig on 0/Trig on 1). When a binary signal is selected to generate a trigger from a logic zero, the selected signal will not be listed in the indications list of the disturbance report.
  • Page 381: Technical Data

    Section 12 1MRK 505 288-UEN A Monitoring 12.4.7 Technical data Table 285: DRPRDRE technical data Function Range or value Accuracy Current recording ± 1,0% of I at I ≤ I ± 1,0% of I at I > Ir Voltage recording ±...
  • Page 382: Function Block

    Section 12 1MRK 505 288-UEN A Monitoring 12.5.2 Function block The Indications function has no function block of it’s own. 12.5.3 Signals 12.5.3.1 Input signals The Indications function logs the same binary input signals as the Disturbance report function. 12.5.4 Operation principle The LED indications display this information: Green LED:...
  • Page 383: Technical Data

    Section 12 1MRK 505 288-UEN A Monitoring The name of the binary signal that appears in the Indication function is the user- defined name assigned at configuration of the IED. The same name is used in disturbance recorder function, indications and event recorder function. 12.5.5 Technical data Table 286:...
  • Page 384: Technical Data

    Section 12 1MRK 505 288-UEN A Monitoring generated by both internal logical signals and binary input channels. The internal signals are time-tagged in the main processor module, while the binary input channels are time-tagged directly in each I/O module. The events are collected during the total recording time (pre-, post-fault and limit time), and are stored in the disturbance report flash memory at the end of each recording.
  • Page 385: Signals

    Section 12 1MRK 505 288-UEN A Monitoring 12.7.3 Signals 12.7.3.1 Input signals The Event list logs the same binary input signals as configured for the Disturbance report function. 12.7.4 Operation principle When a binary signal, connected to the disturbance report function, changes status, the event list function stores input name, status and time in the event list in chronological order.
  • Page 386: Function Block

    Section 12 1MRK 505 288-UEN A Monitoring The Trip value recorder calculates the values of all selected analog input signals connected to the Disturbance recorder function. The result is magnitude and phase angle before and during the fault for each analog input signal. The trip value recorder information is available for the disturbances locally in the IED.
  • Page 387: Technical Data

    Section 12 1MRK 505 288-UEN A Monitoring The trip value record is stored as a part of the disturbance report information and managed in PCM600 or via the local HMI. 12.8.5 Technical data Table 289: DRPRDRE technical data Function Value Buffer capacity Maximum number of analog inputs Maximum number of disturbance reports...
  • Page 388: Operation Principle

    Section 12 1MRK 505 288-UEN A Monitoring 12.9.5 Operation principle Disturbance recording is based on the acquisition of binary and analog signals. The binary signals can be either true binary input signals or internal logical signals generated by the functions in the IED. The analog signals to be recorded are input channels from the Transformer Input Module (TRM) through the Signal Matrix Analog Input (SMAI) and possible summation (Sum3Ph) function blocks and some internally derived analog signals.
  • Page 389 Section 12 1MRK 505 288-UEN A Monitoring The recorded disturbance is now ready for retrieval and evaluation. The recording files comply with the Comtrade standard IEC 60255-24 and are divided into three files; a header file (HDR), a configuration file (CFG) and a data file (DAT). The header file (optional in the standard) contains basic information about the disturbance, that is, information from the Disturbance report sub-functions.
  • Page 390: Technical Data

    Section 12 1MRK 505 288-UEN A Monitoring 12.9.6 Technical data Table 290: DRPRDRE technical data Function Value Buffer capacity Maximum number of analog inputs Maximum number of binary inputs Maximum number of disturbance reports Maximum total recording time (3.4 s recording time and maximum number of 340 seconds (100 channels, typical value) recordings) at 50 Hz...
  • Page 391 Section 12 1MRK 505 288-UEN A Monitoring 12.10.5 Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600). 12.10.6 Operation principle Upon receiving a signal at its input, IEC61850 generic communication I/O functions (SPGGIO) function sends the signal over IEC 61850-8-1 to the equipment or system that requests this signal.
  • Page 392: Signals

    Section 12 1MRK 505 288-UEN A Monitoring 12.11.4 Signals Table 292: SP16GGIO Input signals Name Type Default Description BLOCK BOOLEAN Block of function BOOLEAN Input 1 status BOOLEAN Input 2 status BOOLEAN Input 3 status BOOLEAN Input 4 status BOOLEAN Input 5 status BOOLEAN Input 6 status...
  • Page 393: Operation Principle

    Section 12 1MRK 505 288-UEN A Monitoring Name Type Values (Range) Unit Description OUT7 GROUP Output 7 status SIGNAL OUT8 GROUP Output 8 status SIGNAL OUT9 GROUP Output 9 status SIGNAL OUT10 GROUP Output 10 status SIGNAL OUT11 GROUP Output 11 status SIGNAL OUT12 GROUP...
  • Page 394: Function Block

    Section 12 1MRK 505 288-UEN A Monitoring 12.12.2 Functionality IEC61850 generic communication I/O functions (MVGGIO) function is used to send the instantaneous value of an analog signal to other systems or equipment in the substation. It can also be used inside the same IED, to attach a RANGE aspect to an analog value and to permit measurement supervision on that value.
  • Page 395: Monitored Data

    Section 12 1MRK 505 288-UEN A Monitoring Name Values (Range) Unit Step Default Description MV lLim -5000.00 - 5000.00 xBase 0.01 -800.00 Low limit multiplied with the base prefix (multiplication factor) MV llLim -5000.00 - 5000.00 xBase 0.01 -900.00 Low Low limit multiplied with the base prefix (multiplication factor) MV min -5000.00 - 5000.00...
  • Page 396: Functionality

    Section 12 1MRK 505 288-UEN A Monitoring 12.13.2 Functionality The current and voltage measurements functions (CVMMXN, CMMXU, VMMXU and VNMMXU), current and voltage sequence measurement functions (CMSQI and VMSQI) and IEC 61850 generic communication I/O functions (MVGGIO) are provided with measurement supervision functionality. All measured values can be supervised with four settable limits: low-low limit, low limit, high limit and high-high limit.
  • Page 397: Operation Principle

    Section 12 1MRK 505 288-UEN A Monitoring GlobalBaseSel: Selects the global base value group used by the function to define (IBase), (UBase) and (SBase). 12.13.6 Operation principle The input signal must be connected to a range output of a measuring function block (CVMMXN, CMMXU, VMMXU, VNMMXU, CMSQI, VMSQ or MVGGIO).
  • Page 398: Signals

    Section 12 1MRK 505 288-UEN A Monitoring SPVNZBAT activates the start and alarm outputs when the battery terminal voltage exceeds the set upper limit or drops below the set lower limit. A time delay for the overvoltage and undervoltage alarms can be set according to definite time characteristics.
  • Page 399: Measured Values

    Section 12 1MRK 505 288-UEN A Monitoring 12.14.6 Measured values Table 304: SPVNZBAT Measured values Name Type Default Description U_BATT REAL 0.00 Battery terminal voltage that has to be supervised BLOCK BOOLEAN Blocks all the output signals of the function 12.14.7 Monitored Data Table 305:...
  • Page 400: Technical Data

    Section 12 1MRK 505 288-UEN A Monitoring Low level detector The level detector compares the battery voltage U_BATT with the set value of the BattVoltLowLim setting. If the value of the U_BATT input drops below the set value of the BattVoltLowLim setting, the start signal ST_ULOW is activated. The measured voltage between the battery terminals U_BATT is available through the Monitored data view.
  • Page 401: Functionality

    Section 12 1MRK 505 288-UEN A Monitoring 12.15.2 Functionality Insulation gas monitoring function SSIMG is used for monitoring the circuit breaker condition. Binary information based on the gas pressure in the circuit breaker is used as input signals to the function. In addition, the function generates alarms based on received information.
  • Page 402: Settings

    Section 12 1MRK 505 288-UEN A Monitoring Table 308: SSIMG Output signals Name Type Description PRESSURE REAL Pressure service value PRES_ALM BOOLEAN Pressure below alarm level PRES_LO BOOLEAN Pressure below lockout level TEMP REAL Temperature of the insulation medium TEMP_ALM BOOLEAN Temperature above alarm level TEMP_LO...
  • Page 403: Technical Data

    Section 12 1MRK 505 288-UEN A Monitoring below the levels for more than the set time delays the corresponding signals, PRES_ALM, pressure below alarm level and PRES_LO, pressure below lockout level alarm will be obtained. The input signal BLK_ALM is used to block the two alarms levels. The input signal BLOCK is used to block both the alarms and the function.
  • Page 404: Signals

    Section 12 1MRK 505 288-UEN A Monitoring 12.16.4 Signals Inputs LEVEL and TEMP together with settings LevelAlmLimit, LevelLOLimit, TempAlarmLimit and TempLOLimit are not supported in this release of 650 series. Table 311: SSIML Input signals Name Type Default Description BLOCK BOOLEAN Block of function BLK_ALM...
  • Page 405: Operation Principle

    Section 12 1MRK 505 288-UEN A Monitoring Name Values (Range) Unit Step Default Description tTempAlarm 0.000 - 60.000 0.001 0.000 Time delay for temperature alarm tTempLockOut 0.000 - 60.000 0.001 0.000 Time delay for temperture lockout tResetLevelAlm 0.000 - 60.000 0.001 0.000 Reset time delay for level alarm...
  • Page 406: Functionality

    Section 12 1MRK 505 288-UEN A Monitoring 12.17.2 Functionality The circuit breaker condition monitoring function SSCBR is used to monitor different parameters of the circuit breaker. The breaker requires maintenance when the number of operations has reached a predefined value. The energy is calculated from the measured input currents as a sum of I t values.
  • Page 407: Settings

    Section 12 1MRK 505 288-UEN A Monitoring Name Type Default Description LOPRES BOOLEAN Binary pressure input for lockout indication SPRCHRGN BOOLEAN CB spring charging started input SPRCHRGD BOOLEAN CB spring charged input CBCNTRST BOOLEAN Reset input for CB remaining life and operation counter IACCRST BOOLEAN...
  • Page 408: Monitored Data

    Section 12 1MRK 505 288-UEN A Monitoring Name Values (Range) Unit Step Default Description AccCurrAlmLvl 0.00 - 20000.00 0.01 2500.00 Setting of alarm level for accumulated currents power AccCurrLO 0.00 - 20000.00 0.01 2500.00 Lockout limit setting for accumulated currents power DirCoef -3.00 - -0.50 0.01...
  • Page 409: Operation Principle

    Section 12 1MRK 505 288-UEN A Monitoring Name Type Values (Range) Unit Description NOOPRDAY INTEGER The number of days CB has been inactive CBLIFEL1 INTEGER CB Remaining life phase CBLIFEL2 INTEGER CB Remaining life phase CBLIFEL3 INTEGER CB Remaining life phase IACCL1 REAL Accumulated currents...
  • Page 410: Circuit Breaker Status

    Section 12 1MRK 505 288-UEN A Monitoring GUID-FE21BBDC-57A6-425C-B22B-8E646C1BD932 V1 EN Figure 171: Functional module diagram 12.17.7.1 Circuit breaker status The circuit breaker status subfunction monitors the position of the circuit breaker, that is, whether the breaker is in an open, closed or intermediate position. The operation of the breaker status monitoring can be described using a module diagram.
  • Page 411: Circuit Breaker Operation Monitoring

    Section 12 1MRK 505 288-UEN A Monitoring GUID-60ADC120-4B5A-40D8-B1C5-475E4634214B V1 EN Figure 172: Functional module diagram for monitoring circuit breaker status BLOCK and BLK_ALM inputs Phase current check This module compares the three phase currents with the setting AccDisLevel. If the current in a phase exceeds the set level, information about phase is reported to the contact position indicator module.
  • Page 412: Breaker Contact Travel Time

    Section 12 1MRK 505 288-UEN A Monitoring Inactivity timer The module calculates the number of days the circuit breaker has remained inactive, that is, has stayed in the same open or closed state. The calculation is done by monitoring the states of the POSOPEN and POSCLOSE auxiliary contacts. The inactive days NOOPRDAY is available through the Monitored data view.
  • Page 413: Operation Counter

    Section 12 1MRK 505 288-UEN A Monitoring GUID-3AD25F5A-639A-4941-AA61-E69FA2357AFE V1 EN There is a time difference t between the start of the main contact opening and the opening of the POSCLOSE auxiliary contact. Similarly, there is a time gap t between the time when the POSOPEN auxiliary contact opens and the main contact is completely open.
  • Page 414: Accumulation Of I Y T

    Section 12 1MRK 505 288-UEN A Monitoring GUID-FF1221A4-6160-4F92-9E7F-A412875B69E1 V1 EN Figure 175: Functional module diagram for counting circuit breaker operations Operation counter The operation counter counts the number of operations based on the state change of the binary auxiliary contacts inputs POSCLOSE and POSOPEN. The number of operations NO_OPR is available through the Monitored data view on the LHMI or through tools via communications.
  • Page 415 Section 12 1MRK 505 288-UEN A Monitoring GUID-DAC3746F-DFBF-4186-A99D-1D972578D32A V1 EN Figure 176: Functional module diagram for calculating accumulative energy and alarm Accumulated energy calculator This module calculates the accumulated energy I t [(kA) s]. The factor y is set with the CurrExp setting.
  • Page 416: Remaining Life Of The Circuit Breaker

    Section 12 1MRK 505 288-UEN A Monitoring Alarm limit check The IACCALM alarm is activated when the accumulated energy exceeds the value set with the AccCurrAlmLvl threshold setting. However, when the energy exceeds the limit value set with the AccCurrLO threshold setting, the IACCLOAL output is activated.
  • Page 417: Circuit Breaker Spring Charged Indication

    Section 12 1MRK 505 288-UEN A Monitoring The remaining life is calculated separately for all three phases and it is available as a monitored data value CBLIFEL1 (L2, L3). The values can be cleared by setting the parameter CB wear values in the clear menu from LHMI. Clearing CB wear values also resets the operation counter.
  • Page 418: Gas Pressure Supervision

    Section 12 1MRK 505 288-UEN A Monitoring Alarm limit check If the time taken by the spring to charge is more than the value set with the tSprngChrgAlm setting, the subfunction generates the SPRCHRAL alarm. It is possible to block the SPRCHRAL alarm signal by activating the BLOCK binary input.
  • Page 419: Technical Data

    Section 12 1MRK 505 288-UEN A Monitoring 12.17.8 Technical data Table 319: SSCBR Technical data Function Range or value Accuracy Alarm levels for open and close (0-200) ms ± 0.5% ± 25 ms travel time Alarm levels for number of (0 - 9999) operations Setting of alarm for spring...
  • Page 420: Function Block

    Section 12 1MRK 505 288-UEN A Monitoring GUID-B8A3A04C-430D-4488-9F72-8529FAB0B17D V1 EN Figure 181: Settings for CMMXU: 1 All input signals to IEC 60870-5-103 I103MEAS must be connected in application configuration. Connect an input signals on IEC 60870-5-103 I103MEAS that is not connected to the corresponding output on MMXU function, to outputs on the fixed signal function block.
  • Page 421: Signals

    Section 12 1MRK 505 288-UEN A Monitoring 12.18.3 Signals Table 320: I103MEAS Input signals Name Type Default Description BLOCK BOOLEAN Block of service value reporting REAL Service value for current phase L1 REAL Service value for current phase L2 REAL Service value for current phase L3 REAL Service value for residual current IN...
  • Page 422: Measurands User Defined Signals For Iec 60870-5-103

    Section 12 1MRK 505 288-UEN A Monitoring 12.19 Measurands user defined signals for IEC 60870-5-103 I103MEASUSR 12.19.1 Functionality I103MEASUSR is a function block with user defined input measurands in monitor direction. These function blocks include the FunctionType parameter for each block in the private range, and the Information number parameter for each block.
  • Page 423: Settings

    Section 12 1MRK 505 288-UEN A Monitoring 12.19.4 Settings Table 323: I103MEASUSR Non group settings (basic) Name Values (Range) Unit Step Default Description FunctionType 1 - 255 Function type (1-255) InfNo 1 - 255 Information number for measurands (1-255) MaxMeasur1 0.05 - 0.05 1000.00...
  • Page 424: Signals

    Section 12 1MRK 505 288-UEN A Monitoring 12.20.3 Signals Table 324: I103AR Input signals Name Type Default Description BLOCK BOOLEAN Block of status reporting 16_ARACT BOOLEAN Information number 16, auto-recloser active 128_CBON BOOLEAN Information number 128, circuit breaker on by auto- recloser 130_BLKD BOOLEAN...
  • Page 425: Settings

    Section 12 1MRK 505 288-UEN A Monitoring 12.21.4 Settings Table 327: I103EF Non group settings (basic) Name Values (Range) Unit Step Default Description FunctionType 1 - 255 Function type (1-255) 12.22 Function status fault protection for IEC 60870-5-103 I103FLTPROT 12.22.1 Functionality I103FLTPROT is used for fault indications in monitor direction.
  • Page 426: Function Block

    Section 12 1MRK 505 288-UEN A Monitoring 12.22.2 Function block I103FLTPROT BLOCK 64_STL1 65_STL2 66_STL3 67_STIN 68_TRGEN 69_TRL1 70_TRL2 71_TRL3 72_TRBKUP 73_SCL 74_FW 75_REV 76_TRANS 77_RECEV 78_ZONE1 79_ZONE2 80_ZONE3 81_ZONE4 82_ZONE5 84_STGEN 85_BFP 86_MTRL1 87_MTRL2 88_MTRL3 89_MTRN 90_IOC 91_IOC 92_IEF 93_IEF ARINPROG FLTLOC...
  • Page 427: Settings

    Section 12 1MRK 505 288-UEN A Monitoring Name Type Default Description 76_TRANS BOOLEAN Information number 76, signal transmitted 77_RECEV BOOLEAN Information number 77, signal received 78_ZONE1 BOOLEAN Information number 78, zone 1 79_ZONE2 BOOLEAN Information number 79, zone 2 80_ZONE3 BOOLEAN Information number 80, zone 3 81_ZONE4...
  • Page 428: Function Block

    Section 12 1MRK 505 288-UEN A Monitoring 12.23.2 Function block I103IED BLOCK 19_LEDRS 21_TESTM 22_SETCH 23_GRP1 24_GRP2 25_GRP3 26_GRP4 IEC10000292-2-en.vsd IEC10000292 V2 EN Figure 187: I103IED function block 12.23.3 Signals Table 330: I103IED Input signals Name Type Default Description BLOCK BOOLEAN Block of status reporting 19_LEDRS...
  • Page 429: Function Block

    Section 12 1MRK 505 288-UEN A Monitoring 12.24.2 Function block I103SUPERV BLOCK 32_MEASI 33_MEASU 37_IBKUP 38_VTFF 46_GRWA 47_GRAL IEC10000293-1-en.vsd IEC10000293 V1 EN Figure 188: I103SUPERV function block 12.24.3 Signals Table 332: I103SUPERV Input signals Name Type Default Description BLOCK BOOLEAN Block of status reporting 32_MEASI BOOLEAN...
  • Page 430: Function Block

    Section 12 1MRK 505 288-UEN A Monitoring I103USRDEF can be used, for example in mapping the INF numbers not supported directly by specific function blocks, like: INF17, INF18, INF20 or INF35. After connecting the appropriate signals to the I103USRDEF inputs, the user must also set the InfNo_x values in the settings.
  • Page 431: Settings

    Section 12 1MRK 505 288-UEN A Monitoring 12.25.4 Settings Table 335: I103USRDEF Non group settings (basic) Name Values (Range) Unit Step Default Description FunctionType 1 - 255 Function type (1-255) InfNo_1 1 - 255 Information number for binary input 1 (1-255) InfNo_2 1 - 255...
  • Page 433: Section 13 Metering

    Section 13 1MRK 505 288-UEN A Metering Section 13 Metering 13.1 Pulse counter PCGGIO 13.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Pulse counter PCGGIO S00947 V1 EN 13.1.2 Functionality Pulse counter (PCGGIO) function counts externally generated binary pulses, for instance pulses coming from an external energy meter, for calculation of energy consumption values.
  • Page 434: Settings

    Section 13 1MRK 505 288-UEN A Metering Table 337: PCGGIO Output signals Name Type Description INVALID BOOLEAN The pulse counter value is invalid RESTART BOOLEAN The reported value does not comprise a complete integration cycle BLOCKED BOOLEAN The pulse counter function is blocked NEW_VAL BOOLEAN A new pulse counter value is generated...
  • Page 435 Section 13 1MRK 505 288-UEN A Metering The reporting time period can be set in the range from 1 second to 60 minutes and is synchronized with absolute system time. Interrogation of additional pulse counter values can be done with a command (intermediate reading) for a single counter. All active counters can also be read by IEC 61850.
  • Page 436: Technical Data

    Section 13 1MRK 505 288-UEN A Metering The BLOCKED signal is a steady signal and is set when the counter is blocked. There are two reasons why the counter is blocked: • The BLOCK input is set, or • The binary input module, where the counter input is situated, is inoperative. The NEW_VAL signal is a pulse signal.
  • Page 437: Function Block

    Section 13 1MRK 505 288-UEN A Metering 13.2.3 Function block ETPMMTR ACCST EAFPULSE STACC EARPULSE RSTACC ERFPULSE RSTDMD ERRPULSE EAFALM EARALM ERFALM ERRALM EAFACC EARACC ERFACC ERRACC MAXPAFD MAXPARD MAXPRFD MAXPRRD IEC09000104 V1 EN Figure 192: ETPMMTR function block 13.2.4 Signals Table 341: ETPMMTR Input signals...
  • Page 438: Settings

    Section 13 1MRK 505 288-UEN A Metering Name Type Description EARACC REAL Accumulated reverse active energy value ERFACC REAL Accumulated forward reactive energy value ERRACC REAL Accumulated reverse reactive energy value MAXPAFD REAL Maximum forward active power demand value for set interval MAXPARD REAL...
  • Page 439: Monitored Data

    Section 13 1MRK 505 288-UEN A Metering Name Values (Range) Unit Step Default Description LevZeroClampP 0.001 - 10000.000 0.001 10.000 Zero point clamping level at active Power LevZeroClampQ 0.001 - 10000.000 MVAr 0.001 10.000 Zero point clamping level at reactive Power DirEnergyAct Forward...
  • Page 440: Technical Data

    Section 13 1MRK 505 288-UEN A Metering Outputs are available for forward as well as reverse direction. The accumulated energy values can be reset from the local HMI reset menu or with input signal RSTACC. The maximum demand values for active and reactive power are calculated for the set time interval tEnergy.
  • Page 441: Section 14 Station Communication

    Section 14 1MRK 505 288-UEN A Station communication Section 14 Station communication 14.1 DNP3 protocol DNP3 (Distributed Network Protocol) is a set of communications protocols used to communicate data between components in process automation systems. For a detailed description of the DNP3 protocol, see the DNP3 Communication protocol manual. 14.2 IEC 61850-8-1 communication protocol 14.2.1...
  • Page 442: Communication Interfaces And Protocols

    Section 14 1MRK 505 288-UEN A Station communication The Denial of Service functions DOSLAN1 and DOSFRNT are included to limit the inbound network traffic. The communication can thus never compromise the primary functionality of the IED. The event system has a rate limiter to reduce CPU load. The event channel has a quota of 10 events/second after the initial 30 events/second.
  • Page 443: Technical Data

    Section 14 1MRK 505 288-UEN A Station communication 14.2.5 Technical data Table 349: Communication protocol Function Value Protocol TCP/IP Ethernet Communication speed for the IEDs 100 Mbit/s Protocol IEC 61850–8–1 Communication speed for the IEDs 100BASE-FX Protocol DNP3.0/TCP Communication speed for the IEDs 100BASE-FX Protocol, serial IEC 60870–5–103...
  • Page 444: Function Block

    Section 14 1MRK 505 288-UEN A Station communication 14.3.2 Function block GOOSEINTLKRCV BLOCK ^RESREQ ^RESGRANT ^APP1_OP ^APP1_CL APP1VAL ^APP2_OP ^APP2_CL APP2VAL ^APP3_OP ^APP3_CL APP3VAL ^APP4_OP ^APP4_CL APP4VAL ^APP5_OP ^APP5_CL APP5VAL ^APP6_OP ^APP6_CL APP6VAL ^APP7_OP ^APP7_CL APP7VAL ^APP8_OP ^APP8_CL APP8VAL ^APP9_OP ^APP9_CL APP9VAL ^APP10_OP...
  • Page 445 Section 14 1MRK 505 288-UEN A Station communication Table 351: GOOSEINTLKRCV Output signals Name Type Description RESREQ BOOLEAN Reservation request RESGRANT BOOLEAN Reservation granted APP1_OP BOOLEAN Apparatus 1 position is open APP1_CL BOOLEAN Apparatus 1 position is closed APP1VAL BOOLEAN Apparatus 1 position is valid APP2_OP BOOLEAN...
  • Page 446: Settings

    Section 14 1MRK 505 288-UEN A Station communication Name Type Description APP13_OP BOOLEAN Apparatus 13 position is open APP13_CL BOOLEAN Apparatus 13 position is closed APP13VAL BOOLEAN Apparatus 13 position is valid APP14_OP BOOLEAN Apparatus 14 position is open APP14_CL BOOLEAN Apparatus 14 position is closed APP14VAL...
  • Page 447: Function Block

    Section 14 1MRK 505 288-UEN A Station communication 14.4.2 Function block GOOSEBINRCV BLOCK ^OUT1 OUT1VAL ^OUT2 OUT2VAL ^OUT3 OUT3VAL ^OUT4 OUT4VAL ^OUT5 OUT5VAL ^OUT6 OUT6VAL ^OUT7 OUT7VAL ^OUT8 OUT8VAL ^OUT9 OUT9VAL ^OUT10 OUT10VAL ^OUT11 OUT11VAL ^OUT12 OUT12VAL ^OUT13 OUT13VAL ^OUT14 OUT14VAL ^OUT15 OUT15VAL...
  • Page 448: Settings

    Section 14 1MRK 505 288-UEN A Station communication Name Type Description OUT4VAL BOOLEAN Valid data on binary output 4 OUT5 BOOLEAN Binary output 5 OUT5VAL BOOLEAN Valid data on binary output 5 OUT6 BOOLEAN Binary output 6 OUT6VAL BOOLEAN Valid data on binary output 6 OUT7 BOOLEAN Binary output 7...
  • Page 449: Goose Function Block To Receive A Double Point Value Goosedprcv

    Section 14 1MRK 505 288-UEN A Station communication The input of this GOOSE block must be linked in SMT by means of a cross to receive the binary values. The implementation for IEC61850 quality data handling is restricted to a simple level. If quality data validity is GOOD then the OUTxVAL output will be HIGH.
  • Page 450: Settings

    Section 14 1MRK 505 288-UEN A Station communication Table 357: GOOSEDPRCV Output signals Name Type Description DPOUT INTEGER Double point output DATAVALID BOOLEAN Data valid for double point output COMMVALID BOOLEAN Communication valid for double point output TEST BOOLEAN Test output 14.5.5 Settings Table 358:...
  • Page 451: Functionality

    Section 14 1MRK 505 288-UEN A Station communication 14.6.2 Functionality GOOSEINTRCV is used to receive an integer value using IEC61850 protocol via GOOSE. 14.6.3 Function block GOOSEINTRCV BLOCK ^INTOUT DATAVALID COMMVALID TEST IEC10000250-1-en.vsd IEC10000250 V1 EN Figure 197: GOOSEINTRCV function block 14.6.4 Signals Table 359:...
  • Page 452: Goose Function Block To Receive A Measurand Value Goosemvrcv

    Section 14 1MRK 505 288-UEN A Station communication The input of this GOOSE block must be linked in SMT by means of a cross to receive the integer values. The implementation for IEC61850 quality data handling is restricted to a simple level. If quality data validity is GOOD then the DATAVALID output will be HIGH.
  • Page 453: Settings

    Section 14 1MRK 505 288-UEN A Station communication Table 363: GOOSEMVRCV Output signals Name Type Description MVOUT REAL Measurand value output DATAVALID BOOLEAN Data valid for measurand value output COMMVALID BOOLEAN Communication valid for measurand value output TEST BOOLEAN Test output 14.7.5 Settings Table 364:...
  • Page 454: Functionality

    Section 14 1MRK 505 288-UEN A Station communication 14.8.2 Functionality GOOSESPRCV is used to receive a single point value using IEC61850 protocol via GOOSE. 14.8.3 Function block GOOSESPRCV BLOCK ^SPOUT DATAVALID COMMVALID TEST IEC10000248-1-en.vsd IEC10000248 V1 EN Figure 199: GOOSESPRCV function block 14.8.4 Signals Table 365:...
  • Page 455: Iec 60870-5-103 Communication Protocol

    Section 14 1MRK 505 288-UEN A Station communication The input of this GOOSE block must be linked in SMT by means of a cross to receive the binary single point values. The implementation for IEC61850 quality data handling is restricted to a simple level.
  • Page 456: Settings

    Section 14 1MRK 505 288-UEN A Station communication 14.9.2 Settings Table 368: OPTICAL103 Non group settings (basic) Name Values (Range) Unit Step Default Description SlaveAddress 1 - 255 Slave address BaudRate 9600 Bd 9600 Bd Baudrate on serial line 19200 Bd RevPolarity Invert polarity CycMeasRepTime...
  • Page 457: Functionality

    Section 14 1MRK 505 288-UEN A Station communication Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number System component for parallel PRPSTATUS redundancy protocol 14.10.1 Functionality Redundant station bus communication according to IEC 62439-3 Edition 2 is available as option in the Customized 650 Ver 1.3 series IEDs, and the selection is made at ordering.
  • Page 458: Function Block

    Section 14 1MRK 505 288-UEN A Station communication Station Control System Redundancy Supervision Data Data Switch A Switch B Data Data COM03 PRPSTATUS IEC13000003-1-en.vsd IEC13000003 V1 EN Figure 200: Redundant station bus 14.10.3 Function block PRPSTATUS LAN1-A LAN1-B IEC13000011-1-en.vsd IEC13000011 V1 EN Figure 201: PRPSTATUS function block Table 370:...
  • Page 459: Setting Parameters

    Section 14 1MRK 505 288-UEN A Station communication 14.10.4 Setting parameters The PRPSTATUS function has no user settings. However, the redundant communication is configured in the LHMI under Main menu/Configuration/Communication/TCP-IP configuration/ETHLAN1_AB where Operation mode, IPAddress and IPMask are configured. 14.11 Activity logging parameters ACTIVLOG 14.11.1 Activity logging ACTIVLOG...
  • Page 460: Generic Security Application Component Agsal

    Section 14 1MRK 505 288-UEN A Station communication Name Values (Range) Unit Step Default Description ExtLogSrv4IP 0 - 18 127.0.0.1 External log server 4 IP-address Address ExtLogSrv5Type External log server 5 type SYSLOG UDP/IP SYSLOG TCP/IP CEF TCP/IP ExtLogSrv5Port 1 - 65535 External log server 5 port number ExtLogSrv5IP 0 - 18...
  • Page 461: Section 15 Basic Ied Functions

    Section 15 1MRK 505 288-UEN A Basic IED functions Section 15 Basic IED functions 15.1 Self supervision with internal event list 15.1.1 Functionality The Self supervision with internal event list INTERRSIG and SELFSUPEVLST function reacts to internal system events generated by the different built-in self- supervision elements.
  • Page 462: Settings

    Section 15 1MRK 505 288-UEN A Basic IED functions 15.1.2.4 Settings The function does not have any settings available in Local HMI or Protection and Control IED Manager (PCM600). 15.1.3 Internal event list SELFSUPEVLST 15.1.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification...
  • Page 463 Section 15 1MRK 505 288-UEN A Basic IED functions Fault Power supply fault Power supply module Watchdog I/O nodes TX overflow Fault Master resp. Supply fault ReBoot I/O INTERNAL FAIL Fault Internal Fail (CPU) I/O nodes = BIO xxxx = Inverted signal IEC09000390-1-en.vsd IEC09000390 V1 EN Figure 203:...
  • Page 464: Internal Signals

    Section 15 1MRK 505 288-UEN A Basic IED functions LIODEV FAIL >1 LIODEV STOPPED e.g. BIO1- ERROR LIODEV STARTED >1 SW Watchdog Error >1 Internal Fail WDOG STARVED Runtime Exec Error RTE FATAL ERROR >1 File System Error FTF FATAL ERROR RTE APP FAILED Runtime App Error RTE ALL APPS OK...
  • Page 465 Section 15 1MRK 505 288-UEN A Basic IED functions they are also called internal signals. The internal signals can be divided into two groups. • Standard signals are always presented in the IED, see Table 375. • Hardware dependent internal signals are collected depending on the hardware configuration, see Table 376.
  • Page 466: Run-Time Model

    Section 15 1MRK 505 288-UEN A Basic IED functions Name of signal Reasons for activation Time Synch Error This signal will be active when the source of the time synchronization is lost, or when the time system has to make a time reset.
  • Page 467: Technical Data

    Section 15 1MRK 505 288-UEN A Basic IED functions ADx_Low Controller ADx_High IEC05000296-3-en.vsd IEC05000296 V3 EN Figure 205: Simplified drawing of A/D converter for the IED. The technique to split the analog input signal into two A/D converter(s) with different amplification makes it possible to supervise the A/D converters under normal conditions where the signals from the two A/D converters should be identical.
  • Page 468: Time Synchronization

    Section 15 1MRK 505 288-UEN A Basic IED functions 15.2 Time synchronization 15.2.1 Functionality The time synchronization source selector is used to select a common source of absolute time for the IED when it is a part of a protection system. This makes it possible to compare event and disturbance data between all IEDs in a station automation system.
  • Page 469: Settings

    Section 15 1MRK 505 288-UEN A Basic IED functions 15.2.3.2 Settings Table 380: SNTP Non group settings (basic) Name Values (Range) Unit Step Default Description ServerIP-Add 0 - 255 0.0.0.0 Server IP-address Address RedServIP-Add 0 - 255 0.0.0.0 Redundant server IP-address Address 15.2.4 Time system, summer time begin DSTBEGIN...
  • Page 470: Time System, Summer Time Ends Dstend

    Section 15 1MRK 505 288-UEN A Basic IED functions 15.2.5 Time system, summer time ends DSTEND 15.2.5.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Time system, summer time ends DSTEND 15.2.5.2 Settings Table 382: DSTEND Non group settings (basic) Name Values (Range)
  • Page 471: Settings

    Section 15 1MRK 505 288-UEN A Basic IED functions 15.2.6.2 Settings Table 383: TIMEZONE Non group settings (basic) Name Values (Range) Unit Step Default Description NoHalfHourUTC -24 - 24 Number of half-hours from UTC 15.2.7 Time synchronization via IRIG-B 15.2.7.1 Identification Function description IEC 61850...
  • Page 472 Section 15 1MRK 505 288-UEN A Basic IED functions Design of the time system (clock synchronization) External Time tagging and general synchronization synchronization sources Protection Commu Events and control - nication functions SNTP Time- IRIG-B regulator SW- time IEC60870-5-103 IEC09000210-2-en.vsd IEC09000210 V2 EN Figure 206: Design of time system (clock synchronization)
  • Page 473: Real-Time Clock (Rtc) Operation

    Section 15 1MRK 505 288-UEN A Basic IED functions 15.2.8.2 Real-time clock (RTC) operation The IED has a built-in real-time clock (RTC) with a resolution of one second. The clock has a built-in calendar that handles leap years through 2038. Real-time clock at power off During power off, the system time in the IED is kept by a capacitor-backed real-time clock that will provide 35 ppm accuracy for 5 days.
  • Page 474 Section 15 1MRK 505 288-UEN A Basic IED functions Synchronization via SNTP SNTP provides a ping-pong method of synchronization. A message is sent from an IED to an SNTP server, and the SNTP server returns the message after filling in a reception time and a transmission time.
  • Page 475: Technical Data

    Section 15 1MRK 505 288-UEN A Basic IED functions Synchronization via IEC60870-5-103 The IEC60870-5-103 communication can be the source for the coarse time synchronization, while the fine tuning of the time synchronization needs a source with higher accuracy. See the communication protocol manual for a detailed description of the IEC60870-5-103 protocol.
  • Page 476: Parameter Setting Groups Actvgrp

    Section 15 1MRK 505 288-UEN A Basic IED functions 15.3.3 Parameter setting groups ACTVGRP 15.3.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Parameter setting groups ACTVGRP 15.3.3.2 Function block ACTVGRP ACTGRP1 GRP1 ACTGRP2 GRP2 ACTGRP3 GRP3 ACTGRP4...
  • Page 477: Operation Principle

    Section 15 1MRK 505 288-UEN A Basic IED functions 15.3.4 Operation principle Parameter setting groups (ACTVGRP) function has four functional inputs, each corresponding to one of the setting groups stored in the IED. Activation of any of these inputs changes the active setting group. Five functional output signals are available for configuration purposes, so that information on the active setting group is always available.
  • Page 478: Test Mode Functionality Testmode

    Section 15 1MRK 505 288-UEN A Basic IED functions The above example also shows the five output signals, GRP1 to 4 for confirmation of which group that is active, and the SETCHGD signal which is normally connected to a SP16GGIO function block for external communication to higher level control systems.
  • Page 479: Settings

    Section 15 1MRK 505 288-UEN A Basic IED functions Table 390: TESTMODE Output signals Name Type Description ACTIVE BOOLEAN Terminal in test mode when active OUTPUT BOOLEAN Test input is active SETTING BOOLEAN Test mode setting is (On) or not (Off) NOEVENT BOOLEAN Event disabled during testmode...
  • Page 480: Change Lock Function Chnglck

    Section 15 1MRK 505 288-UEN A Basic IED functions The blocked functions will still be blocked next time entering the test mode, if the blockings were not reset. The released function will return to blocked state if test mode is set to off. The blocking of a function concerns all output signals from the actual function, so no outputs will be activated.
  • Page 481: Function Block

    CHNGLCK input, that logic must be designed so that it cannot permanently issue a logical one to the CHNGLCK input. If such a situation would occur in spite of these precautions, then please contact the local ABB representative for remedial action.
  • Page 482: Ied Identifiers Terminalid

    Section 15 1MRK 505 288-UEN A Basic IED functions • Reading disturbance data • Clear disturbances • Reset LEDs • Reset counters and other runtime component states • Control operations • Set system time • Enter and exit from test mode •...
  • Page 483: Product Information

    Section 15 1MRK 505 288-UEN A Basic IED functions Name Values (Range) Unit Step Default Description UnitName 0 - 18 Unit name Unit name UnitNumber 0 - 99999 Unit number IEDMainFunType 0 - 255 IED main function type for IEC60870-5-103 TechnicalKey 0 - 18 AA0J0Q0A0...
  • Page 484: Functionality

    Section 15 1MRK 505 288-UEN A Basic IED functions 15.8.2 Functionality The rated system frequency and phasor rotation are set under Main menu/ Configuration/ Power system/ Primary values/PRIMVAL in the local HMI and PCM600 parameter setting tree. 15.8.3 Settings Table 395: PRIMVAL Non group settings (basic) Name Values (Range)
  • Page 485: Function Block

    Section 15 1MRK 505 288-UEN A Basic IED functions 15.9.3 Function block SMAI_20_1 BLOCK SPFCOUT DFTSPFC AI3P REVROT ^GRP1L1 ^GRP1L2 ^GRP1L3 ^GRP1N IEC09000137-1-en.vsd IEC09000137 V1 EN Figure 212: SMAI_20_1 function block SMAI_20_2 BLOCK AI3P REVROT ^GRP2L1 ^GRP2L2 ^GRP2L3 ^GRP2N IEC09000138-2-en.vsd IEC09000138 V2 EN Figure 213: SMAI_20_2 to SMAI_20_12 function block...
  • Page 486 Section 15 1MRK 505 288-UEN A Basic IED functions Table 397: SMAI_20_1 Output signals Name Type Description SPFCOUT REAL Number of samples per fundamental cycle from internal DFT reference function AI3P GROUP SIGNAL Grouped three phase signal containing data from inputs 1-4 GROUP SIGNAL Quantity connected to the first analog input...
  • Page 487: Settings

    Section 15 1MRK 505 288-UEN A Basic IED functions 15.9.5 Settings Table 400: SMAI_20_1 Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 6 Selection of one of the Global Base Value groups DFTRefExtOut InternalDFTRef InternalDFTRef DFT reference for external output DFTRefGrp1...
  • Page 488: Operation Principle

    Section 15 1MRK 505 288-UEN A Basic IED functions measuring SMAI is used as a frequency reference for the adaptive DFT. This is not recommended, see the Setting guidelines. Table 402: SMAI_20_12 Non group settings (basic) Name Values (Range) Unit Step Default Description...
  • Page 489 Section 15 1MRK 505 288-UEN A Basic IED functions input connected. The signal received by SMAI is processed internally and in total 244 different electrical parameters are obtained for example RMS value, peak-to-peak, frequency and so on. The activation of BLOCK input resets all outputs to 0. SMAI_20 does all the calculation based on nominal 20 samples per line frequency period, this gives a sample frequency of 1 kHz at 50 Hz nominal line frequency and 1.2 kHz at 60 Hz nominal line frequency.
  • Page 490 Section 15 1MRK 505 288-UEN A Basic IED functions • All three inputs GRPxLx should be connected to SMAI for calculating sequence components for ConnectionType set to Ph-N. • At least two inputs GRPxLx should be connected to SMAI for calculating the positive and negative sequence component for ConnectionType set to Ph-Ph.
  • Page 491 Section 15 1MRK 505 288-UEN A Basic IED functions Below example shows a situation with adaptive frequency tracking with one reference selected for all instances. In practice each instance can be adapted to the needs of the actual application. Task time group 1 Task time group 2 (5ms) (20ms)
  • Page 492: Summation Block 3 Phase 3Phsum

    Section 15 1MRK 505 288-UEN A Basic IED functions For SMAI_20_1:2 to SMAI_20_12:2 DFTReference set to External DFT ref to use DFTSPFC input as reference. 15.10 Summation block 3 phase 3PHSUM 15.10.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number...
  • Page 493: Settings

    Section 15 1MRK 505 288-UEN A Basic IED functions Table 405: 3PHSUM Output signals Name Type Description AI3P GROUP SIGNAL Linear combination of two connected three phase inputs GROUP SIGNAL Linear combination of input 1 signals from both SMAI blocks GROUP SIGNAL Linear combination of input 2 signals from both SMAI blocks...
  • Page 494: Identification

    Section 15 1MRK 505 288-UEN A Basic IED functions 15.11.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Global base values GBASVAL 15.11.2 Functionality Global base values function (GBASVAL) is used to provide global values, common for all applicable functions within the IED.
  • Page 495: Settings

    Section 15 1MRK 505 288-UEN A Basic IED functions • local, through the local HMI • remote, through the communication ports The IED users can be created, deleted and edited only with PCM600 IED user management tool. IEC12000202-1-en.vsd IEC12000202 V1 EN Figure 216: PCM600 user management tool 15.12.3...
  • Page 496: Authorization Handling In The Ied

    Section 15 1MRK 505 288-UEN A Basic IED functions Table 409: Pre-defined user types User type Access rights SystemOperator Control from local HMI, no bypass ProtectionEngineer All settings DesignEngineer Application configuration (including SMT, GDE and CMT) UserAdministrator User and password administration for the IED The IED users can be created, deleted and edited only with the IED User Management within PCM600.
  • Page 497: Authority Management Authman

    Section 15 1MRK 505 288-UEN A Basic IED functions comes to password, upon pressing the key, the following characters will show up: “✳✳✳✳✳✳✳✳”. The user must scroll for every letter in the password. After all the letters are introduced (passwords are case sensitive) choose OK and press the again.
  • Page 498: Ftp Access With Password Ftpaccs

    Section 15 1MRK 505 288-UEN A Basic IED functions 15.14 FTP access with password FTPACCS 15.14.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number FTP access with SSL FTPACCS 15.14.2 FTP access with SSL FTPACCS The FTP Client defaults to the best possible security mode when trying to negotiate with SSL.
  • Page 499: Authority Status Athstat

    Section 15 1MRK 505 288-UEN A Basic IED functions 15.15 Authority status ATHSTAT 15.15.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Authority status ATHSTAT 15.15.2 Functionality Authority status ATHSTAT function is an indication function block for user log-on activity.
  • Page 500: Denial Of Service

    Section 15 1MRK 505 288-UEN A Basic IED functions • the fact that at least one user has tried to log on wrongly into the IED and it was blocked (the output USRBLKED) • the fact that at least one user is logged on (the output LOGGEDON) Whenever one of the two events occurs, the corresponding output (USRBLKED or LOGGEDON) is activated.
  • Page 501: Settings

    Section 15 1MRK 505 288-UEN A Basic IED functions 15.16.2.4 Settings The function does not have any parameters available in the local HMI or PCM600. 15.16.2.5 Monitored data Table 414: DOSFRNT Monitored data Name Type Values (Range) Unit Description State INTEGER 0=Off Frame rate control state...
  • Page 502: Function Block

    Section 15 1MRK 505 288-UEN A Basic IED functions 15.16.3.2 Function block DOSLAN1 LINKUP WARNING ALARM IEC09000134-1-en.vsd IEC09000134 V1 EN Figure 219: DOSLAN1 function block 15.16.3.3 Signals Table 415: DOSLAN1 Output signals Name Type Description LINKUP BOOLEAN Ethernet link status WARNING BOOLEAN Frame rate is higher than normal state...
  • Page 503: Operation Principle

    Section 15 1MRK 505 288-UEN A Basic IED functions 15.16.4 Operation principle The Denial of service functions (DOSLAN1 and DOSFRNT) measures the IED load from communication and, if necessary, limit it for not jeopardizing the IEDs control and protection functionality due to high CPU load. The function has the following outputs: •...
  • Page 505: Section 16 Ied Physical Connections

    Section 16 1MRK 505 288-UEN A IED physical connections Section 16 IED physical connections 16.1 Protective earth connections The IED shall be earthed with a 16.0 mm flat copper cable. The earth lead should be as short as possible, less than 1500 mm. Additional length is required for door mounting.
  • Page 506: Auxiliary Supply Voltage Input

    Section 16 1MRK 505 288-UEN A IED physical connections Table 417: Analog input modules TRM Terminal 6I + 4U 8I + 2U 4I + 1I + 5U 4I + 6U X101-1, 2 1/5A 1/5A 1/5A 1/5A X101-3, 4 1/5A 1/5A 1/5A 1/5A X101-5, 6...
  • Page 507: Binary Inputs

    Section 16 1MRK 505 288-UEN A IED physical connections Table 419: Auxiliary voltage supply of 110...250 V DC or 100...240 V AC Case Terminal Description 3U full 19” X420-1 - Input X420-3 + Input Table 420: Auxiliary voltage supply of 48-125 V DC Case Terminal Description...
  • Page 508 Section 16 1MRK 505 288-UEN A IED physical connections PCM600 info Terminal Description Hardware module Hardware channel instance X304-13 Common - for inputs 10-12 X304-14 Binary input 10 + COM_101 BI10 X304-15 Binary input 11 + COM_101 BI11 X304-16 Binary input 12 + COM_101 BI12 Table 423:...
  • Page 509 Section 16 1MRK 505 288-UEN A IED physical connections Terminal Description PCM600 info Hardware module Hardware channel instance X329-6 Binary input 3 + BIO_4 X329-7 X329-8 Common - for inputs 4-5 X329-9 Binary input 4 + BIO_4 X329-10 Binary input 5 + BIO_4 X329-11 X329-12...
  • Page 510: Outputs

    Section 16 1MRK 505 288-UEN A IED physical connections Table 426: Binary inputs X339, 3U full 19” Terminal Description PCM600 info Hardware module Hardware channel instance X339-1 - for input 1 BIO_6 X339-2 Binary input 1 + BIO_6 X339-3 X339-4 Common - for inputs 2-3 X339-5 Binary input 2 +...
  • Page 511 Section 16 1MRK 505 288-UEN A IED physical connections Table 427: Output contacts X317, 3U full 19” Terminal Description PCM600 info Hardware module Hardware channel instance Power output 1, normally open (TCS) X317-1 PSM_102 BO1_PO_TCS X317-2 Power output 2, normally open (TCS) X317-3 PSM_102...
  • Page 512: Outputs For Signalling

    Section 16 1MRK 505 288-UEN A IED physical connections Terminal Description PCM600 info Hardware module Hardware channel instance X326-4 X326-5 Power output 3, normally open BIO_4 BO3_PO X326-6 Table 430: Output contacts X331, 3U full 19” Terminal Description PCM600 info Hardware module Hardware channel instance...
  • Page 513 Section 16 1MRK 505 288-UEN A IED physical connections Table 432: Output contacts X317, 3U full 19” Terminal Description PCM600 info Hardware module Hardware channel instance X317-13 Signal output 1, normally open PSM_102 BO7_SO X317-14 X317-15 Signal output 2, normally open PSM_102 BO8_SO X317-16...
  • Page 514 Section 16 1MRK 505 288-UEN A IED physical connections Terminal Description PCM600 info Hardware module Hardware channel instance X326-16 Signal output 6, normally closed BIO_4 BO9_SO X326-17 Signal output 6, normally open X326-18 Signal output 6, common Table 435: Output contacts X331, 3U full 19” Terminal Description PCM600 info...
  • Page 515: Irf

    Section 16 1MRK 505 288-UEN A IED physical connections 16.3.3 The IRF contact functions as a change-over output contact for the self-supervision system of the IED. Under normal operating conditions, the IED is energized and one of the two contacts is closed. When a fault is detected by the self-supervision system or the auxiliary voltage is disconnected, the closed contact drops off and the other contact closes.
  • Page 516: Station Communication Rear Connection

    Section 16 1MRK 505 288-UEN A IED physical connections The default IP address of the IED through this port is 10.1.150.3. The front port supports TCP/IP protocol. A standard Ethernet CAT 5 crossover cable is used with the front port. 16.4.2 Station communication rear connection The default IP address of the IED through the Ethernet connection is 192.168.1.10.
  • Page 517: Communication Interfaces And Protocols

    ● ● ● = Supported 16.4.6 Recommended industrial Ethernet switches ABB recommends ABB industrial Ethernet switches. 16.5 Connection diagrams The connection diagrams are delivered on the IED Connectivity package DVD as part of the product delivery. The latest versions of the connection diagrams can be downloaded from http://www.abb.com/substationautomation.
  • Page 519: Section 17 Technical Data

    Section 17 1MRK 505 288-UEN A Technical data Section 17 Technical data 17.1 Dimensions Table 439: Dimensions of the IED - 3U full 19" rack Description Value Width 444 mm (17.48 inches) Height 132 mm (5.20 inches), 3U Depth 249.5 mm (9.82 inches) Weight box 10 kg (<22.04 lbs) 17.2...
  • Page 520: Energizing Inputs

    Section 17 1MRK 505 288-UEN A Technical data 17.3 Energizing inputs Table 441: TRM — Energizing quantities, rated values and limits for transformer inputs Description Value Frequency Rated frequency f 50 or 60 Hz Operating range ± 10% Current inputs Rated current I 0.1 or 0.5 A 1 or 5 A...
  • Page 521: Signal Outputs

    Section 17 1MRK 505 288-UEN A Technical data 17.5 Signal outputs Table 443: Signal output and IRF output Description Value Rated voltage 250 V AC/DC Continuous contact carry Make and carry for 3.0 s 10 A Make and carry 0.5 s 30 A Breaking capacity when the control-circuit time ≤0.5 A/≤0.1 A/≤0.04 A...
  • Page 522: Data Communication Interfaces

    Section 17 1MRK 505 288-UEN A Technical data 17.7 Data communication interfaces Table 446: Ethernet interfaces Ethernet interface Protocol Cable Data transfer rate 100BASE-TX CAT 6 S/FTP or better 100 MBits/s 100BASE-FX TCP/IP protocol Fibre-optic cable with 100 MBits/s LC connector Table 447: Fibre-optic communication link Wave length...
  • Page 523: Enclosure Class

    Section 17 1MRK 505 288-UEN A Technical data Type Value Conditions Supported bit rates 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 Maximum number of 650 IEDs supported on the same bus Max. cable length 925 m (3000 ft) Cable: AWG24 or better, stub lines shall be avoided Table 451:...
  • Page 524: Environmental Conditions And Tests

    Section 17 1MRK 505 288-UEN A Technical data 17.10 Environmental conditions and tests Table 454: Environmental conditions Description Value Operating temperature range -25...+55ºC (continuous) Short-time service temperature range -40...+70ºC (<16h) Note: Degradation in MTBF and HMI performance outside the temperature range of -25...+55ºC Relative humidity <93%, non-condensing Atmospheric pressure...
  • Page 525: Section 18 Ied And Functionality Tests

    Section 18 1MRK 505 288-UEN A IED and functionality tests Section 18 IED and functionality tests 18.1 Electromagnetic compatibility tests Table 456: Electromagnetic compatibility tests Description Type test value Reference 100 kHz and 1 MHz burst IEC 61000-4-18, level 3 disturbance test IEC 60255-22-1 ANSI C37.90.1-2012...
  • Page 526 Section 18 1MRK 505 288-UEN A IED and functionality tests Description Type test value Reference • Continuous 100 A/m Pulse magnetic field immunity 1000A/m IEC 61000–4–9, level 5 test Damped oscillatory magnetic 100A/m, 100 kHz and 1MHz IEC 6100–4–10, level 5 field Power frequency immunity test IEC 60255-22-7, class A...
  • Page 527: Insulation Tests

    Section 18 1MRK 505 288-UEN A IED and functionality tests 18.2 Insulation tests Table 457: Insulation tests Description Type test value Reference Dielectric tests: IEC 60255-5 ANSI C37.90-2005 • Test voltage 2 kV, 50 Hz, 1 min 1 kV, 50 Hz, 1 min, communication Impulse voltage test: IEC 60255-5...
  • Page 528: Emc Compliance

    Section 18 1MRK 505 288-UEN A IED and functionality tests 18.5 EMC compliance Table 460: EMC compliance Description Reference EMC directive 2004/108/EC Standard EN 50263 (2000) EN 60255-26 (2007) Technical manual...
  • Page 529: Section 19 Time Inverse Characteristics

    Section 19 1MRK 505 288-UEN A Time inverse characteristics Section 19 Time inverse characteristics 19.1 Application In order to assure time selectivity between different overcurrent protections in different points in the network different time delays for the different relays are normally used.
  • Page 530 Section 19 1MRK 505 288-UEN A Time inverse characteristics Time Fault point position en05000131.vsd IEC05000131 V1 EN Figure 223: Inverse time overcurrent characteristics with inst. function The inverse time characteristic makes it possible to minimize the fault clearance time and still assure the selectivity between protections. To assure selectivity between protections there must be a time margin between the operation time of the protections.
  • Page 531 Section 19 1MRK 505 288-UEN A Time inverse characteristics Feeder I> I> Time axis en05000132.vsd IEC05000132 V1 EN Figure 224: Selectivity steps for a fault on feeder B1 where: is The fault occurs is Protection B1 trips is Breaker at B1 opens is Protection A1 resets In the case protection B1 shall operate without any intentional delay (instantaneous).
  • Page 532: Operation Principle

    Section 19 1MRK 505 288-UEN A Time inverse characteristics • If there is a risk of intermittent faults. If the current relay, close to the faults, starts and resets there is a risk of unselective trip from other protections in the system. •...
  • Page 533 Section 19 1MRK 505 288-UEN A Time inverse characteristics æ ö æ ö - × × × ç ÷ ç ÷ è ø > è ø (Equation 54) EQUATION1190 V1 EN where: is the operating time of the protection The time elapsed to the moment of trip is reached when the integral fulfils according to equation 55, in addition to the constant time delay: æ...
  • Page 534 Section 19 1MRK 505 288-UEN A Time inverse characteristics Operate time tMin Current IMin IEC05000133-3-en.vsd IEC05000133 V2 EN Figure 225: Minimum time-lag operation for the IEC curves In order to fully comply with IEC curves definition setting parameter tMin shall be set to the value which is equal to the operating time of the selected IEC inverse time curve for measured current of twenty times the set current start value.
  • Page 535: Inverse Time Characteristics

    Section 19 1MRK 505 288-UEN A Time inverse characteristics The RD inverse curve gives a logarithmic delay, as used in the Combiflex protection RXIDG. The curve enables a high degree of selectivity required for sensitive residual earth-fault current protection, with ability to detect high-resistive earth faults. The curve is described by equation 59: æ...
  • Page 536 Section 19 1MRK 505 288-UEN A Time inverse characteristics Table 462: IEC Inverse time characteristics Function Range or value Accuracy Operating characteristic: k = (0.05-999) in steps of 0.01 æ ö ç ÷ × ç ÷ è ø EQUATION1251-SMALL V1 EN I = I measured IEC Normal Inverse...
  • Page 537 Section 19 1MRK 505 288-UEN A Time inverse characteristics Table 464: Inverse time characteristics for overvoltage protection Function Range or value Accuracy Type A curve: k = (0.05-1.10) in ±5% +60 ms steps of 0.01 æ ö > ç ÷ è...
  • Page 538 Section 19 1MRK 505 288-UEN A Time inverse characteristics Table 466: Inverse time characteristics for residual overvoltage protection Function Range or value Accuracy Type A curve: k = (0.05-1.10) in steps of ±5% +70 ms 0.01 æ ö > ç ÷...
  • Page 539 Section 19 1MRK 505 288-UEN A Time inverse characteristics A070750 V2 EN Figure 226: ANSI Extremely inverse time characteristics Technical manual...
  • Page 540 Section 19 1MRK 505 288-UEN A Time inverse characteristics A070751 V2 EN Figure 227: ANSI Very inverse time characteristics Technical manual...
  • Page 541 Section 19 1MRK 505 288-UEN A Time inverse characteristics A070752 V2 EN Figure 228: ANSI Normal inverse time characteristics Technical manual...
  • Page 542 Section 19 1MRK 505 288-UEN A Time inverse characteristics A070753 V2 EN Figure 229: ANSI Moderately inverse time characteristics Technical manual...
  • Page 543 Section 19 1MRK 505 288-UEN A Time inverse characteristics A070817 V2 EN Figure 230: ANSI Long time extremely inverse time characteristics Technical manual...
  • Page 544 Section 19 1MRK 505 288-UEN A Time inverse characteristics A070818 V2 EN Figure 231: ANSI Long time very inverse time characteristics Technical manual...
  • Page 545 Section 19 1MRK 505 288-UEN A Time inverse characteristics A070819 V2 EN Figure 232: ANSI Long time inverse time characteristics Technical manual...
  • Page 546 Section 19 1MRK 505 288-UEN A Time inverse characteristics A070820 V2 EN Figure 233: IEC Normal inverse time characteristics Technical manual...
  • Page 547 Section 19 1MRK 505 288-UEN A Time inverse characteristics A070821 V2 EN Figure 234: IEC Very inverse time characteristics Technical manual...
  • Page 548 Section 19 1MRK 505 288-UEN A Time inverse characteristics A070822 V2 EN Figure 235: IEC Inverse time characteristics Technical manual...
  • Page 549 Section 19 1MRK 505 288-UEN A Time inverse characteristics A070823 V2 EN Figure 236: IEC Extremely inverse time characteristics Technical manual...
  • Page 550 Section 19 1MRK 505 288-UEN A Time inverse characteristics A070824 V2 EN Figure 237: IEC Short time inverse time characteristics Technical manual...
  • Page 551 Section 19 1MRK 505 288-UEN A Time inverse characteristics A070825 V2 EN Figure 238: IEC Long time inverse time characteristics Technical manual...
  • Page 552 Section 19 1MRK 505 288-UEN A Time inverse characteristics A070826 V2 EN Figure 239: RI-type inverse time characteristics Technical manual...
  • Page 553 Section 19 1MRK 505 288-UEN A Time inverse characteristics A070827 V2 EN Figure 240: RD-type inverse time characteristics Technical manual...
  • Page 554 Section 19 1MRK 505 288-UEN A Time inverse characteristics GUID-ACF4044C-052E-4CBD-8247-C6ABE3796FA6 V1 EN Figure 241: Inverse curve A characteristic of overvoltage protection Technical manual...
  • Page 555 Section 19 1MRK 505 288-UEN A Time inverse characteristics GUID-F5E0E1C2-48C8-4DC7-A84B-174544C09142 V1 EN Figure 242: Inverse curve B characteristic of overvoltage protection Technical manual...
  • Page 556 Section 19 1MRK 505 288-UEN A Time inverse characteristics GUID-A9898DB7-90A3-47F2-AEF9-45FF148CB679 V1 EN Figure 243: Inverse curve C characteristic of overvoltage protection Technical manual...
  • Page 557 Section 19 1MRK 505 288-UEN A Time inverse characteristics GUID-35F40C3B-B483-40E6-9767-69C1536E3CBC V1 EN Figure 244: Inverse curve A characteristic of undervoltage protection Technical manual...
  • Page 558 Section 19 1MRK 505 288-UEN A Time inverse characteristics GUID-B55D0F5F-9265-4D9A-A7C0-E274AA3A6BB1 V1 EN Figure 245: Inverse curve B characteristic of undervoltage protection Technical manual...
  • Page 559: Section 20 Glossary

    Section 20 1MRK 505 288-UEN A Glossary Section 20 Glossary Alternating current Actual channel Application configuration tool within PCM600 A/D converter Analog-to-digital converter ADBS Amplitude deadband supervision Analog input ANSI American National Standards Institute Autoreclosing ASCT Auxiliary summation current transformer Adaptive signal detection ASDU Application service data unit...
  • Page 560 Section 20 1MRK 505 288-UEN A Glossary Carrier receive Cyclic redundancy check CROB Control relay output block Carrier send Current transformer Communication unit Capacitive voltage transformer Delayed autoreclosing DARPA Defense Advanced Research Projects Agency (The US developer of the TCP/IP protocol etc.) DBDL Dead bus dead line DBLL...
  • Page 561 Section 20 1MRK 505 288-UEN A Glossary FOX 20 Modular 20 channel telecommunication system for speech, data and protection signals FOX 512/515 Access multiplexer FOX 6Plus Compact time-division multiplexer for the transmission of up to seven duplex channels of digital data over optical fibers File Transfer Protocal Function type...
  • Page 562 Section 20 1MRK 505 288-UEN A Glossary specifications from the PCI SIG (Special Interest Group) for the electrical EMF (Electromotive force). IEEE 1686 Standard for Substation Intelligent Electronic Devices (IEDs) Cyber Security Capabilities Intelligent electronic device I-GIS Intelligent gas-insulated switchgear Instance When several occurrences of the same function are available in the IED, they are referred to as instances of that function.
  • Page 563 Section 20 1MRK 505 288-UEN A Glossary OLTC On-load tap changer OTEV Disturbance data recording initiated by other event than start/pick-up Over-voltage Overreach A term used to describe how the relay behaves during a fault condition. For example, a distance relay is overreaching when the impedance presented to it is smaller than the apparent impedance to the fault applied to the balance point, that is, the set reach.
  • Page 564 Section 20 1MRK 505 288-UEN A Glossary SMA connector Subminiature version A, A threaded connector with constant impedance. Signal matrix tool within PCM600 Station monitoring system SNTP Simple network time protocol – is used to synchronize computer clocks on local area networks. This reduces the requirement to have accurate hardware clocks in every embedded system in a network.
  • Page 565 Section 20 1MRK 505 288-UEN A Glossary User management tool Underreach A term used to describe how the relay behaves during a fault condition. For example, a distance relay is underreaching when the impedance presented to it is greater than the apparent impedance to the fault applied to the balance point, that is, the set reach.
  • Page 568 Contact us Note: For more information please contact: We reserve the right to make technical changes or modify the contents of this document without prior notice. ABB AB ABB AB does not accept any responsibility whatsoever for potential Grid Automation Products errors or possible lack of information in this document.

Table of Contents