Understanding Fiber-Optic Cable Signal Loss, Attenuation, And Dispersion; Signal Loss In Multimode And Single-Mode Fiber-Optic Cable; Attenuation And Dispersion In Fiber-Optic Cable - Juniper ACX2200 Hardware Manual

Universal access router
Hide thumbs Also See for ACX2200:
Table of Contents

Advertisement

ACX2200 Universal Access Router Hardware Guide
Related
Documentation

Understanding Fiber-Optic Cable Signal Loss, Attenuation, and Dispersion

Signal Loss in Multimode and Single-Mode Fiber-Optic Cable

Attenuation and Dispersion in Fiber-Optic Cable

52
Understanding Fiber-Optic Cable Signal Loss, Attenuation, and Dispersion on page 52
This topic describes signal loss, attenuation, and dispersion in fiber-optic cable. For
information about calculating power budget and power margin for fiber-optic cable, see
"Calculating Power Budget and Power Margin for Fiber-Optic Cables" on page
Signal Loss in Multimode and Single-Mode Fiber-Optic Cable on page 52
Attenuation and Dispersion in Fiber-Optic Cable on page 52
Multimode fiber is large enough in diameter to allow rays of light to reflect internally
(bounce off the walls of the fiber). Interfaces with multimode optics typically use LEDs
as light sources. However, LEDs are not coherent sources. They spray varying wavelengths
of light into the multimode fiber, which reflects the light at different angles. Light rays
travel in jagged lines through a multimode fiber, causing signal dispersion. When light
traveling in the fiber core radiates into the fiber cladding, higher-order mode loss results.
Together these factors limit the transmission distance of multimode fiber compared with
single-mode fiber.
Single-mode fiber is so small in diameter that rays of light can reflect internally through
one layer only. Interfaces with single-mode optics use lasers as light sources. Lasers
generate a single wavelength of light, which travels in a straight line through the
single-mode fiber. Compared with multimode fiber, single-mode fiber has higher
bandwidth and can carry signals for longer distances.
Exceeding the maximum transmission distances can result in significant signal loss, which
causes unreliable transmission.
Correct functioning of an optical data link depends on modulated light reaching the
receiver with enough power to be demodulated correctly. Attenuation is the reduction in
power of the light signal as it is transmitted. Attenuation is caused by passive media
components, such as cables, cable splices, and connectors. Although attenuation is
significantly lower for optical fiber than for other media, it still occurs in both multimode
and single-mode transmission. An efficient optical data link must have enough light
available to overcome attenuation.
Dispersion is the spreading of the signal over time. The following two types of dispersion
can affect an optical data link:
Chromatic dispersion—Spreading of the signal over time resulting from the different
speeds of light rays.
Modal dispersion—Spreading of the signal over time resulting from the different
propagation modes in the fiber.
50.
Copyright © 2017, Juniper Networks, Inc.

Advertisement

Table of Contents
loading

Table of Contents