Directional Underpower Protection Guppdup (37) - ABB RELION RET670 Applications Manual

Relion 670 series transformer protection version 2.2 ansi
Hide thumbs Also See for RELION RET670:
Table of Contents

Advertisement

1MRK 504 163-UUS A
9.12
9.12.1
9.12.2
Transformer protection RET670 2.2 ANSI
Application manual

Directional underpower protection GUPPDUP (37)

Identification
Function description
Directional underpower protection
Application
The task of a generator in a power plant is to convert mechanical energy available as a
torque on a rotating shaft to electric energy.
Sometimes, the mechanical power from a prime mover may decrease so much that it
does not cover bearing losses and ventilation losses. Then, the synchronous generator
becomes a synchronous motor and starts to take electric power from the rest of the
power system. This operating state, where individual synchronous machines operate as
motors, implies no risk for the machine itself. If the generator under consideration is
very large and if it consumes lots of electric power, it may be desirable to disconnect it
to ease the task for the rest of the power system.
Often, the motoring condition may imply that the turbine is in a very dangerous state.
The task of the reverse power protection is to protect the turbine and not to protect the
generator itself.
Steam turbines easily become overheated if the steam flow becomes too low or if the
steam ceases to flow through the turbine. Therefore, turbo-generators should have
reverse power protection. There are several contingencies that may cause reverse
power: break of a main steam pipe, damage to one or more blades in the steam turbine
or inadvertent closing of the main stop valves. In the last case, it is highly desirable to
have a reliable reverse power protection. It may prevent damage to an otherwise
undamaged plant.
During the routine shutdown of many thermal power units, the reverse power
protection gives the tripping impulse to the generator breaker (the unit breaker). By
doing so, one prevents the disconnection of the unit before the mechanical power has
become zero. Earlier disconnection would cause an acceleration of the turbine
generator at all routine shutdowns. This should have caused overspeed and high
centrifugal stresses.
IEC 61850
IEC 60617
identification
identification
GUPPDUP
P <
2
SYMBOL-LL V2 EN-US
Section 9
Current protection
SEMOD156693-1 v4
SEMOD158941-2 v4
ANSI/IEEE C37.2
device number
37
SEMOD151283-4 v5
579

Hide quick links:

Advertisement

Table of Contents
loading

Table of Contents