Basic Theory Of Abs Function; Stopping Distance; Brake Force On A Wheel; Maximum Brake Force - SSANGYONG Korando 2012 Manual

Hide thumbs Also See for Korando 2012:
Table of Contents

Advertisement

2) Basic Theory of ABS Function

To give you a better understanding of the tasks and functions of ABS, we will first look at the physics
principles.

(1) Stopping distance

The stopping distance depends on the vehicle weight and initial speed when braking starts. This also
applies for vehicle with ABS, where ABS always tries to set an optimum brake force on each wheel. As
great forces are exerted between the tires and the carriageway when braking, even with ABS the wheels
may scream and rubber is left on the road. With an ABS skid mark one may be able to clearly recognize
the tire profile. The skid mark of an ABS vehicle does not however leave any hint of the speed of the
vehicle in the case of an accident, as it can only be clearly drawn at the start of braking.

(2) Brake force on a wheel

The maximum possible brake force on a wheel depends on the wheel load and the adhesion coefficient
between tire and carriageway. With a low adhesion coefficient the brake force, which can be obtained is
very low. You are bound to know the result already from driving on winter roads. With a high adhesion
coefficient on a dry road, the brake force, which can be obtained, is considerably higher. The brake
force, which can be obtained, can be calculated from below formula:

Maximum brake force

FBmax = wheel load FR x coefficient of frictionMh
The braking process cannot be described sufficiently
accurately with the brake forces calculated. The
values calculated only apply if the wheel is not locked.
In the case of a locking wheel, the static friction turns
into lower sliding friction, with the result that the
stopping distance is increased. This loss of friction is
termed "slip" in specialist literature.
10-13
4890-00

Advertisement

Table of Contents
loading

Table of Contents