Emotron VS10 Operation Instructions Manual

Emotron VS10 Operation Instructions Manual

Hide thumbs Also See for VS10:
Table of Contents

Advertisement

Emotron VS10 and VS30
AC drive
Operation instruction
Valid from software version 04.01.xx.xx

Advertisement

Table of Contents
loading
Need help?

Need help?

Do you have a question about the VS10 and is the answer not in the manual?

Questions and answers

Subscribe to Our Youtube Channel

Summary of Contents for Emotron VS10

  • Page 1 Emotron VS10 and VS30 AC drive Operation instruction Valid from software version 04.01.xx.xx...
  • Page 2 01-6203-01R3, CG Drives & Automation...
  • Page 3: Table Of Contents

    Operating interfaces ........................33 4.2.1. Keypad ............................. 33 4.2.2. Engineering tool »Emotron EASY Starter« ................34 4.2.2.1. Generate a connection between inverter and »Emotron Easy starter« ......35 4.3. Parameter setting ..........................37 4.3.1. General notes on parameters ....................37 4.3.2.
  • Page 4 Save parameter settings in the memory module ................73 4.5.1. Save parameter settings with keypad ..................73 4.5.2. Save parameter settings with »Emotron Easy starter« ............73 Diagnostics and fault elimination ....................74 5.1. LED status display ..........................74 5.2.
  • Page 5 6.5. Frequency limits and ramp times ....................117 6.6. Quick stop ............................120 6.7. S-shaped ramps ..........................122 6.8. Optical device identification ......................123 Motor control ..........................124 7.1. Motor data ............................. 125 7.1.1. Manual setting of the motor data ..................125 7.2.
  • Page 6 7.4.4.6. Flying restart controller ....................164 7.4.4.7. SLVC controller ......................164 7.4.4.8. Torque control w/ freq. limit ..................165 7.4.4.9. Slip controller ......................... 169 7.4.5. 7Speed controller ........................170 7.5. Motor rotating direction ........................ 171 7.6. Switching frequency changeover ....................172 7.7.
  • Page 7 8.5.13. Resetting the CANopen interface ..................232 8.5.14. CANopen short setup ......................233 8.6. Modbus RTU ..........................236 8.6.1. Modbus RTU introduction ..................... 236 8.6.2. Modbus RTU node address....................236 8.6.3. Modbus RTU baud rate ......................237 8.6.4. Modbus RTU data format ...................... 238 8.6.5.
  • Page 8 10.3.3.1. Establishing a direct WLAN connection between Emotron Easy starter PC and inverter 10.3.4. WLAN client mode ......................... 276 10.4. DC braking ..........................278 10.4.1. Example 1: Automatic DC braking when the motor is started ..........280 10.4.2. Example 2: Automatic DC braking when the motor is stopped ..........281 10.5.
  • Page 9 10.16.1. Position counter ......................... 336 10.17. Firmware download ........................337 10.17.1. Firmware download with »Emotron Easy starter (Firmware loader)« ......337 10.18. Additive voltage impression ...................... 338 10.18.1. Example: Using the function with a 400-V inverter ............339 10.19. Parameter for engineering tools ....................340 Sequencer ..........................
  • Page 10 12.9.4. Example 4: Activation if the selection is changed (immediately) .......... 431 12.10. Process controller function selection ..................433 12.11. Sequencer control functions ...................... 436 12.12. Frequency threshold for "Frequency threshold exceeded" trigger ........... 441 12.13. Configuration of digital inputs ....................443 12.14.
  • Page 11 14.1.1.2. Function of keypad keys in operating mode ..............472 14.1.1.3. Error reset with keypad ....................473 14.1.2. Keypad parameterisation mode .................... 474 14.1.2.1. Parameter groups ......................474 14.1.2.2. Function of the keypad keys in the parameterisation mode ......... 475 14.1.2.3.
  • Page 12 01-6203-01R3, CG Drives & Automation...
  • Page 13: General Information

    1.1. Read first, then start WARNING! Read this documentation thoroughly before carrying out the installation and commissioning.  Please observe the safety instructions! Information and tools with regard to the CG products can be found on the Internet: http://www.emotron.com  Download...
  • Page 14: Safety Instructions

    Safety instructions 2.1. Basic safety measures Disregarding the following basic safety measures may lead to severe personal injury and dam age to material assets! The product • must only be used as directed. • must never be commissioned if they display signs of damage. •...
  • Page 15: Residual Hazards

    2.2. Residual hazards The user must take the residual hazards mentioned into consideration in the risk assessment for his/her machine/system. If the above is disregarded, this can lead to severe injuries to persons and damage to material assets! Product Observe the warning labels on the product! Icon Description Electrostatic sensitive devices:...
  • Page 16: Mounting

    Mounting 3.1. Important notes DANGER! Dangerous electrical voltage Possible consequence: death or severe injuries  All work on the inverter must only be carried out in the deenergised state.  After switching off the mains voltage, wait for at least 3 minutes before you start working. 01-6203-01R3, CG Drives &...
  • Page 17: Electrical Installation

    3.2. Electrical installation 3.2.1. 1-phase mains connection 230/240 V 3.2.1.1. Connection plan The wiring diagram is valid for Emotron VS10 inverters. Fig. 1: Wiring example Run/Stop Fuses Mains contactor --Dashed line = options...
  • Page 18: Fusing And Terminal Data

    3.2.1.2. Fusing and terminal data Fuse data Inverter VS10-23-1P7 VS10-23-2P4 VS10-23-3P2 VS10-23-4P2 VS10-23-6P0 VS10-23-7P0 VS10-023-9P6 Cable installation in compliance with EN 60204-1 Laying system operation without mains choke Fuse Characteristics gG/gL or gRL Max. rated current Circuit breaker Characteristics Max. rated current...
  • Page 19 Motor connection Inverter VS10-23-1P7 VS10-23-2P4 VS10-23-3P2 VS10-23-4P2 VS10-23-6P0 VS10-23-7P0 VS10-023-9P6 Connection X105 Connection type pluggable screw terminal Min. cable cross-section mm² Max. cable cross-section mm² Stripping length Tightening torque Required tool 0.5 x 3.0 Connection Connection type PE screw Min. cable cross-section mm²...
  • Page 20: 1/3-Phase Mains Connection 230/240 V

    3.2.2. 1/3-phase mains connection 230/240 V Emotron VS30-23 inverters do not have an integrated EMC filter in the AC mains supply. In order to comply with the EMC requirements according to EN 61800−3, an external EMC filter according to IEC EN 60939 has to be used.
  • Page 21: Fusing And Terminal Data

    3.2.2.2. Fusing and terminal data Fuse data Inverter VS30-23-1P7 VS30-23-2P4 VS30-23-3P2 VS30-23-4P2 VS30-23-6P0 VS30-23-7P0 VS30-23-9P6 Cable installation in compliance with EN 60204-1 Laying system operation without mains choke Fuse Characteristics gG/gL or gRL Max. rated current Circuit breaker Characteristics Max. rated current operation with mains choke Fuse...
  • Page 22 Motor connection Inverter VS30-23-1P7 VS30-23-2P4 VS30-23-3P2 VS30-23-4P2 VS30-23-6P0 VS30-23-7P0 VS30-23-9P6 Connection X105 Connection type pluggable screw terminal Min. cable cross-section mm² Max. cable cross-section mm² Stripping length Tightening torque Required tool 0.5 x 3.0 Connection Connection type PE screw Min. cable cross-section mm²...
  • Page 23: 3-Phase Mains Connection 400 V

    3.2.3. 3-phase mains connection 400 V 3.2.3.1. Connection plan The wiring diagram is valid forEmotron VS30 inverters. Fig. 3: Wiring example Run/Stop Fuses Mains contactor --Dashed line = options...
  • Page 24: Fusing And Terminal Data

    3.2.3.2. Fusing and terminal data Fuse data Inverter VS30-40-1P3 VS30-40-1P8 VS30-40-2P4 VS30-40-3P2 VS30-40-3P9 VS30-40-5P6 Cable installation in compliance with EN 60204-1 Laying system operation without mains choke Fuse Characteristics gG/gL or gRL Max. rated current Circuit breaker Characteristics Max. rated current operation with mains choke Fuse...
  • Page 25 Mains connection Inverter VS30-40-1P3 VS30-40-1P8 VS30-40-2P4 VS30-40-3P2 VS30-40-3P9 VS30-40-5P6 Connection X100 Connection type pluggable screw terminal Min. cable cross-section mm² Max. cable cross-section mm² Stripping length Tightening torque Required tool 0.5 x 3.0 Connection Connection type PE screw Min. cable cross-section mm²...
  • Page 26 Motor connection Inverter VS30-40-1P3 VS30-40-1P8 VS30-40-2P4 VS30-40-3P2 VS30-40-3P9 VS30-40-5P6 Connection X105 Connection type pluggable screw terminal Min. cable cross-section mm² Max. cable cross-section mm² Stripping length Tightening torque Required tool 0.5 x 3.0 Connection Connection type PE screw Min. cable cross-section mm²...
  • Page 27: 3-Phase Mains Connection 480 V

    3.2.4. 3-phase mains connection 480 V 3.2.4.1. Connection plan The wiring diagram is valid for Emotron VS30 inverters. Fig. 4: Wiring example Run/Stop Fuses Mains contactor --Dashed line = options...
  • Page 28: Fusing And Terminal Data

    3.2.4.2. Fusing and terminal data Fuse data Inverter VS30-40-1P3 VS30-40-1P8 VS30-40-2P4 VS30-40-3P2 VS30-40-3P9 VS30-40-5P6 Cable installation in compliance with EN 60204-1 Laying system operation without mains choke Fuse Characteristics gG/gL or gRL Max. rated current Circuit breaker Characteristics Max. rated current operation with mains choke Fuse...
  • Page 29 Mains connection Inverter VS30-40-1P3 VS30-40-1P8 VS30-40-2P4 VS30-40-3P2 VS30-40-3P9 VS30-40-5P6 Connection X100 Connection type pluggable screw terminal Min. cable cross-section mm² Max. cable cross-section mm² Stripping length Tightening torque Required tool 0.5 x 3.0 Connection Connection type PE screw Min. cable cross-section mm²...
  • Page 30 Motor connection Inverter VS30-40-1P3 VS30-40-1P8 VS30-40-2P4 VS30-40-3P2 VS30-40-3P9 VS30-40-5P6 Connection X105 Connection type pluggable screw terminal Min. cable cross-section mm² Max. cable cross-section mm² Stripping length Tightening torque Required tool 0.5 x 3.0 Connection Connection type PE screw Min. cable cross-section mm²...
  • Page 31: Canopen/Modbus Rtu

    3.2.5. CANopen/Modbus RTU Typical topologies Line Terminal description CANopen/Modbus Connection X216 Connection type pluggable spring terminal Min. cable cross-section mm² Max. cable cross-section mm² Stripping length Tightening torque Required tool 0.4 x 2.5 Basic network settings 1. Select network CANopen or Modbus using the switch on the front of the inverter 2.
  • Page 32: Commissioning

    Commissioning 4.1. Important notes WARNING! Incorrect wiring can cause unexpected states during the commissioning phase. Possible consequence: death, severe injuries or damage to property Check the following before switching on the mains voltage:  Is the wiring complete and correct? ...
  • Page 33: Operating Interfaces

    4.2. Operating interfaces Commissioning the inverter requires an operator-process interface. 4.2.1. Keypad The keypad is an easy means for the local operation, parameterisation, and diagnostics of the inverter. • The keypad is simply connected to the diagnostic interface on the front of the inverter. •...
  • Page 34: Engineering Tool »Emotron Easy Starter

    4.2.2. Engineering tool »Emotron EASY Starter« The »Emotron Easy starter« is a PC software that is especially designed for the commissioning and maintenance of the inverter. The »Emotron Easy starter« PC software can be found on the Internet: http://easystarter.emotron.com Sample screenshot:...
  • Page 35: Generate A Connection Between Inverter And »Emotron Easy Starter

    • For the wired communication with the inverter, the USB module and a USB 2.0 cable (A plug on Micro-B plug) are required. • For the wireless communication with the inverter, the WLAN module is required. Moreover, the PC on which the »Emotron Easy starter« is installed must be wireless- enabled.
  • Page 36 • PC with installed »Emotron Easy starter« software 1. Plug the USB module onto the front of the inverter (interface X16). 2. Use a USB cable to connect the inverter to the PC on which »Emotron Easy starter« is installed: •...
  • Page 37: Parameter Setting

    The adaptation process of the inverter is carried out by changing parameters. Optionally these parameters can be accessed by means of the keypad or »Emotron Easy starter«. If the inverter is provided with a network option, access can also be effected by a higher-level Controller via the corresponding network.
  • Page 38 Example: parameters with a bit-coded display Parameter Name / value range / [default setting] Info Index:Subindex Parameter designation Explanations & notes with regard to the parameter. (display code) (abbreviated keypad designation) • Optional information with regard to the parameter. Bit 0 Designation of bit 0 Optionally: Explanations &...
  • Page 39: Basic Inverter Settings

    4.3.2. Basic inverter settings Check the following basic settings of the inverter and adapt them, if required. Parameter Name / value range / [default setting] Info 0x2540:001 Mains settings: Rated mains voltage Selection of the mains voltage for actuating the inverter. (P208.01) (Mains settings: Mains voltage) •...
  • Page 40 Parameter Name / value range / [default setting] Info 0x2860:001 Frequency control: Default setpoint source Selection of the standard setpoint source for operating mode "MS: (P201.01) (Stnd. setpoints: Freq. setp. src.) Velocity mode". • The selected standard setpoint source is always active in the operat ing mode 0x6060 (P301.00) = "MS: Velocity mode [-2]"...
  • Page 41 Parameter Name / value range / [default setting] Info 0x2915 Minimum frequency Lower limit value for all frequency setpoints. (P210.00) (Min. frequency) 0.0 ... [0.0] ... 599.0 Hz 0x2916 Maximum frequency Upper limit value for all frequency setpoints. (P211.00) (Max. frequency) Device for 50-Hz mains: 0.0 ...
  • Page 42: Basic Motor Settings

    4.3.3. Basic motor settings Check the following default settings for the motor and motor control and adapt them, if required. Drive behaviour by default By default, the V/f characteristic control with a linear characteristic is preset as motor control for asynchronous motors. The V/f characteristic control is a motor control for conventional frequency inverter applications.
  • Page 43: Function Assignment Of The Inputs And Outputs

    4.3.4. Function assignment of the inputs and outputs The inverter control can be adapted individually to the respective application. This is basically effected by assigning digital control sources ("triggers") to functions of the inverter. By default, the inverter can be controlled via the I/O terminals as follows: Parameter Name Default setting...
  • Page 44 Parameter Name / value range / [default setting] Info 0x2631:002 Function list: Run Assignment of a trigger for the "Run" function. (Function list: Run) (P400.02) • Setting can only be changed if the inverter is Function 1: Start / stop motor (default setting) inhibi ted.
  • Page 45 Parameter Name / value range / [default setting] Info 0x2634:001 Digital outputs function: Relay Assignment of a trigger to the relay. (P420.01) (Dig.out.function: Relay function) Trigger = FALSE: X9/NO-COM open and NC-COM closed. • For further possible settings, see parameter Trigger = TRUE: X9/NO-COM closed and NC-COM open.
  • Page 46: Keypad Parameter List

    4.4. Keypad parameter list For commissioning or diagnostics using the keypad, all parameters of the inverter that can also be accessed by means of the keypad are listed in the following "Keypad parameter list". • The keypad parameter list is sorted in ascending order in compliance with the "display code"...
  • Page 47 Frequently used abbreviations in the short keypad designations of the parameters: Abbreviation Meaning Analog input Analog output B0, B1, ... Bit 0, bit 1, ... Control unit Digital input Digital output Undervoltage Motor potentiometer Network overvoltage Process controller Power unit Quick stop Setp Setpoint...
  • Page 48 Keypad parameter list (short overview of all parameters with display code) * Default setting depending on the size. Firmware version 04.00.00.00 Display code Short designation Default setting Setting range Address Category P100.00 Output frequency x.x Hz (Read only) 0x2DDD general P101.00 Scaled act value x Units...
  • Page 49 Display code Short designation Default setting Setting range Address Category └ P125.06 Netw. setp.reg. (Read only) general 0x282B:006 P126.xx Status words └ P126.01 Cause of disable (Read only) 0x282A:001 general └ P126.02 Cause of QSP (Read only) 0x282A:002 general └ P126.03 Cause of stop (Read only)
  • Page 50 Display code Short designation Default setting Setting range Address Category P201.xx Stnd. setpoints └ P201.01 Freq. setp. src. Analog input 1 [2] Selection list 0x2860:001 general └ P201.02 PID setp. src. Keypad [1] Selection list 0x2860:002 general └ P201.03 Torque setp.src. Analog input 1 [2] Selection list general...
  • Page 51 Display code Short designation Default setting Setting range Address Category └ P308.01 Max.load.for 60s 150 % 30 ... 200 % 0x2D4B:001 general └ P308.02 Speed comp. On [0] Selection list 0x2D4B:002 general └ P308.03 Response Fault [3] Selection list 0x2D4B:003 general P310.xx Mot.phase.fail.
  • Page 52 Display code Short designation Default setting Setting range Address Category └ P332.02 Reset time 80.0 ms * 1.0 ... 6000.0 ms 0x2900:002 MCTRL P333.xx V/f Imax contr. └ P333.01 Gain 0.284 Hz/A * 0.000 ... 1000.000 Hz/A 0x2B08:001 MCTRL └ P333.02 Reset time 2.3 ms *...
  • Page 53 Display code Short designation Default setting Setting range Address Category └ P400.05 DC braking Not connected [0] Selection list 0x2631:005 general └ P400.06 Start forward Not connected [0] Selection list 0x2631:006 general └ P400.07 Start reverse Not connected [0] Selection list 0x2631:007 general └...
  • Page 54 Display code Short designation Default setting Setting range Address Category P410.xx DI settings └ P410.02 Input function Digital Input [0] Selection list 0x2630:002 general P411.xx DI inversion └ P411.01 DI1 inversion Not inverted [0] Selection list 0x2632:001 general └ P411.02 DI2 inversion Not inverted [0] Selection list...
  • Page 55 Display code Short designation Default setting Setting range Address Category └ P430.10 AI1 error resp. Fault [3] Selection list 0x2636:010 general └ P430.11 Min. torque 0.0 % -400.0 ... 400.0 % 0x2636:011 general └ P430.12 Max. torque 100.0 % -400.0 ... 400.0 % 0x2636:012 general P431.xx...
  • Page 56 Display code Short designation Default setting Setting range Address Category └ P451.07 PID preset 7 0.00 PID unit -300.00 ... 300.00 PID unit 0x4022:007 general └ P451.08 PID preset 8 0.00 PID unit -300.00 ... 300.00 PID unit 0x4022:008 general P452.xx Torque presets └...
  • Page 57 Display code Short designation Default setting Setting range Address Category └ P511.01 Active node ID (Read only) 0x2302:001 CANopen └ P511.02 Active baud rate (Read only) 0x2302:002 CANopen P511.xx Modbus diag. └ P511.01 Active node ID (Read only) 0x2322:001 Modbus RTU └...
  • Page 58 Display code Short designation Default setting Setting range Address Category └ P531.03 Register 3 (Read only) 0x232C:003 Modbus RTU └ P531.04 Register 4 (Read only) 0x232C:004 Modbus RTU └ P531.05 Register 5 (Read only) 0x232C:005 Modbus RTU └ P531.06 Register 6 (Read only) 0x232C:006 Modbus RTU...
  • Page 59 Display code Short designation Default setting Setting range Address Category └ P552.03 Inhibit time 0.0 ms 0.0 ... 6553.5 ms 0x1802:003 CANopen └ P552.05 Event timer 0 ms 0 ... 65535 ms 0x1802:005 CANopen P580.xx CAN statistics └ P580.01 PDO1 received (Read only) 0x230A:001 CANopen...
  • Page 60 Display code Short designation Default setting Setting range Address Category └ P585.13 Last TxD byte11 (Read only) 0x232F:013 Modbus RTU └ P585.14 Last TxD byte12 (Read only) Modbus RTU 0x232F:014 └ P585.15 Last TxD byte13 (Read only) Modbus RTU 0x232F:015 └...
  • Page 61 Display code Short designation Default setting Setting range Address Category P602.00 PID Icomponent 400 ms 10 ... 6000 ms 0x4049 general P603.00 PID D-component 0.0 s 0.0 ... 20.0 s 0x404A general P604.00 PID setp.ramp 20.0 s 0.0 ... 100.0 s 0x404B general P605.xx...
  • Page 62 Display code Short designation Default setting Setting range Address Category P704.xx DC braking └ P704.01 Current 0.0 % 0.0 ... 200.0 % 0x2B84:001 general └ P704.02 Hold time autom. 0.0 s 0.0 ... 1000.0 s 0x2B84:002 general └ P704.03 Threshold autom. 0.0 Hz 0.0 ...
  • Page 63 Display code Short designation Default setting Setting range Address Category P730.00 PIN1 protection -1 ... 9999 0x203D general P731.00 PIN2 protection -1 ... 9999 0x203E general P732.00 Auto-Save EPM Inhibit [0] Selection list 0x2829 general P740.xx Favorites sett. └ P740.01 Parameter 1 0x2DDD0000 0x00000000 ...
  • Page 64 Display code Short designation Default setting Setting range Address Category └ P740.45 Parameter 45 0x29110100 0x00000000 ... 0xFFFFFF00 general 0x261C:045 └ P740.46 Parameter 46 0x29110200 0x00000000 ... 0xFFFFFF00 general 0x261C:046 └ P740.47 Parameter 47 0x29110300 0x00000000 ... 0xFFFFFF00 general 0x261C:047 └...
  • Page 65 Display code Short designation Default setting Setting range Address Category └ P751.09 Set 1 Value 9 -2147483648 ... 2147483647 0x4042:009 general └ P751.10 Set 1 Value 10 -2147483648 ... 2147483647 0x4042:010 general └ P751.11 Set 1 Value 11 -2147483648 ... 2147483647 0x4042:011 general └...
  • Page 66 Display code Short designation Default setting Setting range Address Category └ P752.24 Set 2 Value 24 -2147483648 ... 2147483647 general 0x4043:024 └ P752.25 Set 2 Value 25 -2147483648 ... 2147483647 general 0x4043:025 └ P752.26 Set 2 Value 26 -2147483648 ... 2147483647 general 0x4043:026 └...
  • Page 67 Display code Short designation Default setting Setting range Address Category └ P754.06 Set 4 Value 6 -2147483648 ... 2147483647 0x4045:006 general └ P754.07 Set 4 Value 7 -2147483648 ... 2147483647 0x4045:007 general └ P754.08 Set 4 Value 8 -2147483648 ... 2147483647 0x4045:008 general └...
  • Page 68 Display code Short designation Default setting Setting range Address Category └ P786.02 Delta time 10 s 0 ... 65535 s 0x6049:002 general P788.00 Modes of op. dis (Read only) 0x6061 general P789.00 Supported modes (Read only) 0x6502 general P790.00 Quick stop dec. 546000 pos.
  • Page 69 Display code Short designation Default setting Setting range Address Category └ P806.02 Accel./decel. 5.0 s 0.0 ... 3600.0 s 0x402B:002 general └ P806.03 Time 0.0 s 0.0 ... 100000.0 s general 0x402B:003 └ P806.04 Digital outp. 0 ... 255 general 0x402B:004 └...
  • Page 70 Display code Short designation Default setting Setting range Address Category └ P830.16 Step 16 Skip step [0] Selection list 0x4030:016 general P831.00 Cycl. sequence 1 1 ... 65535 0x4031 general P835.xx Sequence 2 └ P835.01 Step 1 Skip step [0] Selection list 0x4032:001 general...
  • Page 71 Display code Short designation Default setting Setting range Address Category └ P845.10 Step 10 Skip step [0] Selection list 0x4036:010 general └ P845.11 Step 11 Skip step [0] Selection list 0x4036:011 general └ P845.12 Step 12 Skip step [0] Selection list 0x4036:012 general └...
  • Page 72 Display code Short designation Default setting Setting range Address Category └ P860.04 Step 4 Skip step [0] Selection list 0x403C:004 general └ P860.05 Step 5 Skip step [0] Selection list 0x403C:005 general └ P860.06 Step 6 Skip step [0] Selection list 0x403C:006 general └...
  • Page 73: Save Parameter Settings In The Memory Module

    4.5.2. Save parameter settings with »Emotron Easy starter« If a parameter setting has been changed with the »Emotron Easy starter« but not yet saved in the memory module with mains failure protection, the status line of the »Emotron Easy starter« displays the note "The parameter set was changed".
  • Page 74: Diagnostics And Fault Elimination

    Diagnostics and fault elimination 5.1. LED status display The "RDY" and "ERR" LED status displays on the front of the inverter provide some quick information about certain operating states. "RDY" LED (blue) "ERR" LED (red) Status/meaning No supply voltage. Initialisation (inverter is started.) Safe torque off (STO) active.
  • Page 75: Diagnostics Parameter

    5.2. Diagnostics parameter The inverter provides many diagnostic parameters which are helpful for operation, maintenance, error diagnosis, error correction, etc. • In the following overview the most common diagnostic parameters are listed. For the keypad you can find these diagnostic parameters in group 1. •...
  • Page 76: Logbook

    By means of the "Delete logbook" device command, all logbook entries can be deleted. Accessing the logbook with »Emotron Easy starter« • Select the inverter on the left side in the »Emotron Easy starter« device list. • Change to the "Diagnostics" tab. • Click the icon to open the logbook.
  • Page 77: Error History Buffer

    5.2.2. Error history buffer For purposes of diagnostics, the error history buffer contains the last 32 error and warning messages of the inverter, which have occurred during operation. The error history buffer can be read out using the keypad via P155.00 and provides a limited view on the logbook. Details •...
  • Page 78 Accessing the error history buffer with the keypad 1. Use the key in the operating mode to navigate to the parameterization mode one level below. You are now in the group level. All parameters of the inverter are divided into different groups according to their function.
  • Page 79 Parameter Name / value range / [default setting] Info 0x2006:007 Error history buffer: Message 1 Error history buffer entry 02 Read only 0x2006:008 Error history buffer: Message 2 Error history buffer entry 03 Read only 0x2006:009 Error history buffer: Message 3 Error history buffer entry 04 Read only 0x2006:010...
  • Page 80 Structure of the messages The following example shows the detailed structure of one of the following messages (parameter 0x2006:006 ... 0x2006:037): Message: 00E010431201990000520B0473FC0100050001 00E01043 1201 9900 00520B0473FC0100 0500 Meaning: Diag code Message type Text ID Time stamp in [ns] Flag param. 1 Parameter 1 Data type: Hex value:...
  • Page 81: Inverter Diagnostics

    5.2.3. Inverter diagnostics The following parameters supply some information about the current operating status of the inverter. This includes the following information: • Active access protection after log-in by means of PIN1/PIN2 • Currently loaded parameter settings • Cause(s) for disable, quick stop and stop. •...
  • Page 82 Parameter Name / value range / [default setting] Info 0x282A:002 Status words: Cause of quick stop (Status words: Bit coded display of the cause(s) of quick stop. (P126.02) Cause of QSP) Read only Bit 0 Flexible I/O configuration 1 ≡ quick stop was activated by the trigger set in 0x2631:003 (P400.03).
  • Page 83 Parameter Name / value range / [default setting] Info 0x282B:002 Inverter diagnostics: Active setpoint source (Inverter Display of the setpoint source that is currently active. (P125.02) diag.: Active setpoint) Read only Not selected Analog input 1 Analog input 2 Keypad Setpoint HTL input Network Setpoint Setpoint preset 1...
  • Page 84 Parameter Name / value range / [default setting] Info Jog operation "Jog foward (CW)" or "Jog reverse (CCW)" function active. 0x2831 Inverter status word Bit-coded status word of the internal motor control. Read only Bit 1 Speed 1 limited 1 ≡ input of speed controller 1 in limitation. Bit 2 Speed limited 1 ≡...
  • Page 85: Network Diagnostics

    5.2.4. Network diagnostics The following parameters show some general information with regard to the network option available and the network. Further fieldbus-specific diagnostic parameters are described in the following subchapters. Parameter Name / value range / [default setting] Info 0x282B:005 Inverter diagnostics: Most recently used control Display of the network register for the control that was accessed last (P125.05)
  • Page 86: Canopen Diagnostics

    5.2.4.1. CANopen diagnostics The following parameters serve to diagnose the CANopen interface and communication via CANopen. Preconditions Control unit (CU) of the inverter is provided with CANopen. Parameter Name / value range / [default setting] Info 0x1000 Device type CANopen device profile according CANopen specification CiA 301/ CiA 402.
  • Page 87 Parameter Name / value range / [default setting] Info 0x2307 CANopen time-out status (Time-out status) Bit-coded status display of the CAN time monitoring functions. (P515.00) Read only Bit 0 RPDO1-Timeout 1 ≡ RPDO1 was not received within the monitoring time or not with the sync configured.
  • Page 88 Parameter Name / value range / [default setting] Info 0x230A:005 CANopen statistics: PDO1 transmitted (CAN statistics: Display of the number of PDO1 telegrams sent. (P580.05) PDO1 transmitted) Read only 0x230A:006 CANopen statistics: PDO2 transmitted (CAN statistics: Display of the number of PDO2 telegrams sent. (P580.06) PDO2 transmitted) Read only...
  • Page 89: Modbus Diagnostics

    5.2.4.2. Modbus diagnostics The following parameters serve to diagnose the Modbus interface and communication via Modbus. Preconditions Control unit (CU) of the inverter is provided with Modbus. Parameter Name / value range / [default setting] Info 0x2322:001 Active Modbus settings: Active node ID (Modbus Display of the active node address.
  • Page 90: Diagnostics Of The Inputs And Outputs

    5.2.5. Diagnostics of the inputs and outputs 5.2.5.1. Digital inputs and outputs The following parameters serve to diagnose the digital inputs and outputs of the inverter. Parameter Name / value range / [default setting] Info 0x60FD Digital inputs Bit coded display of the current state of the digital inputs (P118.00) (Digital inputs) •...
  • Page 91: Analog Inputs And Outputs

    5.2.5.2. Analog inputs and outputs The following parameters serve to diagnose the analog inputs and outputs of the inverter. Parameter Name / value range / [default setting] Info 0x2DA4:001 Diagnostics of analog input 1: Value in percent (AI1 Display of the current input value at X3/AI1 scaled as value in percent. (P110.01) diagnostics: AI1 terminal %) •...
  • Page 92 Parameter Name / value range / [default setting] Info 0x2DA5:016 Diagnostics of analog input 2: Status (AI2 diagnostics: Bit-coded display of the status of analog input 2 (X3/AI2). (P111.16) AI2 status) Read only From version 04.00 Bit 0 Mode 0: 0 ... 10 VDC active Bit 1 Mode 1: 0 ...
  • Page 93: Wireless-Lan Diagnostics

    5.2.6. Wireless-LAN diagnostics The following parameters serve to diagnose the WLAN module and the WLAN communication. Preconditions WLAN module has been plugged onto the interface X16 on the front of the inverter. Parameter Name / value range / [default setting] Info 0x2442:001 Active WLAN settings: Active IP address...
  • Page 94: Setpoint Diagnostic

    5.2.7. Setpoint diagnostic The following parameters show the current setpoints of different setpoint sources. Parameter Name / value range / [default setting] Info 0x282B:007 Inverter diagnostics: Default frequency setpoint Display of the frequency setpoint of the standard setpoint source set •...
  • Page 95: Process Controller Status

    5.2.8. Process controller status The following parameters serve to diagnose the process controller. Parameter Name / value range / [default setting] Info 0x401F:001 Current setpoint Display of the current reference value (setpoint) for the process (P121.01) (PID setpoint) controller. • Read only: x.xx PID unit 0x401F:002 Current process variable Display of the current controlled variable (actual value) fed back for...
  • Page 96: Sequencer Diagnostics

    5.2.9. Sequencer diagnostics The following parameters serve to diagnose the "sequencer" function. Parameter Name / value range / [default setting] Info 0x2DAE:001 Sequencer diagnostics: Active step Display of the active step. (P140.01) (Sequencer diag: Active Step) 0 ≡ no sequence active. Read only From version 03.00 0x2DAE:002...
  • Page 97: Device Identification

    Parameter Name / value range / [default setting] Info 0x2000:001 Product code Product code of the complete device. (P190.01) (Product code) Example: "VS10-23-1P7-20" Read only 0x2000:002 Serial number Serial number of the complete device. (P190.02) (Serial number) Example: "0000000000000000XYZXYZ" Read only...
  • Page 98: Device Overload Monitoring (I*T)

    5.2.11. Device overload monitoring (i*t) The inverter calculates the i*t utilisation in order to protect itself against thermal overload. In simple terms: a higher current or an overcurrent that continues for a longer time causes a higher i*t utilisation. DANGER! Uncontrolled motor movements by pulse inhibit.
  • Page 99: Heatsink Temperature Monitoring

    5.2.12. Heatsink Temperature Monitoring Parameter Name / value range / [default setting] Info 0x2D84:001 Heatsink temperature Display of the current heatsink temperature. (P117.01) (Heatsink temp.: Heatsink temp.) • Read only: x.x °C 0x2D84:002 Heatsink temperature: Warning threshold 50.0 ... Warning threshold for temperature monitoring. [80.0]* ...
  • Page 100: Error Handling

    5.3. Error handling Many functions integrated in the inverter can • detect errors and thus protect inverter and motor from damages, • detect an operating error of the user, • output a warning or information if desired. 5.3.1. Error types In the event of an error, the inverter response is determined by the error type defined for the error.
  • Page 101: Error Configuration

    • Via the trigger assigned to the Reset fault" function. Reset error  398 • Via the button in the »Emotron Easy starter« ("Diagnostics" tab). • In the default setting of 0x400E:008 (P505.08) via bit 7 in the mappable data word NetWordIN1 0x4008:001 (P590.01).
  • Page 102: Keypad Error Messages

    5.3.4. Keypad error messages If an error is pending, the keypad shows the following information: Keypad display Meaning Error text ① Error type: ② Fault Trouble Warning Error code (hexadecimal) ③ Faults (F) and trouble (T) are displayed Error codes ...
  • Page 103: Data Handling

    5.4. Data handling In the following, the behaviour of the inverter is described if the data on the memory module do not match the inverter hardware or firmware, for whatever reason. The following points are described in detail here: • Automatic loading of the parameter settings when the inverter is switched on •...
  • Page 104 Manual loading of the OEM data via device command Device command: "Load OEM data" 0x2022:005 (P700.05) • If the OEM memory contains invalid parameter settings, the user parameter settings are loaded automatically. • If the OEM memory is empty, the status feedback "Action cancelled" takes place. The current parameter settings remain unchanged.
  • Page 105 Hardware and firmware upgrades/downgrades By "taking along" the memory module, all parameter settings of a device can be transferred to another device, for instance, in case of a device replacement. When switched on, the inverter checks whether the parameter settings saved in the memory module match the inverter hardware and firmware.
  • Page 106: Basic Setting

    Region inverter Product code Rated mains voltage 0x2000:001 (P190.01) Default setting Possible settings VS10, 230 V, 1-phase VS10-23-xxx-20 230 Veff [0] 230 Veff [0] VS10, 230 V, 1-phase VS10-23-xxx-20 230 Veff [0] 230 Veff [0]...
  • Page 107 Monitoring of the DC-bus voltage • The warning thresholds for monitoring are adjustable. • The error thresholds and reset thresholds for monitoring result from the rated mains voltage set: Rated mains volt- Undervoltage thresholds Overvoltage thresholds Warning threshold Error threshold Reset threshold Warning threshold Error threshold Reset threshold...
  • Page 108: Control Source Selection

    6.2. Control source selection The selected "control source" serves to provide the inverter with its start, stop, and reversal commands. Possible control sources are: • Digital inputs • Keypad • Network Irrespective of the control source selection, stop commands are always active from each source connected! If, for instance, the network control is active and a keypad is connected for diagnostic purposes, the motor is also stopped if the keypad key pressed.
  • Page 109: Selection Of Setpoint Source

    6.3. Selection of setpoint source The selected "setpoint source" serves to provide the inverter with its setpoint. The setpoint source can be selected individually for each operating mode. Possible setpoint sources are: • Analog inputs • Keypad • Network • Parameterisable setpoints (presets) •...
  • Page 110 Parameter Name / value range / [default setting] Info 0x2860:001 Frequency control: Default setpoint source Selection of the standard setpoint source for operating mode "MS: (P201.01) (Stnd. setpoints: Freq. setp. src.) Velocity mode". • The selected standard setpoint source is always active in the operat ing mode 0x6060 (P301.00) = "MS: Velocity mode [-2]"...
  • Page 111 Parameter Name / value range / [default setting] Info 0x2860:002 PID control: Default setpoint source Selection of the standard setpoint source for the reference value of (P201.02) (Stnd. setpoints: PID setp. src.) the PID control. • The selected standard setpoint source is always active with an activa ted PID control when no setpoint change-over to another setpoint source via corresponding triggers/functions is active.
  • Page 112 Parameter Name / value range / [default setting] Info 0x2860:003 Torque control: Default setpoint source Selection of the standard setpoint source for operating mode "MS: (P201.03) (Stnd. setpoints: Torque setp.src.) Torque mode". • From version 03.00 • The selected standard setpoint source is always active in the operat ing mode 0x6060 (P301.00) = "MS: Torque mode [-1]"...
  • Page 113: Keypad Setpoint Default Setting

    6.3.1. Keypad setpoint default setting For the manual setpoint selection via keypad the following default settings are used. Parameter Name / value range / [default setting] Info 0x2601:001 Keypad setpoints: Frequency setpoint Default setting of the keypad setpoint for the operating mode 0x6060 (P202.01) (Keypad setpoints: KP freq.setpoint)
  • Page 114: Starting/Stopping Performance

    6.4. Starting/stopping performance 6.4.1. Starting performance The start can be optionally made with DC braking or flying restart circuit. Moreover, an automatic start can be activated after switch-on. Details The start method can be selected in 0x2838:001 (P203.01). The following diagram demonstrates the different start methods: Start method = "Normal [0]": After the start command, the motor is accelerated to ①...
  • Page 115 Automatic start after switching on the mains voltage The automatic start can be activated in 0x2838:002 (P203.02). Preconditions for the automatic start: • Flexible I/O configuration is selected: 0x2824 (P200.00) = "Flexible I/O configuration [0]" • For the start command, a digital input has been configured. (In case of keypad or activated network control, an automatic start is not possible.) The following diagram demonstrates the function: Start at power-up = "Off [0]": After switching on the mains voltage, a renewed start command is required to start the motor.
  • Page 116: Stopping Performance

    6.4.2. Stopping performance In the default setting, the motor is brought to a standstill after a stop command with standard ramp. Alternatively, coasting or ramping down with quick stop ramp can be selected. Details The stop method can be selected in 0x2838:003 (P203.03).
  • Page 117: Frequency Limits And Ramp Times

    6.5. Frequency limits and ramp times The frequency range can be limited by setting a minimum and maximum frequency. For the frequency setpoint, two different ramps can be parameterised. Change-over to ramp 2 can be carried out manually or automatically. Details The frequency setpoint is internally led via a ramp generator.
  • Page 118 Parameter Name / value range / [default setting] Info Acceleration time 1 0x2917 Acceleration time 1 for the operating mode "MS: Velocity mode". (Accelerat.time 1) (P220.00) • The acceleration time set refers to the acceleration from standstill to the 0.0 ... [5.0] ... 3600.0 s maximum frequency set.
  • Page 119 After a start command, the motor is accelerated to the minimum frequency. This is also the case if the setpoint selection is = 0 Hz. If ① the setpoint exceeds the minimum frequency, the ramp generator follows the setpoint. If the start command is deactivated again, the motor is stopped with the stop method set in 0x2838:003 (P203.03) (here: Standard ramp).
  • Page 120: Quick Stop

    6.6. Quick stop The "quick stop" function is an alternative stop method if the motor has to be stopped faster than normal. Cancelling the quick stop causes a restart of the motor if the start command is still active and the inverter is enabled! Details •...
  • Page 121 Quick stop is activated: The motor is brought to a standstill within the deceleration ① time set in 0x291C (P225.00). If quick stop is active, the status signal "Quick stop active [54]" is set to TRUE. This ② status signal can be assigned via the Flexible I/O configuration of a function or a digital output.
  • Page 122: S-Shaped Ramps

    6.7. S-shaped ramps In order to reduce the jerk and to therefore prevent the drive components from damage, a smoothing factor can be set for the acceleration/deceleration ramps. Details In the default setting, the motor is accelerated and decelerated with linear ramps since this is the most used configuration.
  • Page 123: Optical Device Identification

    The "Optical device identification" function serves to locate the inverter by means of blinking LEDs. Details In order to start the visual tracking, • click the button in the toolbar of the »Emotron Easy starter« • set 0x2021:001 (P230.01) = "Start [1]".
  • Page 124: Motor Control

    Motor control This chapter contains all functions and settings relevant for the motor control. Basic procedure of commissioning the motor control In the first step, the rated data of the motor must be set. The other steps depend on the respective application case.
  • Page 125: Motor Data

    7.1. Motor data The term "motor data" comprises all parameters only depending on the motor and only characterising the electrical behaviour of the machine. Motor data are independent of the application in which the inverter and the motor are used. Preconditions When you enter the motor nameplate data, take into account the phase connection implemented for the motor (star or delta connection).
  • Page 126: Motor Control Selection

    7.2. Motor control selection The inverter supports different modes for closed-loop/open-loop motor control. Parameter Name / value range / [default setting] Info 0x2C00 Motor control mode Selection of the motor control type. (P300.00) (Motor ctrl mode) • Setting can only be changed if the inverter is inhibi ted.
  • Page 127: V/F Characteristic Control (Vfc)

    7.2.1. V/f characteristic control (VFC) The V/f characteristic control is a motor control for conventional frequency inverter applications. It is based on a simple and robust control mode for the operation of asynchronous motors with a linear or square-law load torque characteristic (e.g. fan). Because of the minimal parameterisation effort, such applications can be commissioned easily and quickly.
  • Page 128: Linear V/F Characteristic

    7.2.1.1. Linear V/f characteristic The linear V/f characteristic is the most used characteristic shape for general applications since they cause a torque that is largely constant. Details Select V/f characteristic control with linear characteristic: 1. Motor control mode 0x2C00 (P300.00) = "V/f characteristic control (VFC open loop) [6]"...
  • Page 129 Example In this example, a 400 V/50 Hz motor is connected to the inverter which is to be operated with maximally 75 Hz. The minimum frequency is set to 10 Hz. • V/f characteristic on the left: The inverter is operated with a rated mains voltage of 400 V.
  • Page 130: Square-Law V/F Characteristic

    7.2.1.2. Square-law V/f characteristic The square-law V/f characteristic is typically used in heating, ventilation and climate applications to control the speed of fans and pumps. Details Each application that is provided with the features according to the affinity laws may possibly benefit from a square-law V/f characteristic.
  • Page 131 Setting of the V/f characteristic: • Limiting factors for the V/f characteristic are rated mains voltage 0x2540:001 (P208.01), minimum frequency 0x2915 (P210.00) and maximum frequency 0x2916 (P211.00). • The base voltage 0x2B01:001 (P303.01) is usually set to the rated motor voltage (motor nameplate data).
  • Page 132: User-Definable V/F Characteristic

    7.2.1.3. User-definable V/f characteristic The user-definable V/f characteristic is based on the linear V/f characteristic. An additional medium characteristic point, however, enables the adaptation to applications with special torque properties. Details An application case for this characteristic shape are applications that require a higher torque at lower speeds.
  • Page 133: V/F Characteristic Control Energy-Saving (Vfc Eco)

    7.2.1.4. V/f characteristic control energy-saving (VFC Eco) In case of the energy-saving V/f characteristic control (VFCplusEco). the motor voltage of the inverter is detected by means of a linear characteristic as a function of the rotating field frequency or motor speed to be generated. Moreover, the motor is always driven in the optimal efficiency range via a cosϕ...
  • Page 134: Sensorless Vector Control (Slvc)

    7.2.2. Sensorless vector control (SLVC) Sensorless (field-oriented) vector control for asynchronous motors is based on a decoupled, separate control for the torque-producing and the field-producing current component. In addition, the actual speed is reconstructed by means of a motor model so that a speed sensor is not required.
  • Page 135 Parameter Name / value range / [default setting] Info 0x2B40:003 Q-Feedforward Feedforward control for the SLVC Q controller. 0.00 ... [0.00] ... 10000.00 • From version 03.00 0x2B40:004 D-Feedforward Feedforward control of the SLVC-D controller. 0.00 ... [0.00] ... 10000.00 •...
  • Page 136 Next steps • The inverter provides different functions by means of which the drive behaviour can be further optimised.Optimisation of motor control  122 • The default setting enables the operation of a power-adapted motor. An optimum operation of this motor control type requires an optimisation of the control loops! Optimisation of the control loops ...
  • Page 137: Sensorless Control For Synchronous Motors (Sl-Psm)

    7.2.3. Sensorless control for synchronous motors (SL-PSM) The sensorless control for synchronous motors is based on a decoupled, separated control of the torque-producing current and the current in field direction. In contrast to the servo control, the actual speed value and rotor position are reconstructed via a motor model. NOTICE In case of this motor control type, an adjustable, constant current is injected in the lower speed range.
  • Page 138 SL-PSM parameters The parameters for this motor control type are calculated and set automatically while optimising the control loops. Optimisation of the control loops  133 Parameter Name / value range / [default setting] Info 0x2C03:001 Back EMF constant Voltage induced by the motor (rotor voltage / 1000 rpm). (P352.01) (BEMF constant) 0.0 ...
  • Page 139 Parameter Name / value range / [default setting] Info 0x2949:002 Negative torque limit source Selection of the source for the negative torque limit source. (P337.02) (Neg. torqlim src) • From version 03.00 0 (-) Max torque Negative torque limit source = (-) Max torque 0x6072 (P326.00).
  • Page 140: Stall Monitoring

    7.2.3.1. Stall monitoring The stalling monitoring for the sensorless control for synchronous motors (SL-PSM) switches off the drive if the motor is about to "stall". A possible cause may be an overload of the motor. Preconditions The stalling monitoring only works in the controlled area and if the motor is not operated in the field weakening range.
  • Page 141: Optimisation Of Motor Control

    7.3. Optimisation of motor control The inverter provides different functions by means of which the drive behaviour can be further optimised. Function Motor control type VFC open loop SL-PSM SLVC V/f voltage boost •  123 The parameterisable voltage boost makes it possible to improve the starting performance for applications requiring a high starting torque.
  • Page 142: V/F Voltage Boost

    7.3.1. V/f voltage boost The parameterisable voltage boost makes it possible to improve the starting performance for applications requiring a high starting torque. Preconditions The function is only effective in the motor control type "V/f characteristic control (VFC open loop)". Details •...
  • Page 143: Skip Frequencies

    7.3.2. Skip frequencies By means of the three parameterisable skip frequencies, critical frequencies can be suppressed which lead to mechanical resonances in the system. Details A blocking zone is active as soon as the frequency for this blocking zone is set to value unequal to "0 Hz".
  • Page 144 Valid and invalid ranges: • Example on the left: Skip frequency = 5 Hz, bandwidth = 10 Hz  Valid range (starts at ≥ 0) • Example on the right: Skip frequency = 4 Hz, bandwidth = 10 Hz  Invalid range (starts at < 0); is thus ignored. Parameter Name / value range / [default setting] Info...
  • Page 145: Optimising The Stalling Behaviour

    7.3.3. Optimising the stalling behaviour If the motor is driven with frequencies above the rated motor frequency, the operating point is shifted to the "field weakening range". In this range, the motor voltage does not increase proportionately to the output frequency anymore. As a consequence, the inverter automatically reduces the maximum current since the full torque is not available anymore at these frequencies.
  • Page 146 Details The operating range of an asynchronous motor consists of the voltage range and the ① field weakening range. The field weakening range again is divided into two ranges: • In the first range , the power can be kept constant without the motor stalling. ②...
  • Page 147: Slip Compensation

    7.3.4. Slip compensation In case of a load, the speed of an asynchronous motor decreases. This load-dependent speed drop is called slip. The slip compensation serves to counteract the load-dependent speed loss. Preconditions The function is only effective in the motor control type "V/f characteristic control (VFC open loop)".
  • Page 148 Additionally, the filter time for the slip compensation can be adapted in 0x2B09:002 (P315.02) if required. The preset filter time is adapted to typical motors. If full load or nearly full load oscillations or instabilities occur, we recommend an increase of the filter time.
  • Page 149: Oscillation Damping

    The default time constant of the PT1 filter should be sufficient for most applications. If required, it is only possible to adapt the time constant via »Emotron Easy starter«. Generally, the time constant must be set so that the oscillation can be dampened, but that higher-frequency components are filtered from the signal.
  • Page 150: Synchronous Motor: Pole Position Identification (Ppi)

    The pole position is the angle between the motor phase U and the field axis of the rotor. "Pole position identification (PPI) without movement" function is available for the inverter VS10/30 for identifying the pole position. For details see the following subchapters.  162 If an error occurs during the pole position identification, •...
  • Page 151: Pole Position Identification (Ppi) Without Movement

    7.3.6.1. Pole position identification (PPI) without movement This function was developed for a wide range of motor characteristics. In case of some motor types, the identified pole position may differ considerably from the real pole position, so that a considerable loss in torque and greater motor losses may occur. The function can also be used if the motor cannot rotate (holding brake is active).
  • Page 152: Optimisation Of The Control Loops

    7.4. Optimisation of the control loops If there is a need to improve the total power of the system, different options are available: • Tuning of the motor and the speed controller • Automatic motor identification (energized) • Automatic motor calibration (non-energized) Simply select an option that best suits your environment and requirements! Before the different options are described in detail, first make the decision which operator interface you want to use to execute the optimisation:...
  • Page 153 Performing optimisation with engineering tool The following flow diagram shows the optimisation process with an engineering tool (e. g. »Emotron Easy starter«): • No matter which option suits you best, first the relevant motor data must be set. • If you already have an optimised system, but the load adjustment has changed, it makes sense to just re-initialise the speed controller.
  • Page 154 Performing optimisation with keypad Since there is no access with the keypad to the motor catalogue, first the motor data must be set manually with the keypad according to the manufacturer data/motor data sheet. Man- ual setting of the motor data ...
  • Page 155: Options For Optimized Motor Tuning

    7.4.1. Options for optimized motor tuning The option to be selected depends on the respective application. Depending on the selected option, different procedures become active and thus different parameter groups are influenced: • Rated motor data • Inverter characteristic • Motor equivalent circuit diagram data •...
  • Page 156: Tuning Of The Motor And The Speed Controller

    7.4.1.1. Tuning of the motor and the speed controller The following describes in general how to optimise the speed controller. This may be required if some parameters have on the load side of the drive system have changed or have not been set yet, such as: •...
  • Page 157: Automatic Motor Identification (Energized)

    • During and after the procedure, the LED "RDY" (blue) is permanently on. • After completing, a renewed start command is required to start the motor. Required steps Optimisation with startup tool »Emotron Easy starter«: 1. Go to the "Settings" tab and navigate to the parameterisation dialog "Advanced motor setting".
  • Page 158: Automatic Motor Calibration (Non-Energized)

    • The inverter is disabled or the motor is stopped (no start enable). • No other axis command is active anymore. Required steps Optimisation with engineering tool (e. g. »Emotron Easy starter«): 1. Go to the "Settings" tab and navigate to the parameterisation dialog "Advanced motor setting".
  • Page 159: Inverter Characteristics

    7.4.2. Inverter Characteristics The inverter characteristic is automatically set if one of the following optimisations is carried out: Automatic motor identification (energized)  139 Automatic motor calibration (non-energized)  140 The settings made can be seen if required, but should not be changed. A wrong setting may influence the control negatively! Parameter Name / value range / [default setting]...
  • Page 160: Motor Equivalent Circuit Diagram Data

    7.4.3. Motor equivalent circuit diagram data The motor equivalent circuit diagram data are automatically set if one of the following optimisations is carried out: Automatic motor identification (energized)  139 Automatic motor calibration (non-energized)  140 Parameter Name / value range / [default setting] Info 0x2C01:002 Motor parameters: Stator resistance...
  • Page 161: Motor Controller Settings

    7.4.4. Motor controller settings After the motor settings have been made, the different control loops must be set. For a quick commissioning, the calculations and settings are made automatically if one of the following optimisations is carried out: Automatic motor identification (energized) ...
  • Page 162: Field Weakening Controller

    Preconditions The field controller is only effective in the motor control type "Sensorless vector control (SLVC)". Parameter Name / value range / [default setting] Info 0x29C0:001 Gain Gain factor Vp of the field controller. 0.00 ... [59.68]* ... 50000.00 A/Vs * Default setting depending on the size.
  • Page 163: Imax Controller

    7.4.4.5. Imax controller For a quick commissioning, the calculations and settings are made automatically during the optimisation. For typical applications, a manual adaptation of the parameters of the Imax controller is not recommended. A wrong setting may have a negative effect on the control.
  • Page 164: Flying Restart Controller

    7.4.4.6. Flying restart controller For a quick commissioning, the calculations and settings are made automatically during the optimisation. Details The following parameter is only relevant for the flying restart circuit if an asynchronous motor is controlled. In case of a sensorless control of a synchronous motor (SL-PSM) the parameter has no meaning.
  • Page 165: Torque Control W/ Freq. Limit

    7.4.4.8. Torque control w/ freq. limit In general, the inverter is operated in a mode that controls the motor frequency. Alternatively, the inverter can be configured in such a way that it controls a motor torque within a defined frequency range. Typical applications for such a torque control with frequency limitation are winders and packaging machines.
  • Page 166 Parameterisation required 1. Set the operating mode "MS: Torque mode [-1]" in 0x6060 (P301.00). 2. Set the rated motor torque in 0x6076 (P325.00). 3. Set the permissible maximum torque in 0x6072 (P326.00). • The setting is made in percent with reference to the rated motor torque set in 0x6076 (P325.00).
  • Page 167 8. Select the standard setpoint source for the torque control in 0x2860:003 (P201.03). • Default setting: Analog input 1. In case of this selection, set the setting range in 0x2636:011 (P430.11) 0x2636:012 (P430.12). • In case of selection "Analog input 2 [3]": Set the setting range in 0x2637:011 (P431.11) 0x2637:012...
  • Page 168 Parameter Name / value range / [default setting] Info 0x2946:003 Speed limitation: Upper speed limit source Selection of the source for the upper speed limit. (P340.03) (Speed limitation: Uppspeed lim src) From version 03.00 0 Maximum frequency Upper speed limit = Maximum frequency 0x2916 (P211.00).
  • Page 169: Slip Controller

    Display of the current torque setpoint. Read only: x.xx Nm From version 03.00 7.4.4.9. Slip controller In case of the Emotron VS10/30 inverter, the following parameters have no function. Parameter Name / value range / [default setting] Info 0x2B14:001 Gain Gain of the slip controller 0.000 ...
  • Page 170: 7Speed Controller

    7.4.5. 7Speed controller The speed controller is automatically set if one of the following optimisations is carried out: Automatic motor identification (energized)  139 Automatic motor calibration (non-energized)  140 For typical applications, a manual adaptation of the parameters of the speed controller is not recommended.
  • Page 171: Motor Rotating Direction

    7.5. Motor rotating direction In the default setting, both directions of motor rotation are enabled. Optionally, the direction of rotation can be restricted so that only a clockwise rotation (CW) of the motor is possible. Preconditions Wiring of the motor phases must be carried out correctly with regard to the direction of motor rotation.
  • Page 172: Switching Frequency Changeover

    7.6. Switching frequency changeover The output voltage of the inverter is a DC voltage with sine-coded pulse width modulation (PWM). This corresponds by approximation to a AC voltage with variable frequency. The frequency of the PWM pulses is adjustable and is called "switching frequency". Details The switching frequency has an impact on the smooth running performance and the noise generation in the motor connected as well as on the power loss in the inverter.
  • Page 173: Motor Protection

    7.7. Motor protection Many monitoring functions integrated in the inverter can detect errors and thus protect the device or motor from being destroyed or overloaded. • Motor overload monitoring (i²*t)  156 • Current limits  160 • Overcurrent monitoring ...
  • Page 174 The following two diagrams show the relation between the motor load and release time of the monitoring under the following conditions: • Maximum utilisation 0x2D4B:001 (P308.01) = 150 % • Speed compensation 0x2D4B:002 (P308.02) = "Off [1]" or output frequency ≥ 40 Hz Load * Load ratio Release time 110 %...
  • Page 175: Speed Compensation For Protecting Motors At Low Speed

    7.7.1.1. Speed compensation for protecting motors at low speed The inverter comes with an implemented compensation for low speed. If the motor is driven with frequencies lower than 40 Hz, the speed compensation in 0x2D4B:002 (P308.02)should be set to "On [0]" (default setting). This setting serves to reduce the release time of the monitoring at low speed to consider the reduced natural ventilation at AC motors.
  • Page 176 In case of 0 Hz, only a load of 62.7 % (≈ 62.5 %) with regard to the load at 40 Hz or above is possible (69 / 110 * 100 % = 62.7 %). In case of a deviating setting in 0x2D4B:001 (P308.01), the maximum possible motor load changes proportionately.
  • Page 177: Current Limits

    7.7.2. Current limits For the purpose of current limitation, a maximum overload current can be set for the inverter. If the current consumption of the motor exceeds this current limit, the inverter changes its dynamic behaviour, in order to counteract this exceedance. Details •...
  • Page 178 Parameter Name / value range / [default setting] Info 0x6073 Max current Maximum overload current of the inverter. (P324.00) (Max current) 100 % ≡ Motor rated current 0x6075 (P323.00) 0.0 ... [200.0] ... 3000.0 % If the current consumption of the motor exceeds this current limit, the inverter changes its dynamic behaviour, in order to counteract this exceedance.
  • Page 179: Overcurrent Monitoring

    7.7.3. Overcurrent monitoring This function monitors the instantaneous value of the motor current and serves as motor protection. NOTICE This note refers to a danger which, if not avoided, may result in damage to property. With an incorrect parameterisation, the maximum permissible motor current may be exceeded in the process. Possible consequence: irreversible damage of the motor.
  • Page 180: Motor Phase Failure Detection

    7.7.4. Motor phase failure detection The motor phase failure detection function can be activated for both synchronous and asynchronous motors. Preconditions Phase failure detection during operation is basically only suitable for applications which are operated with a constant load and speed. In all other cases, transient processes or unfavourable operating points can cause maloperation.
  • Page 181: Motor Speed Monitoring

    7.7.5. Motor speed monitoring This function monitors the motor speed during operation. Preconditions • In order to detect the current motor speed, the inverter must be enabled and the motor must rotate. • For an exact monitoring, rated motor speed 0x2C01:004 (P320.04) and rated motor frequency...
  • Page 182: Motor Torque Monitoring

    7.7.6. Motor torque monitoring This function monitors the motor torque during operation. Preconditions The motor torque monitoring can only be used for the following motor control types with speed controller: • Sensorless control (SL PSM) • Sensorless vector control (SLVC) Details This function sets the internal status signal "Torque limit reached [79]"...
  • Page 183: Configuring The Network

    Configuring the network The inverter is available in a version with CANopen ® and Modbus network option. • General network settings  167 • Predefined process data words  186 • Parameter access monitoring (PAM)  196 • Acyclic data exchange ...
  • Page 184: General Network Settings

    8.1. General network settings Activate network control In order to be able to control the inverter via network, a trigger must be first assigned in 0x2631:037 (P400.37) to the "Activate network control" function. • This trigger can for instance be the constant value "TRUE" or a digital input. •...
  • Page 185 Network setpoint In order to set the network generally as a standard setpoint source, select "Network [5]" in 0x2860:001 (P201.01). If another standard setpoint source is set, a change-over to the network setpoint via the used network control is possible in case the network control is activated: Network control word Change-over to network setpoint NetWordIN1 data word...
  • Page 186 Parameter Name / value range / [default setting] Info 1 Disable inverter Trigger bit = 0-1 edge: The inverter is disabled. Trigger bit = 0: The inverter is enabled (unless there is another cause for inverter disable). Notes: In all device states, a 0-1 edge causes an immediate change to the inhibited state with one exception: If the inverter is in the error status and the error condition still exists, the inverter remains in the error status.
  • Page 187 Parameter Name / value range / [default setting] Info 13 Invert rotation Trigger bit = 1: the setpoint specified is inverted (i. e. the sign is inverted). Trigger bit = 0: no action / deactivate function again. 14 Activate AI1 setpoint Trigger bit = 1: analog input 1 is used as setpoint source (if the trigger bit assigned has the highest setpoint priority).
  • Page 188 Parameter Name / value range / [default setting] Info 35 Stop sequence Trigger bit = 0↗1 (edge): Stop sequence. (from version 03.00) Trigger bit = 1↘0 (edge): No action. Notes: If the sequence is stopped, it is jumped to the final segment. The further execution depends on the selected End of sequence mode 0x402F...
  • Page 189 Parameter Name / value range / [default setting] Info 48 Activate PID influence ramp Trigger bit = 1: the influence of the process controller is shown by means of a ramp. Trigger bit = 0 or not connected: the influence of the process controller is shown by means of a ramp.
  • Page 190 Parameter Name / value range / [default setting] Info 0x400E:005 NetWordIN1 function: Bit 4 Definition of the function that is to be triggered via bit 4 of the (NetWordIN1 fct.: NetWordIN1.04) mappable NetWordIN1 data word. (P505.05) Setting can only be changed if the inverter is inhibi ted.
  • Page 191 Parameter Name / value range / [default setting] Info 0x400E:010 NetWordIN1 function: Bit 9 Definition of the function that is to be triggered via bit 9 of the (NetWordIN1 fct.: NetWordIN1.09) mappable NetWordIN1 data word. (P505.10) Setting can only be changed if the inverter is inhibi ted.
  • Page 192 Parameter Name / value range / [default setting] Info 0x2631:001 Function list: Enable inverter Assignment of a trigger for the "Enable inverter" function. (P400.01) (Function list: Enable inverter) Trigger = TRUE: The inverter is enabled (unless there is another cause Setting can only be changed if the inverter is for inverter disable).
  • Page 193 Parameter Name / value range / [default setting] Info 79 Torque limit reached TRUE if torque limit has been reached or exceeded. Otherwise FALSE. (from version 02.00) Setting "Positive torque limit" in 0x60E0. Setting "Negative torque limit" in 0x60E1. 81 Error of analog input 1 active TRUE if the monitoring of the input signal at the analog input 1 has responded.
  • Page 194 Parameter Name / value range / [default setting] Info 0x2631:002 Function list: Run Assignment of a trigger for the "Run" function. (P400.02) (Function list: Run) Setting can only be changed if the inverter is Function 1: Start / stop motor (default setting) inhibi ted.
  • Page 195 Parameter Name / value range / [default setting] Info 0x2631:010 Function list: Jog foward (CW) Assignment of a trigger for the "Jog foward (CW)" function. (P400.10) (Function list: Jog foward) Trigger = TRUE: Let motor rotate forward with preset 5. Setting can only be changed if the inverter is Trigger = FALSE: Stop motor.
  • Page 196 Parameter Name / value range / [default setting] Info 0x2631:037 Function list: Activate network control Assignment of a trigger for the "Activate network control" function. (Function list: Network control) Trigger = TRUE: Activate network control. (P400.37) For further possible settings, see parameter Trigger = FALSE: No action / deactivate network control again.
  • Page 197 Parameter Name / value range / [default setting] Info 0x2634:015 Digital outputs function: NetWordOUT1 bit 5 Assignment of a trigger to bit 5 of NetWordOUT1. (Dig.out.function: NetWordOUT1.05) Trigger = FALSE: bit set to 0. (P420.15) For further possible settings, see parameter Trigger = TRUE: bit set to 1.
  • Page 198 Parameter Name / value range / [default setting] Info 0x2634:024 Digital outputs function: NetWordOUT1 bit 14 Assignment of a trigger to bit 14 of NetWordOUT1. (Dig.out.function: NetWordOUT1.14) Trigger = FALSE: bit set to 0. (P420.24) For further possible settings, see parameter Trigger = TRUE: bit set to 1.
  • Page 199 Parameter Name / value range / [default setting] Info 37 Segment preset 7 (from version 03.00) 38 Segment preset 8 (from version 03.00) 50 Motor potentiometer The setpoint is generated by the "motor potentiometer" function. This function can be used as an alternative setpoint control which is controlled via two signals: "MOP setpoint up"...
  • Page 200 Parameter Name / value range / [default setting] Info 0x4008:001 Process input words: NetWordIN1 Mappable data word for flexible control of the inverter via network. (NetWordINx: NetWordIN1) (P590.01) 0x0000 ... [0x0000] ... 0xFFFF Bit 0 Mapping bit 0 Assignment of the function: 0x400E:001 (P505.01) Bit 1 Mapping bit 1 Assignment of the function:...
  • Page 201 Parameter Name / value range / [default setting] Info Bit 13 Mapping bit 13 Mappable data word for the output of status messages of the inverter via network. Assignment of the status message: 0x2634:023 (P420.23) Bit 14 Mapping bit 14 Mappable data word for the output of status messages of the inverter via network.
  • Page 202: Predefined Process Data Words

    8.2. Predefined process data words Process data are exchanged via cyclic data exchange between the network master and the inverter. Details For the cyclic data exchange, the inverter is provided with 24 network registers. • 12 network registers are provided as input registers for data words from the network master to the inverter.
  • Page 203: Device Profile Cia 402

    8.2.1. Device profile CiA 402 For control via device profile CiA 402, the parameters listed in the following can be mapped to network register. Details • The mapping entry for the CiA 402 control word is 0x60400010. • The mapping entry for the CiA 402 status word is 0x60410010. •...
  • Page 204: Ac Drive Profile

    8.2.2. AC Drive Profile For control via AC drive profile, the parameters listed in the following can be mapped to network registers. Details • The mapping entry for the AC Drive control word is 0x400B0110. • The mapping entry for the AC Drive status word is 0x400C0110. •...
  • Page 205: Customer Specific Configurations

    Motor type AC motor type From version 02.00 Motor Data Object (0x28) instance attribute 3 3 PM synchronous 6 Wound rotor induction 7 Squirrel cage induction 8.2.2.1. Customer specific configurations The Emotron VS10/30 inverter does not support any customer-specific configurations.
  • Page 206: Further Process Data

    8.2.3. Further process data The parameters listed in the following can also be mapped to network registers, in order to transmit control and status information as well as setpoints and actual values as process data. Details • The following parameters are always available irrespective of the network option. •...
  • Page 207 NetWordOUT1 and NetWordOUT2 These two mappable data words are provided to output status messages to the network master: Data word Parameter Intended use NetWordOUT1 0x400A:001 (P591.01) For implementing an individual status word format. NetWordOUT1 status word  433 NetWordOUT2 0x400A:002 (P591.02) For the output of messages of the "sequencer"...
  • Page 208 Parameter Name / value range / [default setting] Info 0x4008:003 Process input words: NetWordIN3 Mappable data word for optional control of an analog output via net- (P590.03) (NetWordINx: NetWordIN3) work. 0.0 ... [0.0] ... 100.0 % Assignment of the analog output: •...
  • Page 209 Parameter Name / value range / [default setting] Info 0x400A:002 Process output words: NetWordOUT2 Mappable data word for the output of messages of the "Sequencer" (P591.02) function via network. (NetWordOUTx: NetWordOUT2) Configuration of the messages: Read only 0x4026:008: NetWordOUT2 value for sequencer segment 1 0x4027:008: NetWordOUT2 value for sequencer segment 2 Mapping bit 0 0x4028:008: NetWordOUT2 value for sequencer segment 3...
  • Page 210 Parameter Name / value range / [default setting] Info 0x400C:004 Process output data: Motor speed Mappable parameter for the output of the actual value as speed in [rpm] (P593.04) (Process data OUT: Motor speed) via network. Read only: x rpm The output is effected without sign (irrespective of the rotating direc tion).
  • Page 211: Parameter Access Monitoring (Pam)

    8.3. Parameter access monitoring (PAM) The parameter access monitoring can be used as basic protection against a control loss of the inverter. Monitoring is triggered if a parameter write access to a certain index does not take place at regular intervals via the established communication connection. Preconditions This monitoring only works when the network control is activated.
  • Page 212: Acyclic Data Exchange

    8.4. Acyclic data exchange The acyclic data exchange is normally used for transmitting parameter data the transmission of which is not time-critical. Such parameter data are for example operating parameters, motor data, and diagnostic information. Details • The acyclic data exchange enables access to all parameters of the inverter. •...
  • Page 213: Canopen

    8.5. CANopen CANopen® is an internationally approved communication protocol which is designed for commercial and industrial automation applications. High data transfer rates in connection with efficient data formatting provide for the coordination of motion control devices in multi-axis applications. • Detailed information on CANopen can be found on the web page of the CAN in Automation (CiA) user organisation: http://www.can-cia.org •...
  • Page 214: Canopen Node Address

    8.5.2. CANopen node address Each network node must be provided with a unique node address. Details • • The node address can be set in 0x2301:001 (P510.01). • • The setting that is active when the inverter is switched on is the effective setting. •...
  • Page 215: Canopen Initialisation

    8.5.3.1. CANopen initialisation If the initialisation of the CANopen network and the associated status change from "PreOperational" to "Operational" is not effected by a higher-level host system, the inverter can instead be defined as a "mini" master to execute this task. Details The inverter is configured as mini master in 0x2301:003...
  • Page 216: Canopen Diagnostics

    8.5.4. CANopen diagnostics For the purpose of diagnostics, the inverter provides several status words via which the CAN bus status, the CAN bus controller status, and the status of different time monitoring functions can be queried. Parameter Name / value range / [default setting] Info 0x2307 CANopen time-out status...
  • Page 217: Canopen Emergency Telegram

    8.5.5. CANopen emergency telegram If the error status changes when an internal device error occurs or is remedied, an emergency telegram is sent to the NMT master once. Details • The identifier for the emergency telegram is fixedly defined and is shown in 0x1014. •...
  • Page 218 The inverter can be configured as producer or as consumer to monitor up to four other nodes. Parameter Name / value range / [default setting] Info 0x1016:000 Consumer heartbeat time: Highest sub-index suppor- Highest subindex, permanently set to 4. Corresponds at the same time (P520.00) to the maximum possible number of nodes to be monitored.
  • Page 219: Canopen Process Data Objects

    8.5.7. CANopen process data objects Process data objects (PDOs) are used for the cyclic transmission of (process) data via CANopen. PDOs only contain data and an identifier. They do not contain any information about the sender or receiver and are therefore very efficient. Details •...
  • Page 220 Synchronisation of PDOs via sync telegram During cyclic transmission, one or more PDOs are transmitted/received in fixed time intervals. An additional specific telegram, the so-called sync telegram, is used for synchronising cyclic process data. • The sync telegram is the trigger point for the transmission of process data from the slaves to the master and for the acceptance of process data from the master in the slaves.
  • Page 221 Parameter Name / value range / [default setting] Info 0x1400:001 RPDO1 communication parameter: COB-ID RPDO1: identifier (P540.01) (RPDO1 config.: COB-ID) How to change the identifier: 0x00000000 ... [0x00000200] ... 0xFFFFFFFF Set PDO to "invalid": Set bit 31 to "1". Bit 0 COB-ID bit 0 Change identifier and reset PDO to "valid"...
  • Page 222 Parameter Name / value range / [default setting] Info 0x1800:000 TPDO1 communication parameter: Highest sub-index The value "5" is permanently set. supported Read only 0x1800:001 TPDO1 communication parameter: COB-ID TPDO1: identifier (P550.01) (TPDO1 config.: COB-ID) How to change the identifier: 0x00000001 ...
  • Page 223 Parameter Name / value range / [default setting] Info 0x1802:001 TPDO3 communication parameter: COB-ID TPDO3: identifier (P552.01) (TPDO3 config.: COB-ID) How to change the identifier: 0x00000001 ... [0xC0000380] ... 0xFFFFFFFF Set PDO to "invalid": Set bit 31 to "1". Bit 0 COB-ID bit 0 Change identifier and reset PDO to "valid"...
  • Page 224: Canopen Data Mapping

    8.5.8. CANopen data mapping Data mapping serves to define which process data are transmitted cyclically via the process data channels. Details Data mapping (in the case of CANopen also referred to as "PDO mapping") is preconfigured for control of the inverter via the device profile CiA 402: •...
  • Page 225 Parameter Name / value range / [default setting] Info 0x1601:000 RPDO2 mapping parameter: Number of mapped Number of objects mapped in RPDO2. application objects in PDO 0 ... [0] ... 8 0x1601:001 RPDO2 mapping parameter: Application object 1 Mapping entry 1 for RPDO2. 0x00000000 ...
  • Page 226 Parameter Name / value range / [default setting] Info 0x1A01:005 TPDO2 mapping parameter: Application object 5 Mapping entry 5 for TPDO2. 0x00000000 ... [0x00000000] ... 0xFFFFFFFF 0x1A01:006 TPDO2 mapping parameter: Application object 6 Mapping entry 6 for TPDO2. 0x00000000 ... [0x00000000] ... 0xFFFFFFFF 0x1A01:007 TPDO2 mapping parameter: Application object 7 Mapping entry 7 for TPDO2.
  • Page 227: Canopen Service Data Objects

    8.5.9. CANopen service data objects Service data objects (SDOs) make it possible to read and write all parameters of the inverter via CANopen. Details Two independent SDO channels are provided at the same time. SDO channel 1 is always active. SDO channel 2 can be activated via 0x2301:005 (P510.05).
  • Page 228 Maximally 4 bytes are available for parameter value entries. Depending on the data format, they are assigned as follows: 5th byte 6th byte 7th byte 8th byte Parameter value (1 byte) 0x00 0x00 0x00 Parameter value (2 bytes) 0x00 0x00 LOW byte HIGH byte Parameter value (4 bytes)
  • Page 229: Canopen Error Responses

    8.5.10. CANopen error responses The response to CANopen errors such as missing PDOs or heartbeat frames can be configured via the following parameters. Parameter Name / value range / [default setting] Info 0x1029:000 Error behavior: Highest sub-index supported Read only 0x1029:001 Error behavior: Communication error Selection of the NMT state to which the inverter is to change...
  • Page 230: Canopen Diagnostic Counter

    8.5.11. CANopen diagnostic counter The following parameters serve to diagnose the communication activities between the inverter and the CANopen network. The counters are free-running, i. e. when the maximum value has been reached, the respective counter starts at 0 again. Parameter Name / value range / [default setting] Info...
  • Page 231: Canopen Led Status Displays

    8.5.12. CANopen LED status displays Information about the CAN bus status can be obtained quickly via the "CAN-RUN" and "CANERR" LED displays on the front of the inverter. The meaning can be seen from the tables below. Inverter not active on the CAN bus (yet) LED "CAN-RUN"...
  • Page 232: Resetting The Canopen Interface

    8.5.13. Resetting the CANopen interface The following parameter can be used to restart or stop communication. Optionally it is also possible to reset all communication parameters to the default status. Details A restart of communication is required after changes of the interface configuration (e. g. node address and baud rate) in order that the changed settings become effective.
  • Page 233: Canopen Short Setup

    8.5.14. CANopen short setup In the following, the steps required for controlling the inverter via CANopen are described. Parameterisation required 1. Set the CANopen node address. • Each network node must be provided with a unique node address. • Details: CANopen node address ...
  • Page 234 RPDO1 mapping The RPDO1 is used to control the inverter. Changing the identifier (COB-ID) and the PDO mapping only allows the following procedure: 1. Set RPDO1 to "invalid": Set bit 31 in the identifier 0x1400:001 (P540.01) to "1". 2. Set RPDO1 mapping to "invalid": 0x1600:000 = set 0.
  • Page 235 TPDO1 mapping The TPDO1 is used for the output of status information and the actual frequency value. Changing the identifier (COB-ID) and the PDO mapping only allows the following procedure: 1. Set TPDO1 to "invalid": Set bit 31 in the identifier 0x1800:001 (P550.01) to "1".
  • Page 236: Modbus Rtu

    8.6. Modbus RTU Modbus is an internationally approved, asynchronous, serial communication protocol, designed for commercial and industrial automation applications. • Detailed information on the Modbus can be found on the web page of the international Modbus Organization, USA, who also further develop the Modbus protocol: http:// www.modbus.org •...
  • Page 237: Modbus Rtu Baud Rate

    8.6.3. Modbus RTU baud rate All network nodes must be set to the same baud rate. Details • The node address can be set in 0x2321:002 (P510.02). • If the automatic baud rate detection function is activated, the first 5 ... 10 messages are lost after switch-on.
  • Page 238: Modbus Rtu Data Format

    8.6.4. Modbus RTU data format All network nodes must be set to the same data format. Details • The data format can be set in 0x2321:003 (P510.03). • If the automatic data format detection function is activated, the first 5 ... 10 messages are lost after switch-on.
  • Page 239 Parameter Name / value range / [default setting] Info 0x232A:002 Modbus statistics: Valid messages received Display of the number of valid messages received. (P580.02) (Modbus statistic: Val. mess. rec.) After the maximum value has been reached, the counter starts again Read only "0".
  • Page 240 Parameter Name / value range / [default setting] Info 0x232F:001 Modbus diagnostics of last Tx data: Offset For purposes of diagnostics, the last message sent (max. 16 bytes) is (P585.01) (Tx data diagn.: Tx data offset) shown in 0x232F:002 (P585.02)...0x232F:017 (P585.17).
  • Page 241: Modbus Rtu Function Codes

    8.6.7. Modbus RTU function codes The mode of access to inverter data (parameters) is controlled via function codes. Details The inverter supports the following function codes: Function code Function name Description 0x03 Read Holding Registers Read one or more 16-bit data words. 0x06 Preset Single Register Write a 16-bit data word.
  • Page 242: Modbus Rtu Data Mapping

    8.6.8. Modbus RTU data mapping The process of data mapping is used for defining which Modbus registers read or write to which inverter parameters. Variable mapping • Via 0x232B:1 ... 24, 24 registers can be mapped variably to parameters of the inverter. Format: 0xiiiiss00 (iiii = hexadecimal index, ss = hexadecimal subindex) •...
  • Page 243 Predefined Modbus status registers • These registers are only provided with read access. • The cross-reference in column 2 leads to the detailed parameter description. Modbus registers Permanently assigned parameter Address Name 42001 0x400C:001 (P593.01) AC Drive status word 42002 0x400C:006 (P593.06) Frequency (0.01) 42003...
  • Page 244 Parameter Name / value range / [default setting] Info 0x232B:014 Modbus parameter mapping: Parameter 14 Mapping entry for Modbus register 40129. (P530.14) (Para. mapping: Parameter 14) 0x00000000 ... [0x00000000] ... 0xFFFFFF00 0x232B:015 Modbus parameter mapping: Parameter 15 Mapping entry for Modbus register 40131. (P530.15) (Para.
  • Page 245 Parameter Name / value range / [default setting] Info 0x232C:010 Modbus register assignment: Register 10 Display of the internal Modbus register number starting from which the (P531.10) (Reg. assigned: Register 10) parameter mapped in 0x232B:10 is stored. Read only 2500 + offset. The offset results from the data types of the previously mapped parameters.
  • Page 246: Modbus Rtu Led Status Displays

    8.6.9. Modbus RTU LED status displays Information about the Modbus status can be obtained quickly via the "MOD-RUN" and "MODERR" LED displays on the front of the inverter. The meaning can be seen from the tables below. Inverter not active on the Modbus bus (yet) LED "MOD-RUN"...
  • Page 247: Short Setup Of Modbus Rtu

    8.6.12. Short setup of Modbus RTU In the following, the steps required for controlling the inverter via Modbus are described. Parameterisation required 1. Activate network control: 0x2631:037 (P400.37) = "TRUE [1]" 2. Set network as standard setpoint source: 0x2860:001 (P201.01) = "Network [5]"...
  • Page 248 If digital input DI1 ("Start enable") is set to HIGH level, the drive should start and the inverter should respond with the same frame as confirmation: Response message from the inverter Slave address Function code Data Checksum (CRC) Register address AC Drive control word 0x01 0x06...
  • Page 249: Configuring The Process Controller

    Configuring the process controller By means of the process controller, a process variable can be regulated, for instance the pressure of a pump. The process controller is also referred to as "PID controller" (PID controller = proportional, integral and differential controller). The process controller is part of a closed control loop.
  • Page 250: Basic Process Controller Settings

    9.1. Basic process controller settings The process controller is set in two steps: • Basic settings • Fine adjustment of the PID controller for an optimum control mode Basic settings Based on the default setting, we recommend the following proceeding: 1.
  • Page 251 9. Diagnostics: Check current reference value and feedback of the variable: • The current reference value (setpoint) is displayed in 0x401F:001 (P121.01). • The current variable (actual value) is displayed in 0x401F:002 (P121.02). After the basic setting of the process controller has been carried out, a fine adjustment of the PID controller must be executed for an optimum control mode (see the following section).
  • Page 252 Internal signal flow The following illustration shows the internal signal flow of the process controller (without the additional functions "idle state" and "rinsing function"): Control functions The flexible I/O configuration serves to configure different control functions for the process controller: •...
  • Page 253 (from version 02.00) 5 Network (from version 02.00) 6 HTL input Selection is not supported by the inverter Emotron VS10/30. (from version 04.00) 0x4020:003 Process controller setup (PID): Closed-loop controlled Setting of the maximum output frequency up to which the process (P600.03)
  • Page 254 Parameter Name / value range / [default setting] Info 0x4021:001 PID speed operation: Acceleration time Acceleration time for (temporary) speed-controlled drive control in (P606.01) (PID speed op.: Accel. time) process controller mode. 0.0 ... [1.0] ... 3600.0 s The acceleration time takes effect at the output of the process con troller.
  • Page 255 Parameter Name / value range / [default setting] Info 0x2860:002 PID control: Default setpoint source Selection of the standard setpoint source for the reference value of the (P201.02) (Stnd. setpoints: PID setp. src.) PID control. The selected standard setpoint source is always active with an activa ted PID control when no setpoint change-over to another setpoint source via corresponding triggers/functions is active.
  • Page 256: Process Controller Idle State And Rinse Function

    9.2. Process controller idle state and rinse function 9.2.1. Process controller idle state If the PID control is activated, this function sets the drive in process controller mode to an energy-saving idle state when no power is required. Details A typical application for this function is a booster pump for water in a high-rise building. If no tenant opens the water tap or uses the shower for a longer period of time, the pump changes to the energy-saving idle state.
  • Page 257: Process Controller Rinse Function

    Parameter Name / value range / [default setting] Info 0x4023:006 PID sleep mode: Recovery Selection of the condition for terminating the idle state. (P610.06) (PID sleep mode: Recovery) 0 Setpoint > threshold OR system deviation > Completion of idle state if bandwidth frequency setpoint >...
  • Page 258: Additional Functions

    10. Additional functions • Device Commands  242 • Keypad  247 • Wireless LAN (WLAN)  251 • DC braking  262 • Brake energy management  267 • Load loss detection  270 • Access protection  271 •...
  • Page 259: Device Commands

    10.1. Device Commands Device commands are commands for calling organisational functions of the inverter, e.g. saving and loading of parameter settings, or restoring the default setting. 10.1.1.1. 10.1.1 Reset parameters to default With the "Load default settings" device command, all parameters can be reset to the default setting.
  • Page 260: Saving/Loading The Parameter Settings

    "Enter" key > 3 s. • Parameter settings carried out with »Emotron Easy starter« or via network must be explicitly saved in the user memory by means of the "Save user data" device command, so that the changes carried out are not lost when the mains of the inverter are switched.
  • Page 261 OEM memory The OEM memory is provided for the storage of customised parameter settings by the OEM/ mechanical engineer. If the user carries out parameter settings with the keypad, they are always saved in the user memory if the keypad Enter key is clicked longer than 3 s.
  • Page 262 Response after initial switch-on of the inverter After switch-on, the inverter first tries to load the parameter settings stored in the user memory. If the user memory is empty or damaged, an error message is output and the user must intervene: •...
  • Page 263: Device Commands For Parameter Change-Over

    10.1.2.1. 10.1.3 Device commands for parameter change-over The inverter supports several parameter sets. The parameter set can be selected by means of the device commands "Load parameter set 1" ... "Load parameter set 4". DANGER! Changed parameter settings can become effective immediately depending on the activating method set in 0x4046 (P755.00).
  • Page 264: Delete Logbook

    10.1.3. Delete logbook By means of the "Delete logbook" device command, all logbook entries can be deleted. Parameter Name / value range / [default setting] Info 0x2022:015 Device commands: Delete logbook 1 = delete all entries in the logbook. (P700.15) (Device commands: Delete logbook) Setting can only be changed if the inverter is inhibi ted.
  • Page 265: Keypad

    10.2. Keypad For the keypad various settings can be made, which are described in detail in the following subchapters. 10.2.1. Keypad language selection Parameter Name / value range / [default setting] Info 0x2863 Keypad language selection Language selection for the keypad display. (P705.00) (KP language) 0 No language selected...
  • Page 266: Keypad Configuration Of R/F And Ctrl Buttons

    10.2.5. Keypad Configuration of R/F and CTRL buttons Keypad rotation setup Use the keypad to reverse the rotation direction at local keypad control After the key has been pressed, the reversal of rotation direction must be confirmed with the key. (The key serves to cancel the action.) The keypad key •...
  • Page 267 Keypad Full Control Use the keypad key to activate the "Keypad Full Control" control mode. Both the C T R L control and the setpoint selection are then made via the keypad. This special control mode can be, for instance, used during the commissioning phase if external control and setpoint sources are not ready to use yet.
  • Page 268 Clicking the keypad key stops the control mode again. The keypad key C T R L C T R L • directly changes the setting in 0x2602:003 (P708.03). • can be deactivated in 0x2602:001 (P708.01). Parameter Name / value range / [default setting] Info 0x2602:001 Keypad setup: CTRL &...
  • Page 269: Wireless Lan (Wlan)

    • an easy parameter setting without cable and instead of the keypad, • a comfortable monitoring and adaptation of the machine. The inverter can be accessed via WLAN with the following devices: • »Emotron Easy starter« engineering tool. 10.3.1. WLAN LED status displays Information on the WLAN module status can be obtained quickly via the LED displays "Power", "TX/RX"...
  • Page 270: Wlan Basic Settings

    10.3.2. WLAN basic settings The WLAN functionality can be configured via the following parameters. Preconditions WLAN module has been plugged onto the interface X16 on the front of the inverter. Details • The WLAN module can be connected and removed during operation. •...
  • Page 271 Parameter Name / value range / [default setting] Info 0x2441:007 WLAN settings: WLAN SSID Name (Service Set Identifier, SSID) of the WLAN network. ["c05x"] The preset name consists of the device name (iXXX) and the first 10 From version 02.00 digits of the serial number.
  • Page 272: Resetting Wlan Settings To Default Setting

    • WLAN module mode "stand-alone" shall be deactivated. 0x2440 serves to reset all WLAN settings to the default setting. For this purpose, the inverter must be connected to the »Emotron Easy starter« via the USB module or an existing network. Option 1: Reset via USB module...
  • Page 273: Wlan Access Point Mode

    In this operating mode, the WLAN module creates its own WLAN network for a direct connection to other WLAN devices. The supported WLAN devices are: • »Emotron Easy starter« engineering tool. Details • In default setting, every inverter with WLAN functionality comes with an individual network name, called SSID.
  • Page 274: Establishing A Direct Wlan Connection Between Emotron Easy Starter Pc And Inverter

    10.3.3.1. Establishing a direct WLAN connection between Emotron Easy starter PC and inverter How to establish a direct WLAN connection to the inverter on the Emotron Easy starter: Requirements: • The functional test described in the mounting and switch-on instructions has been completed successfully (without any errors or faults).
  • Page 275 »Emotron Easy starter« searches for connected devices via the communication path selected. When the connection has been established successfully, the inverter is displayed in the device list of »Emotron Easy starter«. The inverter parameters can now be accessed via the tabs of »Emotron Easy starter«.
  • Page 276: Wlan Client Mode

    How to configure the WLAN module as WLAN client: Requirements: • The WLAN settings of the inverter can be accessed via »Emotron Easy starter«. • Name (SSID) and password of the external WLAN network are known. 1. Set the selection "Client mode [1]" in 0x2441:006.
  • Page 277 Parameter Name / value range / [default setting] Info 0x2441:001 WLAN settings: IP address Definition of the IP address for the WLAN access point. 0 ... [28485824] ... 4294967295 In the client mode, a static IP address can be set here for the WLAN From version 02.00 client.
  • Page 278: Dc Braking

    10.4. DC braking The "DC braking" function generates a braking torque by injecting a DC current into the motor. The function can be used to shorten the braking of a load with high mass inertia. Another application is holding the motor shaft either before starting or while stopping. NOTICE Avoid long-time activation of the "DC braking"...
  • Page 279 Parameter Name / value range / [default setting] Info 0x2631:005 Function list: Activate DC braking Assignment of a trigger for the "Activate DC braking" function. (P400.05) (Function list: DC braking) Trigger = TRUE: Activate DC braking. For further possible settings, see parameter Trigger = FALSE: Deactivate DC braking.
  • Page 280: Example 1: Automatic Dc Braking When The Motor Is Started

    10.4.1. Example 1: Automatic DC braking when the motor is started In order that the DC braking is automatically active when the motor is started, the start method "DC braking [1]" must be set in 0x2838:001 (P203.01). • The DC braking is carried out with the braking current set in 0x2B84:001 (P704.01).
  • Page 281: Example 2: Automatic Dc Braking When The Motor Is Stopped

    10.4.2. Example 2: Automatic DC braking when the motor is stopped In order that the DC braking is automatically active when the motor is stopped, the corresponding operating threshold must be set in 0x2B84:003 (P704.03). • After a stop command, the motor is first decelerated as set. Only if the output frequency falls below the set operating threshold, the inverter stops the deceleration and activates DC braking.
  • Page 282 Stop method = "Quick stop ramp [2]" Same behaviour as with the stop method "Standard ramp [1]", except that the motor is decelerated with the quick stop ramp instead of the standard ramp. Stop method = "Coasting [0]" Parameter Name Setting for this example 0x2631:001 (P400.01) Enable inverter...
  • Page 283: Brake Energy Management

    10.5. Brake energy management When braking electrical motors, the kinetic energy of the drive train is fed back regeneratively to the DC bus. This energy causes a DC-bus voltage boost. If the energy fed back is too high, the inverter reports an error. Several different strategies can serve to avoid DC-bus overvoltage: •...
  • Page 284: Stopping The Deceleration Ramp Function Generator

    0x2541:001 Brake energy management: Operating mode Selection of the braking method. The braking method(s) selected is/are activated if the DC-bus voltage (P706.01) (Brake management: Operating mode) exceeds the voltage threshold for the braking operation shown in 0x2541:002 (P706.02). 1 Ramp function generator stop (RFGS) The deceleration ramp function generator is stopped.
  • Page 285: Inverter Motor Brake

    10.5.2. Inverter motor brake With this braking method, which can be selected in 0x2541:001 (P706.01), the regenerative energy in the motor is converted as a result of dynamic acceleration/deceleration with downramping of the ramp function generator. NOTICE Too frequent braking may cause thermal overload of the motor. ▶...
  • Page 286: Load Loss Detection

    Parameter Name / value range / [default setting] Info 0 No mode change/no mode assigned No operating mode (standstill) 2 CiA: Velocity mode CiA 402 velocity mode 10.6. Load loss detection This function serves to detect a load loss during operation and to then activate a specific function, for instance the switching of the relay.
  • Page 287: Access Protection

    Optionally a write access protection can be installed for the inverter parameters. Write access protection only restricts parameterisation via keypad and »Emotron Easy starter«. Write access protection via network is not restricted. Irrespective of the write access protection that is currently set, a...
  • Page 288 (P197.00). More details on how to configure the write access protection with the respective client can be found in the following subchapters: Write access protection in the »Emotron Easy starter«  273 Write access protection in the keypad  276...
  • Page 289: Write Access Protection In The »Emotron Easy Starter

    10.7.1.1. Write access protection in the »Emotron Easy starter« If a write access protection is active for the online connected inverter, it is displayed in the status bar of the »Emotron Easy starter«: Display Representation of the parameters in the »Emotron Easy starter«...
  • Page 290 Configuring the write access protection with »Emotron Easy starter« The write access protection is activated by specifying PIN1 and/or PIN2 (depending on the desired configuration of the write access protection). How to activate the write access protection: 1. Go to the "Settings" tab and navigate to the "Access protection" parameterisation dialog: 2.
  • Page 291 Impact of the write access protection on Emotron Easy starter« functions The following »Emotron Easy starter« functions are not supported when write access protection is active: • Parameter set download • Definition of the "Favorites" parameters. • Definition of the parameters for the "Parameter change-over" function The following »Emotron Easy starter«...
  • Page 292: Write Access Protection In The Keypad

    10.7.1.2. Write access protection in the keypad If a write access protection is active for the inverter, the keypad automatically displays a log-in when changing to the parameterisation mode. You can either skip the log-in and thus keep the access protection active or remove it temporarily by entering a valid PIN. Option 1 skip log-in and keep access protection active 1.
  • Page 293: Configuring The Write Access Protection With The Keypad

    10.7.1.3. Configuring the write access protection with the keypad The write access protection is activated by defining PIN1 in P730.00 and/or PIN2 in P731.00 (depending on the desired configuration of the write access protection). In the following example, the write access protection is configured in such a way that a write access to the favorites only is possible or (when knowing PIN) to all parameters.
  • Page 294 In the following example, PIN1 is changed from "123" to "456". For this purpose, the defined PIN must first be deleted by the setting "0". Change defined PIN1: 8. Use the key in the operating mode to navigate to the parameterisation mode one level below.
  • Page 295 How to remove a configured write access protection permanently: 1. Remove the active write access protection temporarily (see above). 2. Set PIN1 (P730.00) and PIN2 (P731.00) to the value "0" (see instructions for changing the PIN). Impact of the write access protection to the keypad functions The following keypad functions are supported irrespective of the active write access protection: •...
  • Page 296: Favorites

    10.8. Favorites In order to gain quick access using »Emotron Easy starter« or the keypad, frequently used parameters of the inverter can be defined as "Favorites". • »Emotron Easy starter« provides quick access to the "Favorites" via the Favorites tab.
  • Page 297: Favorites Parameter List (Default Setting)

    10.8.2. Favorites parameter list (default setting) In the default setting, the most common parameters for the solution of typical applications are defined as "Favorites": Display code Name Default setting Setting range Info P100.00 Output frequency x.x Hz (Read only) 0x2DDD (P100.00) P103.00 Current actual x.x %...
  • Page 298 Display code Name Default setting Setting range Info P450.01 Freq. preset 1 20.0 Hz 0.0 ... 599.0 Hz 0x2911:001 (P450.01) P450.02 Freq. preset 2 40.0 Hz 0.0 ... 599.0 Hz 0x2911:002 (P450.02) P450.03 Freq. preset 3 50.0 Hz* | 60.0 Hz** 0.0 ...
  • Page 299: Configuring The "Favorites

    A maximum number of 50 parameters can be defined as "Favorites". The easiest way to process the selection of the favorites is via the parameterisation dialog in the »Emotron Easy starter«: 1. Change to the "Parameter list" tab. 2. Select group 0 Favorites.
  • Page 300 Parameter Name / value range / [default setting] Info 0x261C:008 Favorites settings: Parameter 8 (P740.08) (Favorites sett.: Parameter 8) 0x00000000 ... [0x28380300] ... 0xFFFFFF00 0x261C:009 Favorites settings: Parameter 9 (P740.09) (Favorites sett.: Parameter 9) 0x00000000 ... [0x25400100] ... 0xFFFFFF00 0x261C:010 Favorites settings: Parameter 10 (P740.10) (Favorites sett.: Parameter 10)
  • Page 301 Parameter Name / value range / [default setting] Info 0x261C:031 Favorites settings: Parameter 31 (P740.31) (Favorites sett.: Parameter 31) 0x00000000 ... [0x26310900] ... 0xFFFFFF00 0x261C:032 Favorites settings: Parameter 32 (P740.32) (Favorites sett.: Parameter 32) 0x00000000 ... [0x26310D00] ... 0xFFFFFF00 0x261C:033 Favorites settings: Parameter 33 (P740.33) (Favorites sett.: Parameter 33)
  • Page 302: Parameter Change-Over

    Details The parameter list is compiled in the same way as that of the "Favorites" via configuration. »Emotron Easy starter« provides a user-friendly parameterisation dialog for this purpose. Change-over to another value set can optionally be effected via corresponding device commands and/or special functions/triggers: Device commands for parameter change-over...
  • Page 303 Parameter Name / value range / [default setting] Info 0x4041:006 Parameter change-over: Parameter 6 (P750.06) (Param.set setup: Parameter 6) 0x00000000 ... [0x00000000] ... 0xFFFFFF00 0x4041:007 Parameter change-over: Parameter 7 (P750.07) (Param.set setup: Parameter 7) 0x00000000 ... [0x00000000] ... 0xFFFFFF00 0x4041:008 Parameter change-over: Parameter 8 (P750.08) (Param.set setup: Parameter 8)
  • Page 304 Parameter Name / value range / [default setting] Info 0x4041:024 Parameter change-over: Parameter 24 (P750.24) (Param.set setup: Parameter 24) 0x00000000 ... [0x00000000] ... 0xFFFFFF00 0x4041:025 Parameter change-over: Parameter 25 (P750.25) (Param.set setup: Parameter 25) 0x00000000 ... [0x00000000] ... 0xFFFFFF00 0x4041:026 Parameter change-over: Parameter 26 (P750.26) (Param.set setup: Parameter 26)
  • Page 305 Parameter Name / value range / [default setting] Info (P751.08) (Par. value set 1: Set 1 Value 8) -2147483648 ... [0] ... 2147483647 0x4042:009 Parameter value set 1: Value of parameter 9 (P751.09) (Par. value set 1: Set 1 Value 9) -2147483648 ...
  • Page 306 Parameter Name / value range / [default setting] Info 0x4042:025 Parameter value set 1: Value of parameter 25 (P751.25) (Par. value set 1: Set 1 Value 25) -2147483648 ... [0] ... 2147483647 0x4042:026 Parameter value set 1: Value of parameter 26 (P751.26) (Par.
  • Page 307 Parameter Name / value range / [default setting] Info 0x4043:012 Parameter value set 2: Value of parameter 12 (P752.12) (Par. value set 2: Set 2 Value 12) -2147483648 ... [0] ... 2147483647 0x4043:013 Parameter value set 2: Value of parameter 13 (P752.13) (Par.
  • Page 308 Parameter Name / value range / [default setting] Info 0x4043:030 Parameter value set 2: Value of parameter 30 (P752.30) (Par. value set 2: Set 2 Value 30) -2147483648 ... [0] ... 2147483647 0x4043:031 Parameter value set 2: Value of parameter 31 (P752.31) (Par.
  • Page 309 Parameter Name / value range / [default setting] Info 0x4044:015 Parameter value set 3: Value of parameter 15 (P753.15) (Par. value set 3: Set 3 Value 15) -2147483648 ... [0] ... 2147483647 0x4044:016 Parameter value set 3: Value of parameter 16 (P753.16) (Par.
  • Page 310 Parameter Name / value range / [default setting] Info 0x4045:003 Parameter value set 4: Value of parameter 3 (P754.03) (Par. value set 4: Set 4 Value 3) -2147483648 ... [0] ... 2147483647 0x4045:004 Parameter value set 4: Value of parameter 4 (P754.04) (Par.
  • Page 311 Parameter Name / value range / [default setting] Info 0x4045:019 Parameter value set 4: Value of parameter 19 (P754.19) (Par. value set 4: Set 4 Value 19) -2147483648 ... [0] ... 2147483647 0x4045:020 Parameter value set 4: Value of parameter 20 (P754.20) (Par.
  • Page 312 Parameter Name / value range / [default setting] Info 0x4047:001 Parameter change-over error message: Status Error message for the "parameter change-over" function. (P756.01) (PSet error msg.: Status) In the event of an error, an error status is shown here, and in Read only 0x4047:002 (P756.02) the number of the list entry in which the error...
  • Page 313: Example: Selective Control Of Several Motors With One Inverter

    10.9.1. Example: Selective control of several motors with one inverter A typical application for the parameter change-over is an application/machine in which several axes must be triggered successively but a simultaneous operation of several motors is not required. In this case, one and the same inverter can trigger the motors in succession.
  • Page 314 Settings required for the "parameter change-over" function The easiest way to make the required settings is via the parameterisation dialog in the »Emotron Easy starter«: 1. Click the button to first select the 10 relevant parameters. 2. Set values for motor M1 ... M4 in the corresponding fields: In case of a direct setting in the parameters of the "parameter change-over"...
  • Page 315: Device Profile Cia 402

    10.10. Device profile CiA 402 The CiA® 402 device profile defines the functional behaviour of stepping motors, servo drives, and frequency inverters. In order to be able to describe the different drive types, various operating modes and device parameters are specified in the device profile. Each operating mode provides objects (e.g.
  • Page 316 Parameter Name / value range / [default setting] Info 2 Quick stop The motor is brought to a standstill with the "quick stop" function. In the operating mode 0x6060 (P301.00) = "MS: Velocity mode [-2]", the deceleration time set in 0x291C (P225.00) is effective.
  • Page 317 Parameter Name / value range / [default setting] Info Bit 5 Operation mode specific Bit 6 Operation mode specific Bit 7 Fault reset 0-1 edge = reset error Bit 8 Halt 1 = stop motor (ramping down to frequency setpoint 0 Hz) (from version 04.00) Bit 9 Operation mode specific Operating mode dependent...
  • Page 318: Holding Brake Control

    10.11. Holding brake control This function serves as a low-wear control of a holding brake. The holding is usually mounted to the motor as an option. The holding brake can be automatically released via the start command for the inverter or manually via an external control signal, for instance, by a higher-level Controller.
  • Page 319: Basic Setting

    10.11.1. Basic setting The following parameters must be set for the activation and basic setting of the holding brake control. When a power contactor is used, the response time and release time of the contactor are added to the brake application and release time. Both times must also be taken into consideration for parameterising the brake application time and brake opening time! Parameter Name / value range / [default setting]...
  • Page 320: Automatic" Brake Mode (Automatic Operation)

    10.11.2. "Automatic" brake mode (automatic operation) In automatic operation, the inverter automatically released the holding brake when the motor is started. In the stopped state, the holding brake is closed. DANGER! Manual release of the holding brake Also in automatic operation, a manual release of the holding brake is possible. The manually triggered "Release holding brake"...
  • Page 321 General mode of operation The following diagram demonstrates the general functioning of the automatic operation: ① If the inverter is enabled and no error is active, the motor can be started with the "Run" function in forward rotating direction. The power section is switched on and the motor is magnetised first. ②...
  • Page 322: Brake Holding Load

    10.11.3. Brake holding load Depending on the application, a torque at the motor may be required at speed "0" of the motor shaft: • In order to hold loads in vertical applications and prevent "sagging". • In order to prevent a position loss in horizontal applications. For this purpose, a brake holding load can be set.
  • Page 323: General Mode Of Operation

    10.11.3.1. General mode of operation The following diagram demonstrates the general functioning in automatic operation: ① If the inverter is enabled and no error is active, the motor can be started with the "Run" function in forward rotating direction. The power section is switched on and the motor is magnetised first. ②...
  • Page 324: Brake Closing Level

    10.11.4. Brake closing level In some cases, a low speed does not make any sense from the application point of view. This includes applications with unfavorable load features, such as static friction. In such applications and depending on the type of control, a low speed may cause an unwanted behaviour.
  • Page 325 General mode of operation The following diagram demonstrates the general functioning in automatic operation: ① If the inverter is enabled and no error is active, the motor can be started with the "Run" function in forward rotating direction. The power section is switched on and the motor is magnetised first. ②...
  • Page 326: Manual Release Of The Holding Brake

    10.11.5. Manual release of the holding brake A manual release of the holding brake is possible in the modes "Automatic [0]" and "Manual [1]" via the following external triggers: • Via bit 14 in the CiA 402 Controlword 0x6040. • Via the trigger assigned in 0x2631:049 (P400.49) of the "Release holding brake"...
  • Page 327: Flying Restart Circuit

    10.12. Flying restart circuit The flying restart function makes it possible to restart a coasting motor on the fly during operation without speed feedback. Synchronicity between the inverter and the motor is coordinated so that the transition to the rotating drive is effected without jerk at the time of connection.
  • Page 328 For diagnostic purposes, the frequency detected when the motor has been restarted on the fly is displayed in 0x2BA1:008 (P718.08). Parameter Name / value range / [default setting] Info 0x2BA1:001 Flying restart circuit: Current The current set here is injected into the motor during the flying restart (P718.01) (Flying restart: Current) process for the identification of the rotating field frequency.
  • Page 329: Timeout Für Fault Reaction

    10.13. Timeout für fault reaction If an error occurs that does not immediately cause a switch-off, the "Fault reaction active" device status becomes initially active. The motor is brought to a standstill with quick stop ramp. The change to the device status "Fault" is only made after the quick stop (motor at standstill) has been executed or after an adjustable timeout time has expired.
  • Page 330: Automatic Restart

    10.14. Automatic restart Configuration of the restart behaviour after a fault. The settings have no impact on errors and warnings of the inverter. Parameter Name / value range / [default setting] Info 0x2839:002 Fault configuration: Restart delay If a fault occurs, a restart is possible at the earliest after the time set (P760.02) (Fault config.: Restart delay) here has elapsed.
  • Page 331: Mains Failure Control

    10.15. Mains failure control In case of power failure, this function can decelerate the motor and use its rotational energy to maintain the DC-bus voltage for a certain period of time. This makes it possible to continue to let the motor run during a short-term failure of the mains voltage. After mains recovery, the operating status that was active before the failure is adopted again.
  • Page 332 Parameter Name / value range / [default setting] Info 0x2D66:005 Mains failure control: DC voltage setpoint Voltage setpoint onto which the DC-bus voltage is to maintained. (P721.05) (Mains fail. ctrl: DC voltage setp.) 100 % ≡ nominal DC-bus voltage 80 ... [100] ... 110 % From version 02.00 0x2D66:006 Mains failure control: Setpoint ramp...
  • Page 333: Activating The Mains Failure Control

    10.15.1. Activating the mains failure control 1. Set the selection "Enabled [1]" in 0x2D66:001 (P721.01). 2. Set the activation threshold in [%] with reference to the nominal DC-bus voltage in 0x2D66:002 (P721.02). • Recommended setting: 5 ... 10 % above the error threshold for undervoltage (display in 0x2540:003 (P208.03)).
  • Page 334: Restart Protection

    10.15.2. Restart protection The integrated restart protection is to prevent a restart in the lower frequency range if the mains voltage was only interrupted briefly (mains recovery before the motor stands still). • In the default setting 0x2D66:008 (P721.08) = 0 Hz, the restart protection is deactivated.
  • Page 335: Commissioning The Mains Failure Control

    10.15.4. Commissioning the mains failure control Commissioning should be executed with motors without load: 1. Let the motor rotate with a rated frequency of 100 %. 2. Disable the inverter and measure the time until the motor has reached standstill. •...
  • Page 336: Process Data

    0 Disbled Position counter is deactivated. 1 Feedback 1 (DI3/DI4) Selection is not supported by the inverter Emotron VS10/30. 5 Internal motor model The motor revolutions reconstructed from the internal motor model of the sensorless control (SL PSM) are counted.
  • Page 337: Firmware Download

    • Parameter settings must only be adapted if new functions are used. 10.17.1. Firmware download with »Emotron Easy starter (Firmware loader)« The »Emotron Easy starter (firmware loader)« is a PC software which serves to update the firmware of the inverter.
  • Page 338: Additive Voltage Impression

    10.18. Additive voltage impression This function serves to boost (or lower) the motor voltage from the process via an additive voltage setpoint in order to realise a load adjustment (for instance in case of winder applications). NOTICE A too high boost of the motor voltage may cause the motor to heat up strongly due to the resulting current.
  • Page 339: Example: Using The Function With A 400-V Inverter

    10.18.1. Example: Using the function with a 400-V inverter With the settings indicated below, the motor is accelerated after the start to 50 Hz. As the base frequency, however, is set very high (here: 599 Hz), the motor voltage at 50 Hz only amounts to 20 VAC.
  • Page 340: Parameter For Engineering Tools

    10.19. Parameter for engineering tools The following parameters are required for an interaction of the engineering tools with the inverter connected online. They are not relevant for the user and only reported here for the sake of completeness. Parameter Name / value range / [default setting] Info 0x2022:032 Device commands: Deactivate PDO Communication...
  • Page 341 Parameter Name / value range / [default setting] Info Bit 3 Reset fault Bit 4 Activate DC braking Bit 5 Start forward (CW) Bit 6 Start reverse (CCW) Bit 7 Run forward (CW) Bit 8 Run reverse (CCW) Bit 9 Jog foward (CW) Bit 10 Jog reverse (CCW) Bit 11 Activate keypad control Bit 12 Invert rotation...
  • Page 342 Parameter Name / value range / [default setting] Info Bit 17 Select sequence (bit 0) Bit 18 Select sequence (bit 1) Bit 19 Select sequence (bit 2) Bit 20 Select sequence (bit 3) Bit 21 Reset position counter Bit 22 Reserved Bit 23 Reserved Bit 24 Reserved Bit 25 Reserved...
  • Page 343: Sequencer

    11. Sequencer The "sequencer" function serves to transfer a programmed sequence of setpoints to the motor control. The switch-over to the next setpoint can be made time-controlled or even- controlled. Optionally, the "sequencer" function can also trigger the digital and analog outputs.
  • Page 344 Commissioning For commissioning the sequencer, we recommend the following proceeding: 1. Configure segments (including end segment). Details: Segment configuration  329 2. Configure sequences: • Assign the segments to the single steps of a sequence. • Set the number of cycles for the respective sequence. Details: Sequence configuration ...
  • Page 345 Internal status signals The sequencer provides different internal status signals (see the following table). These status signals can be assigned to the relay, the digital outputs or the status word. Configuration of digital outputs  429 Internal status signal Info "Sequencer controlled [100]"...
  • Page 346: Segment Configuration

    11.1. Segment configuration Each step of a sequence can call a "segment". A segment contains, among other things preset setpoints (speed setpoint, PID control value, torque setpoint), a combined acceleration/deceleration for the speed setpoint and optionally a configuration for the digital and analog outputs.
  • Page 347 An inversion set in 0x2635:002 (P421.02) is taken into consideration here. Bit 2 Digital output 2 Not availabl e for inverter Emotron VS10/30. 0x4026:005 Sequencer segment 1: Analog outputs Optionally: Set analog output to the voltage value set here for the (P801.05) (Segment 1: Analog outp.)
  • Page 348 An inversion set in 0x2635:002 (P421.02) is taken into consideration here. Bit 2 Digital output 2 Not availabl e for inverter Emotron VS10/30. 0x4027:005 Sequencer segment 2: Analog outputs Optionally: Set analog output to the voltage value set here for the (P802.05) (Segment 2: Analog outp.)
  • Page 349 An inversion set in 0x2635:002 (P421.02) is taken into consideration here. Bit 2 Digital output 2 Not availabl e for inverter Emotron VS10/30. 0x4028:005 Sequencer segment 3: Analog outputs Optionally: Set analog output to the voltage value set here for the (P803.05) (Segment 3: Analog outp.)
  • Page 350 An inversion set in 0x2635:002 (P421.02) is taken into consideration here. Bit 2 Digital output 2 Not availabl e for inverter Emotron VS10/30. 0x4029:005 Sequencer segment 4: Analog outputs Optionally: Set analog output to the voltage value set here for the (P804.05) (Segment 4: Analog outp.)
  • Page 351 An inversion set in 0x2635:002 (P421.02) is taken into consideration here. Bit 2 Digital output 2 Not availabl e for inverter Emotron VS10/30. 0x402A:005 Sequencer segment 5: Analog outputs Optionally: Set analog output to the voltage value set here for the execu- (P805.05)
  • Page 352 An inversion set in 0x2635:002 (P421.02) is taken into consideration here. Bit 2 Digital output 2 Not availabl e for inverter Emotron VS10/30. 0x402B:005 Sequencer segment 6: Analog outputs Optionally: Set analog output to the voltage value set here for the (P806.05) (Segment 6: Analog outp.)
  • Page 353 An inversion set in 0x2635:002 (P421.02) is taken into consideration here. Bit 2 Digital output 2 Not availabl e for inverter Emotron VS10/30. 0x402C:005 Sequencer segment 7: Analog outputs Optionally: Set analog output to the voltage value set here for the (P807.05) (Segment 7: Analog outp.)
  • Page 354 An inversion set in 0x2635:002 (P421.02) is taken into consideration here. Bit 2 Digital output 2 Not availabl e for inverter Emotron VS10/30. 0x402D:005 Sequencer segment 8: Analog outputs Optionally: Set analog output to the voltage value set here for the (P808.05) (Segment 8: Analog outp.)
  • Page 355 An inversion set in 0x2635:002 (P421.02) is taken into consideration here. Bit 2 Digital output 2 Not available for inverter Emotron VS10/30. 0x402E:005 End segment: Analog outputs Optionally: Set analog output to the voltage value set here after the time (P822.05) (End segment: Analog outp.)
  • Page 356: Sequence Configuration

    11.2. Sequence configuration As a total, 8 sequences can be configured (with the numbers 1 to 8). Each sequence consists of 16 configurable steps. Each step of a sequence can call a segment or a complete sequence (with a higher number). Details The following example illustrates the configuration based on a nested sequence: •...
  • Page 357 In the following, all parameters relevant for the sequence configuration are given. If the sequencer is active, write accessed to all parameters are blocked that concern the active sequence configuration! Parameter Name / value range / [default setting] Info 0x4030:001 Sequence 1: Step 1 Configuration of the steps 1 ...
  • Page 358 Parameter Name / value range / [default setting] Info 0x4030:008 Sequence 1: Step 8 (P830.08) (Sequence 1: Step 8) For further possible settings, see parameter 0x4030:001 (P830.01).  340 0 Skip step 0x4030:009 Sequence 1: Step 9 (P830.09) (Sequence 1: Step 9) For further possible settings, see parameter 0x4030:001 (P830.01).
  • Page 359 Parameter Name / value range / [default setting] Info 2 Segment 2 3 Segment 3 4 Segment 4 5 Segment 5 6 Segment 6 7 Segment 7 8 Segment 8 0x4032:002 Sequence 2: Step 2 (P835.02) (Sequence 2: Step 2) For further possible settings, see parameter 0x4032:001 (P835.01).
  • Page 360 Parameter Name / value range / [default setting] Info 0x4032:012 Sequence 2: Step 12 (P835.12) (Sequence 2: Step 12) For further possible settings, see parameter 0x4032:001 (P835.01).  342 0 Skip step 0x4032:013 Sequence 2: Step 13 (P835.13) (Sequence 2: Step 13) For further possible settings, see parameter 0x4032:001 (P835.01).
  • Page 361 Parameter Name / value range / [default setting] Info 0x4034:004 Sequence 3: Step 4 (P840.04) (Sequence 3: Step 4) For further possible settings, see parameter 0x4034:001 (P840.01).  343 0 Skip step 0x4034:005 Sequence 3: Step 5 (P840.05) (Sequence 3: Step 5) For further possible settings, see parameter 0x4034:001 (P840.01).
  • Page 362 Parameter Name / value range / [default setting] Info 0x4034:016 Sequence 3: Step 16 (P840.16) (Sequence 3: Step 16) For further possible settings, see parameter 0x4034:001 (P840.01).  343 0 Skip step 0x4035 Number of cycles sequence 3 Definition of how often the sequence 3 is to be passed through. (P841.00) (Cycl.
  • Page 363 Parameter Name / value range / [default setting] Info 0 Skip step 0x4036:009 Sequence 4: Step 9 (P845.09) (Sequence 4: Step 9) For further possible settings, see parameter 0x4036:001 (P845.01).  345 0 Skip step 0x4036:010 Sequence 4: Step 10 (P845.10) (Sequence 4: Step 10) For further possible settings, see parameter...
  • Page 364 Parameter Name / value range / [default setting] Info 8 Segment 8 0x4038:002 Sequence 5: Step 2 (P850.02) (Sequence 5: Step 2) For further possible settings, see parameter 0x4038:001 (P850.01).  347 0 Skip step 0x4038:003 Sequence 5: Step 3 (P850.03) (Sequence 5: Step 3) For further possible settings, see parameter...
  • Page 365 Parameter Name / value range / [default setting] Info 0 Skip step 0x4038:014 Sequence 5: Step 14 (P850.14) (Sequence 5: Step 14) For further possible settings, see parameter 0x4038:001 (P850.01).  347 0 Skip step 0x4038:015 Sequence 5: Step 15 (P850.15) (Sequence 5: Step 15) For further possible settings, see parameter...
  • Page 366 Parameter Name / value range / [default setting] Info 0x403A:007 Sequence 6: Step 7 (P855.07) (Sequence 6: Step 7) For further possible settings, see parameter 0x403A:001 (P855.01).  348 0 Skip step 0x403A:008 Sequence 6: Step 8 (P855.08) (Sequence 6: Step 8) For further possible settings, see parameter 0x403A:001 (P855.01).
  • Page 367 Parameter Name / value range / [default setting] Info 2 Segment 2 3 Segment 3 4 Segment 4 5 Segment 5 6 Segment 6 7 Segment 7 8 Segment 8 0x403C:002 Sequence 7: Step 2 (P860.02) (Sequence 7: Step 2) For further possible settings, see parameter 0x403C:001 (P860.01).
  • Page 368 Parameter Name / value range / [default setting] Info 0x403C:012 Sequence 7: Step 12 (P860.12) (Sequence 7: Step 12) For further possible settings, see parameter 0x403C:001 (P860.01).  350 0 Skip step 0x403C:013 Sequence 7: Step 13 (P860.13) (Sequence 7: Step 13) For further possible settings, see parameter 0x403C:001 (P860.01).
  • Page 369 Parameter Name / value range / [default setting] Info 0 Skip step 0x403E:006 Sequence 8: Step 6 (P865.06) (Sequence 8: Step 6) For further possible settings, see parameter 0x403E:001 (P865.01).  351 0 Skip step 0x403E:007 Sequence 8: Step 7 (P865.07) (Sequence 8: Step 7) For further possible settings, see parameter...
  • Page 370 01-6203-01R3, CG Drives & Automation...
  • Page 371: Sequencer Basic Settings

    11.3. Sequencer basic settings In the presetting, the sequencer is disabled. In order to enable the sequencer, the desired sequencer mode (time and/or step operation) must be set. Moreover, different end of sequence modes and start of sequences modes are available. Details Sequencer mode 0x4025 (P800.00)
  • Page 372 Start of sequence mode 0x4040 (P820.00) • The start of sequence mode defines the action after the motor is stopped and restarted or • after the motor has been restarted after an error occurred. • In the default setting "Restart sequencer [0]", the currently selected sequence is restarted.
  • Page 373 Parameter Name / value range / [default setting] Info 0x4040 Start of sequence mode Selection of the action after the motor has been stopped and restarted (P820.00) (StartOfSeq. mode) or after the motor has been restarted after an error occurred. From version 03.00 0 Restart sequencer The currently selected sequence is restarted.
  • Page 374: Flexible I/O Configuration

    12. Flexible I/O configuration Use parameter 0x2631 (P400xx) to individually adapt the inverter control to the respective application. This is basically effected by assigning digital signal sources ("triggers") to functions of the inverter. NOTICE A digital signal source can be assigned to several functions. Possible consequence: unforeseeable behaviour of the drive in case of incorrect assignment ▶...
  • Page 375: Control Source Change-Over

    12.1. Control source change-over The term "control sources" in this connection refers to the digital signal sources from which the inverter receives its start, stop, and reversal commands. Possible control sources are: • Digital inputs • Keypad • Network Details First, select in 0x2824 (P200.00) whether the start of the motor is to be configured flexibly...
  • Page 376 The "Enable inverter" 0x2631:001 (P400.01) function must be set to TRUE to start the motor. Either via digital input or by default setting "Constant TRUE [1]". If the function is set to FALSE, the inverter is disabled. The motor becomes torqueless (coasts). In case of an activated keypad or network control, the "Run"...
  • Page 377 Parameter Name / value range / [default setting] Info 0x2631:012 Function list: Activate keypad control Assignment of a trigger for the "Activate keypad control" function. (P400.12) (Function list: Keypad control) Trigger = TRUE: activate keypad as control source. For further possible settings, see parameter Trigger = FALSE: no action / deactivate keypad as control source again.
  • Page 378: Example 1: Change-Over From Terminal Control To Keypad Control

    12.1.1. Example 1: Change-over from terminal control to keypad control • The control is executed primarily via the I/O terminals: Switch S1 serves to start and stop the motor. • Switch S2 serves to optionally change over to local keypad control. In case of activated keypad control, the motor can only be started via the keypad key.
  • Page 379: Example 2: Change-Over From Terminal Control To Network Control

    12.1.2. Example 2: Change-over from terminal control to network control • The control is executed primarily via the I/O terminals: Switch S1 serves to start and stop the motor. • Switch S2 serves to activate the network control. In case of activated keypad control, the motor can only be started via the network control word.
  • Page 380: Start / Stop Motor

    12.2. Start / stop motor Configuration of the triggers for the basic functions for controlling the motor. Details The following table contains a short overview of the basic functions. For more details see the following parameter descriptions. function Info Enable inverter Enable/disable operation.
  • Page 381 Parameter Name / value range / [default setting] Info 0x2631:001 Function list: Enable inverter Assignment of a trigger for the "Enable inverter" function. (P400.01) (Function list: Enable inverter) Trigger = TRUE: The inverter is enabled (unless there is another cause Setting can only be changed if the inverter is for inverter disable).
  • Page 382 Parameter Name / value range / [default setting] Info 79 Torque limit reached TRUE if torque limit has been reached or exceeded. Otherwise FALSE. (from version 02.00) Setting "Positive torque limit" in 0x60E0. Setting "Negative torque limit" in 0x60E1. 81 Error of analog input 1 active TRUE if the monitoring of the input signal at the analog input 1 has responded.
  • Page 383 Parameter Name / value range / [default setting] Info 0x2631:002 Function list: Run Assignment of a trigger for the "Run" function. (P400.02) (Function list: Run) Setting can only be changed if the inverter is Function 1: Start / stop motor (default setting) inhibi ted.
  • Page 384 Parameter Name / value range / [default setting] Info 0x2631:008 Function list: Run forward (CW) Assignment of a trigger for the "Run forward (CW)" function. (P400.08) (Function list: Run forward) Trigger = TRUE: Let motor rotate forward. Setting can only be changed if the inverter is Trigger = FALSE: Stop motor.
  • Page 385 Parameter Name / value range / [default setting] Info 0x2631:011 Function list: Jog reverse (CCW) Assignment of a trigger for the "Jog reverse (CCW)" function. (P400.11) (Function list: Jog reverse) Trigger = TRUE: Let motor rotate backward with preset 6. Setting can only be changed if the inverter is Trigger = FALSE: Stop motor.
  • Page 386: Example 1: Start/Stop (1 Signal) And Reversal

    12.2.1. Example 1: Start/stop (1 signal) and reversal This example shows a simple control option via two switches which should be sufficient for many applications: • Switch S1 starts the motor in forward direction of rotation. Switch S1 in the initial position stops the motor again.
  • Page 387: Example 2: Start Forward/Start Reverse/Stop (Edge-Controlled)

    12.2.2. Example 2: Start forward/start reverse/stop (edge-controlled) The "Run" function automatically becomes a "start enable" if the functions "Start forward (CW)"/ "Start reverse (CCW)" are connected to triggers. This example shows an edge-controlled start/stop via three buttons: • In the non-operating state of button S1 (normally-closed contact), there is already a start enable.
  • Page 388 The status signals can be assigned to digital outputs. Configuration of digital outputs  429 ① The "Run" functions serves as start enable for the functions "Start forward (CW)" and "Start reverse (CCW)". Without start enable, the motor cannot be started. ②...
  • Page 389: Example 3: Run Forward/Run Reverse/Stop (Status-Controlled)

    12.2.3. Example 3: Run forward/Run reverse/stop (status-controlled) The "Run" function automatically becomes a "start enable" if the functions "Run forward (CW)"/"Run reverse (CCW)" are connected to triggers. This example shows a status-controlled start/stop via three switches: • Switch S1 enables the start. Without start enable, the motor cannot be started. •...
  • Page 390 The status signals can be assigned to digital outputs. Configuration of digital outputs  429 ① The "Run" functions serves as start enable for the functions "Run forward (CW)" and "Run reverse (CCW)". Without start enable, the motor cannot be started. ②...
  • Page 391: Example 4: Quick Stop

    12.2.4. Example 4: Quick stop This example illustrates the "quick stop" function. If quick stop is activated, the motor is brought to a standstill within the deceleration time set in 0x291C (P225.00). • Switch S1 starts the motor in forward direction of rotation. Switch S1 in the initial position stops the motor again.
  • Page 392 The status signals can be assigned to digital outputs. Configuration of digital outputs  429 ① If quick stop is activated, the motor is decelerated to the frequency setpoint 0 Hz within a short period of time. The "Quick stop active [54]" status is set as long as quick stop is activated.
  • Page 393: Example 5: Jog Forward/Jog Reverse

    12.2.5. Example 5: Jog forward/Jog reverse This example illustrates the functions "Jog forward (CW)" and "Jog reverse (CCW)" for Jog operation. • Switch S1 starts the motor in forward direction of rotation. Switch S1 in the initial position stops the motor again. •...
  • Page 394 The status signals can be assigned to digital outputs. Configuration of digital outputs  429 ① If "Jog foward (CW)" and "Jog reverse (CCW)" are activated at the same time, the motor is stopped with the stop method set in 0x2838:003 (P203.03) and the jog operation must be triggered again.
  • Page 395: Example 6: Enable Inverter

    12.2.6. Example 6: Enable inverter This example shows how to use the "Enable inverter" function for a separate enable input. • In idle state of switch S1 (normally-closed contact), "Enable inverter" is already available. • Switch S2 starts the motor in forward rotating direction (if switch S1 is closed). Switch S2 in initial position stops the motor again.
  • Page 396: Setpoint Change-Over

    12.3. Setpoint change-over The inverter receives its setpoint from the selected standard setpoint source. Corresponding functions make it possible to change over to other setpoint sources during operation. Possible setpoint sources are: • Analog inputs • Keypad • Network • Parameterisable setpoints (presets) •...
  • Page 397 The following signal flow shows the internal setpoint logics: Notes: • In case of an activated network control, the functions for setpoint change-over are not active! If in case of network control no setpoint is defined via the network control word, the standard setpoint source is active.
  • Page 398: Priority Of The Setpoint Sources

    12.3.1. Priority of the setpoint sources Since only one setpoint source can be active at a time, the following priorities apply: Flexible I/O configuration or keypad control active Network control active 0x2631:037 (P400.37) = FALSE 0x2631:017 (P400.17) = FALSE 0x2631:037 (P400.37) = TRUE Prio 1: Functions for setpoint change-over Prio 1: Setpoint source selected via network control word...
  • Page 399 Example for operating mode • The keypad is set as standard setpoint source. • Switch S1 starts the motor in forward direction of rotation. Switch S1 in the initial position stops the motor again. • Switch S2 switches the direction of rotation. •...
  • Page 400 The status signals can be assigned to digital outputs. Configuration of digital outputs  429 ① Change-over from keypad setpoint (standard setpoint source) to AI1 setpoint. ② Change-over from AI1 setpoint to AI2 setpoint. ③ Change-over from AI2 setpoint to AI1 setpoint since the digital input 3 has a higher priority than the digital input 4.
  • Page 401: Keypad Setpoint Source

    12.3.3. Keypad setpoint source The following function is used to select the keypad as setpoint source. Preconditions A setpoint change-over to the keypad is only effected if no setpoint source with a higher priority has been selected. Priority of the setpoint sources ...
  • Page 402 The status signals can be assigned to digital outputs. Configuration of digital outputs  429 ① Change-over from analog input 1 (standard setpoint source) to keypad setpoint. ② Change-over from keypad setpoint back to analog input 1 (standard setpoint source). 01-6203-01R3, CG Drives &...
  • Page 403: Network Setpoint Source

    12.3.4. Network setpoint source The network can be set as standard setpoint source. Optionally, a change-over to the network setpoint is possible via the "Activate network setpoint" function (not if the network control is activated) or via network control word (if the network control is activated).
  • Page 404: Setpoint Source Of Preset Setpoints

    0 Not connected No trigger assigned (trigger is constantly FALSE). 116 Network setpoint active TRUE if a change-over to network setpoint is requested via bit 6 of the (from version 02.00) AC drive control word0x400B:001 (P592.01). Otherwise FALSE. Notes: Set this selection if the network setpoint is to be activated via bit 6 of the AC drive control word.
  • Page 405 Parameter Name / value range / [default setting] Info 0x2631:018 Function list: Activate preset (bit 0) Assignment of a trigger for the "Activate preset (bit 0)" function. (P400.18) (Function list: Setp: Preset b0) Selection bit with the valency 20 for the bit-coded selection and activa- For further possible settings, see parameter tion of a parameterised setpoint (preset value).
  • Page 406 Parameter Name / value range / [default setting] Info 0x4022:001 PID setpoint presets: Preset 1 Parameterisable process controller setpoints (presets) for PID control. (P451.01) (PID presets: PID preset 1) -300.00 ... [0.00] ... 300.00 PID unit 0x4022:002 PID setpoint presets: Preset 2 (P451.02) (PID presets: PID preset 2) -300.00 ...
  • Page 407 Example for operating mode • The keypad is set as standard setpoint source. • Switch S1 starts the motor in forward direction of rotation. Switch S1 in the initial position stops the motor again. • The switches S2 ... S4 serve to switch over to the presets 1 ... 7 (see the following table).
  • Page 408 The status signals can be assigned to digital outputs. Configuration of digital outputs  429 ① Change-over from keypad setpoint (standard setpoint source) to presets (first, preset 1 is selected). ② Change-over back to keypad setpoint since no preset is selected anymore (digital inputs 2 ...
  • Page 409: Motor Potentiometer Setpoint Source (Mop)

    12.3.6. Motor potentiometer setpoint source (MOP) The "Motor potentiometer" function can be used as an alternative setpoint control that is controlled via two functions: "MOP setpoint up" and "MOP setpoint down". • The "Activate MOP setpoint" function enables a setpoint change-over to the motor potentiometer.
  • Page 410 Parameter Name / value range / [default setting] Info 0x2631:025 Function list: Activate MOP setpoint Assignment of a trigger for the "Activate MOP setpoint" function. (P400.25) (Function list: Setp: MOP) Trigger = TRUE: the "Motor potentiometer" function is used as setpoint For further possible settings, see parameter source (if the trigger assigned has the highest setpoint priority).
  • Page 411 Parameter Name / value range / [default setting] Info 0x291A Deceleration time 2 Deceleration time 2 for the operating mode "MS: Velocity mode". (P223.00) (Decelerat.time 2) The deceleration time set refers to the deceleration from the 0.0 ... [5.0] ... 3600.0 s maxi mum frequency set to standstill.
  • Page 412 The status signals can be assigned to digital outputs. Configuration of digital outputs  429 ① Change-over from analog input 1 (standard setpoint source) to MOP setpoint. ② The initial value for the motor potentiometer function depends on the setting in 0x4003 (P413.00).
  • Page 413: Setpoint Source Segment Setpoints

    12.3.7. Setpoint source segment setpoints The four functions "Activate segment setpoint (bit 0)" ... " Activate segment setpoint´(bit 3)" enable a setpoint change-over to a segment setpoint parameterised for the "sequencer" function during normal operation. Preconditions A setpoint change-over to the respective segment setpoint is only effected if no setpoint source with a higher priority has been selected.
  • Page 414 Parameter Name / value range / [default setting] Info 0x2631:026 Function list: Activate segment setpoint (bit 0) Assignment of a trigger for the "Activate segment setpoint (bit 0)" (P400.26) (Function list: Setp: Segment b0) function. From version 03.00 Selection bit with the valency 20 for the bit-coded selection and For further possible settings, see parameter activation of a parameterised segment setpoint.
  • Page 415: Reset Error

    12.4. Reset error By means of the "Reset fault" function, an active error can be reset (acknowledged). Preconditions The error can only be reset if the error cause has been eliminated. Parameter Name / value range / [default setting] Info 0x2631:004 Function list: Reset fault Assignment of a trigger for the "Reset fault"...
  • Page 416 The following signal flow illustrates the reset of an error both with the "Reset error" function and by cancelling the start command ② ④ ① If an error condition is active in the inverter, the motor is brought to a standstill with the quick stop ramp.
  • Page 417: Activating Dc Braking Manually

    12.5. Activating DC braking manually By means of the "Activate DC braking" function, DC braking can be activated manually. Preconditions The current for DC braking must be set > 0 % so that the function can be executed. Parameter Name / value range / [default setting] Info 0x2631:005 Function list: Activate DC braking...
  • Page 418 The status signals can be assigned to digital outputs. Configuration of digital outputs  429 ① If DC braking is activated while the motor is running, the output pulses of the inverter are disabled immediately. For stopping the motor, the current set in 0x2B84:001 (P704.01) is injected.
  • Page 419: Releasing Holding Brake Manually

    12.6. Releasing holding brake manually The "Release holding brake" function serves to release the holding brake immediately. Brake application time and brake opening time as well as the conditions for the automatic operation are not effective. Preconditions • Observe setting and application notes in the "Holding brake control"...
  • Page 420 The status signals can be assigned to digital outputs. Configuration of digital outputs  429 ① As the holding brake is active, the motor does not yet start to rotate after the start command. ② The holding brake is released. The motor is led to the setpoint. ③...
  • Page 421: Activating Ramp 2 Manually

    12.7. Activating ramp 2 manually The "Activate ramp 2" function serves to manually activate acceleration time 2 and deceleration time 2. Parameter Name / value range / [default setting] Info 0x2631:039 Function list: Activate ramp 2 Assignment of a trigger for the "Activate ramp 2" function. (P400.39) (Function list: Activ.
  • Page 422 Example for operating mode • Switch S1 starts the motor in forward direction of rotation. Switch S1 in the initial position stops the motor again. • Switch S2 activates the acceleration time 2 and deceleration time 2. Connection plan function Potentiometer R1 Frequency setpoint Switch S1 Run Switch S2 Activate ramp 2...
  • Page 423: Triggering A User-Defined Fault

    12.8. Triggering a user-defined fault The "Activate fault 1" and "Activate fault 2" functions serve to set the inverter from the process to the error status. Details If, for instance, sensors or switches are provided for process monitoring, which are designed to stop the process (and thus the drive) under certain conditions, these sensors/switches can be connected to free digital inputs of the inverter.
  • Page 424: Functions For Parameter Change-Over

    12.9. Functions for parameter change-over The inverter supports several parameter sets. The parameter set can be selected by means of the "Select parameter set (bit 0)" and "Select parameter set (bit 1)" functions. DANGER! Changed parameter settings can become effective immediately depending on the activating method set in 0x4046 (P755.00).
  • Page 425 Parameter Name / value range / [default setting] Info 0x2631:040 Function list: Load parameter set Assignment of a trigger for the "Load parameter set" function. (P400.40) (Function list: Load param.set) Trigger = FALSE-TRUE edge: parameter change-over to the value set Setting can only be changed if the inverter is selected via "Select parameter set (bit 0)"...
  • Page 426: Example 1: Activation Via Command (Only When Disabled)

    12.9.1. Example 1: Activation via command (only when disabled) Activation method 0x4046 (P755.00) = "Via command (disable required) [0]": • Switches S3 and S4 serve to select the parameter set (see the following table). • Switch S2 activates the change-over. Since the change-over is activated with a rising edge, a button (normally-open contact) can be used instead of a switch.
  • Page 427 The status signals can be assigned to digital outputs. Configuration of digital outputs  429 ① The change-over is activated with the "Load parameter set" function (FALSE/TRUE edge). ② If the inverter is enabled and the motor is started, a change-over is not possible.
  • Page 428: Example 2: Activation Via Command (Immediately)

    12.9.2. Example 2: Activation via command (immediately) Activation method 0x4046 (P755.00) = "Via command (immediately) [1]": • Switches S3 and S4 serve to select the parameter set (see the following table). • Switch S2 activates the change-over. Since the change-over is activated with a rising edge, a button (normally-open contact) can be used instead of a switch.
  • Page 429: Example 3: Activation If The Selection Is Changed (Only If The Inverter Is Disabled)

    12.9.3. Example 3: Activation if the selection is changed (only if the inverter is disabled) Activation method 0x4046 (P755.00) = "If the selection is changed (disable required) [2]": • Switches S3 and S4 serve to select the parameter set (see the following table). At the same time, the change-over is activated by a status change of the selection inputs.
  • Page 430 The status signals can be assigned to digital outputs. Configuration of digital outputs  429 ① The "Load parameter set" function is ignored in this configuration. ② Change-over takes place by a status change of the selection inputs. ③ If the inverter is enabled and the motor is started, a change-over is not possible. 01-6203-01R3, CG Drives &...
  • Page 431: Example 4: Activation If The Selection Is Changed (Immediately)

    12.9.4. Example 4: Activation if the selection is changed (immediately) Activation method 0x4046 (P755.00) = "If the selection is changed (immediately) [3]": Switches S3 and S4 serve to select the parameter set (see the following table). At the same time, the change-over is activated by a status change of the selection inputs.
  • Page 432 The status signals can be assigned to digital outputs. Configuration of digital outputs  429 ① The "Load parameter set" function is ignored in this configuration. ② Change-over takes place by a status change of the selection inputs. ③ Change-over is also possible if the inverter is enabled and the motor is started. 01-6203-01R3, CG Drives &...
  • Page 433: Process Controller Function Selection

    12.10. Process controller function selection By means of the following functions, the response of the inverter can be controlled when PID control is activated. Configuring the process controller  232 Parameter Name / value range / [default setting] Info 0x2631:045 Function list: Deactivate PID controller Assignment of a trigger for the "Deactivate PID controller"...
  • Page 434 Parameter Name / value range / [default setting] Info 0x404C:001 PID influence: Acceleration time for showing If the trigger assigned in 0x2631:048 (P400.48) of the "Activate process (P607.01) (PID influence: Show time) controller influence ramp" function is TRUE, the influence of the process 0.0 ...
  • Page 435 The status signals can be assigned to digital outputs. Configuration of digital outputs  429 ① PID control is deactivated: Change-over from the configured PID control to the speed-controlled operation. ② PID control is activated again: Change-over from the speed-controlled operation to the configured PID control.
  • Page 436: Sequencer Control Functions

    12.11. Sequencer control functions The following functions serve to control the sequencer. Sequencer  327 Select sequence A sequence is selected in a binary-coded fashion via the triggers assigned to the four functions "Select sequence (bit 0)" ... " Select sequence (bit 3)" in compliance with the following truth table: Select sequence Selection...
  • Page 437 Parameter Name / value range / [default setting] Info 0x2631:030 Function list: Run/abort sequence Assignment of a trigger for the "Run/abort sequence" function. (P400.30) (Function list: Seq: Run/abort) Trigger = TRUE: Start selected sequence. Setting can only be changed if the inverter is Trigger = FALSE: Abort sequence.
  • Page 438 Parameter Name / value range / [default setting] Info 0x2631:036 Function list: Abort sequence Assignment of a trigger for the "Abort sequence" function. (P400.36) (Function list: Seq: Abort) Trigger = FALSE↗TRUE (edge): Abort sequence. Setting can only be changed if the inverter is Trigger = TRUE↘FALSE (edge): No action.
  • Page 439 Example for operating mode In the following example, the digital inputs 2 and 3 are used for controlling the sequencer. • The analog input 1 is set as standard setpoint source. • Switch S1 starts the motor in forward direction of rotation. Switch S1 in the initial position stops the motor again.
  • Page 440 The status signals can be assigned to digital outputs. Configuration of digital outputs  429 ① If the inverter is enabled and no error is active, the motor can be started with the "Run" function. As the sequence has not been started yet, first the normal setpoint control is active.
  • Page 441: Frequency Threshold For "Frequency Threshold Exceeded" Trigger

    12.12. Frequency threshold for "Frequency threshold exceeded" trigger As a function of the current output frequency, the adjustable frequency threshold serves to trigger a certain function or set a digital output. Parameter Name / value range / [default setting] Info 0x4005 Frequency threshold Threshold for the "Frequency threshold exceeded [70]"...
  • Page 442 The status signals can be assigned to digital outputs. Configuration of digital outputs  429 ① Frequency threshold 0x4005 (P412.00) ② Frequency threshold exceeded: Via trigger "Frequency threshold exceeded [70]", the digital output 1 is set to TRUE. 01-6203-01R3, CG Drives & Automation...
  • Page 443: Configuration Of Digital Inputs

    12.13. Configuration of digital inputs Settings for digital inputs 1 ... 5. Parameter Name / value range / [default setting] Info 0x2630:002 Settings for digital inputs: Input function Input function of the digital terminals DI3 and DI4. (P410.02) (DI settings: Input function) 0 Digital input DI3 = digital input DI4 = digital input...
  • Page 444: Configuration Of Analog Inputs

    12.14. Configuration of analog inputs 12.14.1. Analog input 1 Settings for analog input 1. Details The analog input 1 can be used as setpoint source.Selection of setpoint source  For the process controller, the analog input can be used for the feedback of the variable (actual value) or speed feedforward control.
  • Page 445 Parameter Name / value range / [default setting] Info 0x2636:001 Analog input 1: Input range Definition of the input range. (P430.01) (Analog input 1: AI1 input range) 0 0 ... 10 VDC 1 0 ... 5 VDC 2 2 ... 10 VDC 4 4 ...
  • Page 446: Example 1: Input Range 0

    12.14.1.1. Example 1: Input range 0 ... 10 V ≡ setting range 0 ... 50 Hz In this configuration, for instance, a frequency setpoint between 0 and 50 Hz can be set with a potentiometer connected to the analog input. Connection plan function Frequency...
  • Page 447: Example 3: Error Detection

    12.14.1.3. Example 3: Error detection In this example, the digital output 1 is set via the trigger "Error of analog input 1 active [81]" if the percentage input value is lower than 10 %. Additionally, a warning is output. Parameter Name Setting for this example 0x2634:002 (P420.02)
  • Page 448: Analog Input 2

    12.14.2. Analog input 2 Settings for analog input 2. Details The analog input 2 can be used as setpoint source.Selection of setpoint source  For the process controller, the analog input can be used for the feedback of the variable (actual value) or speed feedforward control.
  • Page 449 Parameter Name / value range / [default setting] Info 0x2637:006 Analog input 2: Filter time PT1 time constant for low-pass filter. (P431.06) (Analog input 2: AI2 filter time) By the use of a low-pass filter, the impacts of noise to an analog signal 0 ...
  • Page 450: Configuration Of Digital Outputs

    12.15. Configuration of digital outputs Parameter Name / value range / [default setting] Info 0x404D:003 PID alarms: Monitoring bandwidth PID feedback Hysteresis for status signal "PID feedback = setpoint [73]". (P608.03) signal 100 % ≡ configured variable input range (PID alarms: Bandw. feedback) Example: Variable input range 0 ...
  • Page 451 Parameter Name / value range / [default setting] Info 47 NetWordIN2 bit 13 48 NetWordIN2 bit 14 49 NetWordIN2 bit 15 50 Running TRUE if inverter and start are enabled and output frequency > 0.2 Hz. Otherwise FALSE. 51 Ready for operation TRUE if inverter is ready for operation (no error active, no STO active and DC-bus voltage ok).
  • Page 452 Parameter Name / value range / [default setting] Info 77 PID MIN-MAX alarm active TRUE if no PID alarm is active with activated PID control (MIN alarm threshold < fed back variable < MAX alarm threshold). Otherwise FALSE. Setting of MIN alarm threshold in 0x404D:001 (P608.01).
  • Page 453 Parameter Name / value range / [default setting] Info 115 Release holding brake Trigger signal for releasing the holding brake (TRUE = release holding brake). Note! If this trigger is assigned to the relay or a digital output, the deceleration times set for the respective output are not effective (are internally set to "0").
  • Page 454: Digital Output 1

    12.15.2. Digital output 1 Settings for digital output 1. Parameter Name / value range / [default setting] Info 0x2634:002 Digital outputs function: Digital output 1 Assignment of a trigger to digital output 1. (P420.02) (Dig.out.function: DO1 function) Trigger = FALSE: X3/DO1 set to LOW level. For further possible settings, see parameter Trigger = TRUE: X3/DO1 set to HIGH level.
  • Page 455 Not connected 0x2634:018 (P420.18) Not connected 0x2634:019 (P420.19) Setpoint speed reached 0x2634:020 (P420.20) Current limit reached 0x2634:021 (P420.21) Actual speed = 0 0x2634:022 (P420.22) Rotational direction reversed 0x2634:023 (P420.23) Release holding brake 0x2634:024 (P420.24) Safe torque off (STO) active 0x2634:025 (P420.25) The following parameters can be used to change the status assignment of the NetWordOUT1 data word.
  • Page 456 Parameter Name / value range / [default setting] Info 0x2634:015 Digital outputs function: NetWordOUT1 bit 5 Assignment of a trigger to bit 5 of NetWordOUT1. (P420.15) (Dig.out.function: NetWordOUT1.05) Trigger = FALSE: bit set to 0. For further possible settings, see parameter Trigger = TRUE: bit set to 1.
  • Page 457 Parameter Name / value range / [default setting] Info 115 Release holding brake Trigger signal for releasing the holding brake (TRUE = release holding brake). Note! If this trigger is assigned to the relay or a digital output, the deceleration times set for the respective output are not effective (are internally set to "0").
  • Page 458 Parameter Name / value range / [default setting] Info 0 Not inverted 1 Inverted 0x2635:023 Inversion of digital outputs: NetWordOUT1.13 Inversion of bit 13 of NetWordOUT1. 0 Not inverted 1 Inverted 0x2635:024 Inversion of digital outputs: NetWordOUT1.14 Inversion of bit 14 of NetWordOUT1. 0 Not inverted 1 Inverted 0x2635:025...
  • Page 459: Configuration Of Analog Outputs

    12.16. Configuration of analog outputs 12.16.1. Analog output 1 Settings for analog input 1. Details The analog output 1 is controlled with the signal selected in 0x2639:002 (P440.02). The following settings are possible for the analog output: • Definition of the signal range ①...
  • Page 460 Parameter Name / value range / [default setting] Info 0x2639:001 Analog output 1: Output range Definition of the output range. (P440.01) (Analog output 1: AO1 outp. range) 0 Inhibited 1 0 ... 10 VDC 2 0 ... 5 VDC 3 2 ... 10 VDC 4 4 ...
  • Page 461: Example 1: Output Voltage 0

    12.16.1.1. Example 1: Output voltage 0 ... 10 V ≡ output frequency 0 ... 100 Hz In this configuration, a voltage is provided at the analog output proportionately to the current output frequency of the inverter (1 V ≡ 10 Hz, resolution 0.1 Hz). Parameter Name Setting for this example...
  • Page 462: Technical Data

    13. Technical data 13.1. Standards and operating conditions 13.1.1. Protection of persons and device protection Degree of protection IP20 EN 60529 Type 1 NEMA 250 Protection against contact Open type only in UL-approved systems Insulation resistance Overvoltage category III EN 61800-5-1 0 …...
  • Page 463: Environmental Conditions

    13.1.4. Environmental conditions Energy efficiency Class IE2 EN 50598-2 Reference: Factory setting (switching frequency 8 kHz variable) Climate 1K3 (-25 ... +60 °C) EN 60721-3-1 Storage 2K3 (-25 ... +70 °C) EN 60721-3-2 Transport 3K3 (-10 ... +55 °C) EN 60721-3-3 operation Operation at a switching frequency of 2 or 4 kHz: above +45°C, reduce rated output current by 2.5 %/°C...
  • Page 464: 1-Phase Mains Connection 230/240 V

    The output currents apply to these operating conditions: • At a switching frequency of 2 kHz or 4 kHz: Max. ambient temperature 45°C. • At a switching frequency of 8 kHz or 16 kHz: Max. ambient temperature 40 °C. Inverter VS10-23-1P7 VS10-23-2P4 VS10-23-3P2 VS10-23-4P2...
  • Page 465: 1/3-Phase Mains Connection 230/240 V

    13.3. 1/3-phase mains connection 230/240 V Emotron VS30 inverters do not have an integrated EMC filter in the AC mains supply. In order to comply with the EMC requirements according to EN 61800−3, an external EMC filter according to IEC EN 60939 has to be used.
  • Page 466: 3-Phase Mains Connection 400 V

    13.4. 3-phase mains connection 400 V 13.4.1. Rated data The output currents apply to these operating conditions: • At a switching frequency of 2 kHz or 4 kHz: Max. ambient temperature 45°C. • At a switching frequency of 8 kHz or 16 kHz: Max. ambient temperature 40 °C. Inverter VS30-40-1P3 VS30-40-1P8...
  • Page 467 VS30-40-7P3 VS30-40-9P5 VS30-40-013 VS30-40-016 Inverter Rated power Mains voltage range 3/PE AC 340 V ... 528 V, 45 Hz ... 65 Hz Rated mains current without mains choke 12.5 17.2 with mains choke 12.4 15.7 Apparent output power Output current 2 kHz 16.5 4 kHz...
  • Page 468: 3-Phase Mains Connection 480 V

    13.5. 3-phase mains connection 480 V 13.5.1. Rated data The output currents apply to these operating conditions: • At a switching frequency of 2 kHz or 4 kHz: Max. ambient temperature 45°C. • At a switching frequency of 8 kHz or 16 kHz: Max. ambient temperature 40 °C. Inverter VS30-40-1P3 VS30-40-1P8...
  • Page 469 VS30-40-7P3 VS30-40-9P5 VS30-40-013 VS30-40-016 Inverter Rated power Mains voltage range 3/PE AC 340 V ... 528 V, 45 Hz ... 65 Hz Rated mains current without mains choke 10.5 14.3 16.6 with mains choke 10.3 13.1 Apparent output power Output current 2 kHz 4 kHz 8 kHz...
  • Page 470: Appendix

    14. Appendix 14.1. Operate and parameterise the inverter with keypad The keypad is an easy means for the local operation, parameterisation, and diagnostics of the inverter. • The keypad is simply connected to the diagnostic interface on the front of the inverter. •...
  • Page 471: Keypad Operating Mode

    14.1.1. Keypad operating mode After switching on the inverter, the keypad plugged in is in "Operating mode" after a short initialisation phase. 14.1.1.1. Keypad status display In the operating mode, the keypad displays information on the status of the inverter. Keypad display Display Meaning...
  • Page 472: Function Of Keypad Keys In Operating Mode

    14.1.1.2. Function of keypad keys in operating mode In the operating mode, the keypad can be used for local control and for manual setpoint selection. Function of keypad keys in operating mode Actuation Condition Action Shortly Local keypad control active. Run motor.
  • Page 473: Error Reset With Keypad

    14.1.1.3. Error reset with keypad Use the keypad key to reset a resettable error if the error condition no longer exists and no blocking time is active. "Error codes" table gives the blocking time (if available) for each error.  454 1.
  • Page 474: Keypad Parameterisation Mode

    14.1.2. Keypad parameterisation mode In the parameterisation mode of the keypad you can have actual values of the inverter displayed for purposes of diagnostics and change settings of the inverter. Use the change from operating mode to the parameterisation mode. •...
  • Page 475: Function Of The Keypad Keys In The Parameterisation Mode

    14.1.2.2. Function of the keypad keys in the parameterisation mode In the parameterisation mode, the arrow keys serve to select and change parameters. Function of the keypad keys in the parameterisation mode Actuation Condition Action Shortly Local keypad control active. Run motor.
  • Page 476: Save Parameter Settings With Keypad

    Changing inverter settings by means of the keypad (general operation) 14.1.2.3. Save parameter settings with keypad If one parameter setting has been changed with the keypad but has not been saved in the memory module with mains failure protection, the SET display is blinking. In order to save parameter settings in the user memory of the memory module, press the keypad enter key longer than 3 s.
  • Page 477: Display Of Status Words On Keypad

    14.1.2.4. Display of status words on keypad Some diagnostics parameters contain bit-coded status words. Each single bit has a certain meaning. Display of 16-bit status words on the keypad ① Hexadecimal value Display of 32-bit status words on the keypad ①...
  • Page 478: Error Codes

    14.2. Error codes The following table contains all error codes of the inverter in ascending order. Error code Info Error type Adjustable in Keypad display Error message 8784 0x2250 PU over current CiA: Continuous over current (internal) Fault This message contains three errors: Continuous overcurrent on the inverter/motor side.
  • Page 479 Error code Info Error type Adjustable in Keypad display Error message 12816 0x3210 DC Bus OV DC bus overvoltage Fault The DC-bus voltage of the inverter has exceeded the error threshold for overvoltage. The error threshold results from the setting of the rated mains voltage in 0x2540:001 (P208.01).
  • Page 480 Error code Info Error type Adjustable in Keypad display Error message 20754 0x5112 24V supply low 24 V supply critical Warning Notes: Logging only (Error history buffer/Logbook) 20864 0x5180 Overlaod 24V Overload 24 V supply Warning Notes: Logging only (Error history buffer/Logbook) 21376 0x5380 Incomp.
  • Page 481 Error code Info Error type Adjustable in Keypad display Error message 24979 0x6193 PU comm error PU: communication error Fault If this error occurs, the motor may not be able to be brought to standstill anymore. If communication is lost completely, the power output stage will switch off. Notes: Serious error: The inverter is inhibited immediately.
  • Page 482 Analog input 2  427 28803 0x7083 HTL input fault HTL input fault Warning Error message is not available for the inverter Emotron VS10/30. Notes: When the error type is set to "Warning", only logging takes place (Error history buffer/ Logbook)
  • Page 483 Error code Info Error type Adjustable in Keypad display Error message 29056 0x7180 Mot max current Motor overcurrent Fault 0x2D46:002 (P353.02) Notes: The error can only be reset after a blocking time of 1 s. 30336 0x7680 EPM full Memory module is full Warning The memory module contains too many parameter settings.
  • Page 484 Error code Info Error type Adjustable in Keypad display Error message 30346 0x768A Wrong EPM Memory module: wrong type Fault The plugged-in memory module is not supported by the inverter. The default setting saved in the inverter firmware is loaded. The error cannot be reset by the user. Remedy: Switch off inverter.
  • Page 485 Error code Info Error type Adjustable in Keypad display Error message 30359 0x7697 Parameter loss Parameter changes lost Fault Changed parameter settings got lost due to the removal of the 24-V voltage supply. In order to reset the error, there are the following options: Execute device command "Load default settings"...
  • Page 486  358 65282 0xFF02 BrkResistor OL.F Brake resistor: overload fault Fault Error message is not available for the inverter Emotron VS10/30. Notes: The error can only be reset after a blocking time of 5 s. 65285 0xFF05 STO error Safe Torque Off error...
  • Page 487 Keypad display Error message 65334 0xFF36 BrkResistor OL.W Brake resistor: overload warning Warning Error message is not available for the inverter Emotron VS10/30. Notes: When the error type is set to "Warning", only logging takes place (Error history buffer/ Logbook)
  • Page 488: Parameter Attribute List

    14.3. Parameter attribute list The parameter attribute list in particular contains some information required for reading and writing parameters via network. • The parameter attribute list contains all parameters of the inverter. • The parameter attribute list is sorted by addresses (index:subindex) in ascending order. How to read the parameter attribute list: Column Meaning...
  • Page 489 Parameter attribute list (short overview of all parameter indexes) * Default setting depending on the size. Address Name Default setting Category Data type Factor 0x1000 Device type (Read only) CANopen 0x1001 Error register (Read only) CANopen 0x1005 COB-ID SYNC 0x00000080 CANopen PH - 0x1006...
  • Page 490 Address Name Default setting Category Data type Factor 0x1402:002 RPDO3 communication parameter: Transmission CANopen (P542.02) type 0x1402:005 RPDO3 communication parameter: Event timer 100 ms CANopen (P542.05) 0x1600:000 RPDO1 mapping parameter: Number of mapped CANopen application objects in PDO 0x1600:001 RPDO1 mapping parameter: Application object 1 0x60400010 CANopen PH - 0x1600:002...
  • Page 491 Address Name Default setting Category Data type Factor 0x1802:002 TPDO3 communication parameter: Transmission CANopen (P552.02) type 0x1802:003 TPDO3 communication parameter: Inhibit time 0.0 ms CANopen (P552.03) 0x1802:005 TPDO3 communication parameter: Event timer 0 ms CANopen (P552.05) 0x1A00:000 TPDO1 mapping parameter: Number of mapped CANopen application objects in TPDO 0x1A00:001...
  • Page 492 Address Name Default setting Category Data type Factor 0x2001 Device name My Device general STRING[128] 1 PK - (P191.00) 0x2006:000 Error history buffer: Keypad display (Read only) general (P155.00) 0x2006:001 Error history buffer: Maximum number of (Read only) general messages 0x2006:002 Error history buffer: Latest message (Read only)
  • Page 493 Address Name Default setting Category Data type Factor 0x2022:005 Device commands: Load OEM data Off / ready [0] general (P700.05) 0x2022:006 Device commands: Save OEM data Off / ready [0] general (P700.06) 0x2022:007 Device commands: Load parameter set 1 Off / ready [0] general (P700.07) 0x2022:008...
  • Page 494 Address Name Default setting Category Data type Factor 0x230A:003 CANopen statistics: PDO3 received (Read only) CANopen (P580.03) 0x230A:005 CANopen statistics: PDO1 transmitted (Read only) CANopen (P580.05) 0x230A:006 CANopen statistics: PDO2 transmitted (Read only) CANopen (P580.06) 0x230A:007 CANopen statistics: PDO3 transmitted (Read only) CANopen (P580.07)
  • Page 495 Address Name Default setting Category Data type Factor 0x232B:012 Modbus parameter mapping: Parameter 12 0x00000000 Modbus RTU PH - (P530.12) 0x232B:013 Modbus parameter mapping: Parameter 13 0x00000000 Modbus RTU PH - (P530.13) 0x232B:014 Modbus parameter mapping: Parameter 14 0x00000000 Modbus RTU PH - (P530.14) 0x232B:015...
  • Page 496 Address Name Default setting Category Data type Factor 0x232C:022 Modbus register assignment: Register 22 (Read only) Modbus RTU (P531.22) 0x232C:023 Modbus register assignment: Register 23 (Read only) Modbus RTU (P531.23) 0x232C:024 Modbus register assignment: Register 24 (Read only) Modbus RTU (P531.24) 0x232D Modbus verification code...
  • Page 497 Address Name Default setting Category Data type Factor 0x232F:014 Modbus diagnostics of last Tx data: Data byte 12 (Read only) Modbus RTU (P585.14) 0x232F:015 Modbus diagnostics of last Tx data: Data byte 13 (Read only) Modbus RTU (P585.15) 0x232F:016 Modbus diagnostics of last Tx data: Data byte 14 (Read only) Modbus RTU (P585.16) 0x232F:017...
  • Page 498 Address Name Default setting Category Data type Factor 0x2552:003 Parameter access monitoring: Time-out time 10.0 s general (P595.03) 0x2552:004 Parameter access monitoring: Reaction No response [0] general (P595.04) 0x2552:005 Parameter access monitoring: Action No action [0] general (P595.05) 0x2552:006 Parameter access monitoring: Parameter Access (Read only) general (P595.06)
  • Page 499 Address Name Default setting Category Data type Factor 0x261C:025 Favorites settings: Parameter 25 0x26310300 general PH - (P740.25) 0x261C:026 Favorites settings: Parameter 26 0x26310400 general PH - (P740.26) 0x261C:027 Favorites settings: Parameter 27 0x26310500 general PH - (P740.27) 0x261C:028 Favorites settings: Parameter 28 0x26310600 general PH -...
  • Page 500 Address Name Default setting Category Data type Factor 0x2631:008 Function list: Run forward (CW) Not connected [0] general PC - (P400.08) 0x2631:009 Function list: Run reverse (CCW) Not connected [0] general PC - (P400.09) 0x2631:010 Function list: Jog foward (CW) Not connected [0] general PC -...
  • Page 501 Address Name Default setting Category Data type Factor 0x2631:044 Function list: Activate fault 2 Not connected [0] general (P400.44) 0x2631:045 Function list: Deactivate PID controller Not connected [0] general (P400.45) 0x2631:046 Function list: Set process controller output to 0 Not connected [0] general (P400.46) 0x2631:047...
  • Page 502 Address Name Default setting Category Data type Factor 0x2634:022 Digital outputs function: NetWordOUT1 bit 12 Actual speed = 0 [71] general (P420.22) 0x2634:023 Digital outputs function: NetWordOUT1 bit 13 Rotational direction general (P420.23) reversed [69] 0x2634:024 Digital outputs function: NetWordOUT1 bit 14 Release holding brake general [115]...
  • Page 503 Address Name Default setting Category Data type Factor 0x2637:003 Analog input 2: Max frequency value Device for 50-Hz mains: general (P431.03) 50.0 Hz Device for 60-Hz mains: 60.0 Hz 0x2637:004 Analog input 2: Min PID value 0.00 PID unit general (P431.04) 100.00 PID unit 0x2637:005...
  • Page 504 Address Name Default setting Category Data type Factor 0x282A:001 Status words: Cause of disable (Read only) general (P126.01) 0x282A:002 Status words: Cause of quick stop (Read only) general (P126.02) 0x282A:003 Status words: Cause of stop (Read only) general (P126.03) 0x282A:004 Status words: Extended status word (Read only) general...
  • Page 505 Address Name Default setting Category Data type Factor 0x2858:001 Modbus monitoring: Response to time-out Fault [3] Modbus RTU (P515.01) 0x2858:002 Modbus monitoring: Time-out time 2.0 s Modbus RTU (P515.02) 0x2860:001 Frequency control: Default setpoint source Analog input 1 [2] general (P201.01) 0x2860:002 PID control: Default setpoint source...
  • Page 506 Address Name Default setting Category Data type Factor 0x2912:005 Torque setpoint presets: Preset 5 100.0 % general (P452.05) 0x2912:006 Torque setpoint presets: Preset 6 100.0 % general (P452.06) 0x2912:007 Torque setpoint presets: Preset 7 100.0 % general (P452.07) 0x2912:008 Torque setpoint presets: Preset 8 100.0 % general (P452.08)
  • Page 507 Address Name Default setting Category Data type Factor 0x2946:006 Speed limitation: Lower frequency limit Device for 50-Hz mains: general (P340.06) -50.0 Hz Device for 60-Hz mains: -60.0 Hz 0x2946:007 Speed limitation: Actual upper speed limit x.x Hz (Read only) general (P340.07) 0x2946:008 Speed limitation: Actual lower speed limit...
  • Page 508 Address Name Default setting Category Data type Factor 0x2B08:001 V/f Imax controller: Gain 0.284 Hz/A * MCTRL 1000 (P333.01) 0x2B08:002 V/f Imax controller: Reset time 2.3 ms * MCTRL (P333.02) 0x2B09:001 Slip compensation: Gain 100.00 % general (P315.01) 0x2B09:002 Slip compensation: Filter time 5 ms general (P315.02)
  • Page 509 Address Name Default setting Category Data type Factor 0x2C01:005 Motor parameters: Rated frequency Device for 50-Hz mains: MCTRL (P320.05) 50.0 Hz Device for 60-Hz mains: 60.0 Hz 0x2C01:006 Motor parameters: Rated power 0.25 kW * MCTRL (P320.06) 230 V * 0x2C01:007 Motor parameters: Rated voltage MCTRL...
  • Page 510 Address Name Default setting Category Data type Factor 0x2D4F Motor utilisation (i²*t) x % (Read only) general (P123.00) 0x2D66:001 Mains failure control: Enable function Disabled [0] general (P721.01) 0x2D66:002 Mains failure control: DC-bus activation level 0 % * general (P721.02) 0x2D66:003 Mains failure control: Gain V-controller 0.01000 Hz/V...
  • Page 511 Address Name Default setting Category Data type Factor 0x2DA4:016 Diagnostics of analog input 1: Status (Read only) general (P110.16) 0x2DA5:001 Diagnostics of analog input 2: Value in percent x.x % (Read only) general (P111.01) 0x2DA5:002 Diagnostics of analog input 2: Frequency value x.x Hz (Read only) general (P111.02)
  • Page 512 Address Name Default setting Category Data type Factor 0x4005 Frequency threshold 0.0 Hz general (P412.00) 0x4006:001 Load loss detection: Threshold 0.0 % general (P710.01) 0x4006:002 Load loss detection: Deceleration 0.0 s general (P710.02) 0x4008:001 Process input words: NetWordIN1 0x0000 general HK r (P590.01) 0x4008:002...
  • Page 513 Address Name Default setting Category Data type Factor 0x400E:001 NetWordIN1 function: Bit 0 Not active [0] general PC - (P505.01) 0x400E:002 NetWordIN1 function: Bit 1 Not active [0] general PC - (P505.02) 0x400E:003 NetWordIN1 function: Bit 2 Activate quick stop [3] general PC - (P505.03)
  • Page 514 Address Name Default setting Category Data type Factor 0x4020:006 Process controller setup (PID): Max speed limit 100.0 % general (P600.06) 0x4021:001 PID speed operation: Acceleration time 1.0 s general (P606.01) 0x4021:002 PID speed operation: Deceleration time 1.0 s general (P606.02) 0x4022:001 PID setpoint presets: Preset 1 0.00 PID unit...
  • Page 515 Address Name Default setting Category Data type Factor 0x4027:002 Sequencer segment 2: Acceleration/deceleration 5.0 s general (P802.02) 0x4027:003 Sequencer segment 2: Time 0.0 s general (P802.03) 0x4027:004 Sequencer segment 2: Digital outputs general (P802.04) 0x4027:005 Sequencer segment 2: Analog outputs 0.00 VDC general (P802.05)
  • Page 516 Address Name Default setting Category Data type Factor 0x402B:002 Sequencer segment 6: Acceleration/deceleration 5.0 s general (P806.02) 0x402B:003 Sequencer segment 6: Time 0.0 s general (P806.03) 0x402B:004 Sequencer segment 6: Digital outputs general (P806.04) 0x402B:005 Sequencer segment 6: Analog outputs 0.00 VDC general (P806.05)
  • Page 517 Address Name Default setting Category Data type Factor 0x4030:001 Sequence 1: Step 1 Skip step [0] general (P830.01) 0x4030:002 Sequence 1: Step 2 Skip step [0] general (P830.02) 0x4030:003 Sequence 1: Step 3 Skip step [0] general (P830.03) 0x4030:004 Sequence 1: Step 4 Skip step [0] general (P830.04)
  • Page 518 Address Name Default setting Category Data type Factor 0x4034:001 Sequence 3: Step 1 Skip step [0] general (P840.01) 0x4034:002 Sequence 3: Step 2 Skip step [0] general (P840.02) 0x4034:003 Sequence 3: Step 3 Skip step [0] general (P840.03) 0x4034:004 Sequence 3: Step 4 Skip step [0] general (P840.04)
  • Page 519 Address Name Default setting Category Data type Factor 0x4038:001 Sequence 5: Step 1 Skip step [0] general (P850.01) 0x4038:002 Sequence 5: Step 2 Skip step [0] general (P850.02) 0x4038:003 Sequence 5: Step 3 Skip step [0] general (P850.03) 0x4038:004 Sequence 5: Step 4 Skip step [0] general (P850.04)
  • Page 520 Address Name Default setting Category Data type Factor 0x403C:001 Sequence 7: Step 1 Skip step [0] general (P860.01) 0x403C:002 Sequence 7: Step 2 Skip step [0] general (P860.02) 0x403C:003 Sequence 7: Step 3 Skip step [0] general (P860.03) 0x403C:004 Sequence 7: Step 4 Skip step [0] general (P860.04)
  • Page 521 Address Name Default setting Category Data type Factor 0x4040 Start of sequence mode Restart sequencer [0] general (P820.00) 0x4041:001 Parameter change-over: Parameter 1 0x00000000 general PH - (P750.01) 0x4041:002 Parameter change-over: Parameter 2 0x00000000 general PH - (P750.02) 0x4041:003 Parameter change-over: Parameter 3 0x00000000 general PH -...
  • Page 522 Address Name Default setting Category Data type Factor 0x4042:002 Parameter value set 1: Value of parameter 2 general (P751.02) 0x4042:003 Parameter value set 1: Value of parameter 3 general (P751.03) 0x4042:004 Parameter value set 1: Value of parameter 4 general (P751.04) 0x4042:005 Parameter value set 1: Value of parameter 5...
  • Page 523 Address Name Default setting Category Data type Factor 0x4043:004 Parameter value set 2: Value of parameter 4 general (P752.04) 0x4043:005 Parameter value set 2: Value of parameter 5 general (P752.05) 0x4043:006 Parameter value set 2: Value of parameter 6 general (P752.06) 0x4043:007 Parameter value set 2: Value of parameter 7...
  • Page 524 Address Name Default setting Category Data type Factor 0x4044:006 Parameter value set 3: Value of parameter 6 general (P753.06) 0x4044:007 Parameter value set 3: Value of parameter 7 general (P753.07) 0x4044:008 Parameter value set 3: Value of parameter 8 general (P753.08) 0x4044:009 Parameter value set 3: Value of parameter 9...
  • Page 525 Address Name Default setting Category Data type Factor 0x4045:008 Parameter value set 4: Value of parameter 8 general (P754.08) 0x4045:009 Parameter value set 4: Value of parameter 9 general (P754.09) 0x4045:010 Parameter value set 4: Value of parameter 10 general (P754.10) 0x4045:011 Parameter value set 4: Value of parameter 11...
  • Page 526 Address Name Default setting Category Data type Factor 0x404D:001 PID alarms: MIN alarm threshold 0.00 PID unit general (P608.01) 0x404D:002 PID alarms: MAX alarm threshold 100.00 PID unit general (P608.02) 0x404D:003 PID alarms: Monitoring bandwidth PID feedback 2.00 % general (P608.03) signal 0x404E:001...
  • Page 527 Address Name Default setting Category Data type Factor 0x6502 Supported drive modes (Read only) general (P789.00) * Default setting depending on the size.
  • Page 528 © 12/2015 | CG Drives & Automation: 01-6203-01R3/2017-11-06 CG DRIVES & AUTOMATION Mörsaregatan 12, Box 222 25 SE- 250 24 Helsingborg, Sweden +46 42 16 99 00 Info:info.se@cgglobal.com Order:order.se@cgglobal.com 01-6203-01R3, CG Drives & Automation...

This manual is also suitable for:

Vs30

Table of Contents

Save PDF