YASKAWA MP2200 User Manual

Machine controller motion module
Hide thumbs Also See for MP2200:
Table of Contents

Advertisement

MP2200/MP2300 Machine Controller
Motion Module User's Manual
Model: JAPMC-MC2310/JAPMC-MC2300
WWW.NNC.IR

Advertisement

Table of Contents
loading

Summary of Contents for YASKAWA MP2200

  • Page 1 MP2200/MP2300 Machine Controller Motion Module User’s Manual Model: JAPMC-MC2310/JAPMC-MC2300 WWW.NNC.IR...
  • Page 2 Yaskawa. No patent liability is assumed with respect to the use of the information contained herein. Moreover, because Yaskawa is con- stantly striving to improve its high-quality products, the information contained in this manual is subject to change without notice.
  • Page 3 Using this Manual Please read this manual to ensure correct usage of the SVB-01 Module of MP2200/MP2300. Keep this manual in a safe place for future reference. Basic Terms Unless otherwise specified, the following definitions are used: • SVA-01: Motion Module SVA-01 •...
  • Page 4 Manual Configuration Read the chapters of this manual as required by the purpose. Selecting Studying Designing Installation Trial Maintenance Models and Specifications the System and Wiring Operation Chapter Peripheral and Ratings Inspection Devices − − − − − Applicable Chapter 1 Motion Module Overview −...
  • Page 5 Visual Aids The following aids are used to indicate certain types of information for easier reference. Indicates important information that should be memorized. IMPORTANT Indicates supplemental information. INFO Indicates application examples. EXAMPLE Describes technical terms that are difficult to understand, or appear in the text without an TERMS explanation being given.
  • Page 6 Manual Name Manual Number Contents Machine Controller MP2200 SIEPC88070014 Describes the design and maintenance of the MP2200 User’s Manual Machine Controller. Machine Controller MP2300 SIEPC88070003 Describes the design and maintenance of the MP2300 Basic Basic Module User’s Manual Module.
  • Page 7 (cont’d) Manual Name Manual Number Contents Σ-II Series SGDH SIE-C718-4 Describes the MECHATROLINK-I communication method MECHATROLINK Interface Unit using the JUSP-NS100 application module installed on the Σ-II Series SERVOPACK. User’s Manual Σ-II Series SGDH SIEPC71080001 Describes the MECHATROLINK-II communication MECHATROLINK-II Application Module method using the JUSP-NS115 application module installed on the Σ-II Series SERVOPACK.
  • Page 8 • Do not damage, pull on, apply excessive force to, place heavy objects on, or pinch cables. There is a risk of electrical shock, operational failure or burning of the MP2200/MP2300. • Do not attempt to modify the MP2200/MP2300 in any way.
  • Page 9 • Do not step on the MP2200/MP2300 or place heavy objects on the MP2200/MP2300. There is a risk of injury. • Do not block the air exhaust port or allow foreign objects to enter the MP2200/MP2300. There is a risk of element deterioration inside, an accident, or fire.
  • Page 10 • Install breakers and other safety measure to provide protection against shorts in external wiring. There is a risk of fire. • Provide sufficient shielding when using the MP2200/MP2300 in the following locations. There is a risk of device damage.
  • Page 11 • Do not change wiring while power is being supplied. There is a risk of electrical shock or injury. • When replacing the MP2200/MP2300, restart operation only after transferring the programs and parameters from the old Module to the new Module.
  • Page 12 WWW.NNC.IR...
  • Page 13 Variable Tables System Variable Table (Tree View) The following table lists details on the system variables provided by MPE720 version 6.. Variable Name Register Comments OnCoil SB000004 Always ON Clock Calendar DayOfWeek SW00019 Calendar:Day of week HoursMinutes SW00017 Calendar:Hours Minutes MonthDate SW00016 Calendar:Month Day...
  • Page 14 (cont’d) Variable Name Register Comments ErrorInterrupt Interrupt Program Error Code SW00083 Interrupt Program Error Code Count SW00082 Interrupt Program Error Count ProgramNumber SW00138 Error Program Number ReferProgramNumber SW00139 Function Program Number ReferStep SW00140 Function Program Step Number ErrorIO I/O Error Count SW00200 I/O Error Count...
  • Page 15 (cont’d) Variable Name Register Comments LowScan Low Scan Relay FirstScanRunning SB000003 After Low Scan Start,Only 1 Scan ON OnAfter Start-up Relay FiveSecond SB00003A After 5.0s,Scan Start-up Relay OneSecond SB000038 After 1.0s,Scan Start-up Relay TwoSecond SB000039 After 2.0s,Scan Start-up Relay PulseEvery Sampling Relay HalfSecond SB000034...
  • Page 16 System Variables (Sorted by Register) Register Variable Name Comments SB000001 HighScan.FirstScanRunning After High Scan Start,Only 1 Scan ON SB000003 LowScan.FirstScanRunning After Low Scan Start,Only 1 Scan ON SB000004 OnCoil Always ON SB000010 HighScan.SquareWave.OneScan 1 Scan Flicker Relay SB000011 HighScan.SquareWave.HalfSecond 0.5s Flicker Relay SB000012 HighScan.SquareWave.OneSecond 1.0s Flicker Relay...
  • Page 17 (cont’d) Register Variable Name Comments Running Stop Require SB00040E CPU.Status.Stopped (From EWS:1=STOP,0=RUN) SB00040F CPU.Status.RunSwitch RUN switch status at power is on (1=RUN,0=STOP) SB000410 CPU.Error.Failure Important Failure SB000413 CPU.Error.Exception Exception Error SB000418 CPU.Error.ProgramError User Calculation Error SB000419 CPU.Error.IOError I/O Error SW00044 ScanTime.High.ExceededCount High Scan Over Counter SW00046...
  • Page 18 Axis Motion Parameters (Tree View) The following table lists the axismotion parameters registered for each logical axis. Register address IW (IB/IL/IF/IA) xx00 indicates the leading input register address +00. Register address OW (OB/OL/OF/OA) xx00 indicates the leading output register address +00. Variable Name Register Comments...
  • Page 19 (cont’d) Variable Name Register Comments Command Command Abort OBxx091 Abort command Busy IBxx090 Servo command busy Complete IBxx098 Servo command complete Fail IBxx093 Servo command failed GetValue IWxx08 Servo command response Hold IBxx091 Servo command holding JogRelativeMoveDirection OBxx092 Selects Jog or Step direction. Pause OBxx090 Pause command...
  • Page 20 (cont’d) Variable Name Register Comments Gain Gain IntegralClear OBxx00B Resets position loop integral value. PhaseFeedForward OWxx31 Add to the speed in 0.01% Feed Forward adds to the position to increase PositionFeedForward OWxx30 response PositionIntegration OWxx32 Time in ms used to integrate the position error PositionLoop OWxx2E Increase value for more rigid control.
  • Page 21 (cont’d) Variable Name Register Comments Latch Latch Complete IBxx0C2 Latch complete (LCOMP) CompleteN IBxx2CA Servo status L_CMP Enable OBxx004 Sets bit to activate latch trigger. Value ILxx18 Latch position (LPOS) WindowEnable OBxx094 Enables the latch zone. WindowLowerLimit OLxx2A The lower limit of the latch window WindowUpperLimit OLxx2C The upper limit of the latch window...
  • Page 22 (cont’d) Variable Name Register Comments Position Position Loads current position with ABS encoder position at AbsDataRestore OBxx007 last power off. AbsDataRestored IBxx0C8 Absolute data has been restored (ABSLDE). Actual ILxx16 Actual (feedback) position (APOS) Commanded position, incremental or absolute based Commanded OLxx1C on MoveType...
  • Page 23 (cont’d) Variable Name Register Comments ServoParameter2 ServoParameter2 GetNumber IWxx37 Second requested parameter number (Pn) GetValue ILxx3A Second requested parameter value The number of the second amplifier parameter to be SetNumber OWxx54 read or set SetSize OWxx55 The size of the second amplifier parameter data SetValue OLxx56 The value to be set for the second amplifier parameter...
  • Page 24 Axis Motion Parameters (Sorted by Register) Register Variable Name Comments IWxx00 MonitorMask Drive status mask IBxx000 Monitor.PowerUp SeqDone Motion controller ready IBxx001 Monitor.ServoOn Servo is energized. IBxx002 Monitor.ServoBusy System is busy. IBxx003 Monitor.ServoReady Servo is ready. IWxx01 Alarm.OutOfRangeParameter Parameter number that is over range ILxx02 Warning.AllMask Warning mask...
  • Page 25 (cont’d) Register Variable Name Comments IBxx0B8 Command2.Complete Servo Command2 complete IWxx0C StatusMask Status mask IBxx0C0 Position.ProfilerComplete Profiler complete (DEN) IBxx0C1 Position.InPosition In position (POSCOMP) IBxx0C2 Latch.Complete Latch complete (LCOMP) IBxx0C3 Position.InPosition2 Second in position (NEAR) IBxx0C4 Home.AtHome At home position (ZERO) IBxx0C5 Home.Complete Home complete...
  • Page 26 (cont’d) Register Variable Name Comments IBxx2EE IO.IO14 Servo I_O IO14 IBxx2EF IO.IO15 Servo I_O IO15 IWxx2F Monitor.TypeResponse Servo monitor information ILxx30 Monitor.Monitor2Value Monitor2 ILxx32 Monitor.Monitor3Value Monitor3 ILxx34 Monitor.Monitor4Value Monitor4 ILxx38 ServoParameter.GetValue Requested parameter value IWxx36 ServoParameter.GetNumber Requested parameter number (Pn) IWxx37 ServoParameter2.GetNumber Second requested parameter number (Pn)
  • Page 27 (cont’d) Register Variable Name Comments OWxx0E Torque.SpeedLimit Maximum speed allowed during torque control OWxx09 CommandMask Servo Command options OBxx090 Command.Pause Pause command OBxx091 Command.Abort Abort command OBxx092 Command.JogRelativeMoveDirection Selects Jog or Step direction. OBxx093 Home.Direction Selects home direction. OBxx094 Latch.WindowEnable Enables the latch zone.
  • Page 28 (cont’d) Register Variable Name Comments Selects which value will be returned from the servopack. Bits 4 to 7 set OWxx4E Monitor.Type monitor2and bits C to F set monitor4 OWxx4F Alarm.MonitorNumber This value determines which of the last 10 alarm codes are returned. OWxx50 ServoParameter.SetNumber The number of the amplifier parameter to be read or set...
  • Page 29 CONTENTS Using this Manual - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - iii Safety Information - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - vii Safety Precautions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - viii Variable Tables - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - xiii...
  • Page 30 3.2.1 Setup Method- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-26 3.2.2 Self-configuration - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-26 3.2.3 Module Configuration Definitions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-29 3.2.4 Servo Parameter Settings - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-36...
  • Page 31 5.2.12 Change Filter Type (CHG_FILTER) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-80 5.2.13 Change Speed Loop Gain (KVS)- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-82 5.2.14 Change Position Loop Gain (KPS) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-84 5.2.15 Change Feed Forward (KFS) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-86...
  • Page 32 (MP2200/MP2300 to SERVOPACK)- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -...
  • Page 33 Troubleshooting 10.1 Motion Errors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10-2 10.1.1 Description of Motion Errors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10-2 10.1.2 Motion Error Details and Corrections - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10-5 10.1.3 Motion Program Alarms - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10-20...
  • Page 34 xxxiv WWW.NNC.IR...
  • Page 35: Table Of Contents

    Motion Module Overview This chapter provides an overview and the features of the Motion Module. 1.1 List of Motion Modules ............1-2 1.2 SVB-01 Module Overview and Features ......... 1-4 1.2.1 Overview ....................1-4 1.2.2 Features ....................1-4 1.2.3 System Configuration Example ............. 1-5 1.2.4 System Configuration Precautions ............
  • Page 36 1 Motion Module Overview 1.1 List of Motion Modules The Motion Modules that can be used with the MP2200/MP2300 are listed below. Module Description SVB-01 Module SVA-01 Module SVR Module Name SVB-01 SVA-01 Model Number JAPMC-MC2310 JAPMC-MC2300 − LED indicators...
  • Page 37 1.1 List of Motion Modules (cont’d) Module Description SVB-01 Module SVA-01 Module SVR Module • High-speed Motion Network Baud rate: 4 Mbps or 10 Mbps Communication cycle: 0.5 ms, 1 ms, 1.5 ms, or 2 ms Transmission distance: 50 m max. •...
  • Page 38: Module Overview And Features

    MP2300: Up to 2 SVB-01 Modules can be installed in the Option Slots. Including the MP2300’s built-in SVB, up to 48 axes can be controlled. MP2200: Up to 16 SVB-01 Modules can be installed in the Option Slots. A total of 256 axes can be controlled.
  • Page 39: System Configuration Example

    The following precautions must be followed when designing a system using the SVB-01 Module. • Use the connecting cables and connectors recommended by Yaskawa. Yaskawa has a range of cables. Always check the device to be used and select the correct cable for the device.
  • Page 40: Devices Connectable To Mechatrolink

    1 Motion Module Overview 1.2.5 Devices Connectable to MECHATROLINK 1.2.5 Devices Connectable to MECHATROLINK The devices that are compatible with MECHATROLINK and can be connected to the SVB- 01 Module are listed below. ( 1 ) SERVOPACKs The following table shows SERVOPACKs that are compatible with MECHATROLINK and can be connected to the SVB-01 Module.
  • Page 41: Synchronization Between Modules

    ( 1 ) Overview Synchronization between the CPU and the Optional Modules is provided using hardware for the MP2200/MP2300. This enables synchronization between the high-speed scan and MECHATROLINK communication, resulting in synchronization between SVB Modules built into the CPU Unit and SVB-01 Modules, as well as between different SVB-01 Modules.
  • Page 42 1 Motion Module Overview 1.2.6 Synchronization between Modules ( 2 ) Conditions Under Which Synchronization Is Possible "Yes" in the following table indicates combinations for which synchronized mode is used for operation. MECHATROLINK Communication Cycle High-speed scan (RTC: 0.5 ms) 0.5 ms 1 ms 1.5 ms...
  • Page 43: Module Overview And Features

    1.3 SVA-01 Module Overview and Features ( 6 ) Conditions when the Power Supply Must Be Turned OFF and ON When any of the following operations is performed, save the settings to flash memory and then turn the power supply OFF and ON. •...
  • Page 44: Features

    MP2300: Up to two SVA-01 Modules can be installed in the Option Slots to control up to 4 axes. MP2200: Up to 16 SVA-01 Modules can be installed in the Option Slots on the Expansion Racks to control up to 32 axes.
  • Page 45: System Configuration Example

    DC 0V POWER Servos for 2 axes Use the connecting cables and connectors recommended by Yaskawa. (Note) Yaskawa has a range of cables. Always check the device to be used and select the correct cable for the device. 1-11 WWW.NNC.IR...
  • Page 46: Virtual Motion Module (Svr) Overview

    IB00000 DB00000 0 0000 IB00000 DB000020 DB000010 0002 IB00001 DB000011 0005 IB00002 DB000012 SERVOPACK 0007 IB00005 DB000015 YASKAWA SERVOPACK 200V 0009 SGDS-01A12A SVB Motion CHARGE Motion program Module High-speed scan Optional Module Servomotor SVB-01 Motion Module SERVOPACK YASKAWA SERVOPACK 200V...
  • Page 47 Module Specifications and Connections This chapter explains the specifications and connections for the SVB-01 and SVA- 01 Modules. 2.1 SVB-01 Module Specifications and Connections ....2-2 2.1.1 General Specifications ................2-2 2.1.2 LED Indicators and Switch Settings ............2-6 2.1.3 Module Connections ................2-8 2.2 SVA-01 Module Specifications and Connections ....
  • Page 48: Modules

    2 Module Specifications and Connections 2.1.1 General Specifications 2.1 SVB-01 Module Specifications and Connections 2.1.1 General Specifications ( 1 ) Hardware Specifications The following table shows the hardware specifications of the SVB-01 Module. Item Specifications Name Motion Modules Model Number JAPMC-MC2310 Description SVB-01...
  • Page 49 2.1 SVB-01 Module Specifications and Connections ( 2 ) Function Lists The following table shows the list of motion control functions for the SVB-01 Module. Item Details Number of Communication 1 line Lines Number of Communication 2 ports Ports (Connectors) Terminating Resistance JEPMC-W6022 Terminator must be purchased separately.
  • Page 50 2 Module Specifications and Connections 2.1.1 General Specifications (cont’d) Item Details Single-send (communication cycle = transmission cycle) synchronous communication Transmission/communication error detection (hardware) provided. Communication Method Synchronous communication error detection (software) provided. Automatic recovery function not provided (recovery when alarm cleared). I/O Registers Input/output using motion registers (synchronized on high-speed scan) Command Mode...
  • Page 51 2.1 SVB-01 Module Specifications and Connections ( 3 ) MECHATROLINK Communication Specifications The following table shows the MECHATROLINK communication specifications for the SVB-01 Module. Item MECHATROLINK-I MECHATROLINK-II Topology Transmission Media Twisted-pair cable Twisted-pair cable Transmission Distance 50 m max. 50 m max. Minimum Distance 0.3 m 0.5 m...
  • Page 52: Led Indicators And Switch Settings

    2 Module Specifications and Connections 2.1.2 LED Indicators and Switch Settings ■ Transmission Distance and Maximum No. of Slave Stations Transmission Distance (Total Maximum Number of Slave Communication Method Network Length) Stations MECHATROLINK-I 50 m 30 m 16 (21) MECHATROLINK-II 50 m 15 (21) * The values in parentheses apply when a JEPMC-REP2000 Repeater is used.
  • Page 53 2.1 SVB-01 Module Specifications and Connections ( 3 ) Switch Settings Both the DIP switch and rotary switches set the operating conditions for the SVB-01 Module. Use the default settings when using the Module in Master Mode. [ a ] DIP Switch SIZE and SPD are valid only in Slave Mode.
  • Page 54: Module Connections

    2 Module Specifications and Connections 2.1.3 Module Connections [ b ] Rotary Switches This rotary switch is valid only in Slave Mode. It will be ignored in Master Mode. Default Name Status Operating Mode Details Setting Local station address when in Slave Mode Sets the 10s digit of the local slave ×10 0 to 9...
  • Page 55 2.1 SVB-01 Module Specifications and Connections ■ Cables Name and Specification Model Number Length 0.5 m JEPMC-W6002-A5 JEPMC-W6002-01 JEPMC-W6002-03 JEPMC-W6002-05 MECHATROLINK Cables 10 m JEPMC-W6002-10 USB Connector – USB Connector 20 m JEPMC-W6002-20 30 m JEPMC-W6002-30 40 m JEPMC-W6002-40 50 m JEPMC-W6002-50 0.5 m JEPMC-W6003-A5...
  • Page 56 ( 2 ) SVB-01 Module Network Connections ■ Connecting the SVB-01 Module to the End of the MECHATROLINK Network The following diagram shows a network configuration example. MP2300 SVB-01 YASKAWA Terminator MECHATROLINK- Terminator YASKAWA SERVOPACK 200V YASKAWA SERVOPACK 200V SGDS-01A12A SGDS-01A12A CHARGE CHARGE VS mini V7...
  • Page 57 The following diagram shows a system configuration example. MP2300 SVB-01 YASKAWA SIZE STOP INIT CNFG TEST POWER MECHATROLINK- MECHATROLINK- Terminator Terminator YASKAWA SERVOPACK 200V YASKAWA SERVOPACK 200V SGDS-01A12A SGDS-01A12A CHARGE CHARGE VS mini V7 SERVOPACK SERVOPACK SERVOPACK Repeater Inverter SERVOPACK/Inverter for up to 16 stations...
  • Page 58 2 Module Specifications and Connections 2.1.3 Module Connections ( 3 ) Connections between Devices ■ Cable Connections between the SVB-01 and I/O Units and the SVB-01 and SERVOPACKs Cable model numbers: JEPMC-W6002- JEPMC-W6003- Pin No. Name Name (NC) (NC) /DATA /DATA DATA DATA...
  • Page 59 2.1 SVB-01 Module Specifications and Connections ■ Cable Connections between the SVB-01 and SGD- N and SGDB- SERVOPACKs Cable model number: JEPMC-W6011- SVB-01 SERVOPACK (terminating) SERVOPACK SERVOPACK MR Connector MR Connector MR Connector Name Name Name Name /DATA /DATA (NC) /DATA /DATA DATA...
  • Page 60: Module Specifications And Connections

    2 Module Specifications and Connections 2.2.1 General Specifications 2.2 SVA-01 Module Specifications and Connections 2.2.1 General Specifications ( 1 ) Hardware Specifications The following table shows the hardware specifications of the SVA-01 Module. Item Specifications Name Motion Modules Model Number JAPMC-MC2300 Abbreviation SVA-01...
  • Page 61 2.2 SVA-01 Module Specifications and Connections (cont’d) Item Specifications Conforms to JIS B 3502. Vibration amplitude/acceleration: 10 ≤ f < 57 Hz, Single-amplitude of 0.075 mm Vibration Resistance Mechanical 57 ≤ f ≤ 150 Hz, Fixed acceleration of 9.8 m/s Operating 10 sweeps (1 sweep = 1 octave per minute) each in the X, Y, and Z directions Conditions...
  • Page 62 2 Module Specifications and Connections 2.2.1 General Specifications ( 2 ) Function Lists The following table provides a list of motion control functions for SVA-01 Module. Item Details Torque Reference According to the torque unit selection parameter. Torque Reference Speed Limit at Torque (Open Loop) Rated speed percentage designation [0.01%] Reference...
  • Page 63 2.2 SVA-01 Module Specifications and Connections (cont’d) Item Details Positioning, external positioning, zero point return, interpolation, interpolation with position Motion Commands detection function, JOG operation, STEP operation, speed references, torque references, phase control, etc. Acceleration/ 1-step asymmetrical trapezoidal acceleration/deceleration, exponential acceleration/ Deceleration Method deceleration filter, moving average filter Position Units...
  • Page 64: Led Indicators And Switch Settings

    2 Module Specifications and Connections 2.2.2 LED Indicators and Switch Settings 2.2.2 LED Indicators and Switch Settings ( 1 ) External Appearance The following figure shows the external appearance of the SVA-01 Module. LED indicators Servo connector 24-V input connector +24V DC IN ( 2 ) Indicators...
  • Page 65: Module Connections

    2.2 SVA-01 Module Specifications and Connections 2.2.3 Module Connections This section explains the connections for the SVA-01 Module. ( 1 ) Connector and Cable Specifications [ a ] Servo Interface Connectors (CN1 and CN2) These connectors connect the SVA-01 Module to two SERVOPACKs. They are connected using the following standard cable.
  • Page 66 2 Module Specifications and Connections 2.2.3 Module Connections [ d ] Connection Procedure for 24-V Input Cable Use a 0.2 mm to 0.51 mm (AWG24 to AWG20) twisted-pair cable. Use the following connection procedure. Strip the wire for approximately 6.5 mm. Strip approximately 6.5 mm from the end of the wire.
  • Page 67 2.2 SVA-01 Module Specifications and Connections The following figure shows the pin names and assignments for connectors CN1 and CN2. Ground Ground (analog) (For SEN signal) General-purpose AO_0 SEN Signal analog output 0 NREF (Servo) General-purpose (speed reference output) 5-V differential phase analog input 1 AI_1 A pulse input (+)
  • Page 68 2 Module Specifications and Connections 2.2.3 Module Connections [ g ] SERVOPACK Connection Cables for SGDA- ■ Model No standard cable is available. Prepare a cable referring to the following cable connections diagram. ■ Cable Connections Diagram Analog input ground General-purpose analog input General-purpose analog input SVA-01...
  • Page 69 2.2 SVA-01 Module Specifications and Connections [ h ] SERVOPACK Connection Cables for SGDB- ■ Model No standard cable is available. Prepare a cable referring to the following cable connections diagram. ■ Cable Connections Diagram SVA-01 SGDB CN1/CN2 AO_0 ( V-REF NREF (Speed monitor...
  • Page 70 2 Module Specifications and Connections 2.2.3 Module Connections [ i ] SERVOPACK Connection Cables for SGDM/SGDH/SGDS- 01 / ■ Model JEPMC-W2040-05: 0.5 m JEPMC-W2040-10: 1.0 m JEPMC-W2040-30: 3.0 m ■ Appearance AI_1 AI_2 NP:SVA NP:SERVOPAK BAT0 /BRK+ ZERO /BRK- ■ Cable Specifications Diagram No.
  • Page 71 2.2 SVA-01 Module Specifications and Connections ■ Cable Connections Diagram Analog monitor cable (JZSP-CAS01) SGDM / SGDH / SGDS Analog input ground Black General-purpose Black analog input White Analog monitor 1 (Torque (thrust) reference monitor) Analog monitor 2 General-purpose (Speed monitor) analog input SVA-01 SGDM / SGDH / SGDS...
  • Page 72 2 Module Specifications and Connections 2.2.3 Module Connections 2-26 WWW.NNC.IR...
  • Page 73 Motion Module Setup This chapter explains the setup methods for the SVB-01, SVA-01, and SVR Modules. 3.1 SVB-01 Module Setup ............. 3-2 3.1.1 Setup Methods ..................3-2 3.1.2 Self-configuration ................... 3-3 3.1.3 Module Configuration Definitions ............3-12 3.2 SVA-01 Module Setup ............3-26 3.2.1 Setup Method ..................
  • Page 74: Module Setup

    [ e ] Saving to Flash Memory Be sure to save the settings to flash memory in the MP2200/MP2300 using the MPE720. ( 2 ) Allocation Method Use either of the following two methods to allocate the data in items (b), (c), and (d) above for the SVB-01 Module.
  • Page 75: Self-Configuration

    MECHATROLINK Network. Self-configuration can be used to reduce setup time. ( 1 ) Module Configuration Definition The following example shows a sample Module configuration definition achieved by installing a 218IF-01 Module and SVB-01 Module in the MP2200/MP2300 Option Slot, and executing self- configuration. ■ Example for the MP2300 EXAMPLE WWW.NNC.IR...
  • Page 76 ■ Example for the MP2200 EXAMPLE Self-configuration Execution Method INFO The following two methods are available: • Execution at power ON • Execution from Engineering Manager For details, refer to 6.5 Self-configuration of the Machine Controller MP2200 User’s Manual (Manual No. SIEPC88070014). WWW.NNC.IR...
  • Page 77 3.1 SVB-01 Module Setup ( 2 ) MECHATROLINK Transmission Definitions Self-configuration collects MECHATROLINK transmission definition data and slave data using the following procedure. The communication method is determined when the slave is detected, after which communication method switching and slave detection are not performed. When not even a single slave station is detected, MECHATROLINK-I communication continues.
  • Page 78 3 Motion Module Setup 3.1.2 Self-configuration [ a ] Common Setting Items Item Setting Contents Default Value Sets the communication method. Selections: Communication MECHATROLINK-II • MECHATROLINK-I type (32-byte mode) (17-byte mode) • MECHATROLINK-II (32-byte mode) • MECHATROLINK-II Sets the Module to a master or a slave. Selections: Master/Slave Master...
  • Page 79 3.1 SVB-01 Module Setup ■ MECHATROLINK-II (17-byte Mode) • Master Item Details Default Value Transmission Fixed value; display only. 10 Mbps speed Transmission byte Fixed value; display only. 16 bytes Communication 0.5 ms or 1 ms 1 ms cycle Set whether or not there is a SigmaWin connection. SigmaWin Not use Selections: Use/Not use...
  • Page 80 3 Motion Module Setup 3.1.2 Self-configuration ■ MECHATROLINK-II (32-byte Mode) • Master Item Details Default Value Transmission Fixed value; display only. 10 Mbps speed Transmission byte Fixed value; display only. 31 bytes Communication 0.5 ms, 1 ms, 1.5 ms, or 2 ms 1 ms cycle Set whether or not there is a SigmaWin connection.
  • Page 81 3.1 SVB-01 Module Setup MECHATROLINK Transmission Definitions for SVB in MP2300 CPU INFO The MECHATROLINK transmission definition is automatically set according to the detected communication method and number of slaves. Communication MECHATROLINK-II MECHATROLINK-II MECHATROLINK-I Method (32 Bytes) (17 Bytes) Transmission speed 10 Mbps 10 Mbps 4 Mbps...
  • Page 82 3 Motion Module Setup 3.1.2 Self-configuration ( 3 ) Automatically Setting Motion Parameters The motion parameters for each axis are set using self-configuration as shown below. For details on motion parameters, refer to Chapter 4 Motion Parameters. [ a ] Motion Fixed Parameters Motion fixed parameters and SERVOPACK parameters are automatically set as follows: ■...
  • Page 83 3.1 SVB-01 Module Setup ■ SVB-01 Module to SERVOPACK SVB-01 Module SERVOPACK Setting Parameters SGDH+ SGDH+ SGD-N, SGDB- SGDS NS100 NS115 Address Name → − Positioning Completed Width Pn500 Pn522 → Linear Acceleration Time Cn-0020 Pn80B → − Linear Deceleration Time Pn80E (Note)1.
  • Page 84: Module Configuration Definitions

    3 Motion Module Setup 3.1.3 Module Configuration Definitions SVB-01 Module SERVOPACK SERVOPACK Parameters SGD-N, SGDH+ SGDH+ SGDS SGDB-N NS100 NS115 Name Set Value → Excessive Following Error Area − 65535 Cn-001E → − − Overtravel Level 32767 Pn505 Excessive Following Error Alarm →...
  • Page 85 3.1 SVB-01 Module Setup ( 2 ) Module Configuration Definition Settings [ a ] Setting Items The setting names and details for the Module configuration definition are shown in the following table. Setting Details Slot Number Displays the slot number. Module Type Sets the Module to be installed in each slot.
  • Page 86 3 Motion Module Setup 3.1.3 Module Configuration Definitions [ d ] Ending the Module Configuration Definitions Select File − Close from the menus to return to the Module Configuration Window. ( 3 ) MECHATROLINK Settings This section explains the MECHATROLINK settings. [ a ] Opening the MECHATROLINK Definitions Window Double-click MECHATROLINK in the details of the Module Configuration Window.
  • Page 87 3.1 SVB-01 Module Setup [ c ] MECHATROLINK Definition Settings ■ Transmission Parameters Tab Page This tab sets the parameters required to use the MECHATROLINK communication system. Setting Details Sets the communication type, from among MECHATROLINK-I, Communication Type MECHATROLINK-II (32 Byte Mode), and MECHATROLINK-II (17 Byte Mode).
  • Page 88 3 Motion Module Setup 3.1.3 Module Configuration Definitions * 3. In the MECHATROLINK-II, the Number of slaves varies depending on the settings for SigmaWin and Number of retry to slaves. The Number of slaves is calculated as shown below. X = The value set in Number of retry to slaves Y = 1 when SigmaWin is set to use, and 0 when SigmaWin is set to not use •...
  • Page 89 Module Configuration Window. Set the scans to be synchronized with the MP2200/MP2300. The scan will be fixed at High when a SERVOPACK has been selected for the TYPE.
  • Page 90 3 Motion Module Setup 3.1.3 Module Configuration Definitions ■ Status Tab Page The Status Tab Page displays the data that is currently being transmitted by the MECHATROLINK. The tab only displays the status; the displayed values cannot be changed here. The meaning of each column is identical to the columns in the Link Assignment Tab Page except for the additional STS column.
  • Page 91 3.1 SVB-01 Module Setup ( 4 ) SVB Definitions This section explains the method used to set the motion parameters for each axis. [ a ] SVB Definitions Window Use one of the following procedures to open the Module Definitions Window. ■...
  • Page 92 3 Motion Module Setup 3.1.3 Module Configuration Definitions [ b ] SVB Definitions Menus These menus can be used only in the SVB Definitions Windows. Menu Command Function Edit Axis Data Copy Temporarily saves the displayed axis setting data. Copies the temporarily saved axis data to the Axis Data Paste currently selected axis data.
  • Page 93 3.1 SVB-01 Module Setup ■ Update Current Value This function is enabled only for servo parameters. Current values are not automatically updated when the servo parameters are displayed. Select View − Update Current Value to read and display the most recent values. The following table shows the functions given above.
  • Page 94 3 Motion Module Setup 3.1.3 Module Configuration Definitions ■ Set Up Parameters Tab Page Set the parameters required for motion control on the Set Up Parameters Tab Page. Setting Details Select the desired axis number (Axis 1 to Axis 14). Set the setting Axis Number parameters for each axis.
  • Page 95 3.1 SVB-01 Module Setup ■ SERVOPACK Tab Page Set the SERVOPACK parameters required for motion control on the SERVOPACK Tab Page. Setting Details Axis Number Select the desired axis number. Set the SERVOPACK for each axis. SERVOPACK Displays the type of SERVOPACK. Version Displays the version of SERVOPACK.
  • Page 96 3 Motion Module Setup 3.1.3 Module Configuration Definitions ■ Monitor Tab Page The Monitor Tab Page displays the current values of the motion parameters. The parameters are only displayed in the Monitor Tab Page; the settings cannot be changed here. Setting Details Axis Number...
  • Page 97 3.1 SVB-01 Module Setup [ d ] Saving, Deleting, and Closing the SVB Motion Parameters Refer to ( 2 ) Module Configuration Definition Settings under 3.1.3 Module Configuration Defini- tions. The Delete operation deletes the motion fixed parameter, setting parameter, and SERVOPACK IMPORTANT parameter settings of all axes.
  • Page 98: Module Setup

    Defines the SVA-01 Module in the MPE720's Module configuration definition. [ b ] Saving to Flash Memory Be sure to save the settings to flash memory in the MP2200/MP2300 using the MPE720. ( 2 ) Allocation Method Use either of the following two methods to allocate data for the SVA-01 Module.
  • Page 99 3.2 SVA-01 Module Setup ( 1 ) Module Configuration Definitions The following diagram shows a sample Module configuration definition achieved by installing a 218IF-01 Module and SVA-01 Module in the MP2200/MP2300 Option Slot, and executing self- configuration. ■ MP2300 Example...
  • Page 100 3 Motion Module Setup 3.2.2 Self-configuration ■ MP2200 Example EXAMPLE 3-28 WWW.NNC.IR...
  • Page 101: Module Configuration Definitions

    3.2 SVA-01 Module Setup 3.2.3 Module Configuration Definitions This section explains the methods using the MPE720 for setting the SVA-01 Module's Module configuration definitions and each of the other definitions. ( 1 ) Opening the Module Configuration Definition Window The Module Configuration Definition Window can be opened from the File Manager or Engineering Manager.
  • Page 102 3 Motion Module Setup 3.2.3 Module Configuration Definitions ( 2 ) Module Configuration Definition Settings [ a ] Setting Items The setting names and details for the Module configuration definition are shown in the following table. Setting Details Slot Number Displays the slot number.
  • Page 103 3.2 SVA-01 Module Setup ( 3 ) SVA Definitions This section explains the method used to set the motion parameters for each axis. [ a ] SVA Definitions Window Use one of the following procedures to open the Module Definitions Window. ■...
  • Page 104 3 Motion Module Setup 3.2.3 Module Configuration Definitions The SVA-01 Definitions Window is composed of three tab pages: the Fixed Parameters, Set Up Parameters, and Monitor Tab Pages. Table 3.2 Motion Parameter Window Tab Pages Tab Page Details Fixed Parameters Sets the Motion Fixed Parameters.
  • Page 105 3.2 SVA-01 Module Setup The following table shows the functions given above. Motion Motion Fixed Motion Setting Monitoring Remarks Parameters Parameters Parameters Axis Data Copy /Axis − Data Paste Parameters in bit Details format only Default Set − (Note) Yes: Operation possible, NO: Operation not possible. [ c ] Motion Parameter Settings ■...
  • Page 106 3 Motion Module Setup 3.2.3 Module Configuration Definitions ■ Set Up Parameters Tab Page Set the parameters required for motion control on the Set Up Parameters Tab Page. Setting Details Axis Number Select the desired axis number. Set the setting parameters for each axis. Servo Type Displays the motor type.
  • Page 107 3.2 SVA-01 Module Setup ■ Monitor Tab Page The Monitor Tab Page displays the current values of the motion parameters. The parameters are only displayed in the Monitor Tab Page; the settings cannot be changed here. Setting Details Axis Number Select the desired axis number.
  • Page 108: Servo Parameter Settings

    3 Motion Module Setup 3.2.4 Servo Parameter Settings [ d ] Saving, Deleting, and Closing the SVB Motion Parameters Refer to ( 2 ) Module Configuration Definition Settings under 3.1.3 Module Configuration Defini- tions. The Delete operation deletes the motion fixed parameter and setting parameter settings of all IMPORTANT axes.
  • Page 109 3.2 SVA-01 Module Setup [ b ] SGDB SERVOPACK Parameter Settings Parameter Default Name Setting Contents Remarks Value Value Servo ON input (/S-ON) enable/ Used by SVA-01 Cn-01, bit 0 Enables the Servo ON input (/S-ON). disable system. Used by SVA-01 SEN signal input enable/disable Cn-01, bit 1 Enables the SEN signal input (SEN).
  • Page 110 3 Motion Module Setup 3.2.4 Servo Parameter Settings [ c ] SGDM, SGDH, and SGDS SERVOPACK Parameter Settings ■ Parameters That Are the Same for the SGDM, SGDH, and SGDS Parameter Default Name Setting Contents Remarks Value Value Torque control (analog reference) ↔ Speed Control method selection Pn000.1 control (analog reference)
  • Page 111 3.2 SVA-01 Module Setup The I/O signals related to the SVA-01 are shown in the following connection diagram. P-OT/general-purpose input N-OT/general-purpose input SVA-01 SVA-01 SGDH/SGDS SGDH/SGDS Setting/Monitoring Parameters CN1/CN2 Selection Functions OWxx00, bit 0: Servo ON 40 SI0 /S-ON 41 SI1 /C-SEL Internal variable: Switch control mode.
  • Page 112 3 Motion Module Setup 3.2.4 Servo Parameter Settings [ b ] SGDB SERVOPACK and Motor Specifications SVA-01 Module Fixed Parameter Settings No. 23 Rated speed [min ] ÷ Cn-03 (Speed reference gain) × 1000 D/A Output Voltage at 100% Speed →...
  • Page 113 3.2 SVA-01 Module Setup ■ With a Linear Motor Connected SERVOPACK and Motor Specifications SVA-01 Module Fixed Parameter Settings Command Units per Revolution (Rotary → Pn280 (Linear scale pitch) [µm] converted to UNIT.* No. 6 Motor) or Linear Scale Pitch (Linear Motor) Pn300 (Speed reference input gain) ×...
  • Page 114 3 Motion Module Setup 3.2.4 Servo Parameter Settings ■ With a Linear Motor Connected SERVOPACK and Motor Specifications SVA-01 Module Fixed Parameter Settings Command Units per Revolution (Rotary → Pn282 (Linear scale pitch) [0.01 µm] converted to UNIT.* No. 6 Motor) or Linear Scale Pitch (Linear Motor) Pn300 (Speed reference input gain) ×...
  • Page 115 3.2 SVA-01 Module Setup [ b ] Restrictions in the SVA-01 Pulse Input Frequency The limits to the SVA-01 pulse input frequency are as shown in the following tables. Upper limit to the SVA-01 phase A/B input pulse frequency = 4 MHz (before multiplication) Therefore;...
  • Page 116: Svr Module Setup

    3 Motion Module Setup 3.3.1 Module Configuration Definition 3.3 SVR Module Setup This chapter explains the setup methods (Module Definitions) for the SVR Module. 3.3.1 Module Configuration Definition Open the SVR Window using the procedure in ( 1 ) Opening the Module Configuration Definition Window under 3.1.3 Module Configuration Definitions.
  • Page 117 3.3 SVR Module Setup ( 2 ) Motion Parameter Settings [ a ] Fixed Parameters Tab Page The fixed parameters required for Servo adjustment are set in the Fixed Parameters Tab Page. Setting Details Axis Number Select the desired axis number. Set the motion fixed parameters for each axis. Displays the parameter number for the fixed parameter.
  • Page 118 3 Motion Module Setup 3.3.1 Module Configuration Definition Setting Details Input Data (Set Data) Input (select) the parameter value. Unit Displays the units of the corresponding parameter. In online mode, the parameter's current value will be displayed. In Current Value offline mode, nothing will be displayed.
  • Page 119 3.3 SVR Module Setup Setting Details Select the desired axis number. The parameter monitor data is displayed Axis Number in axis units. Displays the parameter number for the monitoring parameter. Name (Parameter Name) Displays the parameter name. Displays the number of the register that corresponds to the parameter name.
  • Page 120 3 Motion Module Setup 3.3.1 Module Configuration Definition 3-48 WWW.NNC.IR...
  • Page 121 Motion Parameters This chapter explains each of the motion parameters. 4.1 Motion Parameters Register Numbers ........4-2 4.1.1 Motion Parameter Register Numbers for the SVB-01 Module ....4-2 4.1.2 SVA-01 Module Motion Parameter Register Numbers ......4-4 4.2 Motion Parameter Lists ............4-5 4.2.1 Fixed Parameter List ................
  • Page 122: Motion Parameters Register Numbers

    4 Motion Parameters 4.1.1 Motion Parameter Register Numbers for the SVB-01 Module 4.1 Motion Parameters Register Numbers 4.1.1 Motion Parameter Register Numbers for the SVB-01 Module The motion parameters register numbers (I and O register numbers) are determined by the circuit number and axis number.
  • Page 123 4.1 Motion Parameters Register Numbers (cont’d) Circuit Axis Number Axis Number Axis Number Axis Number Axis Number Axis Number Axis Number Axis Number 8400 to 847F 8480 to 84FF 8500 to 857F 8580 to 85FF 8600 to 867F 8680 to 86FF 8700 to 877F 8780 to 87FF 8C00 to...
  • Page 124: Module Motion Parameter Register Numbers

    F080 to F0FF F800 to F87F F880 to F8FF The maximum number of axes that can be allocated per Module differs for the MP2300 and MP2200. The maximum numbers of axes are given in the following table. Number of Maximum Number...
  • Page 125: Motion Parameter Lists

    4.2 Motion Parameter Lists 4.2 Motion Parameter Lists 4.2.1 Fixed Parameter List Name Description 0: Normal Running 1: Axis Unused 2: Simulation Mode Run Mode 3: Servo Driver Command (SERVOPACK Transparent Command Mode) 4: General-purpose I/O mode 5: Reserved mode 1 (factory adjustment mode) Bit 0: Axis Type (0: Finite length axis/1: Infinite length axis) Bit 1: Forward Software Limit Enabled (0: Disabled/1: Enabled) Bit 2: Reverse Software Limit Enabled (0: Disabled/1: Enabled)
  • Page 126 4 Motion Parameters 4.2.1 Fixed Parameter List (cont’d) Name Description Reverse Software Limit 1 = 1 reference unit Backlash Compensation 1 = 1 reference unit − Reserved Bit 0: Pulse A/B Input Signal Polarity (0: Positive logic/1: Negative logic) Hardware Signal 1 Bit 1: Pulse C Input Signal Polarity (0: Positive logic/1: Negative logic) Bits 2 to F: Reserved...
  • Page 127: Setting Parameter List

    4.2 Motion Parameter Lists (cont’d) Name Description Max. Revolution of Absolute 1 = 1 rotation Encoder Set to 0 when a direct drive motor is being used. − Reserved Feedback Speed Moving Average 1 = 1 ms Time Constant 4.2.2 Setting Parameter List Register No.
  • Page 128 4 Motion Parameters 4.2.2 Setting Parameter List (cont’d) Register No. Name Description Bits 0 to 3: Speed Unit 0: Reference unit/s 1: 10 reference unit/min 2: 0.01% (1 = 0.01%) 3: 0.0001% (1 = 0.0001%) Bits 4 to 7: Acceleration/Deceleration Units 0: Reference units/s Function 1 1: ms...
  • Page 129 4.2 Motion Parameter Lists (cont’d) Register No. Name Description 0: NOP 1: POSING 2: EX_POSING 3: ZRET 4: INTERPOLATE 5: ENDOF_INTERPOLATE 6: LATCH 7: FEED 8: STEP 9: ZSET 10: ACC 11: DCC 12: SCC 13: CHG_FILTER Motion Command 14: KVS 15: KPS 16: KFS 17: PRM_RD...
  • Page 130 4 Motion Parameters 4.2.2 Setting Parameter List (cont’d) Register No. Name Description Secondly Speed Unit is according to OW 03, bits 0 to 3 (Speed Unit). Compensation Speed Override 1 = 0.01% Reserved - General-purpose AO1 1 = 0.001 V General-purpose AO2 1 = 0.001 V Position Reference Setting...
  • Page 131 4.2 Motion Parameter Lists (cont’d) Register No. Name Description 0: DEC1 + Phase C 1: ZERO Signal 2: DEC1 + ZERO Signals 3: Phase-C signal 4: DEC2 + ZERO Signal 5: DEC1 + LMT + ZERO Signals 6: DEC2 + Phase-C Signals 7: DEC1 + LMT + Phase-C Signals 8 to 10: Reserved Home Return Type...
  • Page 132 4 Motion Parameters 4.2.2 Setting Parameter List (cont’d) Register No. Name Description Bit 0: General-purpose DO_0 (0: OFF/1: ON) Bit 1: General-purpose DO_1 (0: OFF/1: ON) Bit 2: General-purpose DO_2 (0: OFF/1: ON) General-purpose DO Bit 3: General-purpose DO_3 (0: OFF/1: ON) Bit 4: General-purpose DO_4 (0: OFF/1: ON) Bit 5: General-purpose DO_5 (0: OFF/1: ON) Bits 6 to F: Reserved...
  • Page 133: Monitoring Parameter List

    4.2 Motion Parameter Lists 4.2.3 Monitoring Parameter List Register No. Name Description Bit 0: Motion Controller Operation Ready Bit 1: Running (Servo ON) Drive Status Bit 2: System Busy Bit 3: Servo Ready Bits 4 to F: Reserved Over Range Parameter Setting parameters: 0 to 999 Number Fixed parameters: 1000 or higher...
  • Page 134 4 Motion Parameters 4.2.3 Monitoring Parameter List (cont’d) Register No. Name Description Bit 0: Command Executing (BUSY) Flag Bit 1: Command Hold Completed (HOLDL) Bit 2: Reserved Motion Command Status Bit 3: Command Error Occurrence (FAIL) Bits 4 to 7: Reserved Bit 8: Command Execution Completed (COMPLETE) Bits 9 to F: Reserved Motion Subcommand...
  • Page 135 4.2 Motion Parameter Lists (cont’d) Register No. Name Description Unit is according to OW 03, bits 0 to 3 (Speed Unit). Primary Lag Monitor 24 − (Output from primary delay element). Stores IL Position Loop Output Unit is according to OW 03, bits 0 to 3 (Speed Unit).
  • Page 136 4 Motion Parameters 4.2.3 Monitoring Parameter List (cont’d) Register No. Name Description Torque (Thrust) Reference Unit is according to OW 03, bits 12 to 15 (Torque Unit). Monitor Reserved - to IW Absolute Encoder 1 = 1 revolution Cumulative Revolutions Initial Number of 1 = 1 pulse Incremental Pulses...
  • Page 137: Module Parameter Details

    4.3 SVB-01 Module Parameter Details 4.3 SVB-01 Module Parameter Details 4.3.1 Motion Fixed Parameter Details The motion fixed parameters are listed in the following tables. ( 1 ) Run Mode Run Mode No. 0 Setting Range Setting Unit Default Value −...
  • Page 138 Refer to 7.3.2 Infinite Length Axis for details. User Constants Self-Writing Function Automatically writes MP2200/MP2300 setting parameters to the SERVOPACK parameters when a MECHATROLINK communication connection is established. Also, the automatic writing is triggered by changing the setting parameters or starting execution of a motion command.
  • Page 139 Masks MECHATROLINK communication errors detected at the MP2200/MP2300. Bit 0 0: Disabled (default) 1: Enabled No. 2 WDT Error Mask Masks MECHATROLINK watchdog timeout errors detected at the MP2200/MP2300. Bit 1 0: Disabled (default) 1: Enabled ( 4 ) Reference Unit Settings Command Unit No.
  • Page 140 2 Set the position to be detected for the software limit in the positive direction at the MP2200/MP2300. If an axis attempts to move in the positive direction past the position set here, a positive software limit alarm (IB 043) will occur.
  • Page 141 4.3 SVB-01 Module Parameter Details ( 7 ) Backlash Compensation Backlash Compensation Setting Range Setting Unit Default Value No. 16 Reference unit −2 −1 to 2 Set the backlash compensation in reference units. Backlash compensation can be disabled by setting this parameter to 0. Perform backlash compensation using the functions at the SERVOPACK.
  • Page 142 4 Motion Parameters 4.3.1 Motion Fixed Parameter Details Set the type of encoder that is used. 0: Incremental encoder 1: Absolute encoder (default) 2: Absolute encoder used as an incremental encoder. 3: Reserved ( 9 ) Encoder Settings Rated Speed Setting Range Setting Unit Default Value...
  • Page 143: Motion Setting Parameter Details

    4.3 SVB-01 Module Parameter Details 4.3.2 Motion Setting Parameter Details The motion setting parameters are listed in the following tables. : The labels shown in reverse type indicate that the parameter is enabled (Note) Position during the corresponding control mode (position control shown here). ( 1 ) RUN Commands RUN Commands Torque...
  • Page 144 4 Motion Parameters 4.3.2 Motion Setting Parameter Details (cont’d) POSMAX Preset Presets the POSMAX Number of Turns (monitoring parameter IL 1E) to the value set for the Preset Data of POSMAX Turn (setting parameter OL 4C). Bit 6 0: POSMAX Preset OFF (default) 1: POSMAX Preset ON Infinite Length Axis Position Information LOAD When an infinite length axis is used with an absolute encoder, reset the position information with the...
  • Page 145 4.3 SVB-01 Module Parameter Details ( 2 ) Mode 1 Mode 1 Torque Phase Position Speed Setting Range Setting Unit Default Value − − 0000H Deviation Abnormal Detection Error Level Set whether excessively following errors are treated as warnings or as alarms. 0: Warning (default): Axis continues to operate even if an excessively following error is detected.
  • Page 146 4 Motion Parameters 4.3.2 Motion Setting Parameter Details ( 4 ) Function 1 Function 1 Torque Phase Position Speed Setting Range Setting Unit Default Value − − 0011H Speed Units Set the unit for speed references. 0: Reference unit/s Bit 0 to Bit 3 1: 10 reference unit/min (default)
  • Page 147 4.3 SVB-01 Module Parameter Details ( 5 ) Function 2 Function 2 Phase Speed Torque Position Setting Range Setting Unit Default Value − − 0033H Latch Input Signal Type Set the latch detection signal. 0: − 1: − 2: Phase-C pulse input signal Bit 0 to 3: /EXT1 (default) Bit 3...
  • Page 148 4 Motion Parameters 4.3.2 Motion Setting Parameter Details ( 7 ) Motion Command Motion Command Torque Phase Position Speed Setting Range Setting Unit Default Value − 0 to 26 Set motion commands. 0: NOP No command 1: POSING Positioning 2: EX_POSING External Positioning 3: ZRET Zero Point Return...
  • Page 149 4.3 SVB-01 Module Parameter Details ( 8 ) Motion Command Control Flags Motion Command Options Torque Phase Position Speed Setting Range Setting Unit Default Value − − 0000H Command Pause The axis will decelerate to a stop if this bit is changed to 1 while an axis is moving during positioning, external positioning, STEP operation, or speed reference.
  • Page 150 4 Motion Parameters 4.3.2 Motion Setting Parameter Details ( 9 ) Motion Subcommands Motion Subcommand Torque Phase Position Speed Setting Range Setting Unit Default Value − 0 to 5 Set the motion subcommand to be used with the motion command. 0: NOP No command 1: PRM_RD...
  • Page 151 4.3 SVB-01 Module Parameter Details (cont’d) Speed Limit at Torque Phase Speed Torque Position Reference Setting Range Setting Unit Default Value −32768 to 32767 0.01% 15000 Set the speed limit for torque references as a percentage of the rated speed. Torque control is used to control the Servomotor to output the specified torque, so it does not control the motor speed.
  • Page 152 4 Motion Parameters 4.3.2 Motion Setting Parameter Details ( 12 ) Positive Side Limiting Torque Setting at the Speed Reference Positive Side Limiting Torque Setting at the Speed Phase Torque Position Speed Reference Setting Range Setting Unit Default Value Depends on torque unit selection.
  • Page 153 4.3 SVB-01 Module Parameter Details ( 15 ) Position Reference Setting Position Reference Setting Phase Speed Torque Position Setting Range Setting Unit Default Value Reference unit −2 −1 to 2 Set the position reference. This parameter is used by the following commands. 1: POSING Positioning 2: EX_POSING...
  • Page 154 4 Motion Parameters 4.3.2 Motion Setting Parameter Details ( 17 ) Positioning Completed Width 2 Positioning Completed Width Speed Torque Phase Position Setting Range Setting Unit Default Value 0 to 65535 Reference unit The Position Proximity (IB 0C3) will be turned ON when the absolute value of the difference between the command position and the feedback position is less than the value set here.
  • Page 155 4.3 SVB-01 Module Parameter Details ( 19 ) Position Complete Timeout Position Complete Timeout Phase Speed Torque Position Setting Range Setting Unit Default Value 0 to 65535 Set the time to detect a Positioning Time Over. If the Positioning Completed bit does not turn ON within the time set here after reference pulses have been distributed during position control, a Positioning Time Over alarm (monitoring parameter IB 046) will occur.
  • Page 156 4 Motion Parameters 4.3.2 Motion Setting Parameter Details ( 21 ) Latch Latch Zone Lower Limit Phase Speed Torque Position Setting Range Setting Unit Default Value Reference unit −2 −1 −2 to 2 Set the range in which the latch signal is valid (position from the zero position) for external positioning. The set value here is written to the SERVOPACK parameters each time an external positioning command is executed as long as the latch zone is enabled in the Latch Zone Enabled bit in Motion Command Options (setting parameter OW 09, bit 4).
  • Page 157 4.3 SVB-01 Module Parameter Details (cont’d) Speed Amends Torque Position Phase Speed Setting Range Setting Unit Default Value −32768 to 32767 0.01% Set the speed feed forward gain as a percentage of the rated speed for the phase reference command (PHASE). The setting unit for this parameter is 0.01% (fixed).
  • Page 158 4 Motion Parameters 4.3.2 Motion Setting Parameter Details ( 23 ) Acceleration/Deceleration Settings Linear Acceleration Time Phase Torque Position Speed Setting Range Setting Unit Default Value Depends on the Acceleration/ −1 Deceleration Units (OW 03, bits 0 to 2 4 to 7). Set the rate or the time constant for linear acceleration.
  • Page 159 4.3 SVB-01 Module Parameter Details ( 24 ) Filter Time Constant S-curve Acceleration Time Torque Phase Position Speed Setting Range Setting Unit Default Value 0 to 65535 0.1 ms Set the acceleration/deceleration filter time constant. Always make sure that pulse distribution has been completed (i.e., that monitoring parameter IB 0C0 is ON) before changing the time constant.
  • Page 160 4 Motion Parameters 4.3.2 Motion Setting Parameter Details ( 25 ) Zero Point Return Home Return Type Phase Speed Torque Position Setting Range Setting Unit Default Value − 0 to 19 Set the operation method when the Zero Point Return (ZRET) motion command is executed. With an incremental encoder, there are 13 different methods that can be used for the zero point return operation.
  • Page 161 4.3 SVB-01 Module Parameter Details ( 26 ) Step Distance Step Distance Phase Speed Torque Position Setting Range Setting Unit Default Value Reference unit 1000 −1 0 to 2 Set the moving amount for STEP commands. Refer to 5.2.7 STEP Operation (STEP) for details on STEP commands. Rated speed 100% Speed...
  • Page 162 4 Motion Parameters 4.3.2 Motion Setting Parameter Details ( 28 ) Coordinate System Settings Zero Point Offset Speed Torque Phase Position Setting Range Setting Unit Default Value Reference unit −2 −1 to 2 Set the offset to shift the machine coordinate system. Note: This parameter is always enabled, so make sure that the setting is correct.
  • Page 163 4.3 SVB-01 Module Parameter Details ( 30 ) SERVOPACK Commands Servo Alarm Monitor Number Torque Phase Position Speed Setting Range Setting Unit Default Value − 0 to 10 Set the number of the alarm to monitor. Set the number of the alarm to monitor for the ALM_MON or ALM_HIST motion command. The result of monitoring will be stored as the Servo Alarm Code (monitoring parameter IW 2D).
  • Page 164 4 Motion Parameters 4.3.2 Motion Setting Parameter Details ( 31 ) Supplemental Settings Fixed Parameter Number Torque Position Phase Speed Setting Range Setting Unit Default Value − 0 to 65535 Set the number of the fixed parameter to read with the FIXPRM_RD motion subcommand. The results of reading the fixed parameter will be stored in the Fixed Parameter Monitor (monitoring parameter IL 56).
  • Page 165: Motion Monitoring Parameter Details

    4.3 SVB-01 Module Parameter Details 4.3.3 Motion Monitoring Parameter Details The motion monitoring parameters are listed in the following table. ( 1 ) Drive Status Drive Status Range Unit − − Motion Controller Operation Ready This bit turns ON when RUN preparations for the Motion Module have been completed. This bit will be OFF for the following conditions: •...
  • Page 166 4 Motion Parameters 4.3.3 Motion Monitoring Parameter Details ( 3 ) Warning Warning Range Unit − − Excessively Following Error This bit turns ON if the following error exceeds the value set for Deviation Abnormal Detection Value (setting parameter OL 22) when excessively following error is set to be treated as warnings by Bit 0 setting the Deviation Abnormal Detection Error Level to 1 in Mode 1 (setting parameter OW...
  • Page 167 4.3 SVB-01 Module Parameter Details ( 4 ) Alarm Alarm Range Unit − − Servo Driver Error This bit turns ON when there is an alarm in the SERVOPACK for MECHATROLINK communication. The content of the alarm can be confirmed using the Servo Alarm Code (monitoring parameter Bit 0 2D).
  • Page 168 4 Motion Parameters 4.3.3 Motion Monitoring Parameter Details (cont’d) Excessive Speed This bit turns ON when a speed is set that exceeds the setting range for the speed reference. Bit 8 OFF: Speed normal ON: Excessive speed Excessively Following Error This bit turns ON if the following error exceeds the value set for the Deviation Abnormal Detection Value (setting parameter OL 22) when an excessively Following Error is set to be treated as an...
  • Page 169 4.3 SVB-01 Module Parameter Details (cont’d) SERVOPACK Encoder Type Mismatch Bit 1F OFF: Encoder type matches (cont’d) ON: Encoder type does not match ( 5 ) Motion Command Response Codes Servo Command Type Response Range Unit 0 to 65535 − Stores the motion command code for the command that is being executed.
  • Page 170 4 Motion Parameters 4.3.3 Motion Monitoring Parameter Details ( 7 ) Motion Subcommand Response Code Motion Subcommand Response Code Range Unit − 0 to 65535 Stores the motion subcommand code that is being executed. This is the motion subcommand code that is currently being executed and is not necessarily the same as the Motion Subcommand (setting parameter OW 0A).
  • Page 171 4.3 SVB-01 Module Parameter Details ( 9 ) Position Management Status Position Management Status Range Unit − − Distribution Completed (DEN) This bit turns ON when pulse distribution has been completed for a move command. This bit turns ON when the SERVOPACK parameter Distribution Completed (monitoring parameter Bit 0 2C8) turns ON and the SVB-01 Module’s internal distribution processing is completed.
  • Page 172 4 Motion Parameters 4.3.3 Motion Monitoring Parameter Details (cont’d) POSMAX Turn Number Presetting Completed (TPRSE) This bit turns ON when the POSMAX Preset bit in the RUN Commands (setting parameter OW bit 6) is set to 1 and the POSMAX Number of Turns has been preset with the Preset Data of POSMAX Bit 9 Turn (setting parameter OL 4C).
  • Page 173 TERMS The basic coordinate system that is set according to Zero Point Return (ZRET) command execution or Zero Point Setting (ZSET) command execution. The MP2200/MP2300 manages the positions using this machine coordinate system. ( 11 ) Reference Monitor Speed Reference Output Monitor...
  • Page 174 4 Motion Parameters 4.3.3 Motion Monitoring Parameter Details ( 12 ) SERVOPACK Status Network Servo Status Range Unit − − Alarm Occurred (ALM) Bit 0 OFF: No alarm occurred. ON: Alarm occurred. Warning Occurred (WARNING) Bit 1 OFF: No warning occurred. ON: Warning occurred.
  • Page 175 4.3 SVB-01 Module Parameter Details (cont’d) Zero Point Position (ZPOINT) Bit 6 OFF: Outside Zero Point Position Range. ON: In Zero Point Position Range. Positioning Completed (PSET) OFF: Outside Positioning Completed Width. ON: In Positioning Completed Width (for position control). Bit 7 Speed Coincidence (V-CMP) OFF: Speed does not agree.
  • Page 176 4 Motion Parameters 4.3.3 Motion Monitoring Parameter Details ( 14 ) SERVOPACK I/O Monitor Stores I/O information of the SERVOPACK. Network Servo I/O Monitor Range Unit − − Positive Drive Prohibited Input (P_OT) Bit 0 OFF: OFF ON: ON Negative Drive Prohibited Input (N_OT) Bit 1 OFF: OFF ON: ON...
  • Page 177 4.3 SVB-01 Module Parameter Details ( 15 ) SERVOPACK User Monitor Information The Monitor Selection made by the user when using a SERVOPACK for MECHATROLINK communication is stored in this parameter. Network Servo User Monitor Information Range Unit − − Bit 0 to Monitor 1 Bit 3...
  • Page 178 4 Motion Parameters 4.3.3 Motion Monitoring Parameter Details (cont’d) Stores the data of the parameter being read. This parameter stores the data of the SERVOPACK parameter read using the MECHATROLINK command area. Refer to Chapter 5 Motion Commands for details. Auxiliary Servo User Constant Range Unit...
  • Page 179 4.3 SVB-01 Module Parameter Details ( 18 ) Absolute Infinite Length Axis Position Control Information Absolute Position at Power OFF (Low Value) Range Unit pulse −2 −1 to 2 Stores information used for infinite length axis position control when an absolute encoder is used. These parameters store the encoder position in 4 words.
  • Page 180: Module Parameter Details

    4 Motion Parameters 4.4.1 Motion Fixed Parameter Details 4.4 SVA-01 Module Parameter Details 4.4.1 Motion Fixed Parameter Details ( 1 ) Run Mode Run Mode No. 0 Setting Range Setting Unit Default Value − 0 to 5 Specify the application method of the axis. 0: Normal Running (default) Use this setting when actually using an axis.
  • Page 181 4.4 SVA-01 Module Parameter Details (cont’d) Reverse Software Limit Enabled Set whether or not to use the software limit function in the negative direction. Set the software limit as the Reverse Software Limit (fixed parameter 14). This setting is disabled if the axis is set as an infinite length axis. Bit 2 The software limit function is enabled only after completing a Zero Point Return or Zero Point Setting operation (IB...
  • Page 182 4 Motion Parameters 4.4.1 Motion Fixed Parameter Details ( 3 ) Function Selection 2 Function Selection 2 Setting Range Setting Unit Default Value No. 2 − Bit Setting 0000 Hex Bit 0 Reserved for the system to Bit 2 Analog Adjustment Unfinished Warning Mask Bit 3 0: Disabled (default) 1: Enabled...
  • Page 183 2 Set the position to be detected for the software limit in the positive direction at the MP2200/MP2300. If an axis attempts to move in the positive direction past the position set here, a positive software limit alarm (IB 043) will occur.
  • Page 184 4 Motion Parameters 4.4.1 Motion Fixed Parameter Details ( 7 ) Backlash Compensation Backlash Compensation Setting Range Setting Unit Default Value No. 16 Reference unit −2 −1 to 2 Set the backlash compensation in reference units. Backlash compensation can be disabled by setting this parameter to 0. The backlash compensation's compensation direction is the opposite of the Home Direction (setting parameter OW 09, bit 3).
  • Page 185 4.4 SVA-01 Module Parameter Details ( 9 ) Pulse Measurement Pulse Count Mode Selection No. 22 Setting Range Setting Unit Default Value − 0 to 6 Set one of the following pulse count modes for pulse measurement. 0: Sign mode (Input pulse multiplier: 1) 1: Sign mode (Input pulse multiplier: 2) 2: Up/Down mode (Input pulse multiplier: 1) 3: Up/Down mode (Input pulse multiplier: 2)
  • Page 186 4 Motion Parameters 4.4.1 Motion Fixed Parameter Details ( 12 ) Servo Driver Settings Servo Driver Series No. 28 Setting Range Setting Unit Default Value − 0 to 2 Select the series of the Servo Driver being used. 0: Σ 1: Σ-II or Σ-III (default) 2: Reserved Motor Type...
  • Page 187 4.4 SVA-01 Module Parameter Details ( 13 ) Encoder Settings Rated Speed (Rotary Motor or Linear Motor) Setting Range Setting Unit Default Value No. 34 −1 1 to 32000 3000 Set this parameter based on the specifications of the motor that is being used. Set the motor's rated speed in the appropriate units for a rotary motor or linear motor, as shown below.
  • Page 188: Motion Setting Parameter Details

    4 Motion Parameters 4.4.2 Motion Setting Parameter Details 4.4.2 Motion Setting Parameter Details The motion setting parameters are listed in the following tables. (Note) : The labels shown in reverse type indicate that the parameter is Position enabled during the corresponding control mode (position control here). ( 1 ) Run Commands Run Commands Speed...
  • Page 189 4.4 SVA-01 Module Parameter Details (cont’d) Infinite Length Axis Position Information LOAD When an infinite length axis is used with an absolute encoder, this bit can be set to 1 to reset the position information with the data (encoder position and pulse position) that was set when the power was last turned OFF.
  • Page 190 4 Motion Parameters 4.4.2 Motion Setting Parameter Details ( 3 ) Function 1 Function 1 Speed Torque Position Phase Setting Range Setting Unit Default Value − Bit Setting 0011 Hex Speed Units Set the units for speed references. 0: Reference unit/s Bit 0 to 1: 10 reference unit/min (default)
  • Page 191 4.4 SVA-01 Module Parameter Details ( 5 ) Function 3 Function 3 Speed Torque Position Phase Setting Range Setting Unit Default Value − Bit Setting 0000 Hex Disable Phase Reference Generation Set whether to disable or enable phase reference generation processing when executing phase reference commands.
  • Page 192 4 Motion Parameters 4.4.2 Motion Setting Parameter Details ( 7 ) Motion Command Control Flags Motion Command Control Speed Torque Position Phase Flags Setting Range Setting Unit Default Value − Bit Setting 0000 Hex Command Pause The axis will decelerate to a stop if this bit is set to 1 while an axis is moving during positioning, external positioning, STEP operation, or speed reference.
  • Page 193 4.4 SVA-01 Module Parameter Details ( 8 ) Motion Subcommand Motion Subcommand Speed Torque Position Phase Setting Range Setting Unit Default Value − 0 to 5 Set the motion subcommands that can be used with the motion command. The Fixed Parameter Monitor function is the only valid motion subcommand. 0: NOP (No command) 1 to 4: Reserved (Reserved for the system) 5: FIXPRM_RD (Read Fixed Parameters)
  • Page 194 4 Motion Parameters 4.4.2 Motion Setting Parameter Details (cont’d) Torque Reference Primary Speed Torque Position Phase Lag Filter Setting Range Setting Unit Default Value 0 to 32767 A primary lag filter can be applied to the torque reference and torque limit. The Torque Reference Primary Lag Filter is cleared to 0 in the following cases.
  • Page 195 4.4 SVA-01 Module Parameter Details ( 12 ) Secondary Speed Compensation Secondary Speed Position Phase Speed Torque Compensation Setting Range Setting Unit Default Value Same as the Speed Units −2 to 2 −1 Set the speed feed forward amount for the Phase Reference command (PHASE). The setting unit for Speed Amends (setting parameter OW 31) is 0.01% (fixed).
  • Page 196 4 Motion Parameters 4.4.2 Motion Setting Parameter Details ( 15 ) Position Reference Position Reference Phase Speed Position Torque Setting Range Setting Unit Default Value Reference unit −2 −1 to 2 Set the position reference. This parameter is used for the following commands. 1: POSING Positioning 2: EX_POSING...
  • Page 197 4.4 SVA-01 Module Parameter Details ( 17 ) Position Proximity Range Position Proximity Range Speed Position Phase Torque Setting Range Setting Unit Default Value 0 to 65535 Reference unit Position Proximity (IB 0C3) will be turned ON when the absolute value of the difference between the command position and the feedback position is less than the value set here.
  • Page 198 4 Motion Parameters 4.4.2 Motion Setting Parameter Details ( 19 ) Position Compensation Position Compensation Phase Speed Position Torque Setting Range Setting Unit Default Value Reference unit −2 −1 to 2 Set the value used for position compensation. ( 20 ) Position Complete Timeout Position Complete Timeout Phase Speed...
  • Page 199 4.4 SVA-01 Module Parameter Details ( 22 ) Latch Latch Zone Lower Limit Position Phase Speed Torque Setting Setting Range Setting Unit Default Value Reference unit −2 to 2 −1 −1 Set the range in which the latch signal is valid (position from the zero position) for external positioning. Latch Zone Upper Limit Phase Speed...
  • Page 200 4 Motion Parameters 4.4.2 Motion Setting Parameter Details ( 24 ) Acceleration/Deceleration Settings Linear Acceleration Time Phase Speed Position Torque Setting Range Setting Unit Default Value Acceleration/Deceleration Units (setting parameter OW 03, bits 4 0 to 2 −1 to 7) Set the linear acceleration rate or linear acceleration time constant.
  • Page 201 4.4 SVA-01 Module Parameter Details ( 25 ) Filters S-curve Acceleration Time Speed Position Phase Torque Setting Range Setting Unit Default Value 0 to 65535 0.1 ms Sets the acceleration/deceleration filter time constant. Always verify that pulse distribution has been completed (monitoring parameter IB 0C0 is ON) before changing the time constant.
  • Page 202 4 Motion Parameters 4.4.2 Motion Setting Parameter Details ( 26 ) Zero Point Return Home Return Type Phase Speed Position Torque Setting Range Setting Unit Default Value − 0 to 19 Set the operation method used when the Zero Point Return (ZRET) motion command is executed. With an incremental encoder, there are 17 different methods that can be used for the Zero Point Return operation.
  • Page 203 4.4 SVA-01 Module Parameter Details ( 27 ) Step Distance Step Distance Phase Speed Position Torque Setting Range Setting Unit Default Value Reference unit 1000 −1 0 to 2 Set the amount of movement for the STEP command. Refer to 5.2.7 STEP Operation (STEP) for details on STEP command. Rated speed 100% Speed...
  • Page 204 4 Motion Parameters 4.4.2 Motion Setting Parameter Details ( 29 ) Coordinate System Settings Zero Point Offset Speed Position Phase Torque Setting Range Setting Unit Default Value Reference unit −2 −1 to 2 Set the offset to shift the machine coordinate system. This parameter is always effective, so be sure that the setting is correct.
  • Page 205 4.4 SVA-01 Module Parameter Details (cont’d) General-purpose DO _3 Bit 3 0: OFF (default) 1: ON General-purpose DO _4 Bit 4 0: OFF (default) 1: ON (cont’d) General-purpose DO _5 This parameter can be used only in General-purpose I/O Mode. Bit 5 Used by the system in normal Run Mode.
  • Page 206 4 Motion Parameters 4.4.2 Motion Setting Parameter Details ( 33 ) Various Data Monitor Data Command Phase Speed Torque Position Setting Range Setting Unit Default Value − −2 to 2 −1 This parameter is reserved for the system. Do not use this setting. Write Data Type Phase Speed...
  • Page 207: Motion Monitoring Parameter Details

    4.4 SVA-01 Module Parameter Details 4.4.3 Motion Monitoring Parameter Details The motion monitoring parameters are listed in the following table. ( 1 ) Drive Status Drive Status Range Unit − Bit Setting Motion Controller Operation Ready This bit is turned ON when preparations are completed and the Motion Module is ready for operation. This bit will be OFF under the following conditions: •...
  • Page 208 4 Motion Parameters 4.4.3 Motion Monitoring Parameter Details ( 3 ) Warning Warning Range Unit − − Excessively Following Error This bit turns ON if the following error exceeds the value set for Deviation Abnormal Detection Value (setting parameter OL 22) when following errors are set to be treated as warnings by setting the Bit 0 Deviation Abnormal Detection Error Level to 1 in Mode 1 (setting parameter OW...
  • Page 209 4.4 SVA-01 Module Parameter Details ( 4 ) Alarm Alarm Range Unit − Bit Setting Servo Driver Error This bit turns ON when there is an alarm in the SERVOPACK. The content of the alarm can be confirmed by connecting a Digital Operator to the SERVOPACK. Bit 0 Refer to the ( 4 ) Analog Servo Alarm List on 10.1.2 Motion Error Details and Corrections.
  • Page 210 4 Motion Parameters 4.4.3 Motion Monitoring Parameter Details (cont’d) Zero Point Not Set This bit turns ON if a move command (other than JOG or STEP) is performed on an infinite length Bit D axis, but the zero point has not been set for the axis. OFF: Zero point set ON: Zero point not set error ABS Encoder Count Exceeded...
  • Page 211 4.4 SVA-01 Module Parameter Details ( 6 ) Motion Command Status Motion Command Status Range Unit − − Command Executing (BUSY) Flag This bit indicates the motion command's execution status. Refer to Chapter 5 Motion Commands for details on command timing charts. Bit 0 OFF: READY (completed) ON: BUSY (processing)
  • Page 212 4 Motion Parameters 4.4.3 Motion Monitoring Parameter Details ( 8 ) Motion Subcommand Status Motion Subcommand Status Range Unit − Bit Setting Command Executing (BUSY) Flag This bit indicates the motion subcommand's execution status. Bit 0 OFF: READY (completed) ON: BUSY (processing) This bit turns ON during execution of commands that have completions or during abort processing.
  • Page 213 4.4 SVA-01 Module Parameter Details ( 9 ) Position Management Status Position Management Status Range Unit − Bit Setting Distribution Completed (DEN) This bit turns ON when pulse distribution has been completed for a move command. Bit 0 OFF: Distributing pulses. ON: Distribution completed.
  • Page 214 4 Motion Parameters 4.4.3 Motion Monitoring Parameter Details (cont’d) ABS System Infinite Length Position Control Information LOAD Completed (ABSLDE) This bit turns ON when the Infinite Length Axis Position Information LOAD bit is set to 1 in the Run Bit 8 Commands (setting parameter OW 00, bit 7) and loading of the information has been completed.
  • Page 215 4.4 SVA-01 Module Parameter Details (cont’d) Machine Coordinate Feedback Position (APOS) Range Unit Reference unit −2 −1 to 2 Stores the feedback position in the machine coordinate system managed by the Motion Module. • This parameter will be set to 0 when a Zero Point Return (ZRET) is executed. (Note)...
  • Page 216 4 Motion Parameters 4.4.3 Motion Monitoring Parameter Details ( 11 ) Speed Information Speed Reference Output Monitor Range Unit Speed Units (setting parameter −2 −1 to 2 03, bits 0 to 3) Stores the speed reference that is being output. This parameter will be 0 for interpolation or phase control.
  • Page 217 4.4 SVA-01 Module Parameter Details ( 12 ) Servo Driver Information 2 Feedback Speed Range Unit Speed Units (setting parameter −2 to 2 −1 03, bits 0 to 3) Stores the feedback speed. The units for this parameter are set with the Speed Units parameter in Function 1 (setting parameter OW 03, bits 0 to 3).
  • Page 218 4 Motion Parameters 4.4.3 Motion Monitoring Parameter Details ( 15 ) Supplemental Information 2 General-purpose Digital Input (DI) Monitor Range Unit − Bit Setting General-purpose DI 0 Bit 0 This parameter can be used only in General-purpose I/O Mode. Used by the system in normal Run Mode to store the Servo Alarm input. General-purpose DI 1 Bit 1 This parameter can be used only in General-purpose I/O Mode.
  • Page 219 4.4 SVA-01 Module Parameter Details ( 17 ) Absolute Infinite Length Axis Position Control Information Absolute Position at Power OFF (Lower 2 Words) Range Unit Pulse −2 −1 to 2 This is the information for infinite length axis position control when an absolute encoder is used. The encoder position is normally stored in 4 words.
  • Page 220: Example Of Setting Motion Parameters For The Machine

    4 Motion Parameters 4.5 Example of Setting Motion Parameters for the Machine Set the following seven motion parameters to enable motion control that suits the machine’s specifications. • Reference Unit • Electronic Gear • Axis Type • Position Reference • Speed Reference •...
  • Page 221 4.5 Example of Setting Motion Parameters for the Machine Parameter No. Default Parameter Type Name Description (Register No.) Value • This parameter shows the load moving amount for each rotation of the load axis. Sets the load moving amount value divided by the reference unit.
  • Page 222 4 Motion Parameters [ a ] Parameter Setting Example Using Ball Screw EXAMPLE Servomotor 7 rotations Ball screw pitch P = 6 mm/rotation 5 rotations In the above machine system, if the requirement is reference unit = output unit = 0.001 mm, the setting of each parameter will be as follows: 6 mm = 6000...
  • Page 223 4.5 Example of Setting Motion Parameters for the Machine ( 3 ) Axis Type Selection There are two types of position control: Finite length position control: Return and other operations are performed only within a specified range, i.e., within a prescribed positioning interval. Infinite length position control: Used for moving in one direction only.
  • Page 224 4 Motion Parameters ( 4 ) Position References The target position value for position control is set for the Position Reference Setting (motion setting parameter OL 1C). There are two methods that can be set for using the Position Reference Setting: Directly setting the coordinate of the target position value as an absolute value or adding the moving amount from the previous command position as a incremental value.
  • Page 225 4.5 Example of Setting Motion Parameters for the Machine ( 5 ) Speed Reference There are two methods of setting the speed reference for the feed speed or other speeds. One method involves using reference units and the other method involves setting the percentage (%) of the rated speed.
  • Page 226 4 Motion Parameters [ a ] Speed Reference Parameter Setting Examples (1) No. 5 = 3 digits EXAMPLE −1 No. 34 = 3,000 min No. 36 = 65,536 pulses/rotation –1 Therefore, rated speed = 3,000 min = 3000 × 65,536 = 196,608,000 ppm 1.
  • Page 227 4.5 Example of Setting Motion Parameters for the Machine [ b ] Speed Reference Parameter Setting Examples (2) 1.When the Speed Unit (OW 03, bits 0 to 3) is set as follows: EXAMPLE 0: Reference units/s 1: 10 reference units/min Speed Reference Speed...
  • Page 228 4 Motion Parameters ( 6 ) Acceleration/Deceleration Settings The acceleration/deceleration can be set to either the rate of acceleration/deceleration or the time required to reach the rated speed from 0. The parameters related to acceleration/deceleration settings are listed in the following table. Parameter No.
  • Page 229 4.5 Example of Setting Motion Parameters for the Machine [ a ] When the Acceleration/Deceleration Unit (OW 03, Bits 4 to 7) Set to 0: Reference Unit/s EXAMPLE Speed (100%) Specified speed Linear Linear Acceleration Deceleration Time Time Time [ b ] When the Acceleration/Deceleration Unit (OW 03, Bits 4 to 7) Set to 1: ms EXAMPLE Speed...
  • Page 230 4 Motion Parameters ( 7 ) Acceleration/Deceleration Filter Settings There are two types of acceleration/deceleration filter: The exponential acceleration/deceleration filter and the moving average filter. The parameters related to the acceleration/deceleration filter settings are listed in the following table. When using an acceleration/deceleration filter, always execute the Change Filter Type command (OW 08 = 13) in advance to enable the filter type selection.
  • Page 231 Motion Commands This chapter explains each motion command’s operation, related parameters, and timing charts. 5.1 Motion Commands ..............5-2 5.1.1 Motion Command Table ................. 5-2 5.1.2 Motion Commands Supported by SERVOPACK Models ...... 5-3 5.2 Motion Command Details ............5-4 5.2.1 Positioning (POSING) ................
  • Page 232: Motion Commands

    5 Motion Commands 5.1.1 Motion Command Table 5.1 Motion Commands 5.1.1 Motion Command Table Command Command Name Description Code No command Positions to the specified position using the specified POSING Positioning acceleration/deceleration times and the specified speed. Positions by moving the external positioning travel EX_POSING External Positioning distance from the point an external positioning signal was...
  • Page 233: Motion Commands Supported By Servopack Models

    5.1 Motion Commands 5.1.2 Motion Commands Supported by SERVOPACK Models The following table shows the motion commands supported by each model of SERVOPACK. A Motion Command Setting Error warning will occur if an unsupported command is specified. SERVOPACK Σ-II, -III SGDH- SGDS- Motion Command...
  • Page 234: Motion Command Details

    5 Motion Commands 5.2.1 Positioning (POSING) 5.2 Motion Command Details 5.2.1 Positioning (POSING) The POSING command positions the axis to the target position using the specified target position and speed. Parameters related to acceleration and deceleration are set in advance. The speed and target position can be changed during operation.
  • Page 235 5.2 Motion Command Details ( 2 ) Holding Axis travel can be stopped during command execution and then the remaining travel can be restarted. A command is held by setting the Command Pause bit (OB 090) to 1. Set the Command Pause bit (OB 090) to 1.
  • Page 236 5 Motion Commands 5.2.1 Positioning (POSING) Parameter Name Setting This parameter allows the positioning speed to be changed without changing the Speed Reference (OL 10). Set the speed as a percentage of the Speed Reference Speed Override Setting. This setting can be changed during operation. Setting range: 0 to 32767 (0% to 327.67%) Setting unit: 1 = 0.01% Example: Setting for 50%: 5000 Position Reference...
  • Page 237 5.2 Motion Command Details ( 5 ) Timing Charts [ a ] Normal Execution 08 = 1 (POSING) 08 = 1 (POSING) 090 (BUSY) 093 (FAIL) 098 (COMPLETE) 0C0 (DEN) 0C1 (POSCOMP) 1 scan Undefined length of time [ b ] Execution when Aborted 08 = 1 (POSING) 091 (ABORT) 08 = 1 (POSING)
  • Page 238 5 Motion Commands 5.2.1 Positioning (POSING) [ c ] Execution when Aborting by Changing the Command 08 = 1 (POSING) 08 = 1 (POSING) 090 (BUSY) 093 (FAIL) 1 scan 098 (COMPLETE) 0C0 (DEN) 0C1 (POSCOMP) 1 scan Undefined length of time [ d ] Command Hold 08 = 1 (POSING) 090 (HOLD)
  • Page 239: External Positioning (Ex_Posing)

    5.2 Motion Command Details [ e ] Execution when an Alarm Occurs 08 = 1 (POSING) 08 = 1 (POSING) 090 (BUSY) 093 (FAIL) 098 (COMPLETE) 0C0 (DEN) 0C1 (POSCOMP) 1 scan Undefined length of time Alarm 5.2.2 External Positioning (EX_POSING) The EX_POSING command positions the axis to the target position using the specified target position and speed.
  • Page 240 5 Motion Commands 5.2.2 External Positioning (EX_POSING) Set the motion setting parameters. • External Positioning Move Distance: • External Positioning Signal: OW • Positioning Speed: OL Speed • Acceleration/Deceleration Filter Type: Rated speed 100% • Speed Loop P/PI Switch: OW External positioning Positioning move distance...
  • Page 241 5.2 Motion Command Details ( 3 ) Aborting Axis travel can be stopped during command execution and the remaining travel cancelled by aborting execution of a command. A command is aborted by setting the Command Abort bit (OB 091) to Set the Command Abort bit (OB 091) to 1.
  • Page 242 5 Motion Commands 5.2.2 External Positioning (EX_POSING) (cont’d) Parameter Name Setting Linear Acceleration Set the rate of acceleration or acceleration time constant for positioning. Time Linear Deceleration Set the rate of deceleration or deceleration time constant for positioning. Time Set the acceleration/deceleration filter time constant. Exponential acceleration/deceleration or a S-Curve Acceleration moving average filter can be selected in OW Time...
  • Page 243 5.2 Motion Command Details ( 5 ) Timing Charts [ a ] Normal Execution This position is stored. IL Travel distance 08 = 2 (EX_POSING) 08 = 2 (EX_POSING) 090 (BUSY) 093 (FAIL) 098 (COMPLETE) 0C0 (DEN) 0C1 (POSCOMP) Latch signal* 1 scan Undefined length of time Phase-C EXT1,2,3...
  • Page 244 5 Motion Commands 5.2.2 External Positioning (EX_POSING) [ c ] Execution when Aborting by Changing the Command 08 = 2 (EX_POSING) 08 = 2 (EX_POSING) 090 (BUSY) 093 (FAIL) 098 (COMPLETE) 0C0 (DEN) 0C1 (POSCOMP) 1 scan Undefined length of time [ d ] Execution when an Alarm Occurs 08 = 2 (EX_POSING) 08 = 2 (EX_POSING)
  • Page 245 5.2 Motion Command Details 5.2.3 Zero Point Return (ZRET) When the Zero Point Return command (ZRET) is executed, the axis will return to the zero point of the machine coordinate system. The operation to detect the position of the zero point is different between an absolute encoder and an incremental encoder.
  • Page 246: Zero Point Return (Zret)

    5 Motion Commands 5.2.3 Zero Point Return (ZRET) (cont’d) Setting Signal Meaning Parameter Name Method SVB-01 SVA-01 POT: SERVOPACK P-OT Uses only the positive overtravel signal POT Only P-OT: DI_3 signal. This method must not be used if repeat accuracy is required. P-OT: DI_3 Home LS &...
  • Page 247 5.2 Motion Command Details ( 2 ) Zero Point Return Operation and Parameters This section explains the operation that occurs after starting a zero point return and the parameters that need to be set before executing the command. [ a ] DEC1 + C-Phase Method (OW 3C = 0) Travel is started at the zero point return speed in the direction specified in the parameters.
  • Page 248 5 Motion Commands 5.2.3 Zero Point Return (ZRET) (cont’d) Parameter Name Setting Deceleration Limit Set whether or not to invert the polarity of the DI_5 signal, which is Fixed Parameter Switch Inversion used for DEC1. (OW 05, bit 8, will not reverse status.) No.
  • Page 249 5.2 Motion Command Details [ c ] DEC1 + ZERO Signal Method (OW 3C = 2) Travel is started at the zero point return speed in the direction specified in the parameters. When the rising edge of the DEC1 signal is detected, the speed is reduced to the approach speed. When the rising edge of the ZERO signal is detected after passing the DEC1 signal, the speed is reduced to the creep speed and positioning is performed.
  • Page 250 5 Motion Commands 5.2.3 Zero Point Return (ZRET) Deceleration LS Signal When bit 0 of fixed parameter No. 21 is 0, input the DEC1 signal (DEC1) for Zero Point from the ladder program. Return (Note) Reverse type in : Parameters only for the SVA-01 Module. [ d ] C-Phase Method (OW 3C = 3) Travel is started at the approach speed in the direction specified in the parameters.
  • Page 251 5.2 Motion Command Details [ e ] DEC2 + ZERO Signal Method (OW 3C = 4) With this method, the machine's position is confirmed by the ON/OFF status of the DEC2 signal and the retracting operation is performed automatically, so the zero point return is always performed with the same conditions.
  • Page 252 5 Motion Commands 5.2.3 Zero Point Return (ZRET) ■ Starting the Zero Point Return in the Low Region The axis travels in the reverse direction at the Approach Speed (setting parameter 3E). When the rising edge of the DEC2 signal is detected, the axis decelerates to a stop. After decelerating to a stop, the axis travels in the forward direction at the Creep Speed (setting parameter OL 40).
  • Page 253 5.2 Motion Command Details ■ Related Parameters Parameter Name Setting Contents Home Return Type 4: DEC2 + ZERO Signal Method Sets the speed to use when starting a zero point return. Speed Reference Only a positive value can be set. An error will occur if a negative value is set.
  • Page 254 5 Motion Commands 5.2.3 Zero Point Return (ZRET) [ f ] DEC1 + LMT + ZERO Signal Method (OW 3C = 5) With this method, the machine's position is confirmed by the ON/OFF status of the DEC1, Reverse Limit, and Forward Limit signals and the retracting operation is performed automatically, so the zero point return is always performed with the same conditions.
  • Page 255 5.2 Motion Command Details ■ Related Parameters Parameter Name Setting Contents Home Return Type 5: DEC1 + LMT + ZERO Signal Method Sets the speed to use when starting a zero point return. Speed Reference Only a positive value can be set. An error will occur if a negative value is set.
  • Page 256 5 Motion Commands 5.2.3 Zero Point Return (ZRET) ■ Starting the Zero Point Return in Region B The axis travels in the reverse direction at the Approach Speed (setting parameter 3E). When the falling edge of the Reverse Limit signal is detected, the axis decelerates to a stop.
  • Page 257 5.2 Motion Command Details ■ Starting the Zero Point Return in Region C The axis travels in the reverse direction at the Creep Speed (setting parameter 40). When the rising edge of the DEC1 signal is detected, the axis decelerates to a stop. After decelerating to a stop, the axis travels in the forward direction at the Creep Speed (setting parameter OL 40).
  • Page 258 5 Motion Commands 5.2.3 Zero Point Return (ZRET) ■ Starting the Zero Point Return in Region D The axis travels in the reverse direction at the Approach Speed (setting parameter 3E). When the rising edge of the DEC1 signal is detected, the axis decelerates to a stop. After decelerating to a stop, the axis travels in the forward direction at the Creep Speed (setting parameter OL 40).
  • Page 259 5.2 Motion Command Details ■ Starting the Zero Point Return in Region E The axis travels in the reverse direction at the Approach Speed (setting parameter 3E). When the rising edge of the DEC1 signal is detected, the axis decelerates to a stop. After decelerating to a stop, the axis travels in the forward direction at the Creep Speed (setting parameter OL 40).
  • Page 260 5 Motion Commands 5.2.3 Zero Point Return (ZRET) [ g ] DEC2 + Phase-C Pulse Method (OW 3C = 6) With this method, the machine's position is confirmed by the ON/OFF status of the DEC2 signal and the retracting operation is performed automatically, so the zero point return is always performed with the same conditions.
  • Page 261 5.2 Motion Command Details ■ Starting the Zero Point Return in the Low Region The axis travels in the reverse direction at the Approach Speed (setting parameter 3E). When the rising edge of the DEC2 signal is detected, the axis decelerates to a stop. After decelerating to a stop, the axis travels in the forward direction at the Creep Speed (setting parameter OL 40).
  • Page 262 5 Motion Commands 5.2.3 Zero Point Return (ZRET) ■ Related Parameters Parameter Name Setting Contents Home Return Type 6: DEC2 + Phase-C Pulse Method Sets the speed to use when starting a zero point return. Speed Reference Only a positive value can be set. An error will occur if a negative value is set.
  • Page 263 5.2 Motion Command Details [ h ] DEC1 + LMT + Phase-C Pulse Method (OW 3C = 7) With this method, the machine's position is confirmed by the ON/OFF status of the DEC1, Reverse Limit, and Forward Limit signals and the retracting operation is performed automatically, so the zero point return is always performed with the same conditions.
  • Page 264 5 Motion Commands 5.2.3 Zero Point Return (ZRET) ■ Related Parameters Parameter Name Setting Contents Home Return Type 7: DEC1 + LMT + Phase-C Pulse Method Sets the speed to use when starting a zero point return. Speed Reference Only a positive value can be set. An error will occur if a negative value is set.
  • Page 265 5.2 Motion Command Details ■ Starting the Zero Point Return in Region B The axis travels in the reverse direction at the Approach Speed (setting parameter 3E). When the falling edge of the Reverse Limit signal is detected, the axis decelerates to a stop.
  • Page 266 5 Motion Commands 5.2.3 Zero Point Return (ZRET) ■ Starting the Zero Point Return in Region C The axis travels in the reverse direction at the Creep Speed (setting parameter 40). When the rising edge of the DEC1 signal is detected, the axis decelerates to a stop. After decelerating to a stop, the axis travels in the forward direction at the Creep Speed (setting parameter OL 40).
  • Page 267 5.2 Motion Command Details ■ Starting the Zero Point Return in Region D The axis travels in the reverse direction at the Approach Speed (setting parameter 3E). When the rising edge of the DEC1 signal is detected, the axis decelerates to a stop. After decelerating to a stop, the axis travels in the forward direction at the Creep Speed (setting parameter OL 40).
  • Page 268 5 Motion Commands 5.2.3 Zero Point Return (ZRET) ■ Starting the Zero Point Return in Region E The axis travels in the reverse direction at the Approach Speed (setting parameter 3E). When the rising edge of the DEC1 signal is detected, the axis decelerates to a stop. After decelerating to a stop, the axis travels in the forward direction at the Creep Speed (setting parameter OL 40).
  • Page 269 5.2 Motion Command Details [ i ] New Phase-C Pulse Method (OW 3C = 11) Travel is started at the creep speed in the direction specified by the sign of the creep speed. When the rising edge of the phase-C pulse is detected, positioning is performed at the positioning speed. When positioning has been completed, a machine coordinate system is established with the final position as the zero point.
  • Page 270 5 Motion Commands 5.2.3 Zero Point Return (ZRET) Parameter Name Setting Home Return Type 11: C Pulse Only Method Set the positioning speed to use after detecting the phase-C pulse. The Speed Reference sign is ignored. The travel direction will depend on the sign of the Home Offset.
  • Page 271 5.2 Motion Command Details Parameter Name Setting Home Return Type 12: POT & C pulse Method Set the zero point return speed to use after detecting the phase-C pulse. Speed Reference The sign is ignored. The zero point return direction will depend on the sign of the Home Offset.
  • Page 272 5 Motion Commands 5.2.3 Zero Point Return (ZRET) Start Zero Point Home Offset Positioning Speed ∗1 ∗2 * 1. The SERVOPACK P-OT signal. * 2. The SERVOPACK N-OT signal. (Note) The stopping method when the OT signal is detected depends on the setting of SERVOPACK parameters.
  • Page 273 5.2 Motion Command Details Approach Speed Positioning Speed Creep Speed Home Offset Start Zero Point HOME signal Phase-C pulse Detecting the OT Signal during Approach Speed Movement Approach Speed Positioning Speed Creep Speed Home Offset (OLxx42) Start Zero Point Approach Speed HOME signal Phase-C pulse * 1.
  • Page 274 5 Motion Commands 5.2.3 Zero Point Return (ZRET) Fixed Deceleration Limit Switch Set whether or not to invert the polarity of the DI_5 signal, which is used for HOME. Parameter 05, bit 8, will not reverse status.) Inversion No. 1, Bit 5 (Note)...
  • Page 275 5.2 Motion Command Details Detecting the OT Signal during Creep Speed Movement Positioning Speed Creep Speed Home Offset Zero Point Start Creep Speed HOME LS signal * 1. SVB-01: SERVOPACK EXT1 signal, SVA-01: DI_2 signal * 2. The SERVOPACK P-OT signal. * 3.
  • Page 276 5 Motion Commands 5.2.3 Zero Point Return (ZRET) [ n ] NOT & Phase-C Pulse Method (OW 3C = 16) Travel is started at the approach speed in the negative direction until the stroke limit is reached. When the NOT signal is detected, the direction is reversed to return at creep speed. When the phase- C pulse is detected during the return after passing the NOT signal, positioning is performed.
  • Page 277 5.2 Motion Command Details [ o ] NOT Signal Method (OW 3C = 17) Travel is started at the approach speed in the negative direction until the stroke limit is reached. When the NOT signal is detected, the direction is reversed to return at Positioning speed. When a change in the NOT signal status from ON to OFF is detected, positioning is performed.
  • Page 278 5 Motion Commands 5.2.3 Zero Point Return (ZRET) [ p ] INPUT & Phase-C Pulse Method (OW 3C = 18) Travel is started at the approach speed in the direction specified by the sign of the approach speed. When the rising edge of the INPUT signal is detected, the speed is reduced to creep speed. When the first phase-C pulse is detected after the falling edge of the INPUT signal, positioning is performed at positioning speed.
  • Page 279 5.2 Motion Command Details Parameter Name Setting Home Return Type 18: INPUT & C pulse Method Set the positioning speed to use after detecting the phase-C pulse. The sign is ignored. Speed Reference The travel direction will depend on the sign of the Home Offset. This parameter allows the Zero Point Return speed to be changed without changing the Speed Reference (OL 10).
  • Page 280 5 Motion Commands 5.2.3 Zero Point Return (ZRET) Positioning Speed Creep Speed Home Offset Start Zero Point INPUT signal (OB 05B) Creep Speed Start Zero Point Home Offset Creep Speed Positioning Speed INPUT signal (OB 05B) * 1. The SERVOPACK P-OT signal. * 2.
  • Page 281 5.2 Motion Command Details ( 3 ) Operating Procedure Execution Conditions Confirmation Method There are no alarms. Both IL 02 and IL 04 are 0. The Servo ON condition. 001 is ON. Motion command execution has been completed. 08 is 0 and IB 090 is OFF.
  • Page 282 5 Motion Commands 5.2.3 Zero Point Return (ZRET) ( 6 ) Related Parameters [ a ] Setting Parameters Parameter Name Setting Turn the power to the Servomotor ON and OFF. Servo ON 1: Power ON to Servomotor, 0: Power OFF to Servomotor Turn ON the power before setting the Motion Command Code (OW 08) to 3.
  • Page 283 5.2 Motion Command Details [ b ] Monitoring Parameters Parameter Name Monitor Contents Indicates the Servo ON status. Servo ON ON: Power supplied to Servomotor, OFF: Power not supplied to Servomotor Warning Stores the most current warning. Alarm Stores the most current alarm. Servo Command Indicates the motion command that is being executed.
  • Page 284 5 Motion Commands 5.2.3 Zero Point Return (ZRET) ( 7 ) Timing Charts [ a ] Normal Execution Depends on zero point return method. 08 = 3 (ZRET) 08 = 3 (ZRET) 090 (BUSY) 093 (FAIL) 098 (COMPLETE) 0C0 (DEN) 0C1 (POSCOMP) 1 scan Undefined length of time...
  • Page 285 5.2 Motion Command Details [ c ] Execution when Aborting by Changing the Command 08 = 3 (ZRET) 08 = 3 (ZRET) 090 (BUSY) 093 (FAIL) 098 (COMPLETE) 0C0 (DEN) 0C1 (POSCOMP) 1 scan Undefined length of time 0C5 (ZRNC) [ d ] Execution when an Alarm Occurs 08 = 3 (ZRET) 08 = 3 (ZRET)
  • Page 286: Interpolation (Interpolate)

    5 Motion Commands 5.2.4 Interpolation (INTERPOLATE) 5.2.4 Interpolation (INTERPOLATE) The INTERPOLATE command positions the axis according to the target position that changes in sync with the high-speed scan. The positioning data is generated by a ladder program. Torque Feed Forward Gain Function INFO Torque feed forward gain can be used when interpolation commands (INTERPOLATE) are sent using SGDS SERVOPACKs.
  • Page 287 5.2 Motion Command Details ( 3 ) Related Parameters [ a ] Setting Parameters Parameter Name Setting Turns the power to the Servomotor ON and OFF. Servo ON 1: Power ON to Servomotor, 0: Power OFF to Servomotor Turn ON this bit before setting the Motion Command (OW 08) to 4.
  • Page 288 5 Motion Commands 5.2.4 Interpolation (INTERPOLATE) The operation depends on the setting of the Positioning Completed Width 2 (setting parameter OL 20). 20 = 0: Turns ON when pulse distribution has been completed (DEN = Position Proximity ON). 20≠0: Turns ON when MPOS - APOS< Position Proximity Setting even if pulse distribution has not been completed.
  • Page 289: Latch (Latch)

    5.2 Motion Command Details 5.2.5 Latch (LATCH) The LATCH command saves in a register the current position when the latch signal is detected during interpolation positioning. The latch signal type is set in setting register OW 04 and can be set to the phase-C pulse, /EXT1 signal, /EXT2 signal, or /EXT3 signal for the SVB-01 and to the EXT signal, ZERO signal, or phase- C pulse for the SVA-01.
  • Page 290 5 Motion Commands 5.2.5 Latch (LATCH) Set the motion setting parameters. Speed • Target Position: OL • Acceleration/Deceleration Filter Type: This position is stored. • Speed Loop P/PI Switch: OW • Speed Feed Forward Compensation: Position • Latch Signal Selection: OW Time (t) Latch Signal Execute the LATCH motion command.
  • Page 291 5.2 Motion Command Details ( 3 ) Related Parameters [ a ] Setting Parameters Parameter Name Setting Turn the power to the Servomotor ON and OFF. Servo ON 1: Power ON to Servomotor, 0: Power OFF to Servomotor Set this bit to 1 before setting the Motion Command (OW 08) to 6.
  • Page 292 5 Motion Commands 5.2.5 Latch (LATCH) [ b ] Monitoring Parameters Parameter Name Monitor Contents Indicates the Servo ON status. Servo ON ON: Power supplied to Servomotor, OFF: Power not supplied to Servomotor Warning Stores the most current warning. Alarm Stores the most current alarm.
  • Page 293 5.2 Motion Command Details ( 4 ) Timing Charts [ a ] Normal Execution The target position is refreshed every high-speed scan. This position is reported in IL 08 = 6 (LATCH) 08 = 6 (LATCH) 090 (BUSY) 093 (FAIL) 098 (COMPLETE) 0C0 (DEN) 0C1 (POSCOMP)
  • Page 294: Jog Operation (Feed)

    5 Motion Commands 5.2.6 JOG Operation (FEED) 5.2.6 JOG Operation (FEED) The FEED command starts movement in the specified travel direction at the specified travel speed. To stop the operation, execute the NOP motion command. The axis will decelerate to a stop when the NOP motion command is executed.
  • Page 295 5.2 Motion Command Details ( 4 ) Related Parameters [ a ] Setting Parameters Parameter Name Setting Turn the power to the Servomotor ON and OFF. Servo ON 1: Power ON to Servomotor, 0: Power OFF to Servomotor Turn ON the power before setting the Motion Command (OW 08) to 7.
  • Page 296 5 Motion Commands 5.2.6 JOG Operation (FEED) (cont’d) Parameter Name Monitor Contents Distribution Turns ON when pulse distribution has been completed for the move command. Completed Turns OFF during execution of a move command. Positioning Turns ON when pulse distribution has been completed and the current position is Completed within the Positioning Completed Width.
  • Page 297: Step Operation (Step)

    5.2 Motion Command Details [ c ] Execution when an Alarm Occurs 08 = 7 (FEED) 08 = 7 (FEED) 090 (BUSY) 093 (FAIL) 098 (COMPLETE) 0C0 (DEN) 1 scan Alarm 5.2.7 STEP Operation (STEP) The STEP command executes a positioning for the specified travel direction, moving amount, and travel speed.
  • Page 298 5 Motion Commands 5.2.7 STEP Operation (STEP) Set the motion setting parameters. • Step Distance: OL • Direction of Movement: OB • Travel Speed: OL • Acceleration/Deceleration Filter Type: • Speed Loop P/PI Switch: OW Speed (%) Rated speed 100% Travel speed Execute the STEP operation command.
  • Page 299 5.2 Motion Command Details ( 4 ) Related Parameters [ a ] Setting Parameters Parameter Name Setting Turn the power to the Servomotor ON and OFF. Servo ON 1: Power ON to Servomotor, 0: Power OFF to Servomotor Turn ON the power before setting the Motion Command (OW 08) to 8.
  • Page 300 5 Motion Commands 5.2.7 STEP Operation (STEP) [ b ] Monitoring Parameters Parameter Name Monitor Contents Indicates the Servo ON status. Servo ON ON: Power supplied to Servomotor, OFF: Power not supplied to Servomotor Warning Stores the most current warning. Alarm Stores the most current alarm.
  • Page 301 5.2 Motion Command Details [ b ] Execution when Aborted 08 = 8 (STEP) 091 (ABORT) 08 = 8 (STEP) 090 (BUSY) 093 (FAIL) 098 (COMPLETE) 0C0 (DEN) 0C1 (POSCOMP) 1 scan Undefined length of time [ c ] Execution when Aborting by Changing the Command 08 = 8 (STEP) 08 = 8 (STEP) 090 (BUSY)
  • Page 302: Zero Point Setting (Zset)

    5 Motion Commands 5.2.8 Zero Point Setting (ZSET) 5.2.8 Zero Point Setting (ZSET) The ZSET command sets the current position as the zero point of the machine coordinate system. This enables establishing the zero point without performing a zero point return operation. Either a zero point return or zero point setting must be performed to enable using the soft limits.
  • Page 303 5.2 Motion Command Details ( 3 ) Related Parameters [ a ] Setting Parameters Parameter Name Setting Motion Command Set to 9 for ZSET command. Command Pause This parameter is ignored for ZSET command. Command Abort This parameter is ignored for ZSET command. Sets the offset from the zero point in the machine coordinate system after the zero point Zero Point Offset has been set.
  • Page 304: Change Linear Acceleration Time Constant (Acc)

    5 Motion Commands 5.2.9 Change Linear Acceleration Time Constant (ACC) 5.2.9 Change Linear Acceleration Time Constant (ACC) The ACC command transfers the setting of the Linear Acceleration Time (motion setting parameter 36) to the Second-step Linear Acceleration Time Constant in the SERVOPACK and enables the setting.
  • Page 305 5.2 Motion Command Details ( 3 ) Related Parameters [ a ] Setting Parameters Parameter Name Setting Function 1 Set the speed unit, acceleration/deceleration unit, and filter type. Motion Command The linear acceleration time constant is changed when this parameter is set to 10. Command Pause This parameter is ignored for ACC command.
  • Page 306: Change Linear Deceleration Time Constant (Dcc)

    5 Motion Commands 5.2.10 Change Linear Deceleration Time Constant (DCC) 5.2.10 Change Linear Deceleration Time Constant (DCC) The DCC command transfers the setting of the Linear Deceleration Time (motion setting parameter 38) to the Second-step Linear Deceleration Time Constant in the SERVOPACK and enables the setting.
  • Page 307 5.2 Motion Command Details ( 3 ) Related Parameters [ a ] Setting Parameters Parameter Name Setting Function 1 Set the speed unit, acceleration/deceleration unit, and filter type. Motion Command The linear deceleration time constant is changed when this parameter is set to 11. Command Pause This parameter is ignored for DCC command.
  • Page 308: Change Filter Time Constant (Scc)

    5 Motion Commands 5.2.11 Change Filter Time Constant (SCC) 5.2.11 Change Filter Time Constant (SCC) The SCC command transfers the setting of the S-Curve Acceleration Time (motion setting parameter 3A) to the Moving Average Time in the SERVOPACK and enables the setting. Always execute the CHG_FILTER command before executing SCC command.
  • Page 309 5.2 Motion Command Details ( 3 ) Related Parameters [ a ] Setting Parameters Parameter Name Setting Function 1 Set the speed unit, acceleration/deceleration unit, and filter type. Motion Command The filter time constant is changed when this parameter is set to 12. Command Pause This parameter is ignored for SCC command.
  • Page 310: Change Filter Type (Chg_Filter)

    5 Motion Commands 5.2.12 Change Filter Type (CHG_FILTER) 5.2.12 Change Filter Type (CHG_FILTER) The CHG_FILTER command enables the current setting of the Filter Type (motion setting parameter 03) for execution of the following motion commands: POSING, EX_POSING, ZRET, INTERPOLATE, LATCH, FEED, and STEP. Always execute CHG_FILTER command after changing the setting of OW IMPORTANT ( 1 ) Operating Procedure...
  • Page 311 5.2 Motion Command Details ( 3 ) Related Parameters [ a ] Setting Parameters Parameter Name Setting Function 1 Set the speed unit, acceleration/deceleration unit, and filter type. Motion Command The filter type is changed when this parameter is set to 13. Command Pause This parameter is ignored for CHG_FILTER command.
  • Page 312: Change Speed Loop Gain (Kvs)

    5 Motion Commands 5.2.13 Change Speed Loop Gain (KVS) 5.2.13 Change Speed Loop Gain (KVS) The KVS command transfers the setting of the Speed Loop Gain (motion setting parameter 2F) to the Speed Loop Gain in the SERVOPACK and enables the setting. ( 1 ) Operating Procedure Execution Conditions Confirmation Method...
  • Page 313 5.2 Motion Command Details [ b ] Monitoring Parameters Parameter Name Monitor Contents Warning Stores the most current warning. Alarm Stores the most current alarm. Servo Command Indicates the motion command that is being executed. Type Response The response code will be 14 during KVS command execution. Turns ON during KVS command execution and turns OFF when execution has been Command Executing completed.
  • Page 314: Change Position Loop Gain (Kps)

    5 Motion Commands 5.2.14 Change Position Loop Gain (KPS) 5.2.14 Change Position Loop Gain (KPS) The KPS command transfers the setting of the Position Loop Gain (motion setting parameter 2E) to the Position Loop Gain in the SERVOPACK and enables the setting. ( 1 ) Operating Procedure Execution Conditions Confirmation Method...
  • Page 315 5.2 Motion Command Details [ b ] Monitoring Parameters Parameter Name Monitor Contents Warning Stores the most current warning. Alarm Stores the most current alarm. Servo Command Type Indicates the motion command that is being executed. Response The response code is 15 during KPS command execution. Turns ON during KPS command execution and turns OFF when execution has been Command Executing completed.
  • Page 316: Change Feed Forward (Kfs)

    5 Motion Commands 5.2.15 Change Feed Forward (KFS) 5.2.15 Change Feed Forward (KFS) The KFS command transfers the setting of the Speed Feed Forward Compensation (motion setting parameter OW 30) to the Feed Forward in the SERVOPACK and enables the setting. ( 1 ) Operating Procedure Execution Conditions Confirmation Method...
  • Page 317 5.2 Motion Command Details [ b ] Monitoring Parameters Parameter Name Monitor Contents Warning Stores the most current warning. Alarm Stores the most current alarm. Servo Command Indicates the motion command that is being executed. Type Response The response code will be 16 during KFS command execution. Turns ON during KFS command execution and turns OFF when execution has been Command Executing completed.
  • Page 318: Read Servopack Parameter (Prm_Rd)

    5 Motion Commands 5.2.16 Read SERVOPACK Parameter (PRM_RD) 5.2.16 Read SERVOPACK Parameter (PRM_RD) The PRM_RD command reads the setting of the SERVOPACK parameter with the specified parameter number and parameter size and stores the parameter number in Servo Constant Number (monitoring parameter IW 36) and the setting in Servo User Constant (monitoring parameter 38).
  • Page 319 5.2 Motion Command Details [ b ] Monitoring Parameters Parameter Name Monitor Contents Warning Stores the most current warning. Alarm Stores the most current alarm. Servo Command Indicates the motion command that is being executed. Type Response The response code will be 17 during PRM_RD command execution. Turns ON during PRM_RD command execution and turns OFF when execution has Command Executing been completed.
  • Page 320: Write Servopack Parameter (Prm_Wr)

    5 Motion Commands 5.2.17 Write SERVOPACK Parameter (PRM_WR) 5.2.17 Write SERVOPACK Parameter (PRM_WR) The PRM_WR command writes the SERVOPACK parameter using the specified parameter number, parameter size, and setting data. ( 1 ) Operating Procedure Execution Conditions Confirmation Method There are no alarms. Both IL 02 and IL 04 are 0.
  • Page 321 5.2 Motion Command Details ( 3 ) Related Parameters [ a ] Setting Parameters Parameter Name Setting Motion Command The SERVOPACK parameter is written when this parameter is set to 18. Command Pause This parameter is ignored for PRM_WR command. Command Abort This parameter is ignored for PRM_WR command.
  • Page 322: Monitor Servopack Alarms (Alm_Mon)

    5 Motion Commands 5.2.18 Monitor SERVOPACK Alarms (ALM_MON) 5.2.18 Monitor SERVOPACK Alarms (ALM_MON) The ALM_MON command reads the alarm or warning that has occurred in the SERVOPACK and stores it in Servo Alarm Code (monitoring parameter IW 2D). ( 1 ) Operating Procedure Execution Conditions Confirmation Method Motion command execution has been completed.
  • Page 323 5.2 Motion Command Details [ b ] Monitoring Parameters Parameter Name Monitor Contents Warning Stores the most current warning. Alarm Stores the most current alarm. Servo Command Indicates the motion command that is being executed. Type Response The response code will be 19 during ALM_MON command execution. Turns ON during ALM_MON command execution and turns OFF when execution has Command Executing been completed.
  • Page 324: Monitor Servopack Alarm History (Alm_Hist)

    5 Motion Commands 5.2.19 Monitor SERVOPACK Alarm History (ALM_HIST) 5.2.19 Monitor SERVOPACK Alarm History (ALM_HIST) The ALM_HIST command reads the alarm history that is stored in the SERVOPACK and stores it in Servo Alarm Code (monitoring parameter IW 2D). ( 1 ) Operating Procedure Execution Conditions Confirmation Method Motion command execution has been completed.
  • Page 325 5.2 Motion Command Details [ b ] Monitoring Parameters Parameter Name Monitor Contents Warning Stores the most current warning. Alarm Stores the most current alarm. Servo Command Indicates the motion command that is being executed. Type Response The response code will be 20 during ALM_HIST command execution. Turns ON during ALM_HIST command execution and turns OFF when execution has Command Executing been completed.
  • Page 326: Clear Servopack Alarm History (Almhist_Clr)

    5 Motion Commands 5.2.20 Clear SERVOPACK Alarm History (ALMHIST_CLR) 5.2.20 Clear SERVOPACK Alarm History (ALMHIST_CLR) The ALMHIST_CLR command clears the alarm history in the SERVOPACK. ( 1 ) Operating Procedure Execution Conditions Confirmation Method Motion command execution has been completed. 08 is 0 and IB 090 is OFF.
  • Page 327 5.2 Motion Command Details [ b ] Monitoring Parameters Parameter Name Monitor Contents Warning Stores the most current warning. Alarm Stores the most current alarm. Servo Command Indicates the motion command that is being executed. Type Response The response code will be 21 during ALMHIST_CLR command execution. Turns ON during ALMHIST_CLR command execution and turns OFF when execution Command Executing has been completed.
  • Page 328: Reset Absolute Encoder (Abs_Rst)

    5 Motion Commands 5.2.21 Reset Absolute Encoder (ABS_RST) 5.2.21 Reset Absolute Encoder (ABS_RST) The ABS_RST command resets the multiturn data in the absolute encoder to 0. If an Encoder Backup Alarm (A.810) or Encoder Checksum Alarm (A.820) occurs when the ABS_RST command is executed, the encoder will be reset.
  • Page 329 5.2 Motion Command Details ( 3 ) Related Parameters [ a ] Setting Parameters Parameter Name Setting Turn the power to the Servomotor ON and OFF. Servo ON 1: Power ON to Servomotor; 0: Power OFF to Servomotor Turn OFF the power before setting the Motion Command (OW 08) to 22.
  • Page 330: Speed Reference (Velo)

    5 Motion Commands 5.2.22 Speed Reference (VELO) [ b ] Error End 08 = 22 (ABS_RST) 08 = 22 (ABS_RST) 090 (BUSY) Undefined length of time 095 (FAIL) 097 (ABS_RSTC) 098 (COMPLETE) 000 (SVCRDY) 5.2.22 Speed Reference (VELO) With the MECHATROLINK-II, the VELO command is used to operate the SERVOPACK under the speed control mode, enabling the same type of operation as is possible with the analog speed reference input of the SERVOPACK.
  • Page 331 5.2 Motion Command Details ( 3 ) Aborting The speed control mode can be cancelled by aborting execution of a command. A command is aborted by setting the Command Abort bit (OB 091) to 1. Set the Command Abort bit (OB 091) to 1.
  • Page 332 5 Motion Commands 5.2.22 Speed Reference (VELO) [ b ] Monitoring Parameters Parameter Name Monitor Contents Indicates the Servo ON status. Servo ON ON: Power supplied to Servomotor, OFF: Power not supplied to Servomotor Warning Stores the most current warning. Alarm Stores the most current alarm.
  • Page 333 5.2 Motion Command Details [ b ] Execution when Aborted 08 = 23 (VELO) 091 (ABORT) 08 = 23 (VELO) 090 (BUSY) 093 (FAIL) 098 (COMPLETE) 0C0 (DEN) Speed Control Mode Position Control Mode [ c ] Execution when Aborting by Changing the Command 08 = 23 (VELO) 08 = 23 (VELO) 090 (BUSY)
  • Page 334: Torque Reference (Trq)

    5 Motion Commands 5.2.23 Torque Reference (TRQ) [ e ] Execution when an Alarm Occurs 08 = 23 (VELO) 08 = 23 (VELO) 090 (BUSY) 093 (FAIL) 098 (COMPLETE) 0C0 (DEN) 1 scan Alarm 5.2.23 Torque Reference (TRQ) With the MECHATROLINK-II, the TRQ command is used to operate the SERVOPACK under the torque control mode, enabling the same type of operation as is possible with the analog torque reference input of the SERVOPACK.
  • Page 335 5.2 Motion Command Details ( 2 ) Holding Holding execution is not possible during TRQ command operation. The Command Pause bit 090) is ignored. ( 3 ) Aborting The torque control mode can be cancelled by aborting execution of a command. A command is aborted by setting the Command Abort bit (OB 091) to 1.
  • Page 336 5 Motion Commands 5.2.23 Torque Reference (TRQ) [ b ] Monitoring Parameters Parameter Name Monitor Contents Indicates the Servo ON status. Servo ON ON: Power supplied to Servomotor, OFF: Power not supplied to Servomotor Warning Stores the most current warning. Alarm Stores the most current alarm.
  • Page 337 5.2 Motion Command Details [ b ] Executed when Aborted ■ SVB-01 08 = 24 (TRQ) 091 (ABORT) 08 = 24 (TRQ) 090 (BUSY) 093 (FAIL) 098 (COMPLETE) 0C0 (DEN) 0C1 (POSCOMP) Torque Control Mode Position Control Mode 1 scan ■...
  • Page 338 5 Motion Commands 5.2.23 Torque Reference (TRQ) [ c ] Execution when Pausing ■ SVB-01 08=24 (TRQ) 090 (HOLD) 08=24 (TRQ) 090 (BUSY) 091 (HOLDL) 093 (FAIL) 098 (COMPLETE) 0C0 (DEN) 1 scan Torque Control Mode Position Control Mode ■ SVA-01 08=24 (TRQ) 090 (HOLD) 08=24 (TRQ)
  • Page 339 5.2 Motion Command Details [ d ] Execution when an Alarm Occurs ■ SVB-01 08 = 24 (TRQ) 08 = 24 (TRQ) 090 (BUSY) 093 (FAIL) 098 (COMPLETE) 0C0 (DEN) 0C1 (POSCOMP) 1 scan Undefined length of time Alarm Torque Control Mode Position Control Mode ■...
  • Page 340: Phase References (Phase)

    5 Motion Commands 5.2.24 Phase References (PHASE) 5.2.24 Phase References (PHASE) The PHASE command is used for the synchronized operation of multiple axes under phase control mode, using the specified speed, phase bias, and speed compensation value. Speed feed forward control cannot be used for the SGD-N or SGDB-N SERVOPACK, so the PHASE command cannot be used.
  • Page 341 5.2 Motion Command Details ( 3 ) Related Parameters [ a ] Setting Parameters SVB- SVA- Parameter Name Setting Turns the power to the Servomotor ON and OFF. 1: Power ON to Servomotor, 0: Power OFF to Servomotor Servo ON Turn ON the power before setting the Motion Command Code 08) to 25.
  • Page 342 5 Motion Commands 5.2.24 Phase References (PHASE) [ b ] Monitoring Parameters Parameter Name Monitor Contents Indicates the Servo ON status. Servo ON ON: Power supplied to Servomotor, OFF: Power not supplied to Servomotor Warning Stores the most current warning. Alarm Stores the most current alarm.
  • Page 343 5.2 Motion Command Details [ b ] Execution when Aborted The Speed Reference is automatically refreshed every scan. 08=25 (PHASE) 08=25 (PHASE) SVB-01 090 (BUSY) 093 (FAIL) 098 (COMPLETE) 0C0 (DEN) 0C1 (POSCOMP) 1 scan Undefined length of time The Speed Reference is automatically refreshed every scan. 08=25 (PHASE) 08=25 (PHASE) 090 (BUSY)
  • Page 344: Change Position Loop Integration Time Constant (Kis)

    5 Motion Commands 5.2.25 Change Position Loop Integration Time Constant (KIS) 5.2.25 Change Position Loop Integration Time Constant (KIS) The KIS command transfers the setting of the Position Integration Time Constant (motion setting parameter OW 32) to the Position Loop Integration Time Constant in the SERVOPACK and enables the setting.
  • Page 345 5.2 Motion Command Details [ b ] Monitoring Parameters Parameter Name Monitor Contents Warning Stores the most current warning. Alarm Stores the most current alarm. Servo Command Type Indicates the motion command that is being executed. Response The response code will be 26 during KIS command execution. Turns ON during KIS command execution and turns OFF when execution has been Command Executing completed.
  • Page 346: Motion Subcommands

    5 Motion Commands 5.3.1 Motion Sub-command Table 5.3 Motion Subcommands 5.3.1 Motion Sub-command Table Comman Name Function d Code This is a null command. No Command (NOP) When a subcommand is not being specified, set this “no command” code. Read SERVOPACK Parameter Reads the specified SERVOPACK parameter and stores it in the monitoring (PRM_RD) parameters.
  • Page 347: No Command (Nop)

    5.3 Motion Subcommands 5.3.3 No Command (NOP) Set this command when a subcommand is not being specified. When the MECHATROLINK-II (32 byte) communications method is being used, User Monitor 4 can be used, just as with the Monitor Status (SMON) subcommand. Refer to 5.3.6 Monitor Status (SMON) for details.
  • Page 348: Read Servopack Parameter (Prm_Rd)

    5 Motion Commands 5.3.4 Read SERVOPACK Parameter (PRM_RD) 5.3.4 Read SERVOPACK Parameter (PRM_RD) The PRM_RD command reads the setting of the SERVOPACK parameter with the specified parameter number and parameter size and stores the parameter number in Auxiliary Servo User Constant Number (monitoring parameter IW 37) and the setting in the Auxiliary Servo User Constant (monitoring parameter IL...
  • Page 349 5.3 Motion Subcommands [ b ] Monitoring Parameters Parameter Name Monitoring Contents Motion Subcommand Indicates the motion subcommand that is being executed. Response Code The response code is 1 during PRM_RD command execution. Turns ON during PRM_RD command execution and turns OFF when execution Command Executing has been completed.
  • Page 350: Write Servopack Parameter (Prm_Wr)

    5 Motion Commands 5.3.5 Write SERVOPACK Parameter (PRM_WR) 5.3.5 Write SERVOPACK Parameter (PRM_WR) The PRM_WR command writes the SERVOPACK parameter using the specified parameter number, parameter size, and setting data. The write destination is in the SERVOPACK's RAM. This command will end with a Command Error End if it is executed with a communication method other than MECHATROLINK-II (32 byte).
  • Page 351 5.3 Motion Subcommands [ b ] Monitoring Parameters Parameter Name Monitoring Contents Motion Subcommand Indicates the motion subcommand that is being executed. Response Code The response code is 2 during PRM_WR command execution. Turns ON during PRM_WR command execution and turns OFF when execution has Command Executing been completed.
  • Page 352: Monitor Status (Smon)

    5 Motion Commands 5.3.6 Monitor Status (SMON) 5.3.6 Monitor Status (SMON) When the SMON command is executed, the data specified in Monitor 4 of the Servo User Monitor is stored in Servo User Monitor 4 (monitoring parameter IL 34). The following table shows the data that can be specified in the User Monitor. Refer to your SERVOPACK manual for details on the monitored data.
  • Page 353 5.3 Motion Subcommands ( 2 ) Related Parameters [ a ] Setting Parameters Parameter Name Setting Contents Motion Subcommand The Monitor Status command is executed when this parameter is set to 3. Servo User Monitor Set the information (managed by the Servo Driver) that you want to monitor. [ b ] Monitoring Parameters Parameter Name...
  • Page 354: Read Fixed Parameters (Fixprm_Rd)

    5 Motion Commands 5.3.7 Read Fixed Parameters (FIXPRM_RD) 5.3.7 Read Fixed Parameters (FIXPRM_RD) Reads the current value of the specified fixed parameter and stores the value in the “Fixed Parameter Monitor” monitoring parameter. ( 1 ) Operating Procedure Execution Conditions Confirmation Method Motion subcommand execution must be completed.
  • Page 355 5.3 Motion Subcommands ( 3 ) Timing Charts [ a ] Normal End 0A=5 (FIXPRM_RD) 0A=5 (FIXPRM_RD) 0B0 (BUSY) 0B3 (FAIL) 0B8 (COMPLETE) Undefined Monitoring result [ b ] Error End 0A=5 (FIXPRM_RD) 0A=5 (FIXPRM_RD) 0B0 (BUSY) 0B3 (FAIL) 0B8 (COMPLETE) Undefined 5-125 WWW.NNC.IR...
  • Page 356 5 Motion Commands 5.3.7 Read Fixed Parameters (FIXPRM_RD) 5-126 WWW.NNC.IR...
  • Page 357 Control Block Diagrams This chapter explains the control block diagrams. 6.1 SVB-01 Module Control Block Diagrams ........ 6-2 6.1.1 Position Control ..................6-2 6.1.2 Phase Control ..................6-8 6.1.3 Torque Control ..................6-14 6.1.4 Speed Control ..................6-20 6.2 SVA-01 Module Control Block Diagram ........ 6-26 WWW.NNC.IR...
  • Page 358: Module Control Block Diagrams

    6 Control Block Diagrams 6.1.1 Position Control 6.1 SVB-01 Module Control Block Diagrams 6.1.1 Position Control ( 1 ) Motion Parameters for Position Control [ a ] Fixed Parameters Name Setting Unit Default Value Setting Range Run Mode − 0 to 5 Function Selection 1 −...
  • Page 359 6.1 SVB-01 Module Control Block Diagrams [ b ] Setting Parameters Name Setting Unit Default Value Setting Range RUN Commands − 0000h Bit setting Mode 1 − 0000h Bit setting Mode 2 − 0000h Bit setting Function 1 − 0011h Bit setting Function 2 −...
  • Page 360 6 Control Block Diagrams 6.1.1 Position Control (cont’d) Name Setting Unit Default Value Setting Range External Positioning Move Distance Reference unit −2 to 2 −1 Zero Point Offset Reference unit −2 −1 to 2 Work Coordinate System Offset Reference unit −2 −1 to 2...
  • Page 361 6.1 SVB-01 Module Control Block Diagrams [ c ] Monitoring Parameters Name Unit Default Value Range Drive Status − − Bit setting Over Range Parameter Number − − 0 to 65535 Warning − − Bit setting Alarm − − Bit setting Servo Command Type Response −...
  • Page 362 6 Control Block Diagrams 6.1.1 Position Control ( 2 ) Control Block Diagram for Position Control RUN Commands Mode 1 Mode 2 Function 1 Function 2 Function 3 Motion Command Motion Command Options Motion Subcommand Speed Reference Override processing Speed Override Position Reference Setting Positioning Completed Width POSING commands...
  • Page 363 6.1 SVB-01 Module Control Block Diagrams SERVOPACK Acceleration/ deceleration Acceleration: OL processing Speed Feed Forward POSING Deceleration: OL command Compensation Differ- ential Speed Loop Gain Position Loop Gain INTERPOLATE Current command Filter loop Position Integration Speed Integration Time Constant Time Constant Analog monitor value Counter LPOS...
  • Page 364: Phase Control

    6 Control Block Diagrams 6.1.2 Phase Control 6.1.2 Phase Control ( 1 ) Motion Parameters for Phase Control [ a ] Fixed Parameters Name Setting Unit Default Value Setting Range Run Mode − 0 to 5 Function Selection 1 − 0000h Bit setting Function Selection 2...
  • Page 365 6.1 SVB-01 Module Control Block Diagrams [ b ] Setting Parameters Name Setting Unit Default Value Setting Range RUN Commands − 0000h Bit setting Mode 1 − 0000h Bit setting Mode 2 − 0000h Bit setting Function 1 − 0011h Bit setting Function 2 −...
  • Page 366 6 Control Block Diagrams 6.1.2 Phase Control (cont’d) Name Setting Unit Default Value Setting Range Preset Data of POSMAX Turn −2 to 2 −1 Servo User Monitor − 0E00H Bit setting Servo Alarm Monitor Number − 0 to 10 Servo Constant Number −...
  • Page 367 6.1 SVB-01 Module Control Block Diagrams [ c ] Monitoring Parameters Name Unit Default Value Range Drive Status − − Bit setting Over Range Parameter Number − − 0 to 65535 Warning − − Bit setting Alarm − − Bit setting Servo Command Type Response −...
  • Page 368 6 Control Block Diagrams 6.1.2 Phase Control ( 2 ) Control Block Diagram for Phase Control RUN Commands Function 1 Function 3 Motion Command Motion Command Options Motion Subcommand Move command generation processing Target position Target position difference operation Speed Reference operation Positioning Completed Width Positioning Completed Width 2...
  • Page 369 6.1 SVB-01 Module Control Block Diagrams SERVOPACK Speed Feed Forward Compensation* Differ- ential Speed Loop Gain Position Loop Gain Current Filter loop Position Integration Speed Integration Time Constant Time Constant Analog monitor value Counter LPOS Counter Latch signal * The speed feedback gain is 0 for phase references. 6-13 WWW.NNC.IR...
  • Page 370: Torque Control

    6 Control Block Diagrams 6.1.3 Torque Control 6.1.3 Torque Control ( 1 ) Motion Parameters for Torque Control [ a ] Fixed Parameters Name Setting Unit Default Value Setting Range Run Mode − 0 to 5 Function Selection 1 − 0000h Bit setting Function Selection 2...
  • Page 371 6.1 SVB-01 Module Control Block Diagrams [ b ] Setting Parameters Name Setting Unit Default Value Setting Range RUN Commands − 0000h Bit setting Mode 1 − 0000h Bit setting Mode 2 − 0000h Bit setting Function 1 − 0011h Bit setting Function 2 −...
  • Page 372 6 Control Block Diagrams 6.1.3 Torque Control (cont’d) Name Setting Unit Default Value Setting Range Position Loop Gain 0.1 /s 0 to 32767 Speed Loop Gain 1 to 2000 Speed Feed Forward Compensation 0.01% 0 to 32767 Speed Amends 0.01% -32768 to 32767 Position Integration Time Constant 0 to 32767...
  • Page 373 6.1 SVB-01 Module Control Block Diagrams [ c ] Monitoring Parameters Name Unit Default Value Range Drive Status − − Bit setting Over Range Parameter Number − − 0 to 65535 Warning − − Bit setting Alarm − − Bit setting Servo Command Type Response −...
  • Page 374 6 Control Block Diagrams 6.1.3 Torque Control ( 2 ) Control Block Diagram for Torque Control RUN Commands Function 1 Motion Command Motion Command Options Motion Subcommand Torque Reference Speed Limit at Torque Reference Zero Point Offset Work Coordinate System Offset Preset Data of POSMAX Turn Drive Status Warning...
  • Page 375 6.1 SVB-01 Module Control Block Diagrams SERVOPACK Speed Feed Forward Compensation Differ- ential Speed Loop Gain Position Loop Gain Current loop Speed Integration Position Integration Time Constant Time Constant Speed reference operation Torque reference operation Analog monitor value Counter LPOS Counter Latch signal 6-19...
  • Page 376: Speed Control

    6 Control Block Diagrams 6.1.4 Speed Control 6.1.4 Speed Control ( 1 ) Motion Parameters for Speed Control [ a ] Fixed Parameters Name Setting Unit Default Value Setting Range Run Mode − 0 to 5 Function Selection 1 − 0000h Bit setting Function Selection 2...
  • Page 377 6.1 SVB-01 Module Control Block Diagrams [ b ] Setting Parameters Name Setting Unit Default Value Setting Range RUN Commands − 0000h Bit setting Mode 1 − 0000h Bit setting Mode 2 − 0000h Bit setting Function 1 − 0011h Bit setting Function 2 −...
  • Page 378 6 Control Block Diagrams 6.1.4 Speed Control Speed Integration Time Constant 0.01 ms 2000 15 to 65535 Depends on acceleration/ Linear Acceleration Time −1 0 to 2 deceleration speed unit. Depends on acceleration/ Linear Deceleration Time 0 to 2 −1 deceleration speed unit.
  • Page 379 6.1 SVB-01 Module Control Block Diagrams [ c ] Monitoring Parameters Name Unit Default Value Range Drive Status − − Bit setting Over Range Parameter Number − − 0 to 65535 Warning − − Bit setting Alarm − − Bit setting Servo Command Type Response −...
  • Page 380 6 Control Block Diagrams 6.1.4 Speed Control ( 2 ) Control Block Diagram for Speed Control RUN Commands Function 1 Motion Command Motion Command Options Motion Subcommand Speed Reference Positive Side Limiting Torque Setting at the Speed Reference Speed Override Acceleration/ Linear Acceleration Time deceleration...
  • Page 381 6.1 SVB-01 Module Control Block Diagrams SERVOPACK Speed Feed Forward Compensation Differ- ential Speed Loop Gain Position Loop Gain Current loop Position Integration Speed Integration Time Constant Time Constant Speed reference operation Torque reference operation Analog monitor value Counter LPOS Counter Latch signal 6-25...
  • Page 382: Module Control Block Diagram

    6 Control Block Diagrams 6.1.4 Speed Control 6.2 SVA-01 Module Control Block Diagram 14: Positive Side Limiting Torque Setting at Speed Reference Machine lock status Torque Reference (TRQ) Command 0C, bit 6) 0C: Torque Reference 0E: Speed Limit at Torque Reference Asymmetric trapezoidal accel.
  • Page 383 6.2 SVA-01 Module Control Block Diagram Torque Reference Primary Lag Filter Time Constant I/O: Outputs General-purpose I/O mode) CN1/CN2 5D, bit 0: General-purpose DO_0 5D, bit 1:General-purpose DO_1 5D, bit 2: General-purpose DO_2 General-purpose outputs 5D, bit 3: General-purpose DO_3 5D, bit 4: General-purpose DO_4 1+T S 5D, bit 5: General-purpose DO_5...
  • Page 384 6 Control Block Diagrams 6.1.4 Speed Control 6-28 WWW.NNC.IR...
  • Page 385 Absolute Position Detection This chapter explains an absolute position detection system that uses an absolute encoder. Be sure to read this chapter carefully when using a Servomotor equipped with an absolute encoder. 7.1 Absolute Position Detection Function ........7-2 7.1.1 Outline of the Function ................7-2 7.1.2 Basic Terminology .................
  • Page 386: Absolute Position Detection Function

    ( 4 ) Reading Absolute Data When power is turned ON, absolute data is read to the SERVOPACK as well as to the MP2200/ MP2300, where it is used to automatically calculate the absolute position and set the machine coordinate system.
  • Page 387: Startup The Absolute Position Detection Function

    Set all parameters related to the Absolute Setting Parameters Related to the MP2200/MP2300 Position Detection Function. Follow the setup procedure to set the absolute Initialize the Absolute Encoder encoder to default values.
  • Page 388: Setting Related Parameters

    Machine damage may occur. Set these parameters carefully. This section explains absolute position detection parameters in the MP2200/MP2300 parameters. Set the following MP2200/MP2300 parameters and SERVOPACK parameters prior to startup the absolute position detection system. ( 1 ) MP2200/MP2300 Parameters Table 7.1 MP2200/MP2300 Parameters...
  • Page 389 Σ-II, Σ-III Series Pn002.2 0: Uses absolute encoder as an absolute encoder. Both the MP2200/MP2300 and SERVOPACK parameters are valid, so be sure to set both of them. If the above settings are not used, correct motion control will not be performed. Set the parameters IMPORTANT carefully.
  • Page 390 7.2.2 Setting Related Parameters [ b ] Number of Encoder Pulses • MP2200/MP2300 fixed parameter 36 Set MP2200/MP2300 fixed parameter 36 to the number of pulses used by the absolute encoder as shown in the following table. SERVOPACK Parameter Number of MP2200/MP2300 Σ...
  • Page 391 7.2 Startup the Absolute Position Detection Function WWW.NNC.IR...
  • Page 392: Initializing The Absolute Encoder

    [ a ] Initializing a 12-bit Absolute Encoder Use the following procedure to initialize a 12-bit absolute encoder. Properly connect the SERVOPACK, Servomotor, and MP2200/MP2300. Reset Absolute Position Data in the encoder. a) Disconnect the connector on the encoder end.
  • Page 393 7.2 Startup the Absolute Position Detection Function b) At the encoder end connector i) Disconnect the connector on the encoder end. ii) Use a short piece to short-circuit together connector pins R and S on the encoder end. SERVOPACK サーボパック Key position キー位置...
  • Page 394 7 Absolute Position Detection 7.2.3 Initializing the Absolute Encoder Press the DATA/ENTER Key. The following display will appear. Press the UP Key. The display will change as shown below. Then press the UP Key until “PGCL5” is displayed. If a mistake is made in the key operation, “nO_OP” will blink on the display for 1 second and then the display will return to the Auxiliary Function Mode.
  • Page 395 7.2 Startup the Absolute Position Detection Function Press the DATA/SHIFT Key for 1 second or longer. The following display will appear. Press the UP Key. The display will change as shown below. Then press the UP Key until “PGCL5” is displayed. If a mistake is made in the key operation, “nO_OP” will blink on the display for 1 second and then the display will return to the Auxiliary Function Mode.
  • Page 396 7 Absolute Position Detection 7.2.3 Initializing the Absolute Encoder ( 3 ) Σ-III Series Use a digital operator to initialize the absolute encoder. Step Operation Key Display Example Description − F U N C T I O N − F n 0 0 7 Open the Utility Function Mode main menu and select F n 0 0 8 Fn008.
  • Page 397: Using An Absolute Encoder

    Σ -II /III Series. If system power is turned ON when the multiturn data exceeds these limits, the MP2200/MP2300 position will not be the same before and after power is turned ON. The multiturn data for the encoder functions as illustrated below.
  • Page 398 7 Absolute Position Detection 7.3.1 Finite Length Axis ( 2 ) Position Management with a Finite Length Axis Initialize the axis position as described next when power is turned ON if an absolute encoder is used for a finite length axis. •...
  • Page 399 7.3 Using an Absolute Encoder ( 3 ) Setting the Zero Point for a Finite Length Axis Set the zero point after initializing the absolute encoder to set the zero point of the machine coordinate system and to establish the machine coordinate system. The following illustration shows the procedure for setting the zero point for a finite length axis.
  • Page 400 7 Absolute Position Detection 7.3.1 Finite Length Axis ( 4 ) Turning ON the Power for a Finite Length Axis The Zero Point Return (Setting) Completed bit 0C5) will turn OFF when the power supply to the MP2300 is turned OFF and ON, the communication are interrupted by the power OFF to the SERVOPACK, or communication are interrupted in any other reason after the zero point has been set.
  • Page 401 7.3 Using an Absolute Encoder The following methods are used to save the Zero Point Offset (OL 48). INFO Method 1: Saving in a M Register with Ladder Program Subtract the Calculated Position in Machine Coordinate System from the Machine Coordinate System Zero Point Offset and save the result in an M register when it is stored in setting parameter OL Store the contents saved in the M register in Zero Point Offset (setting parameter OL 48) when system...
  • Page 402: Infinite Length Axis

    II/III Series infinite length axis: 0 to 65534 (Set with Pn205) When system power is turned ON therefore, the MP2200/MP2300 position may not be the same before and after power is turned ON. This problem can be resolved using one of the following two methods.
  • Page 403 7.3 Using an Absolute Encoder To set the present position of the machine coordinate system to 0 when the Zero Point INFO Setting (ZSET) motion command is executed Set OL 48 to 0. Calculating the Reset Value for the Number of Turns •...
  • Page 404 7 Absolute Position Detection 7.3.2 Infinite Length Axis [ c ] Application Example of Simple Absolute Infinite Length Position Control Function An example of using the simple absolute infinite length position control function is given EXAMPLE below. Name Setting Command Unit ■...
  • Page 405 7.3 Using an Absolute Encoder * 3. Execute with the ZSET command. 7-21 WWW.NNC.IR...
  • Page 406 ( 4 ) Managing Positions when the Simple Absolute Infinite Length Position Control Function Is Not Used When power is turned ON to the system, the position managed by the MP2200/MP2300 is calculated from the relative absolute position in pulse units using the following equation.
  • Page 407 7.3 Using an Absolute Encoder ( 5 ) Setting the Zero Point for an Infinite Length Axis Execute the ZSET motion command (zero point setting). The system will settle pulse position at power OFF, encoder position at power OFF, and all position data when the zero point is set.
  • Page 408 7 Absolute Position Detection 7.3.2 Infinite Length Axis ( 6 ) Ladder Program for Infinite Length Axis Position Control Ladder program for normal operation and for restarting the system is needed for absolute infinite length axis position control when the simple absolute infinite length position control function is not used.
  • Page 409 7.3 Using an Absolute Encoder Use the following flowchart to store values in buffers. High-speed scan drawing start First scan after high- speed scan started? Ready for Operation and No alarms? Position Information SAVE Bit OFF Zero point setting completed? Position Information SAVE Bit ON Zero point setting completed...
  • Page 410 7 Absolute Position Detection 7.3.2 Infinite Length Axis The following programming example (ladder program) is for the flowchart shown on the previous EXAMPLE page. The axis used here is axis 1 of circuit number 1. Change the motion parameter register number if the circuit and axis numbers are different.
  • Page 411 7.3 Using an Absolute Encoder P00002 H10 Main Program Values of monitoring parameters saved in buffer 0. 0015 EXPRESSION 0022 ML30002=IL805E; NL-5 ML30004=IL8060; ML30006=IL8062; ML30008=IL8064; 0016 ELSE 0023 NL-4 Values of monitoring parameters saved in buffer 1. 0017 EXPRESSION 0024 ML30010=IL805E;...
  • Page 412 7 Absolute Position Detection 7.3.2 Infinite Length Axis [ b ] Turning the System Back ON (Turning the Servo Back ON) Set up position data again from the ladder program using high-speed scan timing as shown below. This is done when system power or servo power is turned back ON. Store Modularized Position at Power OFF and Absolute Position at Power OFF to setting parameters.
  • Page 413 7.3 Using an Absolute Encoder Use the following flowchart to set up position data again. Start the high-speed scan drawing. First scan after the start of high-speed scan or signal indicating that the servo power supply was turned back ON? Toggle Buffer Enabled Flag ON? Position Data Re-setup Position Data Re-setup...
  • Page 414 7 Absolute Position Detection 7.3.2 Infinite Length Axis The following programming example (ladder program) is for the flowchart shown above. EXAMPLE The axis used here is axis 1 of circuit number 1. Change the motion parameter register number if the circuit and axis numbers are different. P00001 H11 Main Program Absolute System Infinite Length Mode Axis: Axis 1 Leading address of toggle buffer: MW30000 ON for only the first scan after...
  • Page 415 7.3 Using an Absolute Encoder P00002 H11 Main Program 0013 ELSE 0017 NL-4 Save values in buffer 1 to setting parameters. 0014 EXPRESSION 0018 OL805E=ML30010; NL-5 OL8060=ML30012; OL8062=ML30014; OL8064=ML30016; 0015 END_IF 0019 NL-4 Absolute System Infinite Length Position Control Data Initialization Request Flag ON SB000004 OB80007...
  • Page 416 7.3.2 Infinite Length Axis 7-32 WWW.NNC.IR...
  • Page 417 SVR Virtual Motion Module This chapter gives an overview of the SVR Virtual Motion Module and describes the system configuration, applicable motion parameters, motion commands, and sample programs. 8.1 SVR Virtual Motion Module ............. 8-2 8.1.1 Overview ....................8-2 8.1.2 System Configuration ................8-3 8.1.3 SVR Operation ..................
  • Page 418: Svr Virtual Motion Module

    I/O registers. The SVR can be used to control up to 16 virtual axes in the high-speed scan control cycle. If the SVR is not used, MP2200/MP2300 processing time can be reduced by setting the Module Type for SVR to UNDEFINED in the Module Configuration Window.
  • Page 419: System Configuration

    DB000020 DB000010 1 0002 Start IB00001 DB000011 1 0005 Holding IB00002 DB000012 SERVOPACK 1 0007 Stopped IB00005 DB000015 YASKAWA SERVOPACK 200V 1 0009 Reset SGDS-01A12A SVB Motion CHARGE Motion program Module High-speed scan Optional Module Servomotor SVB-01 Motion Module SERVOPACK...
  • Page 420 8 SVR Virtual Motion Module 8.1.2 System Configuration ( 2 ) Using the MP2200 MP2200 SVR Virtual Motion Module High-speed High-speed Virtual servo axes scan scan Ladder program IB00000 DB00000 0 1 0000 Ready to run IB00000 DB000020 DB000010 1 0002...
  • Page 421: Svr Operation

    The following table gives guidelines for the processing time required for each SVR axis. Command MP2300 MP2200 35 + 14 × Number of axes (µs) 24 + 10 × Number of axes (µs) 35 + 36 × Number of axes (µs) 24 + 24 ×...
  • Page 422: Motion Parameters

    8 SVR Virtual Motion Module 8.2.1 Motion Parameter Details 8.2 Motion Parameters The following table gives motion parameters used by the SVR and the default values of the parameters. 8.2.1 Motion Parameter Details Type Name Default Value Run Mode Function Selection 1 0000h Command Unit Number of Decimal Places...
  • Page 423 8.2 Motion Parameters (cont’d) Type Name Default Value − Drive Status − Over Range Parameter Number Warning − − Alarm − Servo Command Type Response − Servo Module Command Status Motion Subcommand Response Code − Motion Subcommand Status − − Position Management Status Machine Coordinate Target Position −...
  • Page 424: Motion Parameter Settings

    8 SVR Virtual Motion Module 8.2.2 Motion Parameter Settings 8.2.2 Motion Parameter Settings This section describes the motion parameters used by the SVR. ( 1 ) Motion Fixed Parameters [ a ] Run Mode Run Mode No. 0 Setting Range Setting Unit Default Value −...
  • Page 425 8.2 Motion Parameters [ f ] Gear Ratio Gear Ratio [MOTOR] No. 8 Setting Range Setting Unit Default Value 1 to 65535 rev (revolutions) Gear Ratio [LOAD] No. 9 Setting Range Setting Unit Default Value 1 to 65535 rev (revolutions) Set the gear ratio between the motor and the load.
  • Page 426 8 SVR Virtual Motion Module 8.2.2 Motion Parameter Settings ( 2 ) Motion Setting Parameters : The labels shown in reverse type indicate that the parameter is enabled (Note) Position during the corresponding control mode (position control shown here). [ a ] RUN Commands Run Commands Speed Torque...
  • Page 427 8.2 Motion Parameters [ d ] Motion Command Control Flags Motion Command Options Speed Phase Torque Position Setting Range Setting Unit Default Value − − 0000H Command Pause Bit 0 0: Command Pause OFF (default), 1: Command Pause ON Command Abort Bit 1 0: Command Abort OFF (default), 1: Command Abort ON JOG/STEP Direction...
  • Page 428 8 SVR Virtual Motion Module 8.2.2 Motion Parameter Settings [ h ] Secondary Speed Compensation Secondary Speed Position Speed Torque Phase Compensation Setting Range Setting Unit Default Value Depends on the speed unit set in Function 1 (setting parameter −2 to 2 −1 03 bits 0 to 3).
  • Page 429 8.2 Motion Parameters Bias Speed for Exponential Acceleration/Deceleration Speed Torque Phase Position Filter Setting Range Setting Unit Default Value Depends on speed unit 0 to 32767 03 bits 0 to 3). Set the bias speed for the exponential acceleration/deceleration filter. [ m ] Zero Point Return Home Window Phase...
  • Page 430 8 SVR Virtual Motion Module 8.2.2 Motion Parameter Settings ( 3 ) Motion Monitoring Parameters [ a ] Drive Status Drive Status Range Unit − − Motion Controller Operation Ready Bit 0 Turns ON when the Run Mode (fixed parameter 0) is set to 0 (Normal Running). OFF: Operation not ready, ON: Operation ready Running (Servo ON) Bit 1...
  • Page 431 8.2 Motion Parameters [ f ] Motion Command Status Servo Module Command Status Range Unit − − Command Executing (BUSY) Bit 0 OFF: READY (completed), ON: BUSY (processing) Command Hold Completed (HOLDL) Bit 1 OFF: Command hold processing not completed, ON: Command hold processing completed Command Error Occurrence (FAIL) Bit 3 OFF: Normal completion, ON: Abnormal completion...
  • Page 432 8 SVR Virtual Motion Module 8.2.2 Motion Parameter Settings [ j ] Position Information Machine Coordinate Target Position (TPOS) Range Unit Reference unit −2 to 2 −1 Stores the target position in the machine coordinate system managed by the Motion Module. Target Position (CPOS) Range Unit...
  • Page 433: Motion Commands

    8.3 Motion Commands 8.3 Motion Commands The SVR reads and writes motion parameters and executes commands at the beginning of the high-speed scan. 8.3.1 Motion Commands List The following table lists the motion commands that can be used with the SVR. Command Command Name...
  • Page 434: Motion Command Details

    8 SVR Virtual Motion Module 8.3.2 Motion Command Details 8.3.2 Motion Command Details Basically, the SVR provides functions to loop from a Motion Command (OW 08) to the Motion Command Type Response (IW 08). For positioning-related motion commands, the SVR updates position information toward the final target position using a positioning function.
  • Page 435 8.3 Motion Commands • Target Position (CPOS) (IL • Machine Coordinate System Position (MPOS) (IL 12): MPOS is always equal to CPOS. • Machine Coordinate Feedback Position (APOS) (IL 16): APOS is always equal to CPOS. [ b ] Related Parameters ■...
  • Page 436 8 SVR Virtual Motion Module 8.3.2 Motion Command Details ■ Monitoring Parameters Parameter Name Monitor Contents Indicates the Servo ON status. Servo ON ON: Power supplied to Servomotor, OFF: Power not supplied to Servomotor Warning Stores the most current warning. Alarm Stores the most current alarm.
  • Page 437 8.3 Motion Commands ( 2 ) External Positioning (EX_POSING) The latch function cannot be used for the SVR. EX_POSING thus performs the same operation as the POSING command. [ a ] Operating Procedure Execution Conditions Confirmation Method Both IL 02 and IL 04 are 0.
  • Page 438 8 SVR Virtual Motion Module 8.3.2 Motion Command Details [ b ] Related Parameters ■ Setting Parameters Parameter Name Setting Turn the power to the Servomotor ON and OFF. Servo ON 1: Power ON to Servomotor, 0: Power OFF to Servomotor Turn ON the power before setting the Motion Command (OW 08) to 2.
  • Page 439 8.3 Motion Commands ( 3 ) Zero Point Return (ZRET) When a ZRET command is executed, the zero point return will be completed immediately. Position information will not be updated. [ a ] Operating Procedure Execution Conditions Confirmation Method Both IL 02 and IL 04 are 0.
  • Page 440 8 SVR Virtual Motion Module 8.3.2 Motion Command Details [ b ] Related Parameters ■ Setting Parameters Parameter Name Setting Turn the power to the Servomotor ON and OFF. Servo ON 1: Power ON to Servomotor, 0: Power OFF to Servomotor Turn ON the power before setting the Motion Command Code (OW 08) to 3.
  • Page 441 8.3 Motion Commands ( 4 ) Interpolation (INTERPOLATE) The INTERPOLATE command positions the axis according to the target position that changes in sync with the high-speed scan. The positioning data is generated by a ladder program. [ a ] Operating Procedure Execution Conditions Confirmation Method Both IL...
  • Page 442 8 SVR Virtual Motion Module 8.3.2 Motion Command Details [ b ] Related Parameters ■ Setting Parameters Parameter Name Setting Turns the power to the Servomotor ON and OFF. Servo ON 1: Power ON to Servomotor, 0: Power OFF to Servomotor Turn ON this bit before setting the Motion Command (OW 08) to 4.
  • Page 443 8.3 Motion Commands ( 5 ) Latch (LATCH) The latch function cannot be used for the SVR. The LATCH command will thus perform the same operation as the INTERPOLATE command. [ a ] Operating Procedure Execution Conditions Confirmation Method Both IL 02 and IL 04 are 0.
  • Page 444 8 SVR Virtual Motion Module 8.3.2 Motion Command Details [ b ] Related Parameters ■ Setting Parameters Parameter Name Setting Turn the power to the Servomotor ON and OFF. Servo ON 1: Power ON to Servomotor, 0: Power OFF to Servomotor Set this bit to 1 before setting the Motion Command (OW 08) to 6.
  • Page 445 8.3 Motion Commands ( 6 ) JOG Operation (FEED) The FEED command starts movement in the specified travel direction at the specified travel speed. To stop the operation, execute the NOP motion command. The axis will decelerate to a stop when the NOP motion command is executed.
  • Page 446 8 SVR Virtual Motion Module 8.3.2 Motion Command Details [ b ] Related Parameters ■ Setting Parameters Parameter Name Setting Turn the power to the Servomotor ON and OFF. Servo ON 1: Power ON to Servomotor, 0: Power OFF to Servomotor Turn ON the power before setting the Motion Command (OW 08) to 7.
  • Page 447 8.3 Motion Commands ( 7 ) STEP Operation (STEP) The STEP command executes a positioning for the specified travel direction, moving amount, and travel speed. Parameters related to acceleration and deceleration are set in advance. The speed can be changed during axis movement.
  • Page 448 8 SVR Virtual Motion Module 8.3.2 Motion Command Details [ b ] Related Parameters ■ Setting Parameters Parameter Name Setting Turn the power to the Servomotor ON and OFF. Servo ON 1: Power ON to Servomotor, 0: Power OFF to Servomotor Turn ON the power before setting the Motion Command (OW 08) to 8.
  • Page 449 8.3 Motion Commands ( 8 ) Zero Point Setting (ZSET) The ZSET command sets the current position as the zero point of the machine coordinate system. [ a ] Operating Procedure Execution Conditions Confirmation Method There are no alarms. Both IL 02 and IL 04 are 0.
  • Page 450 8 SVR Virtual Motion Module 8.3.2 Motion Command Details ■ Monitoring Parameters Parameter Name Monitor Contents Warning Stores the most current warning. Alarm Stores the most current alarm. Servo Command Indicates the motion command that is being executed. Type Response The response code will be 9 during ZSET command execution.
  • Page 451 8.3 Motion Commands ( 10 ) Torque Reference (TRQ) The SVR does not support a torque control function. [ a ] Operating Procedure Execution Conditions Confirmation Method There are no alarms. Both IL 02 and IL 04 are 0. Motion command execution has been completed. 08 is 0 and IB 090 is OFF.
  • Page 452 8 SVR Virtual Motion Module 8.3.2 Motion Command Details ( 11 ) Phase References (PHASE) PHASE performs the same operation as the FEED Command. [ a ] Operating Procedure Execution Conditions Confirmation Method There are no alarms. Both IL 02 and IL 04 are 0.
  • Page 453 8.3 Motion Commands [ b ] Related Parameters ■ Setting Parameters Parameter Name Setting Turns the power to the Servomotor ON and OFF. Servo ON 1: Power ON to Servomotor, 0: Power OFF to Servomotor Turn ON the power before setting the Motion Command Code (OW 08) to 25.
  • Page 454 8 SVR Virtual Motion Module 8.3.2 Motion Command Details ( 12 ) Other Commands Other commands do not have functions for the SVR. The Motion Command (OW 08) is returned to the Motion Command Response Code (IW 08). [ a ] Operating Procedure ■...
  • Page 455: Sample Programming

    8.4 Sample Programming 8.4 Sample Programming The motion parameters used by the SVR have the same meanings as those used by the SVB-01 or SVA-01. Basically speaking, sample programming used by the SVB-01 or SVA-01 can thus be used with the SVR. There are some parameters, however, that are not implemented for the SVR, so some program changes will be required.
  • Page 456: Checking Operation

    8 SVR Virtual Motion Module 8.4.2 Checking Operation 8.4.2 Checking Operation ( 1 ) Checking Operation with the Tuning Panel Window In this sample program, run, stop, and other operations can be checked from a Tuning Panel Window. Use the following procedure to display the Tuning Panel Window. Log on online, open the 2200SMPL Controller Folder in the MPE720's File Manager Window, open the Programs folder, and then the High Scan Programs folder.
  • Page 457 8.4 Sample Programming Axis 2 forward JOG ON/OFF DB000010 H02.02 Axis 2 reverse JOG ON/OFF DB000011 H02.02 Axis 1 forward STEP ON/OFF DB000012 H02.01 Axis 1 reverse STEP ON/OFF DB000013 H02.01 Axis 2 forward STEP ON/OFF DB000012 H02.02 Axis 2 reverse STEP ON/OFF DB000013 H02.02...
  • Page 458: Sample Program Details

    8 SVR Virtual Motion Module 8.4.3 Sample Program Details 8.4.3 Sample Program Details ( 1 ) H Drawing The H parent drawing controls the overall sample program. P00101 H Main Program: High-speed Main Program High-speed main program Servo ON and Alarm reset Servo ON, alarm reset 0000 0000...
  • Page 459 8.4 Sample Programming ( 2 ) H01 Drawing The H01 child drawing turns ON the Servo, resets alarms, and sets common parameters. P00102 H01 Main Program: Axis Common Settings ########## Axis Common Settings  ########## ########## Motion Command Detection  ########## Axis 1 motion command 0 detection Axis 1 motion command 0 MB300010 0000...
  • Page 460 8 SVR Virtual Motion Module 8.4.3 Sample Program Details Main Program: Axis Common Settings P00103 H01 ##########Linear Acceleration/Deceleration Setting########## Axis 1 and 2 linear acceleration/deceleration setting MPM running MB30020 Linear acceleration/deceleration setting 0010 EXPRESSION 0018 OL8036= 100; NL-1 OL8038= 100; OL80B6= 100;...
  • Page 461 8.4 Sample Programming ( 4 ) H02.01 Drawing The H02.01 grandchild drawing controls JOG and STEP operation for axis 1. P00107 H02.01 Main Program: Axis 1 Manual operation (JOG and STEP) ##########Axis 1 Manual operation (JOG and STEP)########## ##########JOG########## Axis 1 JOG Axis 1 jog command Axis 1 forward jog Axis 1 reverse jog...
  • Page 462 8 SVR Virtual Motion Module 8.4.3 Sample Program Details Main Program: Axis 1 Manual operation (JOG and STEP) P00108 H02. 01 Axis 1 step stop Axis 1 motion command DB00000A 00011 STORE 0036 Source 00000 NL-1 Dest OW8008 ##########Reverse Rotation Selection########## Axis 1 reverse step Axis 1 reverse jog Axs 1 jog command...
  • Page 463 8.4 Sample Programming ( 5 ) H02.02 Drawing The H02.02 grandchild drawing controls JOG and STEP operation for axis 2. Main Program: Axis 2 Manual operation (JOG and STEP) P00110 H02. 02 ##########Axis 2 Manual operation (JOG and STEP)########## ##########JOG########## Axis 2 JOG Axis 2 forward jog Axis 2 reverse jog...
  • Page 464 8 SVR Virtual Motion Module 8.4.3 Sample Program Details P00111 H02. 02 Main Program: Axis 2 Manual operation (JOG and STEP) Axis 2 step stop Axis 2 motion command DB00000A 00011 STORE 0036 Source 00000 NL-1 Dest OW8088 ##########Reverse Rotation Selection########## Axis 2 jog command Axis 2 reverse jog Axis 2 reverse...
  • Page 465 Utility Functions This chapter explains the utility functions of the MP2200/MP2300. 9.1 Controlling Vertical Axes ............9-2 9.1.1 Overview ....................9-2 9.1.2 Connections to Σ-II and Σ-III SERVOPACK .......... 9-3 9.1.3 Connections to Σ Series SGDB SERVOPACK ........9-6 9.1.4 Connections to Σ Series SGD or SGDA SERVOPACK ......9-9 9.2 Overtravel Function ...............
  • Page 466: Controlling Vertical Axes

    The holding brake of the Servomotor is controlled through the brake interlock output (BK) signal from the SERVOPACK. The brake is not controlled from the MP2200/MP2300. Use the holding brake function of the SERVOPACK.
  • Page 467: Connections To Σ-Ii And Σ-Iii Servopack

    9.1 Controlling Vertical Axes 9.1.2 Connections to Σ-II and Σ-III SERVOPACK ( 1 ) Connection Example A circuit is configured to turn the brake ON and OFF using the /BK contact output signal from the SERVOPACK and a brake power supply. The standard connections are shown in the following diagram.
  • Page 468 9 Utility Functions 9.1.2 Connections to Σ-II and Σ-III SERVOPACK [ b ] Pn506 (Brake ON Timing after Motor Stops) Adjust brake timing with the following parameter if the machine moves slightly due to gravity or other factors. Setting Parameter Name Unit Default...
  • Page 469 9.1 Controlling Vertical Axes [ c ] Pn507 and Pn508 (Brake ON Timing when Motor Running) Adjust the timing of the holding brake when the motor is running with the following parameters so that the brake is applied after the Servomotor stops. Setting Parameter Name...
  • Page 470: Connections To Σ Series Sgdb Servopack

    9 Utility Functions 9.1.3 Connections to Σ Series SGDB SERVOPACK 9.1.3 Connections to Σ Series SGDB SERVOPACK ( 1 ) Connection Example Servomotor SGDB SERVOPACK with a brake Power supply BK-RY +24 V 50 mA max. SG-COM ∗ 1 BK-RY Blue or yellow White...
  • Page 471 9.1 Controlling Vertical Axes [ b ] Cn-12 (Brake ON Timing after Motor Stops) Adjust brake timing with the following parameter if the machine moves slightly due to gravity or other factors. Setting Parameter Name Unit Default Control Mode Range Delay Time from BK Signal Speed, torque, position Cn-12...
  • Page 472 9 Utility Functions 9.1.3 Connections to Σ Series SGDB SERVOPACK [ c ] Cn-15 and Cn-16 (Brake ON Timing when Motor Running) Adjust the timing of the holding brake when the motor is running with the following parameters so that the brake is applied after the Servomotor stops. Setting Parameter Name...
  • Page 473: Connections To Σ Series Sgd Or Sgda Servopack

    9.1 Controlling Vertical Axes 9.1.4 Connections to Σ Series SGD or SGDA SERVOPACK ( 1 ) Connection Example SGD or SGDA SERVOPACK Servomotor with a brake Power supply BK-RY +24 V 50 mA max. SG-COM ∗ 1 Blue or BK-RY yellow White Black...
  • Page 474 9 Utility Functions 9.1.4 Connections to Σ Series SGD or SGDA SERVOPACK ( 2 ) Parameter Settings The SERVOPACK parameters related to controlling the brake are described below. [ a ] Cn-12 (Brake ON Timing after Motor Stops) Adjust brake timing with the following parameter if the machine moves slightly due to gravity or other factors.
  • Page 475 9.1 Controlling Vertical Axes [ b ] Cn-15 and Cn-16 (Brake ON Timing when Motor Running) Adjust the timing of the holding brake when the motor is running with the following parameters so that the brake is applied after the Servomotor stops. Setting Parameter Name...
  • Page 476: Overtravel Function

    9.2.1 Overview The overtravel function forces the machine to stop when the moving part of the machine exceeds the range of movement. With the MP2200/MP2300, processing for stopping as a result of overtravel is achieved by using SERVOPACK functions. The SERVOPACK connections and parameter setting depend on the model of SERVOPACK. The connections and parameter settings are described in the following sections.
  • Page 477 9.2 Overtravel Function Rotation Direction Selection INFO The SVA Module provides a rotation direction selection that can be used to reverse the direction of rotation of the servomotor without changing the motor wiring at the SERVOPACK. The rotation direction selection only reverses the direction of rotation of the servomotor. The direction (-, +) of axis travel will change.
  • Page 478: Parameter Settings

    9 Utility Functions 9.2.3 Parameter Settings 9.2.3 Parameter Settings ( 1 ) Use/Not Use Overtravel Input Signals The following parameters are used to enable and disable using the overtravel input signals. [ a ] Σ-II or Σ-III SERVOPACK Parameter Name Meaning Default Value...
  • Page 479 9.2 Overtravel Function ( 2 ) Selecting Motor Stopping Methods for Overtravel When using the overtravel function has been enabled, the following parameters are used to set the methods for stopping the motor. Select the methods for stopping when the P-OT or N-OT is input during motor running. [ a ] Σ-II or Σ-III SERVOPACK Select the stopping method and processing after stopping when an overtravel signal is input during motor running.
  • Page 480 9 Utility Functions 9.2.3 Parameter Settings [ b ] Σ SERVOPACK Select the stopping method and processing after stopping when an overtravel signal is input during motor running. Parameter Name Meaning Default Value Uses the same stopping method as for Servo OFF. Stops the motor according to CN-01 bit 6 setting (dynamic brake or coasting) when overtravel is Bit 8: Selection of stopping...
  • Page 481: Software Limit Function

    The software limit function is used to set upper and lower limits for the range of machine movement in fixed parameters so the MP2200/MP2300 can constantly monitor the operating range of the machine. The function can be used to help prevent machine runaway or damage due to incorrect operation as well as incorrect references in a motion program.
  • Page 482: Processing After An Alarm Occurs

    9 Utility Functions 9.3.3 Processing after an Alarm Occurs The software limit function is enabled only after completing a Zero Point Return or Zero Point IMPORTANT Setting operation. If any fixed parameters are changed and saved, the Zero Point Return or Zero Point Setting operation must be performed again.
  • Page 483: Parameters That Are Automatically Updated

    9.4 Parameters That Are Automatically Updated The function described in this section is supported by the SVB-01 Module. It cannot be used with the SVA-01 Module. 9.4.1 Parameters Updated when a Connection Is Established (MP2200/MP2300 to SERVOPACK) SERVOPACK MP2200/MP2300 Remarks...
  • Page 484: Parameters Updated When A Setting Parameter Is Changed (Mp2200/Mp2300 To Servopack)

    9 Utility Functions 9.4.2 Parameters Updated when a Setting Parameter Is Changed (MP2200/MP2300 to SERVOPACK) 9.4.2 Parameters Updated when a Setting Parameter Is Changed (MP2200/MP2300 to SERVOPACK) When using the MECHATROLINK-II at 10 Mbps in 32-byte mode, the following parameters are updated when a setting parameter is changed as along as bit A of fixed parameter 1 is set to enable automatic updating of parameters.
  • Page 485 9.4 Parameters That Are Automatically Updated 9.4.4 Parameters Updated at Self-configuration (SERVOPACK to MP2200/MP2300) SERVOPACK MP2200/MP2300 SGD-N, NS100 NS115 SGDS SGDB-N Position Loop Gain Cn-001A Pn102 ← Speed Loop Gain Cn-0004 Pn100 ← Speed Feed Forward ← Cn-001D Pn109 Compensation...
  • Page 486 9 Utility Functions 9.4.5 Parameters Updated at Self-configuration (MP2200/MP2300 to SERVOPACK) 9-22 WWW.NNC.IR...
  • Page 487 Troubleshooting This chapter explains the details and remedies for errors that occur in the Motion Module. 10.1 Motion Errors ............... 10-2 10.1.1 Description of Motion Errors .............. 10-2 10.1.2 Motion Error Details and Corrections ..........10-5 10.1.3 Motion Program Alarms ..............10-20 10.1.4 Causes of the “Command Error End”...
  • Page 488: Motion Errors

    This section explains the details and remedies for errors that occur in motion control functions. 10.1.1 Description of Motion Errors Motion errors in the MP2200/MP2300 include axis alarms detected for individual SERVOPACKs. The failure location can be determined and appropriate corrections can be taken simply by checking the contents of the Warning (IL 02) and Alarm (IL 04) monitoring parameters.
  • Page 489 10.1 Motion Errors ( 2 ) Motion Error Type 2 The specific motion alarms for the SVB-01 Module’s MECHATROLINK-I or MECHATROLINK- II and SVA-01 Module functionality are shown below. ■ SVB-01 Module Warning (IL Bit 1: Setting Parameter Error Bit 2: Fixed Parameter Error Over Range Parameter Number Bit 0: Excessively following error Bit 3: Servo Driver Error...
  • Page 490 10 Troubleshooting 10.1.1 Description of Motion Errors ■ SVA-01 Module Warning (IL Bit 1: Setting Parameter Error Bit 2: Fixed Parameter Error Over Range Parameter Number (IW Bit 0: Excessively Following Error Bit 4: Motion Command Setting Error Bit 0: Servo Driver Error Alarm (IL Bit 1: Positive Overtravel Bit 2: Negative Overtravel...
  • Page 491: Motion Error Details And Corrections

    10.1 Motion Errors 10.1.2 Motion Error Details and Corrections ( 1 ) Alarm IL 04 Details The following table shows the contents of the axis alarms (IL 04). Alarm Contents SVB-01 SVA-01 Bit 0 Servo Driver Error Bit 1 Positive Overtravel Bit 2 Negative Overtravel Bit 3...
  • Page 492 10 Troubleshooting 10.1.2 Motion Error Details and Corrections ( 3 ) MECHATROLINK Servo Alarm Code (IW When the Servo Driver Error (IL 04, bit 0) turns ON, a SERVOPACK alarm will exist. The content of the alarm can be confirmed using the Servo Alarm Code (monitoring parameter 2D).
  • Page 493 10.1 Motion Errors [ b ] Σ-II Series Register Name Code Contents Number Normal Overload Warning Regeneration Overload Warning Data Setting Warning Command Warning Communication Warning Parameter Corrupted Main Circuit Detector Error Parameter Setting Error Combination Error Overcurrent or Heat Sink Overheat Regeneration Error Regeneration Overload Overvoltage...
  • Page 494 10 Troubleshooting 10.1.2 Motion Error Details and Corrections [ c ] Σ-III Series Register Name Code* Contents Number Normal Excessive Position Error Excessive Position Error at Servo ON Overload Vibration Regeneration Overload Absolute Encoder Battery Error Parameter Change Requiring Power Recycling Data Setting Warning 1 (Parameter Number) Data Setting Warning 2 (Outside Data Range) Data Setting Warning 3 (Calculation Error)
  • Page 495 10.1 Motion Errors (cont’d) Register Name Code* Contents Number Encoder Battery Alarm Encoder Data Alarm Encoder Over Speed Encoder Overheat Full-closed Serial Encoder Checksum Alarm Full-closed Serial Encoder Data Alarm Full-closed Serial Encoder Scale Error Full-closed Serial Encoder Module Error Full-closed Serial Encoder Sensor Error (Incremental Value) Full-closed Serial Encoder Position Error (Absolute Value) Current Detection Error 1...
  • Page 496 10 Troubleshooting 10.1.2 Motion Error Details and Corrections ( 4 ) Analog Servo Alarm List The Servo Driver Error Flag (IL 04, bit 0) turns ON when an alarm has occurred in a SERVOPACK connected to the SVA-01 Module. The content of the alarm can be confirmed by connecting a Digital Operator to the SERVOPACK. The following tables show the alarms that can occur in the SGDA, SGDB, SGDM, SGDH, and SGDS SERVOPACKs.
  • Page 497 10.1 Motion Errors Table 10.1 Analog Servo Alarm List (A) (cont’d) Code Alarm Name Alarm Content SGDA SGDB SGDM SGDH During dynamic braking operation, the rotating energy DB Overload × × A.73 exceeds the DB resistor's capacity. Inrush Resistance The main circuit power supply was turned OFF and ×...
  • Page 498 10 Troubleshooting 10.1.2 Motion Error Details and Corrections Table 10.1 Analog Servo Alarm List (A) (cont’d) Code Alarm Name Alarm Content SGDA SGDB SGDM SGDH Application Module × × × A.E7 Detection of the Application Module failed. Detection Failure Broken Phase in ×...
  • Page 499 10.1 Motion Errors Table 10.2 Analog Servo Alarm List (B) (cont’d) Code Alarm Name Alarm Content Overload (Instantaneous The motor operated with a torque that significantly exceeds the rated torque A.710 Maximum Load) for several seconds to several dozen seconds. Overload (Continuous A.720 The motor is operating continuously at a torque exceeding the rated torque.
  • Page 500 • The Command Error Occurrence in the Servo Module Command Status (IW 09 bit 3) will turn ON. • MP2200/MP2300 Processing The command is canceled and the axis decelerates to a stop. Follow-up processing (each scan the current position of the machine is adjusted to the reference position) is executed.
  • Page 501 10.1 Motion Errors ( 6 ) Positive and Negative Soft Limit (Positive and Negative Software Limit) 04 Bit 3 and Bit 4) Detection Timing • The software limits are detected by the position management section during execution of a motion command. •...
  • Page 502 10 Troubleshooting 10.1.2 Motion Error Details and Corrections ( 8 ) Positioning Time Over (IL 04 Bit 6) Detection Timing • Positioning was not completed after completing pulse distribution within the Positioning Completed Check Time 26). Processing when Alarm Occurs •...
  • Page 503 10.1 Motion Errors ( 11 ) Excessively Following Error (IL 04 Bit 9) Detection Timing • Detected during positioning (commands for positioning, external positioning, STEP operation, JOG operation, etc.). • Detected during phase control commands. Processing when Alarm Occurs • The move command is not executed. •...
  • Page 504 ( 15 ) Servo Driver Synchronization Communication Error (IL 04 Bit 16) Detection Timing • Detected by the communication control section when communication are synchronized between the MP2200/MP2300 and SERVOPACK. Processing when Alarm Occurs • The current command will be aborted.
  • Page 505 ( 16 ) Servo Driver Communication Error (IL 04 Bit 17) Detection Timing • Detected by the communication control section when communication is synchronized between the MP2200/MP2300 and SERVOPACK. Processing when Alarm Occurs • The current command will be aborted.
  • Page 506: Motion Program Alarms

    10 Troubleshooting 10.1.3 Motion Program Alarms ( 19 ) PG Disconnected Error (IL 04 Bit 20) Detection Timing • This error is valid only in position control, phase control, or zero point return mode and only when the pulse count method (A/B) is selected.
  • Page 507 10.1 Motion Errors ( 2 ) Motion Program Alarm List The motion program alarm codes are listed in the following tables. When displaying these on the register list, set the display mode to hexadecimal (H). Alarm Code Description Correction No alarm Complete circle specified for radius designation Interpolation feed speed exceeded Interpolation feed speed not specified...
  • Page 508: Causes Of The "Command Error End" Status (Svb-01 Only)

    10 Troubleshooting 10.1.4 Causes of the “Command Error End” Status (SVB-01 Only) 10.1.4 Causes of the “Command Error End” Status (SVB-01 Only) The “Command Error End” status occurs when the specified motion command could not be executed or could not be completed properly for some reason. The possible reasons for the Command Error End status depend on the executed motion command.
  • Page 509 10.1 Motion Errors (cont’d) Motion Command Code Cause of Command Error End Status Simultaneously Occurring Warnings or Alarms The travel distance specified for one scan exceeds the segment that can be specified in the MECHATROLINK Servo or the speed feed forward “Excessive Speed”...
  • Page 510 10 Troubleshooting 10.1.4 Causes of the “Command Error End” Status (SVB-01 Only) (cont’d) Motion Command Code Cause of Command Error End Status Simultaneously Occurring Warnings or Alarms − Alarm occurred. “Servo Driver Synchronization Communication Error” Communication is not synchronized. alarm Change Filter Time Command when pulse distribution has not been “Filter Time Constant Change Error”...
  • Page 511 10.1 Motion Errors (cont’d) Motion Command Code Cause of Command Error End Status Simultaneously Occurring Warnings or Alarms Command was sent while connected through No alarm or warning MECHATROLINK-I. Torque Reference − Alarm occurred. (TRQ) “Servo Driver Synchronization Communication Error” Communications are not synchronized.
  • Page 512: Error Detection

    10 Troubleshooting 10.2.1 SVB-01 Module LED Indicators 10.2 Error Detection 10.2.1 SVB-01 Module LED Indicators The following table shows how to use the LED indicators to determine the operating status of the SVB-01 Module, as well as relevant error information when the LED indicator status indicates an error.
  • Page 513 10.2 Error Detection (cont’d) LED Indicator Indicator Details Meaning Hardware Error (Number of LED blinks indicates error type.) 1: − 2: ROM diagnostic error Hardware failure in the Module Blinking Blinking − 3: RAM diagnostic error The Module must be replaced. 4: CPU diagnostic error 5: FPU diagnostic error 6: Shared memory diagnostic error...
  • Page 514 10 Troubleshooting 10.2.2 SVA-01 Module LED Indicators 10.2.2 SVA-01 Module LED Indicators The following table shows how to use the LED indicators to determine the operating status of the SVA-01 Module, as well as relevant error information when the LED indicator status indicates an error.
  • Page 515 10.2 Error Detection (cont’d) Indicator Name Indicator Details Meaning Status when a flash memory writing tool is connected and the Not lit Status after power is turned ON. power is turned ON. Not lit Writing Flash Memory Status when flash memory is being written. Status when flash memory write operation was completed Normal End normally.
  • Page 516 10 Troubleshooting 10.2.2 SVA-01 Module LED Indicators 10-30 WWW.NNC.IR...
  • Page 517 Appendix A Appendix A Switching Motion Commands - - - - - - - - - - - - - - - - - - - - - - - -A-2 A.1 SVB-01 Module Motion Command Execution Tables - - - - - - - - - - - - - A-2 A.2 SVB-01 Module Motion Subcommand Execution Table - - - - - - - - - - - - A-4 A.3 SVA-01 Module Motion Command Execution Table - - - - - - - - - - - - - - A-5 WWW.NNC.IR...
  • Page 518: A Switching Motion Commands

    Appendix A Appendix A.1 SVB-01 Module Motion Command Execution Tables Appendix A Switching Motion Commands Appendix A.1 SVB-01 Module Motion Command Execution Tables The following tables show which commands can be executed during execution of another motion command for the SVB-01 Module. New Command Command Being...
  • Page 519 Appendix A Switching Motion Commands (cont’d) New Command Command Being PRM_ PRM_ ALM_ ALM_ Executed ALMH ABS_ VELO TRQ PHAS KIS SV_ON SV_OF ALM HIST × − × POSING ∆ ∆ ∆ ∆ ∆ ∆ × × × × ∆ −...
  • Page 520: Module Motion Subcommand Execution Table

    Appendix A Appendix A.2 SVB-01 Module Motion Subcommand Execution Table Appendix A.2 SVB-01 Module Motion Subcommand Execution Table The following table shows which subcommands can be executed during execution of another motion command in an SVB-01 Module. New Subcommand Command Being Executed Code PRM_RD...
  • Page 521: Module Motion Command Execution Table

    Appendix A Switching Motion Commands Appendix A.3 SVA-01 Module Motion Command Execution Table The following table shows which commands can be executed during execution of another motion command in an SVA-01 Module. New Command Command Being Executed EX_P ZRET INTE ENDO LATC FEED STEP ZSET VELO TRQ...
  • Page 522 Appendix A Appendix A.3 SVA-01 Module Motion Command Execution Table WWW.NNC.IR...
  • Page 523 Index Index electronic gear - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -4-100 rotating load - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -4-102 encode settings - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-22 encoder resolution - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -4-105 Numerics...
  • Page 524 Index motion subcommand response code - - - - - - - - - - - - - - - - 4-50 8-15 motion subcommand status - - - - - - - - - - - - - - - - - - - - - - 4-50 8-15 ladder program for infinite length axis position control - - - - - - - 7-24 motion subcommands- - - - - - - - - - - - - - - - - - - - - - - - - - 4-30...
  • Page 525 Index connection cables - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-22 SERVOPACK commands - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-43 warning - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-46 8-14 SERVOPACK I/O monitor - - - - - - - - - - - - - - - - - - - - - - - - - - 4-56...
  • Page 526 Index Index-4 WWW.NNC.IR...
  • Page 527 Revision History The revision dates and numbers of the revised manuals are given on the bottom of the back cover. MANUAL NO. SIEP C880700 16A Printed in Japan June 2005 04-10 Revision number Date of Date of original printing publication Rev.
  • Page 528 WWW.NNC.IR...
  • Page 529 YASKAWA ELECTRIC AMERICA, INC. 2121 Norman Drive South, Waukegan, IL 60085, U.S.A. Phone: (847) 887-7000 Fax: (847) 887-7310 Internet: http://www.yaskawa.com MOTOMAN INC. 805 Liberty Lane, West Carrollton, OH 45449, U.S.A. Phone: (937) 847-6200 Fax: (937) 847-6277 Internet: http://www.motoman.com YASKAWA ELETRICO DO BRASIL COMERCIO LTDA.

This manual is also suitable for:

Mp2300

Table of Contents