Safety And Switching; Table 1. Identification On The Residual-Current Circuit-Breakers - Eaton H-max Series Installation Manual

Variable frequency drive
Hide thumbs Also See for H-max Series:
Table of Contents

Advertisement

Engineering

Safety and Switching

Fuses and Cable Cross-Sections
The fuses and wire cross-sections allocated for power-side
connections depend on the rated input current I LN of the
frequency inverter (without input reactor).
When selecting the cable cross-section, take the voltage
drop under load conditions into account.
The consideration of other standards (for example, VDE 0113
or VDE 0289) is the responsibility of the user.
The national and regional standards (for example VDE 0113,
EN 60204) must be observed and the necessary approvals
(for example UL) at the site of installation must be fulfilled.
When the device is operated in a UL-approved system, use
only UL-approved breakers, fuses, fuse bases, and cables.
The leakage currents to ground (to EN 50178) are greater
than 3.5 mA. The connection terminals marked PE and the
housing must be connected with the ground circuit.
The specified minimum PE conductor cross-sections
(EN 50178, VDE 0160) must be maintained.
Choose the cross-section of the PE conductor in the motor
lines at least as large as the cross-section of the phase lines
(U, V, W).
Cables and Fuses
The cross-sections of the cables and line protection fuses
used must correspond with local standards.
For an installation in accordance with UL guidelines, the
fuses and copper cable that are UL-approved and have a
heat-resistance of 167° to 194°F (75° to 90°C) are to be used.
Use power cables with insulation according to the specified
input voltages for the permanent installation. A shielded
cable is not required on the input side.
A completely (360°) shielded low impedance cable is
required on the motor side. The length of the motor cable
depends on the RFI class and must not exceed 500 ft (153m)
without additional filtering.
4
H-Max Series Variable Frequency Drive MN04008005E—May 2017 www.eaton.com
CAUTION
CAUTION
Residual-Current Device (RCD)
RCD (Residual Current Device): Residual current device,
residual current circuit breaker (FI circuit breaker).
Residual current circuit breakers protect persons and animals
from the existence (not the origination) of impermissibly high
contact voltages. They prevent dangerous, and in some
cases deadly injuries caused by electrical accidents, and also
serve as fire prevention.
WARNING
With frequency inverters, only AC/DC sensitive residual
current circuit breakers (RCD type B) are to be used
(EN 50178, IEC 755).
Table 1. Identification on the Residual-Current
Circuit-Breakers
AC/DC sensitive
(RCD, type B)
Frequency inverters work internally with rectified AC
currents. If an error occurs, the DC currents can block a type
A RCD circuit breaker from triggering and therefore disable
the protective functionality.
Debounced inputs may not be used in the safety circuit
diagram.
Residual current circuit breakers (RCD) are only to be
installed between the AC power supply network and the
frequency inverter.
Safety-relevant leakage currents can occur while handling
and when operating the frequency inverter, if the frequency
inverter is not grounded (because of a fault).
Leakage currents to ground are mainly caused by foreign
capacities with frequency inverters; between the motor
phases and the shielding of the motor cable and via the
Y-capacitors of the noise filter. The size of the leakage
current is mainly dependent upon the:
length of the motor cable
shielding of the motor cable
height of the pulse frequency (switching frequency of the
inverter)
design of the noise filter
grounding measures at the site of the motor
CAUTION

Hide quick links:

Advertisement

Table of Contents
loading

This manual is also suitable for:

Hmx32ag3d721-nHmx32ag01121-nHmx32ag4d821-nHmx32ag01221-nHmx32ag01821-nHmx32ag02421-n ... Show all

Table of Contents