Serial Communication; Eia(Rs)232 Bus; Eia(Rs)485 Bus - GE P642 Technical Manual

Micom p40 agile transformer protection ied
Table of Contents

Advertisement

P64x
3

SERIAL COMMUNICATION

The physical layer standards that are used for serial communications for SCADA purposes are:
EIA(RS)485 (often abbreviated to RS485)
K-Bus (a proprietary customization of RS485)
EIA(RS)232 is used for local communication with the IED (for transferring settings and downloading firmware
updates).
RS485 is similar to RS232 but for longer distances and it allows daisy-chaining and multi-dropping of IEDs.
K-Bus is a proprietary protocol quite similar to RS485, but it cannot be mixed on the same link as RS485. Unlike
RS485, K-Bus signals applied across two terminals are not polarised.
It is important to note that these are not data protocols. They only describe the physical characteristics required
for two devices to communicate with each other.
For a description of the K-Bus standard see
A full description of the RS485 is available in the published standard.
3.1

EIA(RS)232 BUS

The EIA(RS)232 interface uses the IEC 60870-5 FT1.2 frame format.
The device supports an IEC 60870-5 FT1.2 connection on the front-port. This is intended for temporary local
connection and is not suitable for permanent connection. This interface uses a fixed baud rate of 19200 bps, 11-bit
frame (8 data bits, 1 start bit, 1 stop bit, even parity bit), and a fixed device address of '1'.
EIA(RS)232 interfaces are polarised.
3.2

EIA(RS)485 BUS

The RS485 two-wire connection provides a half-duplex, fully isolated serial connection to the IED. The connection is
polarized but there is no agreed definition of which terminal is which. If the master is unable to communicate with
the product, and the communication parameters match, then it is possible that the two-wire connection is
reversed.
The RS485 bus must be terminated at each end with 120 Ω 0.5 W terminating resistors between the signal wires.
The RS485 standard requires that each device be directly connected to the actual bus. Stubs and tees are
forbidden. Loop bus and Star topologies are not part of the RS485 standard and are also forbidden.
Two-core screened twisted pair cable should be used. The final cable specification is dependent on the application,
although a multi-strand 0.5 mm
is important to avoid circulating currents, which can cause noise and interference, especially when the cable runs
between buildings. For this reason, the screen should be continuous and connected to ground at one end only,
normally at the master connection point.
The RS485 signal is a differential signal and there is no signal ground connection. If a signal ground connection is
present in the bus cable then it must be ignored. At no stage should this be connected to the cable's screen or to
the product's chassis. This is for both safety and noise reasons.
It may be necessary to bias the signal wires to prevent jabber. Jabber occurs when the signal level has an
indeterminate state because the bus is not being actively driven. This can occur when all the slaves are in receive
mode and the master is slow to turn from receive mode to transmit mode. This may be because the master is
waiting in receive mode, in a high impedance state, until it has something to transmit. Jabber causes the receiving
device(s) to miss the first bits of the first character in the packet, which results in the slave rejecting the message
and consequently not responding. Symptoms of this are; poor response times (due to retries), increasing message
error counts, erratic communications, and in the worst case, complete failure to communicate.
P64x-TM-EN-1.3
K-Bus
(on page318) and GE's K-Bus interface guide reference R6509.
2
per core is normally adequate. The total cable length must not exceed 1000 m. It
Chapter 16 - Communications
317

Advertisement

Table of Contents
loading

This manual is also suitable for:

P643P645

Table of Contents