It is necessary to contact Micro-Epsilon Messtechnik GmbH & Co. KG before the system is modified or is combined in any way with parts and/or systems which have not been approved by Micro-Epsilon or which are not described in this manual.
The thickness D of the target is calculated in the touchscreen IPC. Upper belt Sensor 1 Target Lower belt Signal sensor 1 Signal sensor 2 Target thickness Sensor 2 Fig. 2 Sensor arrangement for the thickness measurement thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 6...
1.3.2 Intended Use - The thicknessCONTROL MTS 8201.LLT measuring system is designed for use in industrial environments. - It is used for thickness measurement of electrically conductive materials. - The measuring system must only be operated within the limits specified in the technical data.
- Structural modifications to the measuring system: No modifications, attachments to or conversions of the measuring system may be made without the permission of the manufacturer. All conversion measures require the written approval of Micro-Epsilon Messtechnik GmbH & Co. KG. Parts of the system that are not in trouble-free condition must be replaced immediately.
Within this period, defective parts, except for wearing parts, will be repaired or replaced free of charge, if the device is returned to MICRO-EPSILON with shipping costs prepaid. Any damage that is caused by improper handling, the use of force or by repairs or modifications by third parties is not covered by the liability for material defects.
If both information labels are hidden in the installed state, the user must ensure that additional labels are fitted at the point of installation. Position of the Laser Warning Signs scanCONTROL Fig. 5 True reproduction of the sensor with its actual location of the warning labels thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 11...
Such parts/assemblies which have to be adjusted for functional reasons have been adjusted by Micro-Epsilon. The commissioning of the system does not require any adjustment work by the customer.
It is used as support for the laser sensors which are used for the thickness measurement of the product. 1 Upper measurement carriage 2 Laser scanner 3 Drive master target 4 Laser scanner Fig. 8 Measurement carriage guide system thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 14...
An optional air purge at the sensors in the upper and lower belts reduces dust ac- cumulation, etc. on the glass panes for the sensors. 1 Laser beam emission with air cooling 2 Receiver with air cool- Fig. 10 Sensor housing with openings for laser beam thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 15...
These values are stored and used by the measuring systems as a zero and error curve. 1 Master target 2 Swivel drive Fig. 12 Master target thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 16...
Two end position sensors each detect the end positions of the upper and lower measure- ment carriages. End stops (parabolic springs) prevent a collision between the measure- ment carriage and the base frame. 1 Limit switch Fig. 16 Limit switch on the base frame, upper measurement carriage thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 18...
Both measurements are used to correct the thickness calculation. Both measure- ments used to correct the thickness calculation. 1 Capacitive sensor Reference ruler Fig. 18 Compensation of thermal deflection thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 19...
The lower reference ruler is freely suspended in the air. Upper and lower reference ruler form a reference plane in the measuring system. INVAR rod Upper reference Ball caster Tension spring Fig. 19 Guidance upper reference ruler thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 20...
In the event of a drop in the nominal pressure from 6 bar to under 4 bar, a signal is sent to the measuring system’s controller. The controller forwards this information to the desktop. All valves are contained within a valve cluster, see Fig. 22 thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 22...
To visualize the operating states over long distances, the system features a signal lamp (1), see Fig. 24, which is mounted on the measuring system, see Fig. 1 Signal lamp Fig. 24 Signal lamp thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 23...
- Move the main switch to "OFF" shuts down - Measuring program ends, computer - Move the main switch to "OFF" shuts down 3.6.4 Keyboard, PPC The PPC is connected to the control cabinet and the measuring system. thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 24...
Page 25
Remove the four screws of the transport locking closures on the bottom of the wooden crate, see Fig. 26. Use a 6 mm screwdriver and an open-end wrench, SW13. thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 25...
Page 26
The measuring system must not be lifted on one side and then pulled. Prevent any damage, particularly to the projecting parts (for example the drive motor) while transporting the measuring system. Integrate the measuring system into your industrial environment. thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 26...
Refer to the electrical plan for the rating of the back-up fuse for the measuring system, 9.2. The customer must use loop impedance measurement and appropriate cable cross-sections to ensure prompt triggering of the back-up fuse. thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 27...
The measuring program must be ended in order to shut down the system properly. The PC is shut down automatical- ly and switched off. The main switch must be switched off to disconnect the system from the power supply. thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 29...
1320.8 mm Thickness: min. 0.305 mm max. 7.112 mm Take appropriate measures, e.g. guide rollers, to ensure that the target does not hit the measuring system. Fig. 31 Red marking on the measuring system thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 30...
(thicknessCONTROL + operating system) remain. This means in particular, that new software components must not be installed unless they have been ex- plicitly released from Micro-Epsilon (e.g. office components, games, screen saver, ASO.) In this context, operating system components could be deleted or overwritten unnoticedly which are necessary for perfect function of the measuring program.
Fig. 33 Dialog Login To prevent the measuring system from unauthorized access, it can be locked by person- nel. Therefore the user has to log out first. Access on software is refused until a men- thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 32...
Menu Language Select language Menu Info Info dialogs, instruction manual, export log files Menu Favorites Menu items added to favorites by user (must first be created by user) Fig. 35 Menu structure, functions thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 33...
The actuators of the system can be moved via the corresponding buttons in the view System overview if the measurement has not been started and the necessary rights exist. You can activate resp. deactivate these buttons via the menu Measurement > Manual mode. thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 34...
The system waits for further commands. In the emergency stop resp. area stop situation the motor and compressed air is imme- diately turned off. All components can be moved manually. thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 35...
After the measuring system has started, always the last accessed article record is used for measurement. Data that belong together are divided into groups and can be expanded/compressed individually via an arrow. thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 36...
Page 37
Here, the fixed track measurement can be parameterized. ment The threshold values for an article which are necessary for surveillance of the produc- tion can either be set manually or by tolerance (relative to setpoint) and are defined as follows: thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 37...
System Parameter Configuration of system parameters takes place in tab Parameter. You can find system settings which can only be changed by Micro-Epsilon in tab Advanced. Data that belong together are divided into groups and can be expanded/compressed individually via an arrow.
Page 39
The traversal speed set here is only used for a short pe- riod of time i.e. until next recall of an article. With a recall of articles traversal speed of article master is used again. thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 39...
Page 40
With the value limits for partial tolerance you can define how many measured values in [%] of the complete crossprofile must be outside the tolerance for the tolerance check. thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 40...
Use the two two dropdown boxes to define which measured value or which profile should be used for the combined length trend and the pseudocolor view. Data that belong together are divided into groups and can be expanded/compressed individually via an arrow. thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 41...
The virtual green LED Posi- tion reached signalizes reaching the measurement position. Gathered measurement data is saved in an ASCII file in the archive folder. The file con- thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 42...
Furthermore, can be selected for the visualization of the values of each sensor on the check boxes which combination to display of intensity values should be displayed. thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 43...
All numerical views can be enlarged by clicking the square symbol (to the right of the numerical value). The numerical value is displayed in an own display window; a new tab is inserted in the view bar. This view can be closed by clicking this button thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 44...
48, three resp. five areas for left, half left track, mid, half right and right track are formed. Those three resp. five tracks and their width can be defined in the view System parameters. Fig. 51 View Length-Trend of the virtual 3/5 tracks thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 45...
- Display of distribution of the measurement values in a histogram - Cp and Cpk The characteristic values are visualized in view Statistic. The three black vertical lines mark the lower resp. upper tolerance and the setpoint. thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 46...
Internal motor parameters can also be changed, read and saved. The Offline analysis button opens a new window with the offline analysis. This al- lows the operator to subsequently analyze old measurement files. TeamViewer offers the possibility to start the TeamViewer. thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 47...
Via menu Change password a new password can be defined for active user identifica- tion. Therefore you have to enter the current password first, until the new password is accepted. Fig. 57 Dialog to define a new password thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 48...
You can limit time in the textbox Time from ... until. If you click the button Inputs, the displayed columns can either be hidden or shown. Fig. 58 Dialog Logging Fig. 59 Dialog Logging – Inputs thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 49...
Shows the current state: Test ongoing Test completed, result not OK Test completed , result OK The result of the test is saved in an Excel file. This diagram shows the current cross-profile. thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 50...
This button starts and ends the test. Shows the current state: Test ongoing Test completed, result not OK Test completed, result OK This diagram shows the current cross-profile. thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 51...
- Program: How long the program was active in the selected period. - Measurement: How long the measurement was active in the selected period. - Sensors: How long the sensors were active in the selected period. thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 52...
Page 53
In this view the user can set the scaling factor for the analog output (deviation from the setpoint of the thickness Track1, Track3 and Track5). This is specified in mm per volt. In the figure below, this value is set to 0.1 mm per volt. Fig. 63 Properties thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 53...
- Angle and - State. They show the points achieved (max. 1280) for the lower and upper sensor and the transmitted frequency of the laser scanner. In addition, the types and status are visualized. thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 54...
The location must be selected before exporting. The following is shown during the export process. When the export is finished, the message „Export successful“ is displayed. thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 55...
Long-click on the desired menu item with the mouse or, if a touchscreen is installed, press and hold the desired menu item. The following menu then appears. With the command Add to favorites the menu item is added to the favorites. thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 56...
A binary file (extension .bme) is saved parallel to this ASCII file. It contains additional information, an analysis of these measuring results can be carried out by means of the Offline Analysis tool which is sepa- rately available from Micro-Epsilon. Measurement data is automatically deleted after 30 days. thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 57...
O.Data[2].14 +1.6 O.Data[2].15 +1.7 16 Bit Reserve O.Data[4] / O.Da- +4.0 Thickness Setpoint REAL ta[5] O.Data[6] / O.Da- +8.0 Thickness Upper REAL ta[7] Tolerance O.Data[8] / O.Da- +12.0 Thickness Lower REAL ta[9] Tolerance thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 58...
Page 59
+124.0 PLC <= ME Named Address AB Adress TWinCAT Name Type I.Data[2].0 +0.0 Alive Signal I.Data[2].1 +0.1 Centralized Fault I.Data[2].2 +0.2 System Ready I.Data[2].3 +0.3 Measurement Active Bit I.Data[2].4 +0.4 Out of Tolerance thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 59...
Page 60
Current No. of Valid ta[33] Points Sensor 2 REAL I.Data[34] / I.Da- +64.0 Current Production REAL ta[35] Speed I.Data[36] / I.Da- +68.0 ta[37] I.Data[38] / I.Da- +72.0 ta[39] I.Data[40] / I.Da- +76.0 ta[41] thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 60...
Clean the master part and or a lint-free cloth the reference rulers if nec- essary. For this purpose, a compensation travel must be carried out. Multi-purpose grease LGMT2 Complete the lubrication of the guide carriages. thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 65...
EtherCAT EK1100 6414024 bus terminal 24V EL9186 6414089 bus terminal 0V EL9187 6414116 bus terminal digital input EL1008 6414046 bus terminal digital input EL1104 6414037 bus terminal digital output EL2008 6414049 thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 66...
Page 67
EL9100 6414029 bus terminal EL2084 6414124 bus terminal digital output EL2004 6414026 limit switch 3004217 DT6100 / CS2 4350070.11 LLT2900-50/VT 4322027.015 Ethernet Scanner 2901769 Dig I/O Scanner 2901868 signal line capacitive sensor 2901957 thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 67...
Page 68
- Is signal via interface active? - Check for contamination of the sensor glasses on inside and outside Motor error Baumüller or EncoTRive - Check supply voltage - Check error codes on the controller thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 68...
EC Machinery Directive and for which an EC Declaration of Conformity according to Annex II A exists. Ortenburg, July 23, 2019 Dipl.-Inf. Univ. Achim Sonntag Manager Inspection Systems thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 69...
Fig. 66 Dimensional drawing of measuring system, dimensions in mm (inches), not to scale Install the measuring system. Terminal and Circuit Diagrams Technical Data scanCONTROL LLT 2900 Manual capaNCDT 6100 Manual UPS Manual thicknessCONTROL MTS 8201.LLT / 4350006.71 Page 71...
Page 72
Micro-Epsilon Messtechnik GmbH & Co KG Königbacherst. 15 D-94496 Ortenburg Phone: 08542/168-0 Order-Number K247554 Company / customer Project-Number: P107587 Article-Number: 4350006.71 Manufacturer (company) Micro-Epsilon Messtechnik GmbH & Co KG Project name 4350006.71_ATI_USA_K247554 Power Supply 120V/60Hz/10A Control Voltage 24 V Year of Construction...
Page 73
03.08.2021 Diese Zeichnung ist Eigentum der Firma This drawing is the property of MICRO- Inhaltsverzeichnis : =ANL+ALL/1 - =ANL+OFR/28 K247554 MICRO-EPSILON und darf ohne unsere EPSILON and must not be copied or Ed. by 11000108 Genehmigung weder kopiert noch brought to the knowledge of a third...
03.08.2021 Diese Zeichnung ist Eigentum der Firma This drawing is the property of MICRO- General specifications K247554 MICRO-EPSILON und darf ohne unsere EPSILON and must not be copied or Ed. by 11000108 Genehmigung weder kopiert noch brought to the knowledge of a third...
03.08.2021 Diese Zeichnung ist Eigentum der Firma This drawing is the property of MICRO- Overview revision K247554 MICRO-EPSILON und darf ohne unsere EPSILON and must not be copied or Ed. by 11000108 Genehmigung weder kopiert noch brought to the knowledge of a third...
03.08.2021 Diese Zeichnung ist Eigentum der Firma This drawing is the property of MICRO- Overview measuring system K247554 MICRO-EPSILON und darf ohne unsere EPSILON and must not be copied or Ed. by 11000108 Genehmigung weder kopiert noch brought to the knowledge of a third...
03.08.2021 Diese Zeichnung ist Eigentum der Firma This drawing is the property of MICRO- Overview marking K247554 MICRO-EPSILON und darf ohne unsere EPSILON and must not be copied or Ed. by 11000108 Genehmigung weder kopiert noch brought to the knowledge of a third...
03.08.2021 Diese Zeichnung ist Eigentum der Firma This drawing is the property of MICRO- Overview cable K247554 MICRO-EPSILON und darf ohne unsere EPSILON and must not be copied or Ed. by 11000108 Genehmigung weder kopiert noch brought to the knowledge of a third...
03.08.2021 Diese Zeichnung ist Eigentum der Firma This drawing is the property of MICRO- Overview EtherCAT bus K247554 MICRO-EPSILON und darf ohne unsere EPSILON and must not be copied or Ed. by 11000108 Genehmigung weder kopiert noch brought to the knowledge of a third...
03.08.2021 Diese Zeichnung ist Eigentum der Firma This drawing is the property of MICRO- 120V input, service socket, cabinet heating K247554 MICRO-EPSILON und darf ohne unsere EPSILON and must not be copied or Ed. by 11000108 Genehmigung weder kopiert noch...
Diese Zeichnung ist Eigentum der Firma This drawing is the property of MICRO- 24V power supply, UPS, master switch, dc-fuse K247554 MICRO-EPSILON und darf ohne unsere EPSILON and must not be copied or Ed. by 11000108 Genehmigung weder kopiert noch...
03.08.2021 Diese Zeichnung ist Eigentum der Firma This drawing is the property of MICRO- Servocontroller and servomotor K247554 MICRO-EPSILON und darf ohne unsere EPSILON and must not be copied or Ed. by 11000108 Genehmigung weder kopiert noch brought to the knowledge of a third...
03.08.2021 Diese Zeichnung ist Eigentum der Firma This drawing is the property of MICRO- Emergency stop contact from ATI K247554 MICRO-EPSILON und darf ohne unsere EPSILON and must not be copied or Ed. by 11000108 Genehmigung weder kopiert noch brought to the knowledge of a third...
03.08.2021 Diese Zeichnung ist Eigentum der Firma This drawing is the property of MICRO- Local emergency stop and reset K247554 MICRO-EPSILON und darf ohne unsere EPSILON and must not be copied or Ed. by 11000108 Genehmigung weder kopiert noch brought to the knowledge of a third...
03.08.2021 Diese Zeichnung ist Eigentum der Firma This drawing is the property of MICRO- Industrial-PPC, interface ATI K247554 MICRO-EPSILON und darf ohne unsere EPSILON and must not be copied or Ed. by 11000108 Genehmigung weder kopiert noch brought to the knowledge of a third...
03.08.2021 Diese Zeichnung ist Eigentum der Firma This drawing is the property of MICRO- Buscoupler, 24V allocation, fan K247554 MICRO-EPSILON und darf ohne unsere EPSILON and must not be copied or Ed. by 11000108 Genehmigung weder kopiert noch brought to the knowledge of a third...
03.08.2021 Diese Zeichnung ist Eigentum der Firma This drawing is the property of MICRO- Digital input K247554 MICRO-EPSILON und darf ohne unsere EPSILON and must not be copied or Ed. by 11000108 Genehmigung weder kopiert noch brought to the knowledge of a third...
Diese Zeichnung ist Eigentum der Firma This drawing is the property of MICRO- Digital output, signal column, analog signal ATI K247554 MICRO-EPSILON und darf ohne unsere EPSILON and must not be copied or Ed. by 11000108 Genehmigung weder kopiert noch...
Page 89
Diese Zeichnung ist Eigentum der Firma This drawing is the property of MICRO- Buscoupler, digital input, limit switch, pressure sensor K247554 MICRO-EPSILON und darf ohne unsere EPSILON and must not be copied or Ed. by 11000108 Genehmigung weder kopiert noch...
Page 90
03.08.2021 Diese Zeichnung ist Eigentum der Firma This drawing is the property of MICRO- Digital output, trigger LLT, capa sensor K247554 MICRO-EPSILON und darf ohne unsere EPSILON and must not be copied or Ed. by 11000108 Genehmigung weder kopiert noch...
Page 91
03.08.2021 Diese Zeichnung ist Eigentum der Firma This drawing is the property of MICRO- Digital output after emergency stop, valve K247554 MICRO-EPSILON und darf ohne unsere EPSILON and must not be copied or Ed. by 11000108 Genehmigung weder kopiert noch...
Page 92
03.08.2021 Diese Zeichnung ist Eigentum der Firma This drawing is the property of MICRO- Scanner, limit switch calibration target O-frame K247554 MICRO-EPSILON und darf ohne unsere EPSILON and must not be copied or Ed. by 11000108 Genehmigung weder kopiert noch...
Page 94
Questionnaire for the specification of measuring systems in metallurgy 冶金行业测量系统技术规范 调查问卷 General 一般说明 ▪ Unique name of customer´s line / project (line, measuring point etc.) 客户生产线/项目(生产线、测量点 等)唯一名称 Annealing lines 90L & 91L; Exit sides General 一般说明 Characteristics Description and/or value 特性...
Page 97
Contents Safety ............................7 Symbols ................................7 Warnings ................................7 Notes on CE Marking ............................8 Intended Use ..............................8 Proper Environment ............................9 Laser Safety ..........................10 Laser Class 2M .............................. 10 Laser Class 3B ............................... 13 Functional Principle, Technical Data ..................16 Short Description ............................
Page 98
Operation of the Sensor with a PC ..................38 Displays ................................. 38 Operating and Demonstration Programs ...................... 38 Installation ..............................39 6.3.1 Requirements ..........................39 6.3.2 Connecting scanCONTROL 29xx to the PC ................39 Instructions for Operation ..........................40 6.4.1 Measuring Field Selection ......................
Page 99
Appendix Accessories ..........................60 A 1.1 Recommended Accessories ......................... 60 A 1.2 Optional Accessories ............................. 61 scanCONTROL 29xx...
Safety Safety Sensor operation assumes knowledge of the operating instructions. Symbols The following symbols are used in these operating instructions. Indicates a hazardous situation which, if not avoided, may result in minor or mode- rate injury. Indicates a situation that may result in property damage if not avoided. Indicates a user action.
Products which carry the CE mark satisfy the requirements of the EU directives cited and the European harmonized standards (EN) listed therein. The EU Declaration of Conformity is available to the responsible authorities according to EU Directive, article 10, at: MICRO-EPSILON MESSTECHNIK GmbH & Co. KG Königbacher Strasse 15 94496 Ortenburg / Germany The sensor is designed for use in industry and satisfies the requirements.
Laser Safety Laser Safety The scanCONTROL 29xx sensors operate with a semiconductor laser having a wavelength of 658 nm (visible/ red) or a semiconductor laser having a wavelength of 405 nm (visible/blue). The laser operation is indicated visually by the LED on the sensor. When operating the scanCONTROL 29xx sensors, the relevant regulations according to EN 60825-1 (IEC 60825, Part 1 of 07/2015) and the applicable accident prevention regulations must be followed.
Page 105
Laser Safety immediately turn away if the laser radiation impinges on the eye. The following information labels are fitted to the sensor housing (front and rear side): The laser labels for Germany are already printed on. The labels for the EU area and the USA are en- closed and must be fitted by the user for the region applicable in each case before the equipment...
Page 106
Laser Safety scanCONTROL Fig. 5 True reproduction of the sensor with its actual location of the warning label scanCONTROL 29xx Page 12...
Laser Safety Laser Class 3B scanCONTROL 29x0 sensors with a maximum laser power up to 20 mW, see Chap. 3.2, are classified in Laser Class 3B (IIIB). Sensors of laser class 3B (IIIB) need an external key switch to switch off the laser, see Chap. 5.2.6. Ac- cordingly, the following applies: The available laser radiation is hazardous for the eyes and usually for the skin also.
Page 108
Laser Safety In addition, the following information label must be attached to the laser output on the sensor housing: Beam attenuator Fig. 8 scanCONTROL Fig. 9 scanCONTROL beam attenuator masks beam attenuator in measu- aperture ring position Laser products certified as Class 3B products (EN 60825-1) require a beam attenuator, see Fig.
Page 109
Laser Safety scanCONTROL Warning- Laser radiation Avoid exposure to beam Class 3B Laser Product IEC 60825-1: 2015-07 50mW, P 50mW; = 658nm; F = 0...4kHz, t = 1µs...∞ Fig. 10 True reproduction of the sensor with its actual location of the warning label The user is responsible that the accident prevention regulations are observed.
Functional Principle, Technical Data Functional Principle, Technical Data Short Description 3.1.1 Measuring Principle The scanCONTROL 29xx sensor operates according to the principle of optical triangulation (light intersection method): - A laser line is projected onto the target surface via a linear optical system. - The diffusely reflected light from the laser line is replicated on a sensor array by a high quality optical sys- tem and evaluated in two dimensions.
Functional Principle, Technical Data 3.1.4 Advantages of the Used Sensor Array (Difference to Conventional Line Scanners) - A global shutter (high speed shutter) for the whole profile enables a high profile accuracy for fast applica- tions without “tilting”. - The array enables the simultaneous exposure and reading of the previous image. Thus the exposure time is longer at the same profile frequency.
Functional Principle, Technical Data Technical Data Model scanCONTROL 29xx-10/BL 29xx-25 29xx-50 29xx-100 Measuring range Z-axis 8 mm 25 mm 50 mm 100 mm Start of measuring range 53 mm 53.5 mm 70 mm 190 mm End of measuring range 61 mm 78.5 mm 120 mm 290 mm...
Page 113
380 g FSO = Full Scale Output | MMR = Midrange 1) Based on a MICRO-EPSILON Optronic standard target with metallic finished surfaces 2) Measuring object: Micro-Epsilon standard object (metallic, diffusely reflecting material) 3) According to a one-time averaging across the measuring field (640 points)
Functional Principle, Technical Data LED Displays LED laser on Green: Laser on LED state: Green: Measurement Two-color LED (red / green) Green flashing: data transmission Red flashing: error code, see Chap. Note: The LED state flashes green, long during active data transmission and short for controller accesses. scanCONTROL 29xx Page 20...
Mounting and Installation Mounting and Installation Attachment and Mounting - using 2 or 3 screws M5, screwed directly - using 2 or 3 screws M4, screwed pushed through Depending on the installation position it is recommended to determine the position of the sensor for example by adjusting screws on the specially marked attachment points.
Page 117
Mounting and Installation Recommended Recommended attachment point attachment point 96 (3.78) 89 (3.50) 85.75 (3.38) 79 (3.11) 75.5 (2.97) M5 10 5.2 x 90° (on both sides) 9 (.35) 3 (.12) 22.4 (.88) 10 (.39) 9.6 (.38) 56.5 10.4 (2.22) (6.4°) SMR = Start of measuring range MMR = Midrange...
Page 118
Mounting and Installation Recommended Recommended attachment point attachment point 96 (3.78) 85.75 (3.38) 89 (3.50) 79 (3.11) 75.5 (2.97) 10 (.39) ø 5.2 x 90° (on both sides) 9 (.35) 3 (.12) 29.3 (1.15) 29.1 (1.15) 25 (.98) 23.4 (.92) 23.2 (.91) MR extended ≥...
Page 119
Mounting and Installation Recommended Recommended attachment point attachment point 96 (3.78) 89 (3.50) 85.75 (3.38) 79 (3.11) 75.5 (2.97) 10 (.39) ø 5.2 x 90° (on both sides) 9 (.35) 3 (.12) 60 (2.36) 58 (2.28) 42 (1.65) 40 (1.57) MR extended ≥...
Page 120
Mounting and Installation Recommended Recommended attachment point attachment point 96 (3.78) 85.75 (3.38) 89 (3.50) 79 (3.11) 75.5 (2.97) 10 (.39) ø 5.2 (o.2) x 90° (on both sides) 9 (.35) 3 (.12) 190 (7.48) SMR 290 (11.42) EMR SMR = Start of measuring range EMR = End of measuring range Fig.
Mounting and Installation 5.2.2 Power Supply Connector multifunction socket, see Fig. 17, pin assignment, see Fig. Connect the multifunc- Range: 11 V – 30 V (rated value 24 V) DC; load maximal 500 mA tion socket only when The operating voltage is protected against reverse polarity. switched off the power supply is switched off.
Mounting and Installation 5.2.3 RS422, Synchronization Connector multifunction socket, see Fig. 17, pin assignment, see Fig. scanCONTROL 29xx The scanCONTROL 29xx sensor has a RS422 port according to EIA standards, which can be parameterized supports Power over as input or output via software. Ethernet.
Page 125
Mounting and Installation The multifunction socket can be used with either of the following configurations: Configuration Direction Standard setting for terminating resistor R Half-duplex, serial communi- input/output cation with 115200 Baud Half-duplex, serial communi- input/output cation with 57600 Baud Half-duplex, serial communi- input/output cation with 38400 Baud Half-duplex, serial communi-...
Mounting and Installation 5.2.4 Switching Inputs Connector multifunction socket, see Fig. 17, pin assignment, see Fig. Type1 Type 2 scanCONTROL 29xx Transistor Switch 10 kOhm In 1 In 2 In 3 Isolation TTL or 5 V (High) HTL or 24 V (High) Fig.
Page 127
Mounting and Installation The multifunction socket can be used with either of the following configurations: Configuration Encoder with index, positive edge works with the index Encoder without index, additionally external trigger possible Trigger External trigger Trigger External trigger, load up to 4 user modes Trigger Mode Bit 0 Mode Bit 1...
Mounting and Installation 5.2.5 Ethernet Connection Connector “Ethernet“, see Fig. The Ethernet connection is the standard connection to the PC. The sensor supports the transmission with 100 Mbit and 1 Gbit. RJ45 connector 8-pin. screw connector (sensor side) Pin no. Color stranded hook-up wire SC2600/2900-x Pin no.
Page 129
Mounting and Installation high-quality switch. As a hub would result in a massive data collision it cannot be used. The PC should have one or more network cards only for the sensors. The operation of the sensor via Ethernet does not require any driver installation. However, the network set- tings have to be done correctly: - If more network cards are used, they have to belong to different networks, for example different Class-C- scanCONTROL 29xx...
Mounting and Installation 5.2.6 External Laser Switching (optional) Connector multifunction socket, see Fig. 17, pin assignment, see Fig. Function - Laser on: Voltage between +laser on/off and -laser on/off 2.8 V… 31 V, I < 5 mA - Laser off: Voltage between +laser on/off and -laser on/off < 0.8 V or open Sensors of laser class 3B (IIIB) need an external key switch to switch off the laser.
- The minimum bending radii of the recommended cables for flexible laying must not be less 80 mm. - MICRO-EPSILON recommends the use of the optionally available power supply PS2020, Din rail mounting, input 230 VAC, output 24 VDC/2.5 A.
Operation of the Sensor with a PC Operation of the Sensor with a PC Displays After getting ready for operation, switch on the external direct current power supply (24 VDC). The state LED indicates different error conditions by flashing, see Chap. If several errors occur at the same time, it indicates two of them alternately.
Operation of the Sensor with a PC Installation 6.3.1 Requirements The following minimum system specification is necessary for the operation of the scanCONTROL software packages: - Windows XP SP2 (32 bit), Windows Vista (32 bit), Windows 7 (32 bit and 64 bit), Windows 10 (32 Bit und 64 Bit) - Pentium III ≥ 800 MHz - 512 MB RAM...
Operation of the Sensor with a PC Instructions for Operation 6.4.1 Measuring Field Selection The optical design of the sensor satisfies the so-called “Scheimpflug condition” which ensures optimum mapping over the complete measuring range. In doing so, the measuring range is mapped on a rectangu- lar matrix.
Page 135
Operation of the Sensor with a PC Fig. 24 Predefined measuring fields scanCONTROL 29xx Page 41...
Page 136
Operation of the Sensor with a PC The measuring field can be restricted by omitting complete matrix areas in order to suppress interfering im- age ranges. The following measuring fields are used in the demonstration program, see Chap. 6.2. Name Index Large Standard...
Operation of the Sensor with a PC 6.4.2 Calibration The calibration of the sensor is performed using the complete matrix and is independent from the selected measuring field. The trapeze form of the measuring field is produced from the projection onto the sensor matrix. The standard measuring range is framed in the center.
Operation of the Sensor with a PC 6.4.3 Automatic Exposure Time Regulation The automatic exposure time regulation facilitates the recording of the profile with optimum exposure time (shutter time). The Shutter time preset by the user is used as the starting value for the automatic exposure time regula- tion.
Page 139
Operation of the Sensor with a PC Shutter time preset by the user: 0.10 ms Automatic shutter time is active Result: The sensor operates with a Shutter time of 0.06 ms Fig. 27 Screenshot of the developer demonstration program with automatic shutter scanCONTROL 29xx Page 45...
Operation of the Sensor with a PC Error Influences 6.5.1 Reflection of the Target Surface The sensor basically evaluates the diffuse portion of the laser line reflections. Any statement about a mini- mum reflection factor is only possible with reservations. A preliminary examination is necessary for using the sensor on transparent or reflecting objects.
Operation of the Sensor with a PC 6.5.4 External Light An interference filter in the sensor is present for suppression of external light. In general, the shielding of external light directly emitted on the target or reflected in the sensor must be ensured using protective covers or similar.
Operation of the Sensor with a PC 6.5.7 Shadowing Effects - Receiver: The laser line can disappear completely or partially behind steep edges. The receiver then does not „see“ these areas. - Laser line: The fan-shaped form of the laser line inevitably results in partial shadowing at vertical edges. In order to make these areas visible, only changing the sensor or object position helps.
scanCONTROL Output Unit Cleaning A periodically cleaning of the protective housings is recommended. Dry cleaning This requires a suitable optical antistatic brush or blow off the panels with dehumidified, clean and oil free compressed air. Wet cleaning Use a clean, soft, lint-free cloth or lens cleaning paper and pure alcohol (isopropanol) for cleaning the protec- tive housing.
scanCONTROL Output Unit scanCONTROL Output Unit - Components - Output Unit Basic, consisting of: Ethernet Fieldbus Coupler with system supply unit (OU-Fieldbus Coupler/Ethernet) 24V DC power supply filter (OU-Filter module) and termination module (OU-Bus termination module) - Digital output terminal - Analog output terminal Status voltage supply Status...
scanCONTROL Output Unit Connect the Power Supply 13 14 LINK ETHERNET ACT 1 LINK OU-Filter module Ñ 0: WBM 255: DHCP Digital output mod- ules need a field supply of 5 VDC or 24 VDC depending on the module type. 750-626 OU Fieldbus Coupler System supply...
2910/2960 and the output unit operate now as an independent measurement system and the digital and analog signals are output via the assigned ports. Specification of the Components 7.4.1 Output Unit Basic Micro-Epsilon order no. 6414073 Consists of - OU-Fieldbus Coupler/Ethernet - OU-Filter module - OU-Bus termination module...
Page 147
scanCONTROL Output Unit - Interfaces: 2x Ethernet to connect scanCONTROL 2910/2960 sensors. - Indicators (Status LED’s, for detailed description refer to the manual of the OU-Fieldbus Coupler/Ethernet) - The system supply is already mounted to the Fieldbus Coupler. Fig. 31 OU-Fieldbus Coupler/Ethernet with system supply module System data Max.
- 8-Channel digital output module; DC 24 V; 0.5 A; low-side switching; 8 actors; short circuit prooved; Micro-Epsilon order no. 0325131; power supply through power jumper contacts - 4-Channel analog output module; 0 - 10 V; Micro-Epsilon order no. 0325135, see Chap. 7.4.4 - 4-Channel analog output module;...
Output Unit 7.4.3 OU-DigitalOut/8-Channel/DC24 V/0.5 A/High-side Switching/8 Actuators - Micro-Epsilon order no. 0325115 - The 8-Channel digital output module DC 24V 0.5 A is short-circuit- proofed, high-side switching, for TS35, CAGE CLAMP® connec- tions, 8 actuators. - The field level is galvanically isolated to the system level.
Output Unit 7.4.4 OU-AnalogOut/4-Channel/0-10 V - Micro-Epsilon order no. 0325135 - 4-Channel analog output module DC 0-10 V - Indicators (Status-LED’s, for detailed description refer to manual of the 4-Channel analog output module DC 0-10 V) - Voltage range is terminal-related 0 to +10 V and can not be extended by changing the appropriate setting in scanCONTROL Configuration Tools.
Within this period, defective parts, except for wearing parts, will be repaired or replaced free of charge, if the device is returned to MICRO-EPSILON with shipping costs prepaid. Any damage that is caused by improper handling, the use of force or by repairs or modifications by third parties is not covered by the liability for mate- rial defects.
Error Codes Error Codes (— LED state lights for a long time lang, • LED state lights briefly) Flashing Cause Remedy Notes sequence Group: Loading / saving configuration Only previously stored Mode not found. Select different one. modes can be called up. 2x short Contact manufacturer, return Should not occur in normal...
Page 153
Error Codes Flashing Cause Remedy Notes sequence Data overflow during --.. Reduce profile frequency, transmission of the data via Data can be impaired. increase packet size. 2x long, 3x short Ethernet --….. Reduce profile frequency, se- Error during calculation Data can be impaired. lect faster calculation mode.
Page 154
Appendix| Accessories Appendix Accessories A 1.1 Recommended Accessories PS2020 Power supply for DIN rail mounting, input 230 VAC, output 24 VDC/2.5 A for maximum 2 sensors scanCONTROL 29xx at the same time. scanCONTROL 26xx Page 60...
Page 155
Appendix| Accessories A 1.2 Optional Accessories PC2600/2900-x Multifunction cable, (length x = 10, 20 m), cable 6x2x0.14 shielded, with integrally cast 12-pole M12x1 screw con- nector and free cable ends (2.09) SC2600/2900-x Ethernet connection cable (length x = 0.5, 2, 5, 10, 15, 20, 25, 28, 35 m) cable 4x2x0.14;...
Page 158
GmbH & Co. KG Königbacher Straße 15 94496 Ortenburg / Germany Tel. +49 (0) 8542 / 168-0 Fax +49 (0) 8542 / 168-90 e-mail info@micro-epsilon.de www.micro-epsilon.com Zertifiziert nach DIN EN ISO 9001: 2008 Certified acc. to DIN EN ISO 9001: 2008...
Sicherheit Sicherheit Die Sensorhandhabung setzt die Kenntnis der Betriebsanleitung voraus. Verwendete Zeichen In dieser Betriebsanleitung werden folgende Bezeichnungen verwendet: Zeigt eine gefährliche Situation an, die zu geringfügigen oder mittelschweren Verlet- zungen führt, falls diese nicht vermieden wird. Zeigt eine Situation an, die zu Sachschäden führen kann, falls diese nicht vermieden wird.
Produkte, die das CE-Kennzeichen tragen, erfüllen die Anforderungen der zitierten EU-Richtlinien und die dort aufgeführten europäischen harmonisierten Normen (EN). Die EU-Konformitätserklärung wird gemäß der EU-Richtlinie, Artikel 10, für die zuständige Behörde zur Verfügung gehalten bei MICRO-EPSILON MESSTECHNIK GmbH & Co. KG Königbacher Straße 15 94496 Ortenburg / Deutschland Das Messsystem ist ausgelegt für den Einsatz im Industriebereichund erfüllt die Anforderungen.
Funktionsprinzip, Technische Daten Funktionsprinzip, Technische Daten Messprinzip Das Prinzip der kapazitiven Abstandsmessung mit dem System capaNCDT basiert auf der Wirkungsweise des idealen Plattenkondensators. Bei leitenden Messobjekten bilden der Sensor und das gegenüberliegende Messobjekt die beiden Plattenelektroden. Durchfließt ein konstanter Wechselstrom den Sensorkondensator, so ist die Amplitude der Wechselspannung am Sensor dem Abstand der Kondensatorelektroden direkt proportional.
Funktionsprinzip, Technische Daten Aufbau Das in einem Aluminiumgehäuse eingebaute berührungslose Einkanal-Messsystem des capaNCDT 6100 setzt sich zusammen aus: - Controller - Sensor und - Sensorkabel. Im Controller befindet sich die Signalaufbereitungselektronik mit Oszillator, Demodulator und integriertem Vorverstärker. Weiterhin sind auf der Signalverarbeitungsplatine die beiden Einstellpotentiometer „zero“ und „gain“. Mit ihnen ist das Verstellen von Nullpunkt und Verstärkung möglich.
Funktionsprinzip, Technische Daten 2.2.1 Sensoren Für das Messsystem können verschiedene Sensoren verwendet werden. Halten Sie zur Erzielung genauer Messergebnisse unbedingt die Sensorstirnfläche sauber und schließen Sie eine Beschädigung aus. Das kapazitive Messverfahren ist flächengebunden. Je nach Sensormodell und Messbereich wird eine Min- destfläche benötigt (siehe Tabelle).
Page 167
Funktionsprinzip, Technische Daten Sensormodell Messbereich Min. Durchmesser Messobjekt 2 mm 17 mm CSH2 2 mm 17 mm CSE2 2 mm 14 mm 3 mm 27 mm CSH3FL 3 mm 24 mm 5 mm 37 mm CS10 10 mm 57 mm capaNCDT 6100 Seite 11...
Funktionsprinzip, Technische Daten 2.2.2 Sensorkabel Sensor und Controller sind mit einem speziellen, doppelt geschirmten Sensorkabel verbunden. Kürzen oder verlängern Sie nicht die speziellen Sensorkabel. Ein beschädigtes Kabel kann nicht repariert werden. Schalten Sie das Gerät aus wenn Sie die Kabelverbindung lösen oder verändern. Quetschen Sie das Sensorkabel nicht.
Lieferung Lieferung Lieferumfang 1 Controller 1 Sensor 1 Sensorkabel mit Stecker 1 Versorgungs- und Ausgangskabel PC3/8 (als Zubehör lieferbar) 1 Gegenbuchse (wenn PC3/8 nicht mitbestellt wurde) 1 Betriebsanleitung Nehmen Sie die Teile des Messsystems vorsichtig aus der Verpackung und transportieren Sie sie so weiter, dass keine Beschädigungen auftreten können.
Installation und Montage Installation und Montage Vorsichtsmaßnahmen Auf den Kabelmantel des Sensorkabels dürfen keine scharfkantigen oder schweren Gegenstände einwirken. Schützen Sie das Kabel in Bereichen mit erhöhtem Druck grundsätzlich vor Druckbelastung. Vermeiden Sie auf jeden Fall Kabelknicke. Überprüfen Sie die Steckverbindungen auf festen Sitz. Ein beschädigtes Kabel kann nicht repariert werden.
Installation und Montage 4.2.2 Umfangsklemmung, zylindrische Sensoren Diese Art der Sensormontage bietet die höchste Zuverlässigkeit, da der Sensor über sein zylindrisches Gehäuse flächig geklemmt wird. Sie ist bei schwierigen Einbauumgebungen, zum Beispiel an Maschinen, Produktionsanlagen und so weiter zwingend erforderlich. Montage mit Spannzange Abb.
Installation und Montage 4.2.4 Maßzeichnungen Sensoren Zylindrische Sensoren CS02 CS05 CS1HP ø8f7 ø10h7 ø10h7 CS10 M=1:2 M=1:2 M=1:2 M=1:2 ø20h7 ø30h7 ø40h7 ø60h7 ø20h7 ø20h7 ø20h7 Steckerseite Abmessungen in mm, nicht maßstabsgetreu 1) Montagebereich für Punkt- beziehungsweise Umfangsklemmung capaNCDT 6100 Seite 17...
Page 174
Installation und Montage CSE05 CSE1 CSE2 Ø14h7 ø8f7 Ø13,7 ø7,7 ø5,7 ø6f7 Steckerseite Abmessungen in mm, nicht maßstabsgetreu 1) Montagebereich für Punkt- beziehungsweise Umfangsklemmung capaNCDT 6100 Seite 18...
Page 175
Installation und Montage ca. 9,4 ca. 9,4 CSH02, CSH05 CSH1, CSH1,2 ø8g6 ø12g6 ø7,5 ø11,5 ø ø Abmessungen in mm, nicht maßstabsgetreu 1) Montagebereich für Punkt- beziehungsweise Umfangsklemmung capaNCDT 6100 Seite 19...
Page 176
Installation und Montage CSH2 ca. 9,4 Klemm- ø20g6 bereich ø19.5 ø Abmessungen in mm, nicht maßstabsgetreu capaNCDT 6100 Seite 20...
Page 177
Installation und Montage Flachsensoren ca. 9,4 CSH1FL, CSH1,2FL ca. 9,4 CSH02FL, CSH05FL ø3 ø3 ø2,2 ø2,2 Abmessungen in mm, nicht maßstabsgetreu capaNCDT 6100 Seite 21...
Page 178
Installation und Montage CSH3FL-CRmx CSH2FL 15,5 ca. 9,4 ca. 9,4 ø3 ø3 ø2,2 ø2,2 Kabellänge 1,4 m sichtbar (inkl. Crimphülse) Abmessungen in mm, nicht maßstabsgetreu capaNCDT 6100 Seite 22...
Installation und Montage Sensorkabel Der Sensor wird mit dem Controller über das mitgelieferte Sensorkabel verbunden. Der Anschluss erfolgt durch einfaches Stecken. Die Steckverbindung verriegelt selbstständig. Der feste Sitz kann durch Ziehen am Steckergehäuse (Kabelbuchse) geprüft werden. Durch Ziehen an der gerändelten Gehäusehülse der Kabelbuchse öffnet die Verriegelung und die Steckverbindung kann geöffnet werden.
Installation und Montage Controller Stromversorgung, Signalausgang Befestigungsbohrungen für Schrauben M4 SENSOR SYN AUS SYN EIN Abb. 6 Maßzeichnung Controller Biegeradius PC3/8: 90 mm min. Abmessungen in mm, nicht maßstabsgetreu capaNCDT 6100 Seite 24...
Installation und Montage Spannungsversorgung und Anzeige-/Ausgabegerät Spannungsversorgung und Signalausgabe erfolgen über den 8-poligen Einbaustecker (DIN 45326). Pin- Belegung, siehe Abb. 7. Der Standard-Signalaufbereitungselektronik DT6100 liegt eine 8-polige Kabelbuchse für die anwenderseitige Konfektionierung eines eigenen Anschlusskabels bei. Belegung Anforderungen an Versorgungs- 0 Volt (24 V-Betrieb) und Ausgangska- +15 Volt (Option)
Installation und Montage Anschlussbelegung und Farbcodes Kabelfarbe Belegung weiß 0 Volt 24 VDC grün +24 Volt Versorgung Äußerer Ka- belbereich mit braun +15 Volt ±15 VDC Gesamtschirm gelb -15 Volt Versorgung grau 0 Volt (Option) grün Ausgangssignal (Weg) / Spannung blau 0 Volt Inneres Kabel,...
Betrieb Betrieb Inbetriebname Schließen Sie die Anzeige-/Ausgabegeräte über die Signalausgangsbuchse an, bevor Sie das Gerät an die Stromversorgung anschließen und diese einschalten, siehe Kap. 4.5. Das Messsystem wird kalibriert ausgeliefert. Eine Kalibrierung durch den Anwender ist nicht erfolderlich. Lassen Sie das Messsystem nach Anlegen der Spannungsversorgung ca. 1 Minute warmlaufen. Grundeinstellungen Mit den Trimmpotentiometern „gain“...
Betrieb Unterbrechen Sie die Spannungsversorgung vor Berührung der Sensoroberfläche. > statische Entladung > Verletzungsgefahr Bei einem normierten Einstellwert gilt folgende Zuordnung: Trimm-Position Einstellung normierter Wert Linker Anschlag minimal 0.00 Mitte mittel 5.00 Rechter Anschlag maximal 10.00 Kalibrierung mit metallischen Messobjekten Voraussetzung - spez. Widerstand des Messobjekts < 1000 Ωcm.
Page 185
Betrieb Schritt 2 Bestimmen Sie gewünschten maximalen Abstand (Messbereichsende) zwischen Sensoroberfläche und Messobjekt. Stellen Sie die Ausgangsspannung mit Mit Trimm-Potentiometer „gain“ auf 10 V ein. Schritt 3 Wiederholen Sie Schritte 1 und 2 ca. drei Mal, bis sich eine stabile Trimmpotentiometereinstellung ergibt. Schließen Sie den Gehäusedeckel.
Betrieb Bei Controllern mit Option I (Stromausgang) werden in Analogie die Werte - 4 mA (Messbereichsanfang) und - 20 mA (Messbereichsende) eingestellt. Systemgrenzfrequenz Bei langsamen, dynamischen Messun- gen ist es vorteilhaft, die Grenzfrequenz Versorgung/ Ausgang des Systems auf 10 Hz zu reduzieren. Damit wird eine Verringerung des Rau- schens und eine Erhöhung der Auflö- Schalterstellung S1...
Page 187
Betrieb Synchronisieren Sie ggf. mehrere Messsysteme mit Kabel SC30. Controller 1 Controller 2 Controller 3 SC30 SC30 Abb. 11 Synchronisation mehrerer Messsysteme Automatische Synchronisation, jeder Controller kann Master sein. Biegerradius SC30: - 30 mm (fest) - 60 mm (bewegt) capaNCDT 6100 Seite 31...
Einbußen der Betriebsqualität kommen. Diese können durch ein Nachkalibrieren, siehe Kap. 5.3, beseitigt werden. Bei einem Defekt des Controllers, des Sensors oder MICRO-EPSILON MESSTECHNIK des Sensorkabels senden Sie bitte die betreffenden GmbH & Co. KG Teile zur Reparatur oder zum Austausch ein. Bei Königbacher Str.
Weitergehende Ansprüche können nicht geltend gemacht werden. Die Ansprüche aus dem Kaufvertrag blei- ben hierdurch unberührt. MICRO-EPSILON haftet insbesondere nicht für etwaige Folgeschäden. Die Ansprüche aus dem Kaufvertrag belieben hierdurch unberührt. Im Interesse der Weiterentwicklung behalten wir uns das Recht auf Konstruktionsänderungen vor.
Haftung für Sachmängel Anhang MC2,5 Mikrometer-Kalibiervorrichtung, Einstell- bereich 0 - 2,5 mm, Ablesung 0,1 µm, für Sensoren CS05 bis CS1 MC25D Digitale Mikrometer-Kalibriervorrichtung, Einstellbereich 0 - 25 mm, verstellbarer Nullpunkt, für alle Sensoren PS2020 Netzgerät 24 V / 2,5 A; Eingang 100 - 240 VAC, Ausgang 24 VDC / 2,5 A;...
Page 191
Haftung für Sachmängel 8-polige Kabelbuchse DIN 45326 PC3/8 8-adriges Anschlusskabel mit Kabelbuch- se DIN 45326 SC30 Synchronisationskabel, 30 cm lang Sensoren, Sensorkabel, siehe Kap. 4.2, siehe Kap. Vakuumdurchführung M10x0,75 max. 17 capaNCDT 6100 Seite 35...
Page 192
Haftung für Sachmängel UHV/B Vakuumdurchführung triax schweißbar Maximale Leckrate 1x10e-9 mbar · l s-1‘ Kompatibel zu Stecker Typ B ø13.50h6 SW11 Vakuumdurchführung triax mit CF16 Flansch 13,5 Maximale Leckrate 1x10e-9 mbar · l s-1 Kompatibel zu Stecker Typ B Schweißnaht Vakuumdurchführung triax schraubbar Maximale Leckrate 1x10e-9 mbar ·...
Page 195
Contents Safety ............................40 Symbols Used ............................... 40 Warnings ................................ 40 Notes on CE Identification ..........................41 Proper Use ..............................41 Proper Environment ............................42 Functional Principle, Technical Data ..................43 Measuring Principle ............................43 Structure ................................ 44 2.2.1 Sensors ............................45 2.2.2 Sensor Cable..........................
Page 196
Operation ..........................62 Starting Up ..............................62 Basic Settings ..............................62 Calibration with Metal Targets ........................63 Frequence Response ............................ 65 Synchronization in Multichannel Systems ....................65 Maintenance ........................... 67 Warranty ..........................68 Decommissioning, Disposal ....................68 Appendix capaNCDT 6100...
Safety Safety The handling of the sensor assumes knowledge of the instruction manual. Symbols Used The following symbols are used in this instruction manual: Indicates a hazardous situation which, if not avoided, may result in minor or moderate injury. Indicates a situation which, if not avoided, may lead to property damage. Indicates a user action.
Products which carry the CE mark satisfy the requirements of the qoted EU directives and the European standards (EN) listed therein. The EC declaration of conformity is kept available according to EC regulation, article 10 by the authorities responsible at MICRO-EPSILON MESSTECHNIK GmbH & Co. KG Königbacher Straße 15 94496 Ortenburg / Germany The measuring system is designed for use in industry and satisfies the requirements.
Functional Principle, Technical Data Functional Principle, Technical Data Measuring Principle The principle of capacitive distance measurement with the capaNCDT system is based on the principle of the parallel plate capacitor. For conductive targets, the sensor and the target opposite form the two plate elec- trodes.
Functional Principle, Technical Data Structure The non-contact, single-channel measuring system of the capaNCDT 6100 installed in an aluminium housing, consists of: - Controller - Sensor and - sensor cable. The controller consists a connecting board and a signal conditioning board which are both enclosed in the metal housing.
Functional Principle, Technical Data 2.2.1 Sensors For this measurement system, several sensors can be used. In order to obtain accurate measuring results, keep the surface of the sensor clean and free from dama- The capacitive measuring process is area-related. A minimum area (see table) is required depending on the sensor model and measuring range.
Page 203
Functional Principle, Technical Data Sensor model Measuring range Min. target diameter CSH2 2 mm 17 mm CSE2 2 mm 14 mm 3 mm 27 mm CSH3FL 3 mm 24 mm 5 mm 37 mm CS10 10 mm 57 mm capaNCDT 6100 Page 47...
Functional Principle, Technical Data 2.2.2 Sensor Cable Sensor and controller are connected by a special, double screened sensor cable. Do not shorten or lengthen these special cables. Usually, a damaged cable can not be repaired. Switch off the device when plugging and removing connectors. Do not crush the sensor cable.
Delivery Delivery Unpacking 1 Controller 1 Sensor 1 Sensor cable with plug 1 Power and output cable PC3/8 (available as an accessory) 1 Plug (if PC3/8 was not ordered) 1 Instruction manual Remove the parts of the system carefully from the packaging and transport them in such a way that they are not damaged.
Installation and Assembly Installation and Assembly Precautionary Measures No sharp-edged or heavy objects may come into contact with the sensor cable sheath. Protect the cable in pressurised rooms against pressure loads. The minimum bending radius is 10 mm (.39 inch). Avoid kinks at all cost. Check the connections for tight fit.
Installation and Assembly 4.2.2 Circumferential Clamping, Cylindric Sensors This sensor mounting option offers maximum reliability because the sensor is clamped around its cylindrical housing. It is absolutely necessary in difficult installation environments, e.g. on machines, production plants etc. Mounting with clamping ring Fig.
Installation and Assembly 4.2.4 Dimensional Drawings Sensors Cylindric Sensors CS02 CS05 CS1HP ø6f7 (.236 dia.) ø8f7 (.314 dia.) Connector side ø10h7 (.394 dia.) ø10h7 (.394 dia.) Dimensions in mm (inches), not to scale 1) Adjustment area for radial point respectively circumferential clamping CS10 M=1:2 M=1:2...
Page 210
Installation and Assembly CSE2 CSE05 CSE1 ø14h7 (0.55 dia.) ø8f7 (0.31 dia.) ø13.7 (0.54 dia.) ø7.7 (0.30 dia.) ø5.7 (.22) ø6f7 (.24 dia.) Connector side Dimensions in mm (inches), not to scale 1) Adjustment area for radial point respectively circumferential clamping capaNCDT 6100 Page 54...
Page 211
Installation and Assembly ca. 9.4 (.37) ca. 9.4 (.37) CSH02, CSH05 CSH1, CSH1.2 ø12g6 (.473 dia.) ø8g6 (.315 dia.) ø7.5 ø11.5 (.30 dia.) (.45 dia.) ø2.2 (.09 dia.) ø2.2 (.09 dia.) Dimensions in mm (inches), not to scale 1) Adjustment area for radial point respectively circumferential clamping capaNCDT 6100 Page 55...
Page 212
Installation and Assembly CSH2 ca. 9.4 (.37) Clamp ø20g6 area (0.79 g6 dia.) ø19.5 (.77 dia.) ø (.09 dia) Dimensions in mm (inches), not to scale 1) Adjustment area for radial point respectively circumferential clamping capaNCDT 6100 Page 56...
Page 213
Installation and Assembly ca. 9.4 (.37) CSH1FL, CSH1.2FL ca. 9.4 (.37) CSH02FL, CSH05FL (.16) (.16) (.003) (.003) (.16) (.24) ø3 (.22) ø3 (.29) (.12 dia.) (.12 dia.) ø2.2 ø2.2 (.09 dia.) (.09 dia.) Dimensions in mm (inches), not to scale 1) Adjustment area for radial point respectively circumferential clamping capaNCDT 6100 Page 57...
Page 214
Installation and Assembly CSH3FL-CRmx CSH2FL (.98) (.79) (.20) (.79) (.20) 15.5 ca. 9.4 (.61) (.09) ca. 9,4 (.06) (appr. .37) (appr. .37) (.003) (.003) ø3 ø3 (.12 dia.) (.12) ø2.2 ø2,2 (.09 dia.) (.09) Cable length 1.4 m visible (incl. crimp sleeve) Dimensions in mm (inches), not to scale 1) Adjustment area for radial point respectively circumferential clamping capaNCDT 6100...
Installation and Assembly Sensor Cable The sensor is connected to the signal conditioning electronics by the sensor cable. The connection is made by simple plugging. The connector locks automatically. The tight fit can be checked by pulling the connector housing (cable bushing). The lock can be released and the connector can be opened by pulling the knurled housing sleeve of the cable bushing.
Installation and Assembly Controller 71 (2.80) 150 (5.91) 64 (2.52) Power supply, Signal output 138 (5.43) Mounting holes for M4 or 3/16“ screws SENSOR SYN OUT SYN IN Bending radius PC3/8: 90 mm min. Dimensions in mm (inches), not to scale capaNCDT 6100 Page 60...
Installation and Assembly Power Supply and Signal Output The power supply and signal output are connected by the 8-pin built-in connector (DlN 45326). Pin assignment, Fig. 6. The controller contains a 8-pin cable socket for the user-side assembly of your own connecting cable. Assignment Requirements ofpower and...
Installation and Assembly Pin assignment and color codes Cable color Assignment white 0 Volt 24 VDC green +24 Volt Power Outer cable area with total brown +15 Volt ±15 VDC screen yellow -15 Volt Power grey 0 Volt (Option) green Output signal (distance) / voltage blue 0 Volt...
Operation Operation Starting Up Connect the display/output devices through the signal output socket, see Chap. 4.5, before connecting the device to the power supply and switching on the power supply. Allow the measuring system to warm up for about one minute before the first measurement or calibrati- Basic Settings The gain and zero point of the measuring channel are adjusted with the ’gain’...
Operation Disconnect the power supply before touching the sensor surface. > Static discharge > Danger of injury The following assignment applies for a standardized setting value: Trimmer position Adjustment Standardized value Left stop Minimum 0.00 Middle Medium 5.00 Right stop Maximum 10.00 Calibration with Metal Targets...
Page 221
Operation Step 2 Determine the desired maximum distance (end of measuring range) between the sensor surface and the target. Set the output voltage to 10 V with the ’gain’ potentiometer. Step 3 Repeat steps 1 and 2 about three times until a stable potentiometer setting results. Replace the housing cover.
Operation Controller with option I (current output): The values - 4 mA (start of measuring range) and - 20 mA (end of measuring range) are set for systems with current output. Frequence Response For slow dynamic measurements it is profitable to reduce the cut-off frequen- Power/ cy to 10 Hz.
Page 223
Operation - The oscillator of controller 2 switches automatically to synchronization mode, i.e. it acts as slave to the master oscillator in controller 1. - The influence of unsufficient grounded targets will be excepted. Synchronise several measuring systems with SC30 cable if necessary. Controller 1 Controller 2 Controller 3...
Changing the target or very long operating times can lead to slight reductions in the operating quality (long- term errors). These can be eliminated by recalibration, see Chap. 5.3. In the event of a defect on the controller, the sensor MICRO-EPSILON MESSTECHNIK or the sensor cable please send us the effected GmbH & Co. KG parts for repair or exchange.
The warranty period lasts 12 months following the day of shipment. Defective parts, except wear parts, will be repaired or replaced free of charge within this period if you return the device free of cost to Micro-Epsilon. This warranty does not apply to damage resulting from abuse of the equipment and devices, from forceful handling or installation of the devices or from repair or modifications performed by third parties.
Decommissioning, Disposal Appendix MC2.5 Micrometer calibration fixture, setting range 0 - 2.5 mm, reading 0.1 µm, for sensors CS005 to CS2 MC25D Digital micrometer calibration fixture, range 0 - 25 mm, adjustable offset, for all sensors PS2020 Power supply 24 V / 2.5 A; input 100 - 240 VAC, output 24 VDC / 2.5 A;...
Page 227
Decommissioning, Disposal 8-pin cable socket DIN 45326 PC3/8 Power- and output cable, 3 m (9.84 ft) long, 8-wire SC30 Synchroniztion cable, 30 cm long Sensors, sensor cable, see Chap. 4.2, see Chap. Vacuum feed through 34 (1.34) 2 (0.08) M10x0.75 (M10x0.03) max.
Page 228
Decommissioning, Disposal UHV/B Vacuum feed through triax weldable Max. leak rate 1x10e-9 mbar · l s- 25 (.98) Compatible with connector type B ø13.50h6 SW11 Vacuum feed through triax with CF16 25 (.98) flange 13.5 (.53) Max. leak rate 1x10e-9 mbar · l s- Compatible with connector type B (.24) Knit line...
Page 231
UBC10.241, UBC10.241-N1 24V, 10A, DC-UPS U–Series DC-UPS WITH INTEGRATED BATTERY ■ Compact and Easy to Install ■ Longest Buffer Time in Class ■ Easy Battery Access ■ Stable Output Voltage in Buffer Mode ■ Superior Battery Management for Longest Battery Life ■...
Page 232
UBC10.241, UBC10.241-N1 24V, 10A, DC-UPS U–Series NDEX NDEX General Description ..........1 17. EMC ..............14 Short-form Data ..........1 18. Environment ............. 15 Order Numbers............1 19. Protection Features .......... 15 Markings ..............1 20. Safety ..............16 Input ..............3 21. Approvals ............16 Output in Normal Mode ........4 22.
Page 233
UBC10.241, UBC10.241-N1 24V, 10A, DC-UPS U–Series 5. I NPUT Input voltage nom. DC 24V Input voltage ranges nom. 22.5 to 30Vdc Continuous operation, see Fig. 5-1 30 to 35Vdc Temporarily allowed, no damage to the DC-UPS *) 35Vdc Absolute maximum input voltage with no damage to the DC-UPS 0 to 22.5Vdc The DC-UPS switches into buffer mode and delivers...
Page 234
UBC10.241, UBC10.241-N1 24V, 10A, DC-UPS U–Series 6. O UTPUT IN ORMAL Output voltage in normal mode nom. DC 24V The output voltage follows the input voltage reduced by the input to output voltage drop. Voltage drop between input and max. 0.3V At 10A output current, see Fig.
Page 235
UBC10.241, UBC10.241-N1 24V, 10A, DC-UPS U–Series 7. O UTPUT IN UFFER If the input voltage falls below a certain value (transfer threshold level), the DC-UPS starts buffering without any interruption or voltage dips. Buffering is possible even if the battery is not fully charged. Output voltage in buffer mode nom.
Page 236
UBC10.241, UBC10.241-N1 24V, 10A, DC-UPS U–Series 8. B ATTERY The required 12V VRLA battery is included with this unit. For more details on battery requirements see chapter 26. Battery voltage nom. DC 12V Maintenance-free 12V VRLA lead acid battery. Battery voltage range 9.0 –...
Page 237
UBC10.241, UBC10.241-N1 24V, 10A, DC-UPS U–Series 9. B UFFER The buffer time depends on the capacity and performance of the battery as well as the load current. The diagram below shows the typical buffer times of the standard battery. Buffer time with 5Ah high-current battery min.
Page 238
UBC10.241, UBC10.241-N1 24V, 10A, DC-UPS U–Series 10. E FFICIENCY AND OWER OSSES Efficiency typ. 97.8% Normal mode, 10A output current, battery fully charged Power losses typ. 2.9W Normal mode, 0A output current, battery fully charged typ. 5.5W Normal mode, 10A output current, battery fully charged typ.
Page 239
UBC10.241, UBC10.241-N1 24V, 10A, DC-UPS U–Series 12. C HECK IRING AND ATTERY UALITY ESTS The DC-UPS is equipped with an automatic “Check Wiring” and “Battery Quality” test. “Check Wiring” test: Under normal circumstances, an incorrect or bad connection from the battery to the DC-UPS or a missing (or blown) battery fuse would not be recognized by the UPS when operating in normal mode.
Page 240
UBC10.241, UBC10.241-N1 24V, 10A, DC-UPS U–Series 13. R ELAY ONTACTS AND NHIBIT NPUT The DC-UPS is equipped with relay contacts and signal inputs for remote monitoring and controlling of the unit. Relay contacts: Ready: Contact is closed when battery is charged more than 85%, no wiring failure are recognized, input voltage is sufficient and inhibit signal is not active.
Page 241
UBC10.241, UBC10.241-N1 24V, 10A, DC-UPS U–Series Fig. 13-1 Contact control drawing for use in Haz-Loc environments Selected barriers must have entity parameters such that Hazardous Non Hazardous Voc < V max, Isc < I max, Location Location Ca > Ci + Ccable, La > Li + Lcable. Input Output For Ccable and Lcable, if the capacitance per foot...
Page 242
UBC10.241, UBC10.241-N1 24V, 10A, DC-UPS U–Series 14. F RONT IDE AND LEMENTS Main unit shown below without battery compartment. A Power Port Quick-connect spring-clamp terminals, connection for input voltage and output voltage. Signal Port Plug connector with screw terminals, inserted from the bottom. Connections for the Ready, Buffering, Replace Battery relay contacts and for the Inhibit input.
Page 243
UBC10.241, UBC10.241-N1 24V, 10A, DC-UPS U–Series 15. T ERMINALS AND IRING Power terminals Signal terminals Type Bi-stable, quick-connect spring- Plug connector with screw terminal. Finger-touch-proof clamp terminals. IP20 Finger- construction with captive screws for 3.5mm slotted touch-proof. Suitable for field- screwdriver.
Page 244
UBC10.241, UBC10.241-N1 24V, 10A, DC-UPS U–Series 17. EMC The unit is suitable for applications in industrial environment as well as in residential, commercial and light industry environment without any restrictions. CE mark is in conformance with EMC guideline 89/336/EC and 93/68/EC and the low-voltage directive (LVD) 73/23/EC, 93/68/EC.
Page 245
UBC10.241, UBC10.241-N1 24V, 10A, DC-UPS U–Series 18. E NVIRONMENT Operational temperature 0°C to +40°C (32°F to 104°F) Full output power Storage temperature -20°C to +50°C (-4°F to 122°F) Storage and transportation Humidity 5 to 95% r.H. IEC 60068-2-30 Do not energize while condensation is present Vibration sinusoidal 2-17.8Hz: ±1.6mm;...
Page 246
UBC10.241, UBC10.241-N1 24V, 10A, DC-UPS U–Series 20. S AFETY Output voltage SELV IEC/EN 60950-1 PELV EN 60204-1, EN 50178, IEC 60364-4-41 Max. allowed voltage between any input, output or signal pin and ground: 60Vdc or 42.4Vac Class of protection PE (Protective Earth) connection is not required Isolation resistance >...
Page 247
UBC10.241, UBC10.241-N1 24V, 10A, DC-UPS U–Series 23. U UBSTANCES The unit does not release any silicone and is suitable for the use in paint shops. The unit conforms to the RoHS directive 2002/96/EC. Electrolytic capacitors included in this unit do not use electrolytes such as Quaternary Ammonium Salt Systems. Plastic housings and other molded plastic materials are free of halogens.
Page 248
UBC10.241, UBC10.241-N1 24V, 10A, DC-UPS U–Series 25. I NSTALLATION OTES Mounting: The power terminals shall be located on top of the unit. An appropriate electrical and fire end-product enclosure should be considered in the end use application. Do not install unit in airtight housings or cabinets. The site in which the unit is located must have sufficient ventilation acc.
Page 249
UBC10.241, UBC10.241-N1 24V, 10A, DC-UPS U–Series 26. R EPLACEMENT OF THE BATTERY The integrated battery should be replaced on a periodic basis, see chapter 28.1 for additional information. The replacement should be done by qualified personnel trained on battery handling. Caution! The terminals on the battery are always alive, therefore do not place items or tools on the battery! How to replace the battery: Step 1:...
Page 250
UBC10.241, UBC10.241-N1 24V, 10A, DC-UPS U–Series 27. A CCESSORIES Battery The integrated battery should be replaced on a periodic basis, see chapter 28.1. As replacement the UZB12.051 can be used. UZB12.051 Battery type Highcurrent version VRLA lead-acid maintenance free battery 12V, 5Ah Design life 3 to 5 years...
Page 251
UBC10.241, UBC10.241-N1 24V, 10A, DC-UPS U–Series 28. A PPLICATION OTES 28.1. B ATTERY EPLACEMENT NTERVALS Batteries have a limited life time. They degrade slowly beginning from the production and need to be replaced periodically. The design life figures can be found in the individual datasheets of the batteries and usually is specified according to the Eurobat guideline or according to the manufacturer’s specifications.
Page 252
UBC10.241, UBC10.241-N1 24V, 10A, DC-UPS U–Series Example for calculating the service life and the required replacement cycle: Parameters for the example: A 5Ah battery with a design life of 3-5 years is used (e.g. Yuasa battery which is used for type UZB12.051) The average ambient temperature is 30°C One buffer event consumes approx.
Page 253
UBC10.241, UBC10.241-N1 24V, 10A, DC-UPS U–Series 28.3. U SING THE NHIBIT NPUT The inhibit input disables buffering. In normal mode, a static signal is required. In buffer mode, a pulse with a minimum length of 250ms is required to stop buffering. The inhibit is stored and can be reset by cycling the input voltage.
Need help?
Do you have a question about the thicknessCONTROL MTS 8201.LLT and is the answer not in the manual?
Questions and answers