Lenze i510 Series Commissioning

Lenze i510 Series Commissioning

Inverter cabinet
Hide thumbs Also See for i510 Series:
Table of Contents

Advertisement

Commissioning | EN
Inverter
Inverter i510 Cabinet
0.25 ... 2.2 kW

Advertisement

Table of Contents
loading
Need help?

Need help?

Do you have a question about the i510 Series and is the answer not in the manual?

Questions and answers

Subscribe to Our Youtube Channel

Summary of Contents for Lenze i510 Series

  • Page 1 Commissioning | EN Inverter Inverter i510 Cabinet 0.25 ... 2.2 kW...
  • Page 3: Table Of Contents

    Contents Contents 1 General information Read first, then start 2 Safety instructions Basic safety measures Residual hazards Application as directed 3 Mechanical installation Dimensions 4 Electrical installation Important notes Mains connection 4.2.1 1-phase mains connection 230/240 V 4.2.1.1 Connection plan 4.2.1.2 Fusing and terminal data 4.2.2...
  • Page 4 Contents 6 Diagnostics and fault elimination LED status display Diagnostics parameter 6.2.1 Logbook 6.2.2 Error history buffer 6.2.3 Inverter diagnostics 6.2.4 Network diagnostics 6.2.4.1 CANopen diagnostics 6.2.4.2 Modbus diagnostics 6.2.5 Diagnostics of the inputs and outputs 6.2.5.1 Digital inputs and outputs 6.2.5.2 Analog inputs and outputs 6.2.6...
  • Page 5 Contents 8 Motor control Motor data 8.1.1 Manual setting of the motor data Motor control selection 8.2.1 V/f characteristic control (VFC) 8.2.1.1 Linear V/f characteristic 8.2.1.2 Square-law V/f characteristic 8.2.1.3 User-definable V/f characteristic 8.2.1.4 V/f characteristic control - energy-saving (VFC Eco) 8.2.2 Sensorless vector control (SLVC) 8.2.3...
  • Page 6 General network settings Predefined process data words 9.2.1 Device profile CiA 402 9.2.2 AC Drive Profile 9.2.3 Lenze LECOM profile 9.2.4 Further process data 9.2.5 Parameter access monitoring (PAM) 9.2.6 Process data handling in case of error Acyclic data exchange CANopen 9.4.1...
  • Page 7 11.4.1 Example 1: Automatic DC braking when the motor is started 11.4.2 Example 2: Automatic DC braking when the motor is stopped 11.4.3 Migration of Lenze Inverter Drives 8200/8400 11.5 Brake energy management 11.5.1 Stopping the deceleration ramp function generator 11.5.2...
  • Page 8 Contents 11.15 Mains failure control 11.15.1 Activating the mains failure control 11.15.2 Restart protection 11.15.3 Fast mains recovery 11.15.4 Commissioning the mains failure control 11.16 UPS operation 11.17 Process data 11.17.1 Position counter 11.18 Firmware download 11.18.1 Firmware download with »EASY Starter (Firmware loader)« 11.19 Additive voltage impression 11.19.1 Example: Using the function with a 400-V inverter...
  • Page 9 Contents 13 Flexible I/O configuration 13.1 Control source change-over 13.1.1 Example 1: Change-over from terminal control to keypad control 13.1.2 Example 2: Change-over from terminal control to network control 13.2 Start / stop motor 13.2.1 Example 1: Start/stop (1 signal) and reversal 13.2.2 Example 2: Start forward/start reverse/stop (edge-controlled) 13.2.3...
  • Page 10 Contents 14 Technical data 14.1 Standards and operating conditions 14.1.1 Protection of persons and device protection 14.1.2 EMC data 14.1.3 Motor connection 14.1.4 Environmental conditions 14.1.5 Electrical supply conditions 14.2 1-phase mains connection 230/240 V 14.2.1 Rated data 14.3 3-phase mains connection 230/240 V 14.3.1 Rated data 14.4...
  • Page 11: General Information

    Read first, then start WARNING! Read this documentation thoroughly before carrying out the installation and commissioning. ▶ Please observe the safety instructions! Information and tools with regard to the Lenze products can be found on the Internet: http://www.lenze.com à Download...
  • Page 12: Safety Instructions

    The procedural notes and circuit details described in this document are only proposals. It is up to the user to check whether they can be adapted to the particular applications. Lenze does not take any responsibility for the suitability of the procedures and circuit proposals descri- bed.
  • Page 13: Residual Hazards

    Safety instructions Application as directed Residual hazards The user must take the residual hazards mentioned into consideration in the risk assessment for his/her machine/system. If the above is disregarded, this can lead to severe injuries to persons and damage to material assets! Product Observe the warning labels on the product!
  • Page 14: Mechanical Installation

    Mechanical installation Mechanical installation Dimensions 0.25 kW ... 0.37 kW The dimensions in mm apply to: 0.25 kW I51AE125B I51AE125D 0.37 kW I51AE137B I51AE137D I51AE137F...
  • Page 15 Mechanical installation Dimensions 0.55 kW ... 0.75 kW The dimensions in mm apply to: 0.55 kW I51AE155B I51AE155D I51AE155F 0.75 kW I51AE175B I51AE175D I51AE175F...
  • Page 16 Mechanical installation Dimensions 1.1 kW ... 2.2 kW The dimensions in mm apply to: 1.1 kW I51AE211B I51AE211D I51AE211F 1.5 kW I51AE215B I51AE215D I51AE215F 2.2 kW I51AE222B I51AE222D I51AE222F...
  • Page 17: Electrical Installation

    Electrical installation Important notes Electrical installation Important notes DANGER! Dangerous electrical voltage Possible consequence: death or severe injuries ▶ All work on the inverter must only be carried out in the deenergised state. ▶ After switching off the mains voltage, wait for at least 3 minutes before you start working.
  • Page 18: Mains Connection

    Electrical installation Mains connection 1-phase mains connection 230/240 V Mains connection 4.2.1 1-phase mains connection 230/240 V 4.2.1.1 Connection plan The connection plan is valid for the inverters I51AExxxB. 3/N/PE 3/N/PE 2/N/PE AC 400 V AC 208 V ... 240 V AC 208 V ...
  • Page 19 Electrical installation Mains connection 1-phase mains connection 230/240 V The connection plan is valid for the inverters I51AExxxD. Inverters I51AExxxD do not have an integrated RFI filter in the AC mains supply. In order to meet the EMC requirements according to EN 61800−3, an external EMC filter according to IEC EN 60939 must be used.
  • Page 20: Fusing And Terminal Data

    Electrical installation Mains connection 1-phase mains connection 230/240 V 4.2.1.2 Fusing and terminal data Fuse data Inverter I51AE125B I51AE125D I51AE155B I51AE155D I51AE137B I51AE137D I51AE175B I51AE175D Cable installation in compliance with EN 60204-1 Installation method operation without mains choke Fuse Characteristics gG/gL or gRL Max.
  • Page 21 Electrical installation Mains connection 1-phase mains connection 230/240 V Fuse data Inverter I51AE125B I51AE125D I51AE211B I51AE211D I51AE137B I51AE137D I51AE215B I51AE215D I51AE155B I51AE155D I51AE222B I51AE222D I51AE175B I51AE175D Cable installation in compliance with US National Electrical Code NFPA 70 / Canadian Electrical Code C22.1 operation without mains choke Fuse...
  • Page 22 Electrical installation Mains connection 1-phase mains connection 230/240 V PE connection Inverter I51AE125B I51AE125D I51AE137B I51AE137D I51AE155B I51AE155D I51AE175B I51AE175D I51AE211B I51AE211D I51AE215B I51AE215D I51AE222B I51AE222D Connection Connection type PE screw Min. cable cross-section mm² Min. cable cross-section Max. cable cross-section mm²...
  • Page 23: 3-Phase Mains Connection 230/240

    Electrical installation Mains connection 3-phase mains connection 230/240 V 4.2.2 3-phase mains connection 230/240 V 4.2.2.1 Connection plan The connection plan is valid for the inverters I55AExxxD. Inverters I55AExxxD do not have an integrated RFI filter in the AC mains supply. In order to meet the EMC requirements according to EN 61800−3, an external EMC filter according to IEC EN 60939 must be used.
  • Page 24: Fusing And Terminal Data

    Electrical installation Mains connection 3-phase mains connection 230/240 V 4.2.2.2 Fusing and terminal data Fuse data Inverter I51AE211D I51AE125D I51AE155D I51AE215D I51AE137D I51AE175D I51AE222D Cable installation in compliance with EN 60204-1 Installation method operation without mains choke Fuse Characteristics gG/gL or gRL Max.
  • Page 25 Electrical installation Mains connection 3-phase mains connection 230/240 V Mains connection Inverter I51AE125D I51AE211D I51AE137D I51AE215D I51AE155D I51AE222D I51AE175D Connection X100 Connection type pluggable screw terminal Min. cable cross-section mm² Min. cable cross-section Max. cable cross-section mm² Max. cable cross-section Stripping length Stripping length inch...
  • Page 26: 3-Phase Mains Connection 400 V

    Electrical installation Mains connection 3-phase mains connection 400 V 4.2.3 3-phase mains connection 400 V 4.2.3.1 Connection plan The connection plan is valid for the inverters I51AExxxF. 3/N/PE AC 400 V … 3/PE AC 340 V ... 528 V 45 Hz ... 65 Hz CANopen/Modbus Modbus AC 240 V...
  • Page 27: Fusing And Terminal Data

    Electrical installation Mains connection 3-phase mains connection 400 V 4.2.3.2 Fusing and terminal data Fuse data Inverter I51AE137F I51AE211F I51AE155F I51AE215F I51AE175F I51AE222F Cable installation in compliance with EN 60204-1 Installation method operation without mains choke Fuse Characteristics gG/gL or gRL Max.
  • Page 28 Electrical installation Mains connection 3-phase mains connection 400 V Motor connection Inverter I51AE137F I51AE155F I51AE175F I51AE211F I51AE215F I51AE222F Connection X105 Connection type pluggable screw terminal Connection X105 Min. cable cross-section mm² Min. cable cross-section Max. cable cross-section Max. cable cross-section mm²...
  • Page 29 Electrical installation Mains connection 3-phase mains connection 400 V Motor connection Inverter I51AE137F I51AE155F I51AE175F I51AE211F I51AE215F I51AE222F Connection X105 Connection type pluggable screw terminal Connection X105 Min. cable cross-section mm² Min. cable cross-section Max. cable cross-section Max. cable cross-section mm²...
  • Page 30: Connection Plan

    Electrical installation Mains connection 3-phase mains connection 480 V 4.2.4 3-phase mains connection 480 V 4.2.4.1 Connection plan The connection plan is valid for the inverters I51AExxxF. 3/N/PE AC 480 V … 3/PE AC 340 V ... 528 V 45 Hz ... 65 Hz CANopen/Modbus Modbus AC 240 V...
  • Page 31: Fusing And Terminal Data

    Electrical installation Mains connection 3-phase mains connection 480 V 4.2.4.2 Fusing and terminal data Fuse data Inverter I51AE137F I51AE211F I51AE155F I51AE215F I51AE175F I51AE222F Cable installation in compliance with EN 60204-1 Installation method operation without mains choke Fuse Characteristics gG/gL or gRL Max.
  • Page 32 Electrical installation Mains connection 3-phase mains connection 480 V Mains connection Inverter I51AE137F I51AE155F I51AE175F I51AE211F I51AE215F I51AE222F Connection X100 Connection type pluggable screw terminal Min. cable cross-section mm² Min. cable cross-section Max. cable cross-section mm² Max. cable cross-section Stripping length Stripping length inch 0.32...
  • Page 33: Control Connections

    Electrical installation Networks CANopen/Modbus RTU Control connections Terminal description Relay output Control terminals Connection Connection type pluggable screw terminal Spring terminal Min. cable cross-section mm² Min. cable cross-section Max. cable cross-section mm² Max. cable cross-section Stripping length Stripping length inch 0.24 0.35 Tightening torque...
  • Page 34: Commissioning

    Commissioning Important notes Commissioning Important notes WARNING! Incorrect wiring can cause unexpected states during the commissioning phase. Possible consequence: death, severe injuries or damage to property Check the following before switching on the mains voltage: ▶ Is the wiring complete and correct? ▶...
  • Page 35: Operating Interfaces

    Commissioning Operating interfaces Keypad Operating interfaces Commissioning the inverter requires an operator-process interface. 5.2.1 Keypad The keypad is an easy means for the local operation, parameterisation, and diagnostics of the inverter. The keypad is simply connected to the diagnostic interface on the front of the inverter. •...
  • Page 36: Engineering Tool "Easy Starter

    Engineering tool »EASY Starter« The »EASY Starter« is a PC software that is especially designed for the commissioning and maintenance of the inverter. The »EASY Starter« PC software can be found on the Internet: http://www.lenze.com à Download à Software Downloads Sample screenshot:...
  • Page 37: Generate A Connection Between Inverter And "Easy Starter

    Commissioning Operating interfaces Engineering tool »EASY Starter« 5.2.2.1 Generate a connection between inverter and »EASY Starter« For commissioning the inverter with the »EASY Starter«, a communication link with the inver- ter is required. This can be established in a wired or wireless manner via WLAN. Preconditions For the wired communication with the inverter, the USB module and a USB 2.0 cable (A •...
  • Page 38 Commissioning Operating interfaces Engineering tool »EASY Starter« Details The following instructions describe the connection establishment via the USB module. Parameterising without motor operation does not require a mains voltage: If you connect • the inverter directly to the PC without a hub, The USB interface of the PC is sufficient for the voltage supply.
  • Page 39: Parameter Setting

    Commissioning Parameter setting Parameter setting As a part of a machine with a speed-variable drive system, the inverter must be adapted to its drive task. The adaptation process of the inverter is carried out by changing parameters. Optionally these parameters can be accessed by means of the keypad or »EASY Starter«. If the inverter is provided with a network option, access can also be effected by a higher-level Con- troller via the corresponding network.
  • Page 40: General Notes On Parameters

    Commissioning Parameter setting General notes on parameters 5.3.1 General notes on parameters Each parameter features a 16-bit index as address. Under this address, the parameter is stored in the object directory of the inverter. Parameters that belong together functionally are combined in a data set. These parame- •...
  • Page 41: Basic Inverter Settings

    Commissioning Parameter setting Basic inverter settings 5.3.2 Basic inverter settings Check the following basic settings of the inverter and adapt them, if required. Parameter Name / value range / [default setting] Info 0x2540:001 Mains settings: Rated mains voltage Selection of the mains voltage for actuating the inverter. (P208.01) (Mains settings: Mains voltage) •...
  • Page 42 Commissioning Parameter setting Basic inverter settings Parameter Name / value range / [default setting] Info 0x2860:001 Frequency control: Default setpoint source Selection of the standard setpoint source for operating mode "MS: (P201.01) (Stnd. setpoints: Freq. setp. src.) Velocity mode". • The selected standard setpoint source is always active in the operat- ing mode 0x6060 (P301.00) = "MS: Velocity mode [-2]"...
  • Page 43 Commissioning Parameter setting Basic inverter settings Parameter Name / value range / [default setting] Info 0x2911:001 Frequency setpoint presets: Preset 1 Parameterisable frequency setpoints (presets) for operating mode "MS: (P450.01) (Freq. presets: Freq. preset 1) Velocity mode". 0.0 ... [20.0] ... 599.0 Hz 0x2911:002 Frequency setpoint presets: Preset 2 (P450.02)
  • Page 44: Basic Motor Settings

    Commissioning Parameter setting Basic motor settings 5.3.3 Basic motor settings Check the following default settings for the motor and motor control and adapt them, if required. Drive behaviour by default By default, the V/f characteristic control with a linear characteristic is preset as motor control for asynchronous motors.
  • Page 45: Function Assignment Of The Inputs And Outputs

    Commissioning Parameter setting Function assignment of the inputs and outputs 5.3.4 Function assignment of the inputs and outputs The inverter control can be adapted individually to the respective application. This is basically effected by assigning digital control sources ("triggers") to functions of the inverter. By default, the inverter can be controlled via the I/O terminals as follows: Input signals Mains voltage...
  • Page 46 Commissioning Parameter setting Function assignment of the inputs and outputs Parameter Name / value range / [default setting] Info 0x2631:002 Function list: Run Assignment of a trigger for the "Run" function. (P400.02) (Function list: Run) • Setting can only be changed if the inverter is inhibi- Function 1: Start / stop motor (default setting) ted.
  • Page 47 Commissioning Parameter setting Function assignment of the inputs and outputs Parameter Name / value range / [default setting] Info 0x2634:002 Digital outputs function: Digital output 1 Assignment of a trigger to digital output 1. (P420.02) (Dig.out.function: DO1 function) Trigger = FALSE: X3/DO1 set to LOW level. •...
  • Page 48: Keypad Parameter List

    Commissioning Keypad parameter list Keypad parameter list For commissioning or diagnostics using the keypad, all parameters of the inverter that can also be accessed by means of the keypad are listed in the following "Keypad parameter list". The keypad parameter list is sorted in ascending order in compliance with the "display •...
  • Page 49 Commissioning Keypad parameter list How to read the keypad parameter list: Column Meaning Display code Parameter number on the keypad. Format: Number.Subindex Short designation Short keypad designation limited to 16 characters. Default setting Default setting of the parameter. Setting range Possible setting range for the parameter.
  • Page 50 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category └ P125.02 Active setpoint - (Read only) 0x282B:002 general └ P125.03 Keypad LCD stat. - (Read only) 0x282B:003 general └ P125.04 Drive mode - (Read only) 0x282B:004 general └...
  • Page 51 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category └ P192.05 PU type code - (Read only) 0x2002:005 general └ P192.06 CU serial number - (Read only) 0x2002:006 general └ P192.07 PU serial number - (Read only) 0x2002:007 general P197.00...
  • Page 52 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category P308.xx Motor overload └ P308.01 Max.load.for 60s 150 % 30 ... 200 % 0x2D4B:001 general └ P308.02 Speed comp. On [0] Selection list 0x2D4B:002 general └ P308.03 Response Fault [3]...
  • Page 53 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category P333.xx V/f Imax contr. └ P333.01 Gain 0.284 Hz/A * 0.000 ... 1000.000 Hz/A 0x2B08:001 MCTRL └ P333.02 Reset time 2.3 ms * 1.0 ... 2000.0 ms 0x2B08:002 MCTRL P334.xx...
  • Page 54 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category └ P400.11 Jog reverse Not connected [0] Selection list 0x2631:011 general └ P400.12 Keypad control Not connected [0] Selection list 0x2631:012 general └ P400.13 Reverse rot.dir. Digital input 3 [13] Selection list 0x2631:013...
  • Page 55 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category └ P414.01 Frequency 0.0 Hz 0.0 ... 599.0 Hz 0x4004:001 general └ P414.02 PID value 0.00 PID unit -300.00 ... 300.00 PID unit 0x4004:002 general └ P414.03 Torque 0.0 %...
  • Page 56 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category └ P431.11 Min. torque 0.0 % -400.0 ... 400.0 % 0x2637:011 general └ P431.12 Max. torque 100.0 % -400.0 ... 400.0 % 0x2637:012 general P440.xx Analog output 1 └...
  • Page 57 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category └ P505.07 NetWordIN1.06 Setp: Preset b1 [19] Selection list 0x400E:007 general └ P505.08 NetWordIN1.07 Reset error [4] Selection list 0x400E:008 general └ P505.09 NetWordIN1.08 Not active [0] Selection list 0x400E:009 general...
  • Page 58 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category P540.xx RPDO1 config. └ P540.01 COB-ID 0x00000200 0x00000000 ... 0xFFFFFFFF 0x1400:001 CANopen └ P540.02 Transm. type 0 ... 255 0x1400:002 CANopen └ P540.05 Event timer 100 ms 0 ...
  • Page 59 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category └ P583.11 Last RxD byte9 - (Read only) 0x232E:011 Modbus RTU └ P583.12 Last RxD byte10 - (Read only) 0x232E:012 Modbus RTU └ P583.13 Last RxD byte11 - (Read only) 0x232E:013 Modbus RTU...
  • Page 60 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category └ P593.08 Frequency 0.02Hz - (Read only) 0x400C:008 general └ P593.09 Freq. [+/-16384] - (Read only) 0x400C:009 general P595.xx PAM monitoring └ P595.02 Keep alive reg. 0 ...
  • Page 61 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category └ P700.08 Load par. set 2 Off / ready [0] Selection list 0x2022:008 general └ P700.09 Load par. set 3 Off / ready [0] Selection list 0x2022:009 general └...
  • Page 62 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category └ P721.04 Res. time V-ctrl 20 ms 5 ... 2000 ms 0x2D66:004 general └ P721.05 DC voltage setp. 100 % 80 ... 110 % 0x2D66:005 general └...
  • Page 63 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category └ P740.45 Parameter 45 0x26390400 0x00000000 ... 0xFFFFFF00 0x261C:045 general └ P740.46 Parameter 46 0x29110100 0x00000000 ... 0xFFFFFF00 0x261C:046 general └ P740.47 Parameter 47 0x29110200 0x00000000 ... 0xFFFFFF00 0x261C:047 general └...
  • Page 64 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category └ P801.07 Torque setp. 100.0 % -400.0 ... 400.0 % 0x4026:007 general P802.xx Segment 2 └ P802.01 Frequency setp. 0.0 Hz -599.0 ... 599.0 Hz 0x4027:001 general └...
  • Page 65 Commissioning Keypad parameter list Display code Short designation Default setting Setting range Address Category └ P808.05 Analog outp. 0.00 VDC 0.00 ... 10.00 VDC 0x402D:005 general └ P808.06 PID setp. 0.00 PID unit -300.00 ... 300.00 PID unit 0x402D:006 general └...
  • Page 66: Save Parameter Settings In The Memory Module

    Commissioning Save parameter settings in the memory module Save parameter settings with »EASY Starter« Save parameter settings in the memory module 5.5.1 Save parameter settings with keypad If one parameter setting has been changed with the keypad but has not been saved in the memory module with mains failure protection, the SET display is blinking.
  • Page 67: Diagnostics And Fault Elimination

    Diagnostics and fault elimination LED status display Diagnostics and fault elimination LED status display The "RDY" and "ERR" LED status displays on the front of the inverter provide some quick infor- mation about certain operating states. "RDY" LED (blue) "ERR" LED (red) Status/meaning No supply voltage.
  • Page 68: Diagnostics Parameter

    Diagnostics and fault elimination Diagnostics parameter Diagnostics parameter The inverter provides many diagnostic parameters which are helpful for operation, mainte- nance, error diagnosis, error correction, etc. In the following overview the most common diagnostic parameters are listed. For the key- •...
  • Page 69: Logbook

    Diagnostics and fault elimination Diagnostics parameter Logbook 6.2.1 Logbook For diagnostic purposes, the logbook contains the last 32 error messages and warning signals of the inverter, which have occurred during operation. Preconditions The logbook can only be accessed via the user interface of »EASY Starter« ("Diagnostics" tab) or •...
  • Page 70: Error History Buffer

    Diagnostics and fault elimination Diagnostics parameter Error history buffer 6.2.2 Error history buffer For purposes of diagnostics, the error history buffer contains the last 32 error and warning messages of the inverter, which have occurred during operation. The error history buffer can be read out using the keypad via P155.00 and provides a limited view on the logbook.
  • Page 71 Diagnostics and fault elimination Diagnostics parameter Error history buffer Parameter Name / value range / [default setting] Info 0x2006:002 Error history buffer: Latest message Display of the subindex of the most recent message. • Read only 0x2006:003 Error history buffer: Latest acknowledgement mes- 0 = delete all entries in the error history buffer.
  • Page 72 Diagnostics and fault elimination Diagnostics parameter Error history buffer Parameter Name / value range / [default setting] Info 0x2006:028 Error history buffer: Message 22 Error history buffer entry 23 • Read only 0x2006:029 Error history buffer: Message 23 Error history buffer entry 24 •...
  • Page 73: Inverter Diagnostics

    Diagnostics and fault elimination Diagnostics parameter Inverter diagnostics 6.2.3 Inverter diagnostics The following parameters supply some information about the current operating status of the inverter. This includes the following information: Active access protection after log-in by means of PIN1/PIN2 • Currently loaded parameter settings •...
  • Page 74 Diagnostics and fault elimination Diagnostics parameter Inverter diagnostics Parameter Name / value range / [default setting] Info 0x282A:002 Status words: Cause of quick stop Bit coded display of the cause(s) of quick stop. (P126.02) (Status words: Cause of QSP) • Read only Bit 0 Flexible I/O configuration 1 ≡...
  • Page 75 Diagnostics and fault elimination Diagnostics parameter Inverter diagnostics Parameter Name / value range / [default setting] Info 0x282B:002 Inverter diagnostics: Active setpoint source Display of the setpoint source that is currently active. (P125.02) (Inverter diag.: Active setpoint) • Read only 0 Not selected 1 Analog input 1 2 Analog input 2...
  • Page 76 Diagnostics and fault elimination Diagnostics parameter Inverter diagnostics Parameter Name / value range / [default setting] Info 0x282B:004 Inverter diagnostics: Active drive mode Display of the active drive mode. (P125.04) (Inverter diag.: Drive mode) • Read only 0 Velocity mode "Velocity mode"...
  • Page 77: Network Diagnostics

    Diagnostics and fault elimination Diagnostics parameter Inverter diagnostics Parameter Name / value range / [default setting] Info 0x2DAD Internal hardware states Bit-coded display of internal hardware states. (P120.00) (Int. HW states) • Read only Bit 0 Relay 0 ≡ X9/NO-COM open and NC-COM closed. 1 ≡...
  • Page 78: Canopen Diagnostics

    0x1018:001 Identity object: Vendor ID Display of the manufacturer's identification number. • Read only • The identification number allocated to Lenze by the organisation "CAN in Automation e. V." is "0x0000003B". 0x1018:002 Identity object: Product ID Display of the product code of the inverter.
  • Page 79 Diagnostics and fault elimination Diagnostics parameter Network diagnostics Parameter Name / value range / [default setting] Info 0x2302:002 Active CANopen settings: Active baud rate Display of the active baud rate. (P511.02) (CANopen diag.: Active baud rate) • Read only 0 Automatic (from version 03.00) 1 20 kbps 2 50 kbps...
  • Page 80: Modbus Diagnostics

    Diagnostics and fault elimination Diagnostics parameter Network diagnostics Parameter Name / value range / [default setting] Info 0x2309 CANopen controller status Status display of the internal CANopen controller. (P517.00) (CAN contr.status) • Read only 1 Error active The inverter is a fully-fledged communication node at the CANopen net- work.
  • Page 81: Diagnostics Of The Inputs And Outputs

    Diagnostics and fault elimination Diagnostics parameter Network diagnostics Parameter Name / value range / [default setting] Info 0x232A:001 Modbus statistics: Messages received Display of the total number of messages received. (P580.01) (Modbus statistic: Mess. received) • This counter counts both valid and invalid messages. •...
  • Page 82: Analog Inputs And Outputs

    Diagnostics and fault elimination Diagnostics parameter Diagnostics of the inputs and outputs Parameter Name / value range / [default setting] Info 0x4018:006 Relay: Trigger signal state Display of the logic state of the trigger signal for the relay (without tak- •...
  • Page 83: Wireless-Lan Diagnostics

    Diagnostics and fault elimination Diagnostics parameter Diagnostics of the inputs and outputs Parameter Name / value range / [default setting] Info 0x2DA5:016 Diagnostics of analog input 2: Status Bit-coded display of the status of analog input 2 (X3/AI2). (P111.16) (AI2 diagnostics: AI2 status) •...
  • Page 84: Setpoint Diagnostic

    Diagnostics and fault elimination Diagnostics parameter Wireless-LAN diagnostics Parameter Name / value range / [default setting] Info 0x2448:003 WLAN status: Rx frame counter Display of the number of request received via WLAN. • Read only • From version 02.00 0x2448:004 WLAN status: Error statistics Display of the quality of the WLAN connection.
  • Page 85: Process Controller Status

    Diagnostics and fault elimination Diagnostics parameter Process controller status Parameter Name / value range / [default setting] Info 0x4009:005 MOP values saved: PID setpoint Display of the last MOP value saved internally for the reference value of • Read only: x.xx PID unit the PID control.
  • Page 86: Device Identification

    Diagnostics and fault elimination Diagnostics parameter Sequencer diagnostics Parameter Name / value range / [default setting] Info 0x2DAE:003 Sequencer diagnostics: Step time remaining Display of the residual time for the current step. (P140.03) (Sequencer diag: StepTime remain) • Read only: x.x s •...
  • Page 87 Diagnostics and fault elimination Diagnostics parameter Device identification Parameter Name / value range / [default setting] Info 0x2000:010 Device data: PU firmware version Firmware version of the power unit. (P190.10) (Device data: PU firmware ver.) Example: "00202" • Read only 0x2000:011 Device data: PU firmware type Firmware type of the power unit.
  • Page 88: Device Overload Monitoring (I*T)

    Diagnostics and fault elimination Diagnostics parameter Heatsink Temperature Monitoring 6.2.11 Device overload monitoring (i*t) The inverter calculates the i*t utilisation in order to protect itself against thermal overload. In simple terms: a higher current or an overcurrent that continues for a longer time causes a higher i*t utilisation.
  • Page 89: Life-Diagnosis

    Diagnostics and fault elimination Diagnostics parameter Life-diagnosis 6.2.13 Life-diagnosis The following parameters provide some information about the use of the inverter. This includes the following information: Operating and power-on time of the inverter/control unit • Operating time of the internal fan •...
  • Page 90: Error Handling

    Diagnostics and fault elimination Error handling Error types Error handling Many functions integrated in the inverter can detect errors and thus protect inverter and motor from damages, • detect an operating error of the user, • output a warning or information if desired. •...
  • Page 91: Error Configuration

    Diagnostics and fault elimination Error handling Keypad error messages 6.3.2 Error configuration The errors can be divided into two types: Errors with predefined error type • Errors with configurable error type • Especially critical errors are permanently set to the "Fault" error type in order to protect inver- ter and motor from damages.
  • Page 92: Data Handling

    Diagnostics and fault elimination Data handling Data handling In the following, the behaviour of the inverter is described if the data on the memory module do not match the inverter hardware or firmware, for whatever reason. The following points are described in detail here: Automatic loading of the parameter settings when the inverter is switched on •...
  • Page 93 Diagnostics and fault elimination Data handling Manual loading of the OEM data via device command Device command: "Load OEM data" 0x2022:005 (P700.05) If the OEM memory contains invalid parameter settings, the user parameter settings are • loaded automatically. If the OEM memory is empty, the status feedback "Action cancelled" takes place. The cur- •...
  • Page 94: Basic Setting

    Basic setting Basic setting This chapter contains the most frequently used functions and settings to adapt the inverter to a simple application based on the default setting. Mains voltage • ^ 95 Control source selection • ^ 97 Selection of setpoint source •...
  • Page 95: Mains Voltage

    Basic setting Mains voltage Mains voltage The rated mains voltage set for the inverter has an impact on the operating range of the inver- ter. Details By default, the rated mains voltage in 0x2540:001 (P208.01) is set according to the product code of the inverter.
  • Page 96 Basic setting Mains voltage Parameter Name / value range / [default setting] Info 0x2540:001 Mains settings: Rated mains voltage Selection of the mains voltage for actuating the inverter. (P208.01) (Mains settings: Mains voltage) • Setting can only be changed if the inverter is inhibi- ted.
  • Page 97: Control Source Selection

    Basic setting Control source selection Control source selection The selected "control source" serves to provide the inverter with its start, stop, and reversal commands. Possible control sources are: Digital inputs • Keypad • Network • Irrespective of the control source selection, stop commands are always active from each source connected! If, for instance, the network control is active and a keypad is connected for diagnostic purposes, the motor is also stopped if the keypad key...
  • Page 98: Selection Of Setpoint Source

    Basic setting Selection of setpoint source Selection of setpoint source The selected "setpoint source" serves to provide the inverter with its setpoint. The setpoint source can be selected individually for each operating mode. Possible setpoint sources are: Analog inputs • Keypad •...
  • Page 99 Basic setting Selection of setpoint source Parameter Name / value range / [default setting] Info 31 Segment preset 1 For the setpoint selection, the segment presets parameterised for the (from version 03.00) "sequencer" function can be selected as well. 32 Segment preset 2 (from version 03.00) 4Sequencer ^ 325...
  • Page 100 Basic setting Selection of setpoint source Parameter Name / value range / [default setting] Info 0x2860:002 PID control: Default setpoint source Selection of the standard setpoint source for the reference value of the (P201.02) (Stnd. setpoints: PID setp. src.) PID control. •...
  • Page 101: Keypad Setpoint Default Setting

    Basic setting Selection of setpoint source Keypad setpoint default setting Parameter Name / value range / [default setting] Info 0x2860:003 Torque control: Default setpoint source Selection of the standard setpoint source for operating mode "MS: Tor- (P201.03) (Stnd. setpoints: Torque setp.src.) que mode".
  • Page 102 Basic setting Selection of setpoint source Keypad setpoint default setting Parameter Name / value range / [default setting] Info 0x2601:003 Keypad setpoints: Torque setpoint Default setting of the keypad setpoint for the operating mode 0x6060 (P202.03) (Keypad setpoints: KP torq.setpoint) (P301.00) = "MS: Torque mode [-1]".
  • Page 103: Starting/Stopping Performance

    Basic setting Starting/stopping performance Starting performance Starting/stopping performance 7.4.1 Starting performance The start can be optionally made with DC braking or flying restart circuit. Moreover, an auto- matic start can be activated after switch-on. Details The start method can be selected in 0x2838:001 (P203.01).
  • Page 104 Basic setting Starting/stopping performance Starting performance Automatic start after switching on the mains voltage The automatic start can be activated in 0x2838:002 (P203.02). Preconditions for the automatic start: Flexible I/O configuration is selected: 0x2824 (P200.00) = "Flexible I/O configuration [0]" •...
  • Page 105: Stopping Performance

    Basic setting Starting/stopping performance Stopping performance 7.4.2 Stopping performance In the default setting, the motor is brought to a standstill after a stop command with standard ramp. Alternatively, coasting or ramping down with quick stop ramp can be selected. Details The stop method can be selected in 0x2838:003 (P203.03).
  • Page 106: Frequency Limits And Ramp Times

    Basic setting Frequency limits and ramp times Frequency limits and ramp times The frequency range can be limited by setting a minimum and maximum frequency. For the frequency setpoint, two different ramps can be parameterised. Change-over to ramp 2 can be carried out manually or automatically.
  • Page 107 Basic setting Frequency limits and ramp times Parameter Name / value range / [default setting] Info 0x2917 Acceleration time 1 Acceleration time 1 for the operating mode "MS: Velocity mode". (P220.00) (Accelerat.time 1) • The acceleration time set refers to the acceleration from standstill to 0.0 ...
  • Page 108 Basic setting Frequency limits and ramp times Example for operating mode Parameter Name Setting for this example 0x2631:001 (P400.01) Enable inverter Constant TRUE [1] 0x2631:002 (P400.02) Digital input 1 [11] 0x2915 (P210.00) Minimum frequency 15 Hz 0x2916 (P211.00) Maximum frequency 40 Hz 0x2917 (P220.00) Acceleration time 1...
  • Page 109: Quick Stop

    Basic setting Quick stop Quick stop The "quick stop" function is an alternative stop method if the motor has to be stopped faster than normal. Cancelling the quick stop causes a restart of the motor if the start command is still active and the inverter is enabled! Details Possible triggers to be selected for the "quick stop"...
  • Page 110 Basic setting Quick stop Example for operating mode Parameter Name Setting for this example 0x2631:001 (P400.01) Enable inverter Constant TRUE [1] 0x2631:002 (P400.02) Digital input 1 [11] 0x2631:003 (P400.03) Activate quick stop Digital input 2 [12] 0x2838:003 (P203.03) Stop method Standard ramp [1] 0x2916 (P211.00) Maximum frequency...
  • Page 111: S-Shaped Ramps

    Basic setting S-shaped ramps S-shaped ramps In order to reduce the jerk and to therefore prevent the drive components from damage, a smoothing factor can be set for the acceleration/deceleration ramps. Details In the default setting, the motor is accelerated and decelerated with linear ramps since this is the most used configuration.
  • Page 112: Optical Device Identification

    Basic setting Optical device identification Optical device identification For applications including several interconnected inverters it may be difficult to locate a device that has been connected online. The "Optical device identification" function serves to locate the inverter by means of blinking LEDs. Details In order to start the visual tracking, click the button in the toolbar of the »EASY Starter«...
  • Page 113: Motor Control

    Whether a setting can be applied or not depends on the motor (Lenze motor yes/no) and the application. If possible, always use the possible setting listed first in the following diagram since this one leads to the most accurate results.
  • Page 114: Motor Data

    (star or delta connection). Only enter the data applying to the connec- tion type selected. Possible settings If a Lenze motor is connected to the inverter, you can simply select the used motor in the engineering tool from the "motor catalog". For details see chapter "Motor selection from motor...
  • Page 115: Motor Control Selection

    Motor control Motor control selection Motor control selection Setting of motor data Motor control selection Optimisation of motor control Optimisation of the control loops The inverter supports different modes for closed-loop/open-loop motor control. Parameter Name / value range / [default setting] Info 0x2C00 Motor control mode...
  • Page 116: V/F Characteristic Control (Vfc)

    Motor control Motor control selection V/f characteristic control (VFC) 8.2.1 V/f characteristic control (VFC) The V/f characteristic control is a motor control for conventional frequency inverter applica- tions. It is based on a simple and robust control mode for the operation of asynchronous motors with a linear or square-law load torque characteristic (e.g.
  • Page 117: Linear V/F Characteristic

    Motor control Motor control selection V/f characteristic control (VFC) 8.2.1.1 Linear V/f characteristic The linear V/f characteristic is the most used characteristic shape for general applications since they cause a torque that is largely constant. Details Select V/f characteristic control with linear characteristic: 1.
  • Page 118: Square-Law V/F Characteristic

    Motor control Motor control selection V/f characteristic control (VFC) 8.2.1.2 Square-law V/f characteristic The square-law V/f characteristic is typically used in heating, ventilation and climate applica- tions to control the speed of fans and pumps. Details Each application that is provided with the features according to the affinity laws may possibly benefit from a square-law V/f characteristic.
  • Page 119: User-Definable V/F Characteristic

    Motor control Motor control selection V/f characteristic control (VFC) 8.2.1.3 User-definable V/f characteristic The user-definable V/f characteristic is based on the linear V/f characteristic. An additional medium characteristic point, however, enables the adaptation to applications with special tor- que properties. Details An application case for this characteristic shape are applications that require a higher torque at lower speeds.
  • Page 120: V/F Characteristic Control - Energy-Saving (Vfc Eco)

    Motor control Motor control selection V/f characteristic control (VFC) 8.2.1.4 V/f characteristic control - energy-saving (VFC Eco) In case of the energy-saving V/f characteristic control (VFCplusEco). the motor voltage of the inverter is detected by means of a linear characteristic as a function of the rotating field fre- quency or motor speed to be generated.
  • Page 121 Motor control Motor control selection V/f characteristic control (VFC) Parameter Name / value range / [default setting] Info 0x2B00 V/f characteristic shape Selection of the V/f characteristic shape for the adaptation to different (P302.00) (V/f charac.shape) load profiles. • Setting can only be changed if the inverter is inhibi- ted.
  • Page 122: Sensorless Vector Control (Slvc)

    Motor control Motor control selection Sensorless vector control (SLVC) 8.2.2 Sensorless vector control (SLVC) Sensorless (field-oriented) vector control for asynchronous motors is based on a decoupled, separate control for the torque-producing and the field-producing current component. In addition, the actual speed is reconstructed by means of a motor model so that a speed sensor is not required.
  • Page 123 Motor control Motor control selection Sensorless vector control (SLVC) Parameter Name / value range / [default setting] Info 0x2949:001 Positive torque limit source Selection of the source for the positive torque limit source. (P337.01) (Pos. torqlim src) • From version 03.00 0 Max torque Positive torque limit source = Max torque 0x6072...
  • Page 124 Motor control Motor control selection Sensorless vector control (SLVC) Next steps The inverter provides different functions by means of which the drive behaviour can be • further optimised.4Optimisation of motor control ^ 129 The default setting enables the operation of a power-adapted motor. An optimum opera- •...
  • Page 125: Sensorless Control For Synchronous Motors (Sl-Psm)

    Motor control Motor control selection Sensorless control for synchronous motors (SL-PSM) 8.2.3 Sensorless control for synchronous motors (SL-PSM) The sensorless control for synchronous motors is based on a decoupled, separated control of the torque-producing current and the current in field direction. In contrast to the servo con- trol, the actual speed value and rotor position are reconstructed via a motor model.
  • Page 126 Motor control Motor control selection Sensorless control for synchronous motors (SL-PSM) Parameter Name / value range / [default setting] Info 0x2C03:001 Back EMF constant Voltage induced by the motor (rotor voltage / 1000 rpm). (P352.01) (BEMF constant) 0.0 ... [41.8] ... 100000.0 V/1000rpm •...
  • Page 127 Motor control Motor control selection Sensorless control for synchronous motors (SL-PSM) Parameter Name / value range / [default setting] Info 0x2949:002 Negative torque limit source Selection of the source for the negative torque limit source. (P337.02) (Neg. torqlim src) • From version 03.00 0 (-) Max torque Negative torque limit source = (-) Max torque 0x6072...
  • Page 128: Stall Monitoring

    Motor control Motor control selection Sensorless control for synchronous motors (SL-PSM) 8.2.3.1 Stall monitoring The stalling monitoring for the sensorless control for synchronous motors (SL-PSM) switches off the drive if the motor is about to "stall". A possible cause may be an overload of the motor. Preconditions The stalling monitoring only works in the controlled area and if the motor is not operated in the field weakening range.
  • Page 129: Optimisation Of Motor Control

    Motor control Optimisation of motor control Optimisation of motor control Setting of motor data Motor control selection Optimisation of motor control Optimisation of the control loops The inverter provides different functions by means of which the drive behaviour can be fur- ther optimised.
  • Page 130: V/F Voltage Boost

    Motor control Optimisation of motor control V/f voltage boost 8.3.1 V/f voltage boost The parameterisable voltage boost makes it possible to improve the starting performance for applications requiring a high starting torque. Preconditions The function is only effective in the motor control type "V/f characteristic control (VFC open loop)".
  • Page 131: Skip Frequencies

    Motor control Optimisation of motor control Skip frequencies 8.3.2 Skip frequencies By means of the three parameterisable skip frequencies, critical frequencies can be sup- pressed which lead to mechanical resonances in the system. Details A blocking zone is active as soon as the frequency for this blocking zone is set to value unequal to "0 Hz".
  • Page 132 Motor control Optimisation of motor control Skip frequencies Valid and invalid ranges: Example on the left: Skip frequency = 5 Hz, bandwidth = 10 Hz • à Valid range (starts at ≥ 0) Example on the right: Skip frequency = 4 Hz, bandwidth = 10 Hz •...
  • Page 133: Optimising The Stalling Behaviour

    Motor control Optimisation of motor control Optimising the stalling behaviour 8.3.3 Optimising the stalling behaviour If the motor is driven with frequencies above the rated motor frequency, the operating point is shifted to the "field weakening range". In this range, the motor voltage does not increase proportionately to the output frequency anymore.
  • Page 134 Motor control Optimisation of motor control Optimising the stalling behaviour Details The operating range of an asynchronous motor consists of the voltage range and the field ① weakening range. The field weakening range again is divided into two ranges: In the first range , the power can be kept constant without the motor stalling.
  • Page 135: Slip Compensation

    Motor control Optimisation of motor control Slip compensation 8.3.4 Slip compensation In case of a load, the speed of an asynchronous motor decreases. This load-dependent speed drop is called slip. The slip compensation serves to counteract the load-dependent speed loss. Preconditions The function is only effective in the motor control type "V/f characteristic control (VFC open loop)".
  • Page 136 Motor control Optimisation of motor control Slip compensation Parameter Name / value range / [default setting] Info 0x2C02:004 Slip frequency Display of the rated slip determined. (P351.04) (Slip frequency) • Read only: x.x Hz 0x2C01:001 Motor parameters: Number of pole pairs Display of the number of pole pairs calculated from the rated speed and •...
  • Page 137: Oscillation Damping

    Motor control Optimisation of motor control Oscillation damping 8.3.5 Oscillation damping The oscillation damping serves to reduce the oscillations during no-load operation which are caused by energy oscillating between the mechanical system (mass inertia) and the electrical system (DC bus). Furthermore, the oscillation damping can also be used to compensate for resonances.
  • Page 138: Pole Position Identification Without Movement

    Motor control Optimisation of motor control Pole position identification without movement 8.3.6 Pole position identification without movement If a permanent-magnet synchronous motor is driven by the inverter, a "pole position identifi- cation (PLI)" is required for an optimum and jerk-free starting torque. In the default setting, a pole position identification is executed after each inverter enable.
  • Page 139 Motor control Optimisation of motor control Pole position identification without movement Parameter Name / value range / [default setting] Info 0x2C63:001 PPI without movement: Execution Starting performance (without or with pole position identification before • Setting can only be changed if the inverter is inhibi- the start).
  • Page 140: Optimisation Of The Control Loops

    Motor control Optimisation of the control loops Optimisation of the control loops Setting of motor data Motor control selection Optimisation of motor control Optimisation of the control loops If there is a need to improve the total power of the system, different options are available: a) Select motor from motor catalogue b) Tuning of the motor and the speed controller c) Automatic motor identification (energized)
  • Page 141 Optimisation of the control loops Performing optimisation with engineering tool The following flow diagram shows the optimisation process with an engineering tool (e. g. »EASY Starter«): Start Lenze motor connected? Set manually: • Motor data (e.g. according to data on the motor nameplate) Engineering tool •...
  • Page 142 4Man- ual setting of the motor data ^ 114 The following flow diagram shows the optimisation process with the keypad: Start Lenze motor connected? Set manually: • Motor data (e.g. according to data on the motor nameplate) Engineering tool •...
  • Page 143: Options For Optimized Motor Tuning

    Motor control Optimisation of the control loops Options for optimized motor tuning 8.4.1 Options for optimized motor tuning The option to be selected depends on the respective application. Depending on the selected option, different procedures become active and thus different parameter groups are influ- enced: Rated motor data •...
  • Page 144: Motor Selection From Motor Catalogue

    Optimisation is possible online or offline (with or without connected motor). • Required steps 1. Open the Lenze engineering tool that provides for the functionality of a "Lenze motor cata- logue". 2. Click the Select motor... button. In case of the »EASY Starter«, you find the Select motor...
  • Page 145: Tuning Of The Motor And The Speed Controller

    Motor control Optimisation of the control loops Options for optimized motor tuning 8.4.1.2 Tuning of the motor and the speed controller The following describes in general how to optimise the speed controller. This may be required if some parameters have on the load side of the drive system have changed or have not been set yet, such as: Motor moment of inertia •...
  • Page 146: Automatic Motor Identification (Energized)

    Motor control Optimisation of the control loops Options for optimized motor tuning 8.4.1.3 Automatic motor identification (energized) The automatic identification of the motor results in the best possible parameter settings. If the application enables you to energise the system during the optimisation, carry out this optimisation.
  • Page 147: Automatic Motor Calibration (Non-Energized)

    Motor control Optimisation of the control loops Inverter Characteristics 8.4.1.4 Automatic motor calibration (non-energized) If the application does not enable you to energise the system during the optimisation, carry out this optimisation. Preconditions All rated motor data are known and set in the inverter, either by selecting the motor from •...
  • Page 148: Motor Equivalent Circuit Diagram Data

    Motor control Optimisation of the control loops Motor equivalent circuit diagram data 8.4.3 Motor equivalent circuit diagram data The motor equivalent circuit diagram data are automatically set if one of the following optimi- sations is carried out: 4Motor selection from motor catalogue ^ 144 4Automatic motor identification (energized) ^ 146...
  • Page 149: Motor Controller Settings

    Motor control Optimisation of the control loops Motor controller settings 8.4.4 Motor controller settings After the motor settings have been made, the different control loops must be set. For a quick commissioning, the calculations and settings are made automatically if one of the following optimisations is carried out: 4Motor selection from motor catalogue ^ 144...
  • Page 150: Field Controller

    Motor control Optimisation of the control loops Motor controller settings 8.4.4.2 Field controller For a quick commissioning, the calculations and settings are made automatically during the optimisation. Preconditions The field controller is only effective in the motor control type "Sensorless vector control (SLVC)".
  • Page 151: Imax Controller

    Motor control Optimisation of the control loops Motor controller settings 8.4.4.5 Imax controller For a quick commissioning, the calculations and settings are made automatically during the optimisation. For typical applications, a manual adaptation of the parameters of the Imax con- troller is not recommended.
  • Page 152: Flying Restart Controller

    Motor control Optimisation of the control loops Motor controller settings 8.4.4.6 Flying restart controller For a quick commissioning, the calculations and settings are made automatically during the optimisation. Details The following parameter is only relevant for the flying restart circuit if an asynchronous motor is controlled.
  • Page 153: Torque Control W/ Freq. Limit

    Motor control Optimisation of the control loops Motor controller settings 8.4.4.8 Torque control w/ freq. limit In general, the inverter is operated in a mode that controls the motor frequency. Alternatively, the inverter can be configured in such a way that it controls a motor torque within a defined frequency range.
  • Page 154 Motor control Optimisation of the control loops Motor controller settings Parameterisation required 1. Set the operating mode "MS: Torque mode [-1]" in 0x6060 (P301.00). 2. Set the rated motor torque in 0x6076 (P325.00). 3. Set the permissible maximum torque in 0x6072 (P326.00).
  • Page 155 Motor control Optimisation of the control loops Motor controller settings Diagnostic parameters: 0x2DD5: Torque setpoint • 0x2949:003 (P337.03): Actual positive torque limit • 0x2949:004 (P337.04): Actual negative torque limit • 0x2946:007 (P340.07): Speed limitation: Actual upper speed limit • 0x2946:008 (P340.08): Speed limitation: Actual lower speed limit •...
  • Page 156 Motor control Optimisation of the control loops Motor controller settings Parameter Name / value range / [default setting] Info 0x2946:004 Speed limitation: Lower speed limit source Selection of the source for the lower speed limit. (P340.04) (Speed limitation: Lowspeed lim src) •...
  • Page 157 Motor control Optimisation of the control loops Motor controller settings Parameter Name / value range / [default setting] Info 0x2949:002 Negative torque limit source Selection of the source for the negative torque limit source. (P337.02) (Neg. torqlim src) • From version 03.00 0 (-) Max torque Negative torque limit source = (-) Max torque 0x6072...
  • Page 158: Speed Controller

    Motor control Optimisation of the control loops Speed controller 8.4.5 Speed controller The speed controller is automatically set if one of the following optimisations is carried out: 4Motor selection from motor catalogue ^ 144 4Automatic motor identification (energized) ^ 146 4Automatic motor calibration (non-energized) ^ 147 For typical applications, a manual adaptation of the parameters of the speed...
  • Page 159: Motor Rotating Direction

    Motor control Motor rotating direction Motor rotating direction In the default setting, both directions of motor rotation are enabled. Optionally, the direction of rotation can be restricted so that only a clockwise rotation (CW) of the motor is possible. Preconditions Wiring of the motor phases must be carried out correctly with regard to the direction of motor rotation.
  • Page 160: Switching Frequency Changeover

    Motor control Switching frequency changeover Switching frequency changeover The output voltage of the inverter is a DC voltage with sine-coded pulse width modulation (PWM). This corresponds by approximation to a AC voltage with variable frequency. The fre- quency of the PWM pulses is adjustable and is called "switching frequency". Details The switching frequency has an impact on the smooth running performance and the noise generation in the motor connected as well as on the power loss in the inverter.
  • Page 161: Motor Protection

    Motor control Motor protection Motor protection Many monitoring functions integrated in the inverter can detect errors and thus protect the device or motor from being destroyed or overloaded. Motor overload monitoring (i²*t) • ^ 162 Current limits • ^ 166 Overcurrent monitoring •...
  • Page 162: Motor Overload Monitoring (I²*T)

    Motor control Motor protection Motor overload monitoring (i²*t) 8.7.1 Motor overload monitoring (i²*t) This function monitors the thermal utilisation of the motor, taking the motor currents recor- ded and a mathematical model as a basis. DANGER! Fire hazard by overheating of the motor. Possible consequences: Death or severe injuries ▶...
  • Page 163 Motor control Motor protection Motor overload monitoring (i²*t) The following two diagrams show the relation between the motor load and release time of the monitoring under the following conditions: Maximum utilisation 0x2D4B:001 (P308.01) = 150 % • Speed compensation 0x2D4B:002 (P308.02) = "Off [1]"...
  • Page 164 Motor control Motor protection Motor overload monitoring (i²*t) Speed compensation for protecting motors at low speed The inverter comes with an implemented compensation for low speed. If the motor is driven with frequencies lower than 40 Hz, the speed compensation in 0x2D4B:002 (P308.02)should be set to "On [0]"...
  • Page 165 Motor control Motor protection Motor overload monitoring (i²*t) Parameter Name / value range / [default setting] Info 0x2D4B:002 Motor overload monitoring (i²*t): Speed compensa- Use this function to protect motors that are actuated at a speed below (P308.02) tion 40 Hz. (Motor overload: Speed comp.) •...
  • Page 166: Current Limits

    Motor control Motor protection Current limits 8.7.2 Current limits For the purpose of current limitation, a maximum overload current can be set for the inverter. If the current consumption of the motor exceeds this current limit, the inverter changes its dynamic behaviour, in order to counteract this exceedance.
  • Page 167 Motor control Motor protection Current limits Parameter Name / value range / [default setting] Info 0x6073 Max current Maximum overload current of the inverter. (P324.00) (Max current) • 100 % ≡ Motor rated current 0x6075 (P323.00) 0.0 ... [200.0] ... 3000.0 % •...
  • Page 168: Overcurrent Monitoring

    Motor control Motor protection Overcurrent monitoring 8.7.3 Overcurrent monitoring This function monitors the instantaneous value of the motor current and serves as motor pro- tection. NOTICE With an incorrect parameterisation, the maximum permissible motor current may be excee- ded in the process. Possible consequence: irreversible damage of the motor.
  • Page 169: Motor Phase Failure Detection

    Motor control Motor protection Motor phase failure detection 8.7.4 Motor phase failure detection The motor phase failure detection function can be activated for both synchronous and asyn- chronous motors. Preconditions Phase failure detection during operation is basically only suitable for applications which are operated with a constant load and speed.
  • Page 170: Motor Speed Monitoring

    Motor control Motor protection Motor speed monitoring 8.7.5 Motor speed monitoring This function monitors the motor speed during operation. Preconditions In order to detect the current motor speed, the inverter must be enabled and the motor • must rotate. For an exact monitoring, rated motor speed 0x2C01:004 (P320.04) and rated motor fre- •...
  • Page 171 Motor control Motor protection Motor torque monitoring Parameter Name / value range / [default setting] Info 0x2D67:002 Maximum torque monitoring: Triggering delay Optional setting of a deceleration for triggering the response selected in (P329.02) (MaxTrq.Monitor: Triggering delay) 0x2D67:001 (P329.01). 0.000 ... [0.000] ... 10.000 s Typical application: •...
  • Page 172: Configuring The Network

    Configuring the network Configuring the network The inverter is available in a version with CANopen ® and Modbus network option. General network settings • ^ 173 Predefined process data words • ^ 191 Acyclic data exchange • ^ 203 CANopen •...
  • Page 173: General Network Settings

    Configuring the network General network settings General network settings Activate network control In order to be able to control the inverter via network, a trigger must be first assigned in 0x2631:037 (P400.37) to the "Activate network control" function. This trigger can for instance be the constant value "TRUE" or a digital input. •...
  • Page 174 Configuring the network General network settings Network setpoint It must be observed that the network setpoint must be selected explicitly. There are various options to select/change-over to the network setpoint. See the following examples. Example 1: The AC drive control word shall enable a change-over from the standard setpoint source to the network setpoint (bit 6).
  • Page 175 Configuring the network General network settings Parameter Name / value range / [default setting] Info 0x231F:001 Module ID: Active module ID Display of the network options currently configured in the inverter. (P500.01) (Module ID: Active module ID) • With the help of this module ID, the keypad only shows the communi- •...
  • Page 176 Configuring the network General network settings Parameter Name / value range / [default setting] Info 8 Run forward (CW) Trigger bit = 0-1 edge: Motor is started in forward rotating direction (CW). Trigger bit = 1-0 edge: Motor is stopped again. Notes: •...
  • Page 177 Configuring the network General network settings Parameter Name / value range / [default setting] Info 32 Next sequence step Trigger bit = 0↗1 (edge): Next sequence step. (from version 03.00) Trigger bit = 1↘0 (edge): No action. Notes: • The execution of the current step is completed even if the time para- meterised for the segment has not elapsed yet.
  • Page 178 Configuring the network General network settings Parameter Name / value range / [default setting] Info 44 Activate fault 2 Trigger bit = 1: Trigger user-defined error 2. Trigger bit = 0: no action. Notes: • After the error is triggered, the motor is brought to a standstill with the quick stop ramp.
  • Page 179 Configuring the network General network settings Parameter Name / value range / [default setting] Info 0x400E:002 NetWordIN1 function: Bit 1 Definition of the function that is to be triggered via bit 1 of the mappa- (P505.02) (NetWordIN1 fct.: NetWordIN1.01) ble NetWordIN1 data word. •...
  • Page 180 Configuring the network General network settings Parameter Name / value range / [default setting] Info 0x400E:011 NetWordIN1 function: Bit 10 Definition of the function that is to be triggered via bit 10 of the mappa- (P505.11) (NetWordIN1 fct.: NetWordIN1.10) ble NetWordIN1 data word. •...
  • Page 181 Configuring the network General network settings Parameter Name / value range / [default setting] Info 14 Digital input 4 State of X3/DI4, taking an inversion set in 0x2632:004 (P411.04) into consideration. 15 Digital input 5 State of X3/DI5, taking an inversion set in 0x2632:005 (P411.05) into consideration.
  • Page 182 Configuring the network General network settings Parameter Name / value range / [default setting] Info 83 Load loss detected TRUE if actual motor current < threshold for load loss detection after delay time of the load loss detection has elapsed. Otherwise FALSE. •...
  • Page 183 Configuring the network General network settings Parameter Name / value range / [default setting] Info 0x2631:003 Function list: Activate quick stop Assignment of a trigger for the "Activate quick stop" function. (P400.03) (Function list: Quick stop) Trigger = TRUE: Activate quick stop. •...
  • Page 184 Configuring the network General network settings Parameter Name / value range / [default setting] Info 0x2631:017 Function list: Activate network setpoint Assignment of a trigger for the "Activate network setpoint" function. (P400.17) (Function list: Setp: Network) Trigger = TRUE: the network is used as setpoint source (if the trigger •...
  • Page 185 Configuring the network General network settings Parameter Name / value range / [default setting] Info 0x2634:013 Digital outputs function: NetWordOUT1 - bit 3 Assignment of a trigger to bit 3 of NetWordOUT1. (P420.13) (Dig.out.function: NetWordOUT1.03) Trigger = FALSE: bit set to 0. •...
  • Page 186 Configuring the network General network settings Parameter Name / value range / [default setting] Info 0x2634:025 Digital outputs function: NetWordOUT1 - bit 15 Assignment of a trigger to bit 15 of NetWordOUT1. (P420.25) (Dig.out.function: NetWordOUT1.15) Trigger = FALSE: bit set to 0. •...
  • Page 187 Configuring the network General network settings Parameter Name / value range / [default setting] Info 0x2860:002 PID control: Default setpoint source Selection of the standard setpoint source for the reference value of the (P201.02) (Stnd. setpoints: PID setp. src.) PID control. •...
  • Page 188 Configuring the network General network settings Parameter Name / value range / [default setting] Info 0x4008:001 Process input words: NetWordIN1 Mappable data word for flexible control of the inverter via network. (P590.01) (NetWordINx: NetWordIN1) 0x0000 ... [0x0000] ... 0xFFFF Bit 0 Mapping bit 0 Assignment of the function: 0x400E:001 (P505.01) Bit 1 Mapping bit 1...
  • Page 189 Configuring the network General network settings Parameter Name / value range / [default setting] Info 0x400A:001 Process output words: NetWordOUT1 Mappable data word for the output of status messages of the inverter (P591.01) (NetWordOUTx: NetWordOUT1) via network. • Read only Bit 0 Mapping bit 0 Mappable data word for the output of status messages of the inverter via network.
  • Page 190 Configuring the network General network settings Parameter Name / value range / [default setting] Info 0x400A:002 Process output words: NetWordOUT2 Mappable data word for the output of messages of the "Sequencer" (P591.02) (NetWordOUTx: NetWordOUT2) function via network. • Read only Configuration of the messages: Bit 0 Mapping bit 0 •...
  • Page 191: Predefined Process Data Words

    Configuring the network Predefined process data words Predefined process data words Process data are exchanged via cyclic data exchange between the network master and the inverter. Details For the cyclic data exchange, the inverter is provided with 24 network registers. 12 network registers are provided as input registers for data words from the network mas- •...
  • Page 192: Device Profile Cia

    Configuring the network Predefined process data words Device profile CiA 402 9.2.1 Device profile CiA 402 For control via device profile CiA 402, the parameters listed in the following can be mapped to network register. Details The mapping entry for the CiA 402 control word is 0x60400010. •...
  • Page 193: Ac Drive Profile

    Configuring the network Predefined process data words AC Drive Profile 9.2.2 AC Drive Profile For control via AC drive profile, the parameters listed in the following can be mapped to net- work registers. Details The mapping entry for the AC Drive control word is 0x400B0110. •...
  • Page 194: Lenze Lecom Profile

    7 Squirrel cage induction 9.2.3 Lenze LECOM profile For connection to Lenze inverters with a LECOM control word (C135) and LECOM status word (C150), the parameters listed in the following can be mapped to network registers. Details The mapping entry for the LECOM control word is 0x400B0210.
  • Page 195 Mappable status word with bit assignment in compliance with code (P593.02) (Process data OUT: LECOM stat. word) C150 of the 8200 Lenze inverter. • Read only Bit 0 Active parameter set (0 = set 1 or 3; 1 = set 2...
  • Page 196: Further Process Data

    Configuring the network Predefined process data words Further process data 9.2.4 Further process data The parameters listed in the following can also be mapped to network registers, in order to transmit control and status information as well as setpoints and actual values as process data. Details The following parameters are always available irrespective of the network option.
  • Page 197 Configuring the network Predefined process data words Further process data Parameter Name / value range / [default setting] Info 0x4008:001 Process input words: NetWordIN1 Mappable data word for flexible control of the inverter via network. (P590.01) (NetWordINx: NetWordIN1) 0x0000 ... [0x0000] ... 0xFFFF Bit 0 Mapping bit 0 Assignment of the function: 0x400E:001 (P505.01)
  • Page 198 Configuring the network Predefined process data words Further process data Parameter Name / value range / [default setting] Info 0x4008:002 Process input words: NetWordIN2 Mappable data word for optional control of the digital outputs via net- (P590.02) (NetWordINx: NetWordIN2) work. 0x0000 ...
  • Page 199 Configuring the network Predefined process data words Further process data Parameter Name / value range / [default setting] Info 0x400A:001 Process output words: NetWordOUT1 Mappable data word for the output of status messages of the inverter (P591.01) (NetWordOUTx: NetWordOUT1) via network. •...
  • Page 200 Configuring the network Predefined process data words Further process data Parameter Name / value range / [default setting] Info 0x400A:002 Process output words: NetWordOUT2 Mappable data word for the output of messages of the "Sequencer" (P591.02) (NetWordOUTx: NetWordOUT2) function via network. •...
  • Page 201 Configuring the network Predefined process data words Further process data Parameter Name / value range / [default setting] Info 0x400C:004 Process output data: Motor speed Mappable parameter for the output of the actual value as speed in [rpm] (P593.04) (Process data OUT: Motor speed) via network.
  • Page 202: Parameter Access Monitoring (Pam)

    Configuring the network Predefined process data words Parameter access monitoring (PAM) 9.2.5 Parameter access monitoring (PAM) The parameter access monitoring can be used as basic protection against a control loss of the inverter. Monitoring is triggered if a parameter write access to a certain index does not take place at regular intervals via the established communication connection.
  • Page 203: Process Data Handling In Case Of Error

    Configuring the network Acyclic data exchange Parameter Name / value range / [default setting] Info 0x2552:006 Parameter access monitoring: Parameter Access Mon- Bit coded display of the status of parameter access monitoring. (P595.06) itoring-Status (PAM monitoring: PAM status) • Read only •...
  • Page 204: Canopen

    M o d b u s C A N o p e n The EDS device description files for CANopen can be found here: • http://www.lenze.com/application-knowledge-base/artikel/200413930/0/ 9.4.1 Introduction The implementation of the CANopen communication profile (CiA DS301, version 4.02) •...
  • Page 205: Node Address Setting

    Configuring the network CANopen Baud rate setting 9.4.2 Node address setting Each network node must be provided with a unique node address. The parameters for addressing the device are described below. Details The node address can be set in 0x2301:001 (P510.01).
  • Page 206: Configure Device As Mini Master

    Configuring the network CANopen Configure device as mini master 9.4.4 Configure device as mini master If the initialisation of the CANopen network and the associated status change from "Pre- Operational" to "Operational" is not effected by a higher-level host system, the inverter can instead be defined as a "mini"...
  • Page 207: Diagnostics

    Configuring the network CANopen Diagnostics 9.4.5 Diagnostics For the purpose of diagnostics, the inverter provides several status words via which the CAN bus status, the CAN bus controller status, and the status of different time monitoring func- tions can be queried. Parameter Name / value range / [default setting] Info...
  • Page 208: Emergency Telegram

    Configuring the network CANopen Emergency telegram Parameter Name / value range / [default setting] Info 0x2309 CANopen controller status Status display of the internal CANopen controller. (P517.00) (CAN contr.status) • Read only 1 Error active The inverter is a fully-fledged communication node at the CANopen net- work.
  • Page 209 Configuring the network CANopen Heartbeat protocol Parameter Name / value range / [default setting] Info 0x1016:001 Consumer heartbeat time: Consumer heartbeat time Node ID and heartbeat time of node 1 which is to be monitored. (P520.01) • Format: 0x00nnhhhh (nn = node ID, hhhh = heartbeat time in [ms]) (Cons.
  • Page 210: Process Data Objects

    Configuring the network CANopen Process data objects 9.4.8 Process data objects Process data objects (PDOs) are used for the cyclic transmission of (process) data via CAN- open. PDOs only contain data and an identifier. They do not contain any information about the sender or receiver and are therefore very efficient.
  • Page 211 Configuring the network CANopen Process data objects Synchronisation of PDOs via sync telegram During cyclic transmission, one or more PDOs are transmitted/received in fixed time intervals. An additional specific telegram, the so-called sync telegram, is used for synchronising cyclic process data. The sync telegram is the trigger point for the transmission of process data from the slaves •...
  • Page 212 Configuring the network CANopen Process data objects Parameter Name / value range / [default setting] Info 0x1400:002 RPDO1 communication parameter: Transmission type RPDO1: transmission type in compliance with DS301 V4.02 (P540.02) (RPDO1 config.: Transm. type) 0 ... [255] ... 255 0x1400:005 RPDO1 communication parameter: Event timer RPDO1: time-out for the monitoring of data reception.
  • Page 213 Configuring the network CANopen Process data objects Parameter Name / value range / [default setting] Info 0x1800:001 TPDO1 communication parameter: COB-ID TPDO1: identifier (P550.01) (TPDO1 config.: COB-ID) How to change the identifier: 0x00000001 ... [0x40000180] ... 0xFFFFFFFF 1. Set PDO to "invalid": Set bit 31 to "1". Bit 0 COB-ID bit 0 2.
  • Page 214 Configuring the network CANopen Process data objects Parameter Name / value range / [default setting] Info 0x1802:001 TPDO3 communication parameter: COB-ID TPDO3: identifier (P552.01) (TPDO3 config.: COB-ID) How to change the identifier: 0x00000001 ... [0xC0000380] ... 0xFFFFFFFF 1. Set PDO to "invalid": Set bit 31 to "1". Bit 0 COB-ID bit 0 2.
  • Page 215: Data Mapping

    Configuring the network CANopen Data mapping 9.4.9 Data mapping Data mapping serves to define which process data are transmitted cyclically via the process data channels. Details Data mapping (in the case of CANopen also referred to as "PDO mapping") is preconfigured for control of the inverter via the device profile CiA 402: RPDO1 = CiA 402 control word 0x6040...
  • Page 216 Configuring the network CANopen Data mapping Parameter Name / value range / [default setting] Info 0x1601:003 RPDO2 mapping parameter: Application object 3 Mapping entry 3 for RPDO2. 0x00000000 ... [0x00000000] ... 0xFFFFFFFF 0x1601:004 RPDO2 mapping parameter: Application object 4 Mapping entry 4 for RPDO2. 0x00000000 ...
  • Page 217 Configuring the network CANopen Data mapping Parameter Name / value range / [default setting] Info 0x1A01:005 TPDO2 mapping parameter: Application object 5 Mapping entry 5 for TPDO2. 0x00000000 ... [0x00000000] ... 0xFFFFFFFF 0x1A01:006 TPDO2 mapping parameter: Application object 6 Mapping entry 6 for TPDO2. 0x00000000 ...
  • Page 218: Service Data Objects

    Configuring the network CANopen Service data objects 9.4.10 Service data objects Service data objects (SDOs) make it possible to read and write all parameters of the inverter via CANopen. Details Two independent SDO channels are provided at the same time. SDO channel 1 is always •...
  • Page 219: Error Responses

    Configuring the network CANopen Service data objects Maximally 4 bytes are available for parameter value entries. Depending on the data format, they are assigned as follows: 5th byte 6th byte 7th byte 8th byte Parameter value (1 byte) 0x00 0x00 0x00 Parameter value (2 bytes) 0x00...
  • Page 220: Diagnostic Counter

    Configuring the network CANopen Error responses Parameter Name / value range / [default setting] Info 0x1029:001 Error behavior: Communication error Selection of the NMT state to which the inverter is to change automati- cally if a failure of a CANopen node or an internal error is detected in the "Operational"...
  • Page 221: Led Status Displays

    Configuring the network CANopen LED status displays Parameter Name / value range / [default setting] Info 0x230A:002 CANopen statistics: PDO2 received Display of the number of PDO2 telegrams received. (P580.02) (CAN statistics: PDO2 received) • Read only 0x230A:003 CANopen statistics: PDO3 received Display of the number of PDO3 telegrams received.
  • Page 222: Restart Communication

    Configuring the network CANopen Restart communication 9.4.14 Restart communication The following parameter can be used to restart or stop communication. Optionally it is also possible to reset all communication parameters to the default status. Details A restart of communication is required after changes of the interface configuration (e. g. node address and baud rate) in order that the changed settings become effective.
  • Page 223: Short Setup

    Configuring the network CANopen Short setup 9.4.15 Short setup In the following, the steps required for controlling the inverter via CANopen are described. Parameterisation required 1. Set the CANopen node address. Each network node must be provided with a unique node address. •...
  • Page 224 Configuring the network CANopen Short setup RPDO1 mapping The RPDO1 is used to control the inverter. Changing the identifier (COB-ID) and the PDO mapping only allows the following procedure: 1. Set RPDO1 to "invalid": Set bit 31 in the identifier 0x1400:001 (P540.01) to "1".
  • Page 225 Configuring the network CANopen Short setup TPDO1 mapping The TPDO1 is used for the output of status information and the actual frequency value. Changing the identifier (COB-ID) and the PDO mapping only allows the following procedure: 1. Set TPDO1 to "invalid": Set bit 31 in the identifier 0x1800:001 (P550.01) to "1".
  • Page 226: Modbus Rtu

    Configuring the network Modbus RTU Introduction Modbus RTU Modbus is an internationally approved, asynchronous, serial communication protocol, designed for commercial and industrial automation applications. Detailed information on the Modbus can be found on the web page of the international • Modbus Organization, USA, who also further develop the Modbus protocol: http:// www.modbus.org Information about the dimensioning of a Modbus network can be found in the configura-...
  • Page 227: Node Address Setting

    Configuring the network Modbus RTU Baud rate setting 9.5.2 Node address setting Each network node must be provided with a unique node address. The parameters for the baud rate of the device are described below. The parameters for addressing the device are described below. Details The node address can be set in 0x2321:001...
  • Page 228: Data Format Setting

    Configuring the network Modbus RTU Time-out monitoring 9.5.4 Data format setting All network nodes must be set to the same data format. Details The data format can be set in 0x2321:003 (P510.03). • If the automatic data format detection function is activated, the first 5 ... 10 messages are •...
  • Page 229 Configuring the network Modbus RTU Diagnostics Parameter Name / value range / [default setting] Info 0x232A:003 Modbus statistics: Messages with exceptions Display of the number of messages with exceptions that have been (P580.03) (Modbus statistic: Mess. w. exc.) received. • Read only •...
  • Page 230 Configuring the network Modbus RTU Diagnostics Parameter Name / value range / [default setting] Info 0x232F:001 Modbus diagnostics of last Tx data: Offset For purposes of diagnostics, the last message sent (max. 16 bytes) is (P585.01) (Tx data diagn.: Tx data offset) shown in 0x232F:002 (P585.02)...0x232F:017 (P585.17).
  • Page 231: Function Codes

    • the leading 4 is omitted in the addressing process. Lenze supports the basic 1 addressing of Modbus, i.e. the numbering of the registers starts • with 1 whereas addressing starts with 0. For example, the address 0 is used in the frame when register 40001 is read.
  • Page 232 Configuring the network Modbus RTU Function codes Error codes In the event of an error, the node responds with a function code associated to the message: Function code Associated func- Supported error codes tion code in the event of an error 0x03 0x83...
  • Page 233: Data Mapping

    Configuring the network Modbus RTU Data mapping 9.5.8 Data mapping The process of data mapping is used for defining which Modbus registers read or write to which inverter parameters. Details There are fixedly defined Modbus registers for common control and status words, which •...
  • Page 234: Led Status Displays

    Configuring the network Modbus RTU LED status displays Variable mapping 0x232B:001 ... 0x232B:024 (P530.01 ... 24), 24 registers can be mapped to parameters • of the inverter. Format: 0xiiiiss00 (iiii = index hexadecimal, ss = subindex hexadecimal) The display of the internal Modbus register numbers in 0x232C:001 ...
  • Page 235: Restart Communication

    Configuring the network Modbus RTU Response time setting 9.5.10 Restart communication The following parameter can be used to restart communication. Details A restart of communication is required after changes of the interface configuration (e. g. node address and baud rate) in order that the changed settings become effective. For restarting communication, there are two options: a) Switch inverter off and on again.
  • Page 236: Short Setup

    Configuring the network Modbus RTU Short setup 9.5.12 Short setup In the following, the steps required for controlling the inverter via Modbus are described. Parameterisation required 1. Activate network control: 0x2631:037 (P400.37) = "TRUE [1]" 2. Set network as standard setpoint source: 0x2860:001 (P201.01) = "Network [5]"...
  • Page 237 Configuring the network Modbus RTU Short setup Write the speed of the drive via Modbus The drive speed can be changed via the Modbus register 42102, see Data mapping. Example of an inverter with the node address 1: Request frame by the master Slave address Function code Data...
  • Page 238: Configuring The Process Controller

    Configuring the process controller Configuring the process controller By means of the process controller, a process variable can be regulated, for instance the pres- sure of a pump. The process controller is also referred to as "PID controller" (PID controller = proportional, integral and differential controller).
  • Page 239: Basic Process Controller Settings

    Configuring the process controller Basic process controller settings 10.1 Basic process controller settings The process controller is set in two steps: 1. Basic settings 2. Fine adjustment of the PID controller for an optimum control mode Basic settings Based on the default setting, we recommend the following proceeding: 1.
  • Page 240 Configuring the process controller Basic process controller settings Fine adjustment of the PID controller The dynamics of the PID controller is parameterised based on the gain of the P component 0x4048 (P601.00), the reset time for the I component 0x4049 (P602.00) and the gain of the D component 0x404A...
  • Page 241 Configuring the process controller Basic process controller settings Internal signal flow The following illustration shows the internal signal flow of the process controller (without the additional functions "idle state" and "rinsing function"): PID controller P component gain 0x4048 Status I component reset time 0x4049 0x401F:003 D component gain...
  • Page 242 Configuring the process controller Basic process controller settings Parameter Name / value range / [default setting] Info 0x4020:001 Process controller setup (PID): Operating mode Selection of the process controller operating mode. (P600.01) (PID setup: Operating mode) 0 Inhibited Process controller deactivated. 1 Normal operation The setpoint is higher than the fed back variable (actual value).
  • Page 243 Configuring the process controller Basic process controller settings Parameter Name / value range / [default setting] Info 0x4049 PID I- component Reset time for system deviation. (P602.00) (PID I- component) • With the setting "6000 ms", the I component is deactivated. 10 ...
  • Page 244 Configuring the process controller Basic process controller settings Parameter Name / value range / [default setting] Info 0x2860:002 PID control: Default setpoint source Selection of the standard setpoint source for the reference value of the (P201.02) (Stnd. setpoints: PID setp. src.) PID control.
  • Page 245: Process Controller - Idle State And Rinse Function

    Configuring the process controller Process controller - idle state and rinse function Process controller idle state 10.2 Process controller - idle state and rinse function 10.2.1 Process controller idle state If the PID control is activated, this function sets the drive in process controller mode to an energy-saving idle state when no power is required.
  • Page 246 Configuring the process controller Process controller - idle state and rinse function Process controller idle state Parameter Name / value range / [default setting] Info 0x4023:001 PID sleep mode: Activation Condition for activating the idle state. (P610.01) (PID sleep mode: Activation) 0 Disabled Idle state deactivated.
  • Page 247: Process Controller Rinse Function

    Configuring the process controller Process controller - idle state and rinse function Process controller rinse function 10.2.2 Process controller rinse function This function accelerates the motor in idle state of the process controller at regular intervals to a defined speed. Details A typical application for this function is the rinsing of a pipe system with a pump that has been in an inactive state for a longer period to prevent deposits.
  • Page 248: Additional Functions

    Additional functions Additional functions Device Commands • ^ 249 Keypad • ^ 253 Wireless LAN (WLAN) • ^ 257 DC braking • ^ 268 Brake energy management • ^ 274 Load loss detection • ^ 277 Access protection • ^ 278 Favorites •...
  • Page 249: Device Commands

    Additional functions Device Commands Reset parameters to default 11.1 Device Commands Device commands are commands for calling organisational functions of the inverter, e.g. sav- ing and loading of parameter settings, or restoring the default setting. 11.1.1 Reset parameters to default With the "Load default settings"...
  • Page 250: Saving/Loading The Parameter Settings

    Additional functions Device Commands Saving/loading the parameter settings 11.1.2 Saving/loading the parameter settings If parameter settings of the inverter are changed, these changes at first are only made in the RAM memory of the inverter. In order to save the parameter settings with mains failure pro- tection, the inverter is provided with a pluggable memory module and corresponding device commands.
  • Page 251 Additional functions Device Commands Saving/loading the parameter settings Response after initial switch-on of the inverter After switch-on, the inverter first tries to load the parameter settings stored in the user mem- ory. If the user memory is empty or damaged, an error message is output and the user must intervene: Option 1 = user memory empty: →...
  • Page 252: Device Commands For Parameter Change-Over

    Additional functions Device Commands Delete logbook 11.1.3 Device commands for parameter change-over The inverter supports several parameter sets. The parameter set can be selected by means of the device commands "Load parameter set 1" ... "Load parameter set 4". DANGER! Changed parameter settings can become effective immediately depending on the activating method set in 0x4046...
  • Page 253: Keypad

    Additional functions Keypad Keypad status display 11.2 Keypad For the keypad various settings can be made, which are described in detail in the following subchapters. 11.2.1 Keypad language selection Parameter Name / value range / [default setting] Info 0x2863 Keypad language selection Language selection for the keypad display.
  • Page 254: Keypad - Configuration Of R/F And Ctrl Buttons

    Additional functions Keypad Keypad - Configuration of R/F and CTRL buttons 11.2.5 Keypad - Configuration of R/F and CTRL buttons Keypad rotation setup Use the keypad to reverse the rotation direction at local keypad control. After the key has been pressed, the reversal of rotation direction must be confirmed •...
  • Page 255 Additional functions Keypad Keypad - Configuration of R/F and CTRL buttons Keypad Full Control Use the keypad key to activate the "Keypad Full Control" control mode. Both the control CTRL and the setpoint selection are then made via the keypad. This special control mode can be, for instance, used during the commissioning phase if external control and setpoint sources are not ready to use yet.
  • Page 256 Additional functions Keypad Keypad - Configuration of R/F and CTRL buttons Parameter Name / value range / [default setting] Info 0x2602:001 Keypad setup: CTRL & F/R key setup Disable/enable CTRL and F/R key of the keypad. (P708.01) (Keypad setup: CTRL&F/R keys) •...
  • Page 257: Wireless Lan (Wlan)

    • Android smartphone with Lenze Smart Keypad App. • The Lenze Smart Keypad App is recommended for the adaptation of simple applications. The Lenze Smart Keypad App can be found in the Google Play Store. 11.3.1 WLAN LED status displays Information on the WLAN module status can be obtained quickly via the LED displays "Power",...
  • Page 258: Wlan Basic Settings

    Additional functions Wireless LAN (WLAN) WLAN basic settings 11.3.2 WLAN basic settings The WLAN functionality can be configured via the following parameters. Preconditions WLAN module has been plugged onto the interface X16 on the front of the inverter. Details The WLAN module can be connected and removed during operation. •...
  • Page 259 Additional functions Wireless LAN (WLAN) WLAN basic settings Parameter Name / value range / [default setting] Info 0x2441:007 WLAN settings: WLAN SSID Name (Service Set Identifier, SSID) of the WLAN network. ["i5"] • The preset name consists of the device name (iXXX) and the first 10 •...
  • Page 260: Resetting Wlan Settings To Default Setting

    Additional functions Wireless LAN (WLAN) WLAN basic settings Parameter Name / value range / [default setting] Info 0x2449 WLAN error Bit coded display of WLAN errors. • Read only • From version 02.00 Bit 2 WLAN error Bit 3 Memory problem Bit 4 WLAN connection problem Bit 7 WLAN off Bit 9 Client mode off...
  • Page 261: Wlan Access Point Mode

    In this operating mode, the WLAN module creates its own WLAN network for a direct connection to other WLAN devices. The supported WLAN devices are: Android smartphone with Lenze Smart Keypad App. • Engineering PC (with WLAN functionality) and the »EASY Starter« engineering tool.
  • Page 262: Establishing A Direct Wlan Connection Between Smartphone And Inverter

    The connection to the WLAN network of the inverter is now established. 5. Start the Lenze Smart Keypad App on the Android smartphone. If a WLAN connection to the inverter has been established, the Lenze Smart Keypad App serves to read out diagnostics parameters of the inverter, •...
  • Page 263: Using The Smartphone As "Smart Keypad

    WLAN module is plugged onto the inverter 2. After the WLAN network is restarted, a connection is established again to the smartphone ② because the WLAN settings are identical. Now, the inverter 2 can be diagnosed or parameterised with the Lenze Smart Keypad App. How to configure the WLAN module for a "Smart Keypad" use:...
  • Page 264: Establishing A Direct Wlan Connection Between Engineering Pc And Inverter

    Additional functions Wireless LAN (WLAN) WLAN access point mode 11.3.3.3 Establishing a direct WLAN connection between Engineering PC and inverter How to establish a direct WLAN connection to the inverter on the Engineering PC: Requirements: The functional test described in the mounting and switch-on instructions has been com- •...
  • Page 265 Additional functions Wireless LAN (WLAN) WLAN access point mode Recommendation: Click the button in the toolbar of the »EASY Starter« to start visual track- ing. This function serves to quickly check whether the connection to the correct device has been established. 4Optical device identification ^ 112...
  • Page 266: Wlan Client Mode

    Additional functions Wireless LAN (WLAN) WLAN client mode 11.3.4 WLAN client mode The WLAN module can be optionally configured as a WLAN client. In this operating mode, the WLAN module can be implemented into an already existing WLAN network. Inverter 1 Inverter 2 WLAN-Client WLAN-Client...
  • Page 267 Additional functions Wireless LAN (WLAN) WLAN client mode Parameter Name / value range / [default setting] Info 0x2441:002 WLAN settings: Netmask Definition of the network mask for the WLAN access point. 0 ... [16777215] ... 4294967295 • In the client mode, a static network mask can be set here for the •...
  • Page 268: Dc Braking

    For further details and configuration examples, see the following chapter: 4Example 1: Automatic DC braking when the motor is started ^ 270 4Example 2: Automatic DC braking when the motor is stopped ^ 271 4Migration of Lenze Inverter Drives 8200/8400 ^ 273 4Activating DC braking manually ^ 386 Parameter...
  • Page 269 Name / value range / [default setting] Info 0x2B84:006 DC braking: DC brake with inverter disable 1 = behaviour in case of automatic DC braking as with the Lenze Inverter (P704.06) (DC braking: DCbrk/inv.disab) Drives 8200/8400. 0 ... [0] ... 1...
  • Page 270: Example 1: Automatic Dc Braking When The Motor Is Started

    Additional functions DC braking Example 1: Automatic DC braking when the motor is started 11.4.1 Example 1: Automatic DC braking when the motor is started In order that the DC braking is automatically active when the motor is started, the start method "DC braking [1]"...
  • Page 271: Example 2: Automatic Dc Braking When The Motor Is Stopped

    Additional functions DC braking Example 2: Automatic DC braking when the motor is stopped 11.4.2 Example 2: Automatic DC braking when the motor is stopped In order that the DC braking is automatically active when the motor is stopped, the corre- sponding operating threshold must be set in 0x2B84:003 (P704.03).
  • Page 272 Additional functions DC braking Example 2: Automatic DC braking when the motor is stopped Stop method = "Coasting [0]" Parameter Name Setting for this example 0x2631:001 (P400.01) Enable inverter Digital input 1 [11] 0x2631:002 (P400.02) Digital input 2 [12] 0x2838:003 (P203.03) Stop method Coasting [0] 0x2860:001 (P201.01)
  • Page 273: Migration Of Lenze Inverter Drives 8200/8400

    Migration of Lenze Inverter Drives 8200/8400 The behaviour of the Lenze Inverter Drives 8200/8400 in case of automatic DC braking is dif- ferent: In case of these inverters, after the auto DCB hold time has elapsed, the motor is dee- nergised (by means of pulse inhibit) until the setpoint exceeds the auto DCB operating thresh- old.
  • Page 274: Brake Energy Management

    Additional functions Brake energy management 11.5 Brake energy management When braking electrical motors, the kinetic energy of the drive train is fed back regeneratively to the DC bus. This energy causes a DC-bus voltage boost. If the energy fed back is too high, the inverter reports an error.
  • Page 275: Stopping The Deceleration Ramp Function Generator

    Additional functions Brake energy management Stopping the deceleration ramp function generator Parameter Name / value range / [default setting] Info 0x2541:001 Brake energy management: Operating mode Selection of the braking method. (P706.01) (Brake management: Operating mode) • The braking method(s) selected is/are activated if the DC-bus voltage exceeds the voltage threshold for the braking operation shown in 0x2541:002 (P706.02).
  • Page 276: Inverter Motor Brake

    Additional functions Brake energy management Inverter motor brake 11.5.2 Inverter motor brake With this braking method, which can be selected in 0x2541:001 (P706.01), the regenerative energy in the motor is converted as a result of dynamic acceleration/deceleration with down- ramping of the ramp function generator. NOTICE Too frequent braking may cause thermal overload of the motor.
  • Page 277: Load Loss Detection

    Additional functions Load loss detection Parameter Name / value range / [default setting] Info 0x6060 Modes of operation Selection of the operating mode. (P301.00) (Modes of op.) • Setting can only be changed if the inverter is inhibi- ted. -2 MS: Velocity mode Vendor specific velocity mode -1 MS: Torque mode Vendor specific torque mode...
  • Page 278: Access Protection

    Additional functions Access protection Write access protection 11.7 Access protection 11.7.1 Write access protection Optionally a write access protection can be installed for the inverter parameters. Write access protection only restricts parameterisation via keypad and »EASY Starter«. Write access protection via network is not restricted. Irrespective of the write access protection that is currently set, a higher-level controller, OPC- UA server, or any other communication partner connected to the inverter is always provided with full read/write access to all parameters of the inverter.
  • Page 279 Additional functions Access protection Write access protection Notes: The firmware of the inverter does only support the protection status. • The access protection is realised by the keypad and engineering tools as "clients" them- • selves based on the current protection status 0x2040 (P197.00).
  • Page 280: Write Access Protection In The "Easy Starter

    Additional functions Access protection Write access protection 11.7.1.1 Write access protection in the »EASY Starter« If a write access protection is active for the online connected inverter, it is displayed in the status bar of the »EASY Starter«: Display Representation of the parameters in the »EASY Starter« All parameters in all dialogs are displayed as read-only parameters.
  • Page 281 Additional functions Access protection Write access protection Configuring the write access protection with »EASY Starter« The write access protection is activated by specifying PIN1 and/or PIN2 (depending on the desired configuration of the write access protection). How to activate the write access protection: 1.
  • Page 282 Additional functions Access protection Write access protection Impact of the write access protection on EASY Starter« functions The following »EASY Starter« functions are not supported when write access protection is active: Parameter set download • Definition of the "Favorites" parameters. •...
  • Page 283: Write Access Protection In The Keypad

    Additional functions Access protection Write access protection 11.7.1.2 Write access protection in the keypad If a write access protection is active for the inverter, the keypad automatically displays a log-in when changing to the parameterisation mode. You can either skip the log-in and thus keep the access protection active or remove it temporarily by entering a valid PIN.
  • Page 284 Additional functions Access protection Write access protection Configuring the write access protection with the keypad The write access protection is activated by defining PIN1 in P730.00 and/or PIN2 in P731.00 (depending on the desired configuration of the write access protection). In the following example, the write access protection is configured in such a way that a write access to the favorites only is possible or (when knowing PIN) to all parameters.
  • Page 285 Additional functions Access protection Write access protection In the following example, PIN1 is changed from "123" to "456". For this purpose, the defined PIN must first be deleted by the setting "0". VEL: FLEX: AIN1 Change defined PIN1: 1. Use the key in the operating mode to navigate to 0 0 0 S T O P...
  • Page 286 Additional functions Access protection Write access protection How to remove a configured write access protection permanently: 1. Remove the active write access protection temporarily (see above). 2. Set PIN1 (P730.00) and PIN2 (P731.00) to the value "0" (see instructions for changing the PIN).
  • Page 287: Favorites

    Additional functions Favorites Accessing the "Favorites" with the keypad 11.8 Favorites In order to gain quick access using »EASY Starter« or the keypad, frequently used parameters of the inverter can be defined as "Favorites". »EASY Starter« provides quick access to the "Favorites" via the Favorites tab. •...
  • Page 288: Favorites Parameter List (Default Setting)

    Additional functions Favorites Favorites parameter list (default setting) 11.8.2 Favorites parameter list (default setting) In the default setting, the most common parameters for the solution of typical applications are defined as "Favorites": Display code Designation Default setting Setting range Info P100.00 Output frequency x.x Hz...
  • Page 289: Configuring The "Favorites

    Additional functions Favorites Configuring the "Favorites" 11.8.3 Configuring the "Favorites" The "Favorites" can be configured by the user. Details A maximum number of 50 parameters can be defined as "Favorites". The easiest way to process the selection of the favorites is via the parameterisation dialog in the »EASY Starter«: 1.
  • Page 290 Additional functions Favorites Configuring the "Favorites" Parameter Name / value range / [default setting] Info 0x261C:009 Favorites settings: Parameter 9 (P740.09) (Favorites sett.: Parameter 9) 0x00000000 ... [0x25400100] ... 0xFFFFFF00 0x261C:010 Favorites settings: Parameter 10 (P740.10) (Favorites sett.: Parameter 10) 0x00000000 ...
  • Page 291 Additional functions Favorites Configuring the "Favorites" Parameter Name / value range / [default setting] Info 0x261C:030 Favorites settings: Parameter 30 (P740.30) (Favorites sett.: Parameter 30) 0x00000000 ... [0x26310700] ... 0xFFFFFF00 0x261C:031 Favorites settings: Parameter 31 (P740.31) (Favorites sett.: Parameter 31) 0x00000000 ...
  • Page 292: Parameter Change-Over

    Additional functions Parameter change-over 11.9 Parameter change-over For up to 32 freely selectable parameters, this function provides a change-over between four sets with different parameter values. DANGER! Changed parameter settings are effective immediately. The possible consequence is an unexpected response of the motor shaft while the inverter is enabled.
  • Page 293 Additional functions Parameter change-over Parameter Name / value range / [default setting] Info 0x4045:001 ... Parameter value set 4: Value of parameter 1 ... Value Value set 4 for the parameter list defined in 0x4041:001 ... 0x4041:032 0x4045:032 of parameter 32 (P750.01 ...
  • Page 294 Additional functions Parameter change-over Parameter Name / value range / [default setting] Info 0x2631:042 Function list: Select parameter set (bit 1) Assignment of a trigger for the "Select parameter set (bit 1)" function. (P400.42) (Function list: Sel. paramset b1) Selection bit with the valency 2 for "Parameter change-over"...
  • Page 295: Example: Selective Control Of Several Motors With One Inverter

    Additional functions Parameter change-over Example: Selective control of several motors with one inverter 11.9.1 Example: Selective control of several motors with one inverter A typical application for the parameter change-over is an application/machine in which sev- eral axes must be triggered successively but a simultaneous operation of several motors is not required.
  • Page 296 Additional functions Parameter change-over Example: Selective control of several motors with one inverter Settings required for the "parameter change-over" function The easiest way to make the required settings is via the parameterisation dialog in the »EASY Starter«: 1. Click the button to first select the 10 relevant parameters.
  • Page 297: Device Profile Cia 402

    Additional functions Device profile CiA 402 11.10 Device profile CiA 402 The CiA® 402 device profile defines the functional behaviour of stepping motors, servo drives, and frequency inverters. In order to be able to describe the different drive types, various oper- ating modes and device parameters are specified in the device profile.
  • Page 298 Additional functions Device profile CiA 402 Parameter Name / value range / [default setting] Info 0x605E Fault reaction option code Selection of the response to faults. (P791.00) (Fault reaction) -2 DC braking The motor is brought to a standstill by means of the "DC braking" func- tion.
  • Page 299 Additional functions Device profile CiA 402 Parameter Name / value range / [default setting] Info 0x6040 CiA: Controlword Mappable CiA 402 control word with bit assignment according to device 0 ... [0] ... 65535 profile CiA 402. Bit 0 Switch on 1 = switch-on Bit 1 Enable voltage 1 = DC bus: Establish readiness for operation...
  • Page 300: Holding Brake Control

    Additional functions Holding brake control 11.11 Holding brake control This function serves as a low-wear control of a holding brake. The holding is usually mounted to the motor as an option. The holding brake can be automatically released via the start com- mand for the inverter or manually via an external control signal, for instance, by a higher-level Controller.
  • Page 301: Basic Setting

    Additional functions Holding brake control Basic setting 11.11.1 Basic setting The following parameters must be set for the activation and basic setting of the holding brake control. When a power contactor is used, the response time and release time of the con- tactor are added to the brake application and release time.
  • Page 302: Automatic" Brake Mode (Automatic Operation)

    Additional functions Holding brake control "Automatic" brake mode (automatic operation) 11.11.2 "Automatic" brake mode (automatic operation) In automatic operation, the inverter automatically released the holding brake when the motor is started. In the stopped state, the holding brake is closed. DANGER! Manual release of the holding brake Also in automatic operation, a manual release of the holding brake is possible.
  • Page 303 Additional functions Holding brake control "Automatic" brake mode (automatic operation) General mode of operation The following diagram demonstrates the general functioning of the automatic operation: Input signals 60 Hz 50 Hz 40 Hz Frequency setpoint selection 30 Hz 20 Hz 10 Hz 0 Hz Trigger...
  • Page 304: Brake Holding Load

    Additional functions Holding brake control Brake holding load 11.11.3 Brake holding load Depending on the application, a torque at the motor may be required at speed "0" of the motor shaft: In order to hold loads in vertical applications and prevent "sagging". •...
  • Page 305 Additional functions Holding brake control Brake holding load General mode of operation The following diagram demonstrates the general functioning in automatic operation: Input signals 60 Hz 50 Hz 40 Hz Frequency setpoint selection 30 Hz 20 Hz 10 Hz 0 Hz Trigger Function Constant TRUE [1]...
  • Page 306: Brake Closing Level

    Additional functions Holding brake control Brake closing level 11.11.4 Brake closing level In some cases, a low speed does not make any sense from the application point of view. This includes applications with unfavorable load features, such as static friction. In such applica- tions and depending on the type of control, a low speed may cause an unwanted behaviour.
  • Page 307 Additional functions Holding brake control Brake closing level General mode of operation The following diagram demonstrates the general functioning in automatic operation: Input signals 60 Hz 50 Hz 40 Hz Frequency setpoint selection 30 Hz 20 Hz 0x2820:007 10 Hz 0 Hz Trigger Function...
  • Page 308: Manual Release Of The Holding Brake

    Additional functions Holding brake control Manual release of the holding brake 11.11.5 Manual release of the holding brake A manual release of the holding brake is possible in the modes "Automatic [0]" and "Manual [1]" via the following external triggers: Via bit 14 in the CiA 402 Controlword 0x6040.
  • Page 309: Flying Restart Circuit

    Additional functions Flying restart circuit 11.12 Flying restart circuit The flying restart function makes it possible to restart a coasting motor on the fly during oper- ation without speed feedback. Synchronicity between the inverter and the motor is coordina- ted so that the transition to the rotating drive is effected without jerk at the time of connec- tion.
  • Page 310 Additional functions Flying restart circuit Parameter Name / value range / [default setting] Info 0x2BA1:001 Flying restart circuit: Current The current set here is injected into the motor during the flying restart (P718.01) (Flying restart: Current) process for the identification of the rotating field frequency. 0 ...
  • Page 311: Timeout Für Fault Reaction

    Additional functions Timeout für fault reaction 11.13 Timeout für fault reaction If an error occurs that does not immediately cause a switch-off, the "Fault reaction active" device status becomes initially active. The motor is brought to a standstill with quick stop ramp.
  • Page 312: Automatic Restart

    Additional functions Automatic restart 11.14 Automatic restart Configuration of the restart behaviour after a fault. The settings have no impact on errors and warnings of the inverter. Parameter Name / value range / [default setting] Info 0x2839:002 Fault configuration: Restart delay If a fault occurs, a restart is possible at the earliest after the time set (P760.02) (Fault config.: Restart delay)
  • Page 313: Mains Failure Control

    Additional functions Mains failure control 11.15 Mains failure control In case of power failure, this function can decelerate the motor and use its rotational energy to maintain the DC-bus voltage for a certain period of time. This makes it possible to continue to let the motor run during a short-term failure of the mains voltage.
  • Page 314 Additional functions Mains failure control Parameter Name / value range / [default setting] Info 0x2D66:005 Mains failure control: DC voltage setpoint Voltage setpoint onto which the DC-bus voltage is to maintained. (P721.05) (Mains fail. ctrl: DC voltage setp.) • 100 % ≡ nominal DC-bus voltage 80 ...
  • Page 315: Activating The Mains Failure Control

    Additional functions Mains failure control Activating the mains failure control 11.15.1 Activating the mains failure control 1. Set the selection "Enabled [1]" in 0x2D66:001 (P721.01). 2. Set the activation threshold in [%] with reference to the nominal DC-bus voltage in 0x2D66:002 (P721.02).
  • Page 316: Restart Protection

    Additional functions Mains failure control Fast mains recovery 11.15.2 Restart protection The integrated restart protection is to prevent a restart in the lower frequency range if the mains voltage was only interrupted briefly (mains recovery before the motor stands still). In the default setting 0x2D66:008 (P721.08) = 0 Hz, the restart protection is deactivated.
  • Page 317: Commissioning The Mains Failure Control

    Additional functions Mains failure control Commissioning the mains failure control 11.15.4 Commissioning the mains failure control Commissioning should be executed with motors without load: 1. Let the motor rotate with a rated frequency of 100 %. 2. Disable the inverter and measure the time until the motor has reached standstill. The time can be measured with a stop watch or similar.
  • Page 318: Ups Operation

    Additional functions UPS operation 11.16 UPS operation This function enables the operation of a 3x400-V inverter with an uninterruptible 1x230-V power supply (UPD) to be able to operate the motor with reduced load for a certain period in the event of a power failure. NOTICE UPS operation is not suitable for a continuous operation.
  • Page 319 Additional functions UPS operation If the UPS operation is active, the device overload monitoring (i*t) is adapted accordingly. • the DC limit values are reduced. • the phase failure detection is switched off. • the warning "Operation at UPS active" (error code 12672 | 0x3180) is output.
  • Page 320 Additional functions UPS operation Example for operating mode Parameter Designation Setting for this example 0x2631:001 (P400.01) Enable inverter Constant TRUE [1] 0x2631:002 (P400.02) Digital input 1 [11] 0x2631:055 (P400.55) Activate UPS operation Digital input 5 [15] Eingangssignale 3 x 400 V Netzspannung 1 x 230 V USV-Spannung Trigger Funktion...
  • Page 321: Process Data

    Additional functions Process data Position counter 11.17 Process data This chapter describes additional functions that provide process data for a higher-level Con- troller. 11.17.1 Position counter This function counts the number of motor revolutions. The current counter content (actual position) can be output as process data value via network to implement a simple position con- trol in a higher-level Controller.
  • Page 322: Firmware Download

    Additional functions Firmware download Firmware download with »EASY Starter (Firmware loader)« 11.18 Firmware download The device firmware is continuously improved by the manufacturer. New firmware versions contain error corrections, function extensions and simplify the handling. A new firmware is always compatible with the older version: A device with updated firmware and unchanged parameter settings shows the same •...
  • Page 323: Additive Voltage Impression

    Additional functions Additive voltage impression 11.19 Additive voltage impression This function serves to boost (or lower) the motor voltage from the process via an additive voltage setpoint in order to realise a load adjustment (for instance in case of winder applica- tions).
  • Page 324: Example: Using The Function With A 400-V Inverter

    Additional functions Additive voltage impression Example: Using the function with a 400-V inverter Parameter Name / value range / [default setting] Info 0x4008:005 Process input words: NetWordIN5 Mappable data word for optionally specifying an additive voltage set- (P550.05) (NetWordINx: NetWordIN5) point via network.
  • Page 325: Sequencer

    Sequencer Sequencer The "sequencer" function serves to transfer a programmed sequence of setpoints to the motor control. The switch-over to the next setpoint can be made time-controlled or even-con- trolled. Optionally, the "sequencer" function can also trigger the digital and analog outputs. The sequencer only generates setpoints.
  • Page 326 Sequencer Commissioning For commissioning the sequencer, we recommend the following proceeding: 1. Configure segments (including end segment). Details: 4Segment configuration ^ 327 2. Configure sequences: a) Assign the segments to the single steps of a sequence. b) Set the number of cycles for the respective sequence. Details: 4Sequence configuration ^ 337...
  • Page 327: Segment Configuration

    Sequencer Segment configuration 12.1 Segment configuration Each step of a sequence can call a "segment". A segment contains, among other things preset setpoints (speed setpoint, PID control value, torque setpoint), a combined acceleration/decel- eration for the speed setpoint and optionally a configuration for the digital and analog out- puts.
  • Page 328 Sequencer Segment configuration Parameter Name / value range / [default setting] Info 0x4026:001 Sequencer segment 1: Frequency setpoint Frequency setpoint for the segment. (P801.01) (Segment 1: Frequency setp.) • Only relevant for operating mode 0x6060 (P301.00) = "MS: Velocity -599.0 ... [0.0] ... 599.0 Hz mode [-2]".
  • Page 329 Sequencer Segment configuration Parameter Name / value range / [default setting] Info 0x4027:003 Sequencer segment 2: Time Runtime for the segment after the expiry of which it is switched over to (P802.03) (Segment 2: Time) the next step of the sequence. 0.0 ...
  • Page 330 Sequencer Segment configuration Parameter Name / value range / [default setting] Info 0x4028:004 Sequencer segment 3: Digital outputs Optionally: Set digital outputs to the level set here for the execution (P803.04) (Segment 3: Digital outp.) time of the segment. 0 ... [0] ... 255 Note! •...
  • Page 331 Sequencer Segment configuration Parameter Name / value range / [default setting] Info 0x4029:004 Sequencer segment 4: Digital outputs Optionally: Set digital outputs to the level set here for the execution (P804.04) (Segment 4: Digital outp.) time of the segment. 0 ... [0] ... 255 Note! •...
  • Page 332 Sequencer Segment configuration Parameter Name / value range / [default setting] Info 0x402A:004 Sequencer segment 5: Digital outputs Optionally: Set digital outputs to the level set here for the execution (P805.04) (Segment 5: Digital outp.) time of the segment. 0 ... [0] ... 255 Note! •...
  • Page 333 Sequencer Segment configuration Parameter Name / value range / [default setting] Info 0x402B:004 Sequencer segment 6: Digital outputs Optionally: Set digital outputs to the level set here for the execution (P806.04) (Segment 6: Digital outp.) time of the segment. 0 ... [0] ... 255 Note! •...
  • Page 334 Sequencer Segment configuration Parameter Name / value range / [default setting] Info 0x402C:004 Sequencer segment 7: Digital outputs Optionally: Set digital outputs to the level set here for the execution (P807.04) (Segment 7: Digital outp.) time of the segment. 0 ... [0] ... 255 Note! •...
  • Page 335 Sequencer Segment configuration Parameter Name / value range / [default setting] Info 0x402D:004 Sequencer segment 8: Digital outputs Optionally: Set digital outputs to the level set here for the execution (P808.04) (Segment 8: Digital outp.) time of the segment. 0 ... [0] ... 255 Note! •...
  • Page 336 Sequencer Segment configuration Parameter Name / value range / [default setting] Info 0x402E:003 End segment: Time Delay time for activating the output states configured for the end seg- (P822.03) (End segment: Time) ment. 0.0 ... [0.0] ... 100000.0 s • This parameter has a different meaning than the time settings for the •...
  • Page 337: Sequence Configuration

    Sequencer Sequence configuration 12.2 Sequence configuration As a total, 8 sequences can be configured (with the numbers 1 to 8). Each sequence consists of 16 configurable steps. Each step of a sequence can call a segment or a complete sequence (with a higher number).
  • Page 338 Sequencer Sequence configuration In the following, all parameters relevant for the sequence configuration are given. If the sequencer is active, write accessed to all parameters are blocked that con- cern the active sequence configuration! Parameter Name / value range / [default setting] Info 0x4030:001 ...
  • Page 339 Sequencer Sequence configuration Parameter Name / value range / [default setting] Info 0x4034:001 ... Sequence 3: Step 1 ... Step 16 Configuration of the steps 1 ... 16 for sequence 3. 0x4034:016 (Sequence 3: Step 1 ... Step 16) • Alternatively to calling a single segment, a complete sequence (with a (P840.01 ...
  • Page 340 Sequencer Sequence configuration Parameter Name / value range / [default setting] Info 0x403A:001 ... Sequence 6: Step 1 ... Step 16 Configuration of the steps 1 ... 16 for sequence 6. 0x403A:016 (Sequence 6: Step 1 ... Step 16) • Alternatively to calling a single segment, a complete sequence (with a (P855.01 ...
  • Page 341: Sequencer Basic Settings

    Sequencer Sequencer basic settings 12.3 Sequencer basic settings In the presetting, the sequencer is disabled. In order to enable the sequencer, the desired sequencer mode (time and/or step operation) must be set. Moreover, different end of sequence modes and start of sequences modes are available. Details Sequencer mode 0x4025 (P800.00)
  • Page 342 Sequencer Sequencer basic settings Start of sequence mode 0x4040 (P820.00) The start of sequence mode defines the action after the motor is stopped and restarted or • after the motor has been restarted after an error occurred. In the default setting "Restart sequencer [0]", the currently selected sequence is restarted. •...
  • Page 343 Sequencer Sequencer basic settings Parameter Name / value range / [default setting] Info 0x4040 Start of sequence mode Selection of the action after the motor has been stopped and restarted (P820.00) (StartOfSeq. mode) or after the motor has been restarted after an error occurred. •...
  • Page 344: Flexible I/O Configuration

    Flexible I/O configuration Flexible I/O configuration Use parameter 0x2631 (P400xx) to individually adapt the inverter control to the respective application. This is basically effected by assigning digital signal sources ("triggers") to functions of the inverter. NOTICE A digital signal source can be assigned to several functions. Possible consequence: unforeseeable behaviour of the drive in case of incorrect assignment ▶...
  • Page 345: Control Source Change-Over

    Flexible I/O configuration Control source change-over 13.1 Control source change-over The term "control sources" in this connection refers to the digital signal sources from which the inverter receives its start, stop, and reversal commands. Possible control sources are: Digital inputs •...
  • Page 346 Flexible I/O configuration Control source change-over The "Enable inverter" 0x2631:001 (P400.01) function must be set to TRUE to start the motor. Either via digital input or by default setting "Constant TRUE [1]". If the function is set to FALSE, the inverter is disabled. The motor becomes tor- queless (coasts).
  • Page 347 Flexible I/O configuration Control source change-over Parameter Name / value range / [default setting] Info 0x2824 Control selection Selection of the type of inverter control. (P200.00) (Control select.) 0 Flexible I/O configuration This selection enables a flexible assignment of the start, stop, and rotat- ing direction commands with digital signal sources.
  • Page 348: Example 1: Change-Over From Terminal Control To Keypad Control

    Flexible I/O configuration Control source change-over Example 1: Change-over from terminal control to keypad control 13.1.1 Example 1: Change-over from terminal control to keypad control The control is executed primarily via the I/O terminals: Switch S1 serves to start and stop •...
  • Page 349: Example 2: Change-Over From Terminal Control To Network Control

    Flexible I/O configuration Control source change-over Example 2: Change-over from terminal control to network control 13.1.2 Example 2: Change-over from terminal control to network control The control is executed primarily via the I/O terminals: Switch S1 serves to start and stop •...
  • Page 350: Start / Stop Motor

    Flexible I/O configuration Start / stop motor 13.2 Start / stop motor Configuration of the triggers for the basic functions for controlling the motor. Details The following table contains a short overview of the basic functions. For more details see the following parameter descriptions.
  • Page 351 Flexible I/O configuration Start / stop motor Parameter Name / value range / [default setting] Info 0x2631:001 Function list: Enable inverter Assignment of a trigger for the "Enable inverter" function. (P400.01) (Function list: Enable inverter) Trigger = TRUE: The inverter is enabled (unless there is another cause for •...
  • Page 352 Flexible I/O configuration Start / stop motor Parameter Name / value range / [default setting] Info 79 Torque limit reached TRUE if torque limit has been reached or exceeded. Otherwise FALSE. (from version 02.00) • Setting "Positive torque limit" in 0x60E0. •...
  • Page 353 Flexible I/O configuration Start / stop motor Parameter Name / value range / [default setting] Info 0x2631:002 Function list: Run Assignment of a trigger for the "Run" function. (P400.02) (Function list: Run) • Setting can only be changed if the inverter is inhibi- Function 1: Start / stop motor (default setting) ted.
  • Page 354 Flexible I/O configuration Start / stop motor Parameter Name / value range / [default setting] Info 0x2631:008 Function list: Run forward (CW) Assignment of a trigger for the "Run forward (CW)" function. (P400.08) (Function list: Run forward) Trigger = TRUE: Let motor rotate forward. •...
  • Page 355 Flexible I/O configuration Start / stop motor Parameter Name / value range / [default setting] Info 0x2631:011 Function list: Jog reverse (CCW) Assignment of a trigger for the "Jog reverse (CCW)" function. (P400.11) (Function list: Jog reverse) Trigger = TRUE: Let motor rotate backward with preset 6. •...
  • Page 356: Example 1: Start/Stop (1 Signal) And Reversal

    Flexible I/O configuration Start / stop motor Example 1: Start/stop (1 signal) and reversal 13.2.1 Example 1: Start/stop (1 signal) and reversal This example shows a simple control option via two switches which should be sufficient for many applications: Switch S1 starts the motor in forward direction of rotation. Switch S1 in the initial position •...
  • Page 357: Example 2: Start Forward/Start Reverse/Stop (Edge-Controlled)

    Flexible I/O configuration Start / stop motor Example 2: Start forward/start reverse/stop (edge-controlled) 13.2.2 Example 2: Start forward/start reverse/stop (edge-controlled) The "Run" function automatically becomes a "start enable" if the functions "Start forward (CW)"/ "Start reverse (CCW)" are connected to triggers. This example shows an edge-controlled start/stop via three buttons: In the non-operating state of button S1 (normally-closed contact), there is already a start •...
  • Page 358 Flexible I/O configuration Start / stop motor Example 2: Start forward/start reverse/stop (edge-controlled) Input signals 60 Hz 50 Hz 40 Hz Frequency setpoint selection 30 Hz 20 Hz 10 Hz 0 Hz Trigger Function Constant TRUE [1] Enable inverter Digital input 1 [11] Start enable Digital input 2 [12] Start forward (CW)
  • Page 359: Example 3: Run Forward/Run Reverse/Stop (Status-Controlled)

    Flexible I/O configuration Start / stop motor Example 3: Run forward/Run reverse/stop (status-controlled) 13.2.3 Example 3: Run forward/Run reverse/stop (status-controlled) The "Run" function automatically becomes a "start enable" if the functions "Run forward (CW)"/"Run reverse (CCW)" are connected to triggers. This example shows a status-controlled start/stop via three switches: Switch S1 enables the start.
  • Page 360 Flexible I/O configuration Start / stop motor Example 3: Run forward/Run reverse/stop (status-controlled) Input signals 60 Hz 50 Hz 40 Hz Frequency setpoint selection 30 Hz 20 Hz 10 Hz 0 Hz Trigger Function Constant TRUE [1] Enable inverter Digital input 1 [11] Start enable Digital input 2 [12] Run forward (CW)
  • Page 361: Example 4: Quick Stop

    Flexible I/O configuration Start / stop motor Example 4: Quick stop 13.2.4 Example 4: Quick stop This example illustrates the "quick stop" function. If quick stop is activated, the motor is brought to a standstill within the deceleration time set in 0x291C (P225.00).
  • Page 362: Example 5: Jog Forward/Jog Reverse

    Flexible I/O configuration Start / stop motor Example 5: Jog forward/Jog reverse 13.2.5 Example 5: Jog forward/Jog reverse This example illustrates the functions "Jog forward (CW)" and "Jog reverse (CCW)" for Jog operation. Switch S1 starts the motor in forward direction of rotation. Switch S1 in the initial position •...
  • Page 363 Flexible I/O configuration Start / stop motor Example 5: Jog forward/Jog reverse Input signals 60 Hz 50 Hz 40 Hz Frequency setpoint selection 30 Hz 20 Hz 10 Hz 0 Hz Trigger Function Constant TRUE [1] Enable inverter Digital input 1 [11] Digital input 2 [12] Jog foward (CW) Digital input 3 [13]...
  • Page 364: Example 6: Enable Inverter

    Flexible I/O configuration Start / stop motor Example 6: Enable inverter 13.2.6 Example 6: Enable inverter This example shows how to use the "Enable inverter" function for a separate enable input. In idle state of switch S1 (normally-closed contact), "Enable inverter" is already available. •...
  • Page 365: Setpoint Change-Over

    Flexible I/O configuration Setpoint change-over 13.3 Setpoint change-over The inverter receives its setpoint from the selected standard setpoint source. Corresponding functions make it possible to change over to other setpoint sources during operation. Possible setpoint sources are: Analog inputs • Keypad •...
  • Page 366 Flexible I/O configuration Setpoint change-over The following signal flow shows the internal setpoint logics: Motor control Modes of operation 0x6060 Process controller: operating mode 0x4020:001 0x2860:001 Frequency setpoint [Hz] MS: Velocity mode [-2] 0x2B0E (default setting) 0x2860:002 PID setpoint PID Unit 0x2631:045 0x401F:001 1...4...
  • Page 367: Priority Of The Setpoint Sources

    Flexible I/O configuration Setpoint change-over Priority of the setpoint sources 13.3.1 Priority of the setpoint sources Since only one setpoint source can be active at a time, the following priorities apply: Flexible I/O configuration or keypad control active Network control active 0x2631:037 (P400.37) = FALSE 0x2631:017 (P400.17)
  • Page 368 Flexible I/O configuration Setpoint change-over Analog input setpoint source Parameter Name / value range / [default setting] Info 0x2631:015 Function list: Activate AI2 setpoint Assignment of a trigger for the "Activate AI2 setpoint" function. (P400.15) (Function list: Setp: AI2) Trigger = TRUE: analog input 2 is used as setpoint source (if the trigger •...
  • Page 369 Flexible I/O configuration Setpoint change-over Analog input setpoint source Input signals 60 Hz 50 Hz Frequency setpoint selection 40 Hz via keypad 30 Hz (standard setpoint source) 20 Hz 10 Hz 0 Hz 60 Hz 50 Hz 40 Hz Frequency setpoint selection 30 Hz via analog input 1 20 Hz...
  • Page 370: Keypad Setpoint Source

    Flexible I/O configuration Setpoint change-over Keypad setpoint source 13.3.3 Keypad setpoint source The following function is used to select the keypad as setpoint source. Preconditions A setpoint change-over to the keypad is only effected if no setpoint source with a higher prior- ity has been selected.
  • Page 371 Flexible I/O configuration Setpoint change-over Keypad setpoint source Input signals 60 Hz 50 Hz Frequency setpoint selection 40 Hz via analog input 1 30 Hz (standard setpoint source) 20 Hz 10 Hz 0 Hz 60 Hz 50 Hz Manual 40 Hz frequency setpoint selection 30 Hz via keypad...
  • Page 372: Network Setpoint Source

    Flexible I/O configuration Setpoint change-over Network setpoint source 13.3.4 Network setpoint source The following function is used to select the network as setpoint source. Preconditions The setpoint change-over to the network is only effected if • no setpoint source with a higher priority has been selected. 4Priority of the setpoint sour- ^ 367 no network control is active...
  • Page 373: Setpoint Source Of Preset Setpoints

    Flexible I/O configuration Setpoint change-over Setpoint source of preset setpoints 13.3.5 Setpoint source of preset setpoints The four functions "Activate preset (bit 0)" ... " Activate preset (bit 3)" enable change-over of the setpoint to a parameterisable setpoint (preset value). Preconditions A setpoint change-over to the respective preset is only effected if no setpoint source with a higher priority has been selected.
  • Page 374 Flexible I/O configuration Setpoint change-over Setpoint source of preset setpoints Parameter Name / value range / [default setting] Info 0x2911:001 Frequency setpoint presets: Preset 1 Parameterisable frequency setpoints (presets) for operating mode "MS: (P450.01) (Freq. presets: Freq. preset 1) Velocity mode". 0.0 ...
  • Page 375 Flexible I/O configuration Setpoint change-over Setpoint source of preset setpoints Parameter Name / value range / [default setting] Info 0x4022:001 PID setpoint presets: Preset 1 Parameterisable process controller setpoints (presets) for PID control. (P451.01) (PID presets: PID preset 1) -300.00 ... [0.00] ... 300.00 PID unit 0x4022:002 PID setpoint presets: Preset 2 (P451.02)
  • Page 376 Flexible I/O configuration Setpoint change-over Setpoint source of preset setpoints Example for operating mode The keypad is set as standard setpoint source. • Switch S1 starts the motor in forward direction of rotation. Switch S1 in the initial position • stops the motor again.
  • Page 377 Flexible I/O configuration Setpoint change-over Setpoint source of preset setpoints Input signals 60 Hz 50 Hz Frequency setpoint selection 40 Hz via keypad 30 Hz (standard setpoint source) 20 Hz 10 Hz 0 Hz Presets 0x2911:1 0x2911 2 : 0x2911 3 : 0x2911 4 : 0x2911 5 : 0x2911 6 :...
  • Page 378: Motor Potentiometer Setpoint Source (Mop)

    Flexible I/O configuration Setpoint change-over Motor potentiometer setpoint source (MOP) 13.3.6 Motor potentiometer setpoint source (MOP) The "Motor potentiometer" function can be used as an alternative setpoint control that is controlled via two functions: "MOP setpoint up" and "MOP setpoint down". The "Activate MOP setpoint"...
  • Page 379 Flexible I/O configuration Setpoint change-over Motor potentiometer setpoint source (MOP) Parameter Name / value range / [default setting] Info 0x4003 MOP starting mode Selection of the initial value which is used after activation of the func- (P413.00) (MOP startmode) tion. 0 Last value The last MOP value is used as initial value.
  • Page 380 Flexible I/O configuration Setpoint change-over Motor potentiometer setpoint source (MOP) Parameter Name / value range / [default setting] Info 0x291A Deceleration time 2 Deceleration time 2 for the operating mode "MS: Velocity mode". (P223.00) (Decelerat.time 2) • The deceleration time set refers to the deceleration from the maxi- 0.0 ...
  • Page 381 Flexible I/O configuration Setpoint change-over Motor potentiometer setpoint source (MOP) Input signals 60 Hz 50 Hz Frequency setpoint selection 40 Hz via analog input 1 30 Hz (standard setpoint source) 20 Hz 10 Hz 0 Hz Trigger Function Constant TRUE [1] Enable inverter Digital input 1 [11] Digital input 2 [12]...
  • Page 382: Setpoint Source Segment Setpoints

    Flexible I/O configuration Setpoint change-over Setpoint source segment setpoints 13.3.7 Setpoint source segment setpoints The four functions "Activate segment setpoint (bit 0)" ... " Activate segment setpoint´(bit 3)" enable a setpoint change-over to a segment setpoint parameterised for the "sequencer" func- tion during normal operation.
  • Page 383 Flexible I/O configuration Setpoint change-over Setpoint source segment setpoints Parameter Name / value range / [default setting] Info 0x2631:028 Function list: Activate segment setpoint (bit 2) Assignment of a trigger for the "Activate segment setpoint (bit 2)" func- (P400.28) (Function list: Setp: Segment b2) tion.
  • Page 384: Reset Error

    Flexible I/O configuration Reset error 13.4 Reset error By means of the "Reset fault" function, an active error can be reset (acknowledged). Preconditions The error can only be reset if the error cause has been eliminated. Parameter Name / value range / [default setting] Info 0x2631:004 Function list: Reset fault...
  • Page 385 Flexible I/O configuration Reset error The following signal flow illustrates the reset of an error both with the "Reset error" function and by cancelling the start command ② ④ Input signals 60 Hz 50 Hz 40 Hz Frequency setpoint selection 30 Hz 20 Hz 10 Hz...
  • Page 386: Activating Dc Braking Manually

    Flexible I/O configuration Activating DC braking manually 13.5 Activating DC braking manually By means of the "Activate DC braking" function, DC braking can be activated manually. Preconditions The current for DC braking must be set > 0 % so that the function can be executed. Parameter Name / value range / [default setting] Info...
  • Page 387 Flexible I/O configuration Activating DC braking manually Input signals 60 Hz 50 Hz 40 Hz Frequency setpoint selection 30 Hz 20 Hz 10 Hz 0 Hz Trigger Function Constant TRUE [1] Enable inverter Digital input 1 [11] Digital input 2 [12] Activate DC braking Output signals 60 Hz...
  • Page 388: Releasing Holding Brake Manually

    Flexible I/O configuration Releasing holding brake manually 13.6 Releasing holding brake manually The "Release holding brake" function serves to release the holding brake immediately. Brake application time and brake opening time as well as the conditions for the automatic operation are not effective.
  • Page 389 Flexible I/O configuration Releasing holding brake manually Input signals 60 Hz 50 Hz 40 Hz Frequency setpoint selection 30 Hz 20 Hz 10 Hz 0 Hz Trigger Function Constant TRUE [1] Enable inverter Digital input 1 [11] Digital input 2 [12] Release holding brake Output signals 60 Hz...
  • Page 390: Activating Ramp 2 Manually

    Flexible I/O configuration Activating ramp 2 manually 13.7 Activating ramp 2 manually The "Activate ramp 2" function serves to manually activate acceleration time 2 and decelera- tion time 2. Parameter Name / value range / [default setting] Info 0x2631:039 Function list: Activate ramp 2 Assignment of a trigger for the "Activate ramp 2"...
  • Page 391 Flexible I/O configuration Activating ramp 2 manually Example for operating mode Switch S1 starts the motor in forward direction of rotation. Switch S1 in the initial position • stops the motor again. Switch S2 activates the acceleration time 2 and deceleration time 2. •...
  • Page 392: Triggering A User-Defined Fault

    Flexible I/O configuration Triggering a user-defined fault 13.8 Triggering a user-defined fault The "Activate fault 1" and "Activate fault 2" functions serve to set the inverter from the proc- ess to the error status. Details If, for instance, sensors or switches are provided for process monitoring, which are designed to stop the process (and thus the drive) under certain conditions, these sensors/switches can be connected to free digital inputs of the inverter.
  • Page 393: Functions For Parameter Change-Over

    Flexible I/O configuration Functions for parameter change-over 13.9 Functions for parameter change-over The inverter supports several parameter sets. The parameter set can be selected by means of the "Select parameter set (bit 0)" and "Select parameter set (bit 1)" functions. DANGER! Changed parameter settings can become effective immediately depending on the activating method set in...
  • Page 394 Flexible I/O configuration Functions for parameter change-over Parameter Name / value range / [default setting] Info 0x4046 Activation of parameter set Selection of the activation method for the parameter change-over. (P755.00) (PSet activation) • If the selection is changed from "Via command... [0]/[1]" to "If the selection is changed...[2]/[3]"...
  • Page 395: Example 1: Activation Via Command (Only When Disabled)

    Flexible I/O configuration Functions for parameter change-over Example 1: Activation via command (only when disabled) 13.9.1 Example 1: Activation via command (only when disabled) Activation method 0x4046 (P755.00) = "Via command (disable required) [0]": Switches S3 and S4 serve to select the parameter set (see the following table). •...
  • Page 396: Example 2: Activation Via Command (Immediately)

    Flexible I/O configuration Functions for parameter change-over Example 2: Activation via command (immediately) 13.9.2 Example 2: Activation via command (immediately) Activation method 0x4046 (P755.00) = "Via command (immediately) [1]": Switches S3 and S4 serve to select the parameter set (see the following table). •...
  • Page 397: Example 3: Activation If The Selection Is Changed (Only If The Inverter Is Disabled)

    Flexible I/O configuration Functions for parameter change-over Example 3: Activation if the selection is changed (only if the inverter is disabled) 13.9.3 Example 3: Activation if the selection is changed (only if the inverter is disabled) Activation method 0x4046 (P755.00) = "If the selection is changed (disable required) [2]": Switches S3 and S4 serve to select the parameter set (see the following table).
  • Page 398: Example 4: Activation If The Selection Is Changed (Immediately)

    Flexible I/O configuration Functions for parameter change-over Example 4: Activation if the selection is changed (immediately) 13.9.4 Example 4: Activation if the selection is changed (immediately) Activation method 0x4046 (P755.00) = "If the selection is changed (immediately) [3]": Switches S3 and S4 serve to select the parameter set (see the following table). At the same •...
  • Page 399: Process Controller Function Selection

    Flexible I/O configuration Process controller function selection 13.10 Process controller function selection By means of the following functions, the response of the inverter can be controlled when PID control is activated. 4Configuring the process controller ^ 238 Parameter Name / value range / [default setting] Info 0x2631:045 Function list: Deactivate PID controller...
  • Page 400 Flexible I/O configuration Process controller function selection Example for operating mode In the following example, the "Deactivate PID controller" function is used to deactivate the PID control temporarily: As standard setpoint source, the frequency preset 1 is set to 20 Hz. •...
  • Page 401 Flexible I/O configuration Process controller function selection Input signals 60 Hz 50 Hz 40 Hz Frequency setpoint selection 30 Hz 20 Hz 10 Hz 0 Hz 100 % Process setpoint 80 % 60 % 40 % 20 % Trigger Function Constant TRUE [1] Enable inverter Digital input 1 [11]...
  • Page 402: Sequencer Control Functions

    Flexible I/O configuration Sequencer control functions 13.11 Sequencer control functions The following functions serve to control the sequencer. 4Sequencer ^ 325 Select sequence A sequence is selected in a binary-coded fashion via the triggers assigned to the four functions "Select sequence (bit 0)" ... " Select sequence (bit 3)" in compliance with the following truth table: Select sequence Selection...
  • Page 403 Flexible I/O configuration Sequencer control functions Parameter Name / value range / [default setting] Info 0x2631:031 Function list: Start sequence Assignment of a trigger for the "Start sequence" function. (P400.31) (Function list: Seq: Start) Trigger = FALSE↗TRUE (edge): Start selected sequence. •...
  • Page 404 Flexible I/O configuration Sequencer control functions Parameter Name / value range / [default setting] Info 0x2631:051 Function list: Select sequence (bit 1) Assignment of a trigger for the "Select sequence (bit 1)" function. (P400.51) (Function list: Seq: Select. b1) Selection bit with the valency 2 for the bit-coded selection of a •...
  • Page 405 Flexible I/O configuration Sequencer control functions Example for operating mode In the following example, the digital inputs 2 and 3 are used for controlling the sequencer. The analog input 1 is set as standard setpoint source. • Switch S1 starts the motor in forward direction of rotation. Switch S1 in the initial position •...
  • Page 406 Flexible I/O configuration Sequencer control functions Input signals 60 Hz 50 Hz 40 Hz Frequency setpoint selection 30 Hz 20 Hz 10 Hz 0 Hz Trigger Function Constant TRUE [1] Enable inverter Constant TRUE [1] Select sequence (bit 0) Bit 0 = 1 and bit 1 ... 3 = 0: sequence 1 is selected. Digital input 1 [11] Digital input 2 [12] Start sequence...
  • Page 407: Frequency Threshold For "Frequency Threshold Exceeded" Trigger

    Flexible I/O configuration Frequency threshold for "Frequency threshold exceeded" trigger 13.12 Frequency threshold for "Frequency threshold exceeded" trigger As a function of the current output frequency, the adjustable frequency threshold serves to trigger a certain function or set a digital output. Parameter Name / value range / [default setting] Info...
  • Page 408: Configuration Of Digital Inputs

    Flexible I/O configuration Configuration of digital inputs 13.13 Configuration of digital inputs Settings for digital inputs 1 ... 5. Parameter Name / value range / [default setting] Info 0x2630:002 Settings for digital inputs: Input function Input function of the digital terminals DI3 and DI4. (P410.02) (DI settings: Input function) 0 Digital input...
  • Page 409: Configuration Of Analog Inputs

    Flexible I/O configuration Configuration of analog inputs Analog input 1 13.14 Configuration of analog inputs 13.14.1 Analog input 1 Settings for analog input 1. Details The analog input 1 can be used as setpoint source.4Selection of setpoint source ^ 98 For the process controller, the analog input can be used for the feedback of the variable (actual value) or speed feedforward control.
  • Page 410 Flexible I/O configuration Configuration of analog inputs Analog input 1 Parameter Name / value range / [default setting] Info 0x2636:002 Analog input 1: Min frequency value Definition of the setting range for operating mode "MS: Velocity mode". (P430.02) (Analog input 1: AI1 freq @ min) •...
  • Page 411: Example 1: Input Range 0

    Flexible I/O configuration Configuration of analog inputs Analog input 1 13.14.1.1 Example 1: Input range 0 ... 10 V ≡ setting range 0 ... 50 Hz In this configuration, for instance, a frequency setpoint between 0 and 50 Hz can be set with a potentiometer connected to the analog input.
  • Page 412: 13.14.1.3 Example 3: Error Detection

    Flexible I/O configuration Configuration of analog inputs Analog input 1 13.14.1.3 Example 3: Error detection In this example, the digital output 1 is set via the trigger "Error of analog input 1 active [81]" if the percentage input value is lower than 10 %. Additionally, a warning is output. Parameter Name Setting for this example...
  • Page 413 Flexible I/O configuration Configuration of analog inputs Analog input 2 13.14.2 Analog input 2 Settings for analog input 2. Details The analog input 2 can be used as setpoint source.4Selection of setpoint source ^ 98 For the process controller, the analog input can be used for the feedback of the variable (actual value) or speed feedforward control.
  • Page 414 Flexible I/O configuration Configuration of analog inputs Analog input 2 Parameter Name / value range / [default setting] Info 0x2637:007 Analog input 2: Dead band Optional setting of a dead band that is placed symmetrically around the (P431.07) (Analog input 2: AI2 dead band) frequency zero point.
  • Page 415: Configuration Of Digital Outputs

    Flexible I/O configuration Configuration of digital outputs Relay 13.15 Configuration of digital outputs Parameter Name / value range / [default setting] Info 0x404D:003 PID alarms: Monitoring bandwidth PID feedback sig- Hysteresis for status signal "PID feedback = setpoint [73]". (P608.03) •...
  • Page 416 Flexible I/O configuration Configuration of digital outputs Relay Parameter Name / value range / [default setting] Info 51 Ready for operation TRUE if inverter is ready for operation (no error active, no STO active and DC-bus voltage ok). Otherwise FALSE. 52 Operation enabled TRUE if inverter and start are enabled.
  • Page 417 Flexible I/O configuration Configuration of digital outputs Relay Parameter Name / value range / [default setting] Info 79 Torque limit reached TRUE if torque limit has been reached or exceeded. Otherwise FALSE. • Setting "Positive torque limit" in 0x60E0. • Setting "Negative torque limit" in 0x60E1. 81 Error of analog input 1 active TRUE if the monitoring of the input signal at the analog input 1 has responded.
  • Page 418: Digital Output 1

    Flexible I/O configuration Configuration of digital outputs Relay Parameter Name / value range / [default setting] Info 117 Motor phase failure TRUE if a motor phase failure has been detected. Otherwise FALSE. 4Motor phase failure detection ^ 169 118 UPS operation active TRUE if UPS operation is active.
  • Page 419: Networdout1 Status Word

    Flexible I/O configuration Configuration of digital outputs Digital output 1 Parameter Name / value range / [default setting] Info 0x4016:004 Digital output 1: Switch-on delay Switch-on delay for digital output 1. 0.000 ... [0.000] ... 65.535 s Note! The set delay time is not effective (internally set to "0") if the relay is assigned to the trigger "Release holding brake [115]".
  • Page 420 Flexible I/O configuration Configuration of digital outputs NetWordOUT1 status word Parameter Name / value range / [default setting] Info 0x2634:013 Digital outputs function: NetWordOUT1 - bit 3 Assignment of a trigger to bit 3 of NetWordOUT1. (P420.13) (Dig.out.function: NetWordOUT1.03) Trigger = FALSE: bit set to 0. •...
  • Page 421 Flexible I/O configuration Configuration of digital outputs NetWordOUT1 status word Parameter Name / value range / [default setting] Info 0x2634:025 Digital outputs function: NetWordOUT1 - bit 15 Assignment of a trigger to bit 15 of NetWordOUT1. (P420.25) (Dig.out.function: NetWordOUT1.15) Trigger = FALSE: bit set to 0. •...
  • Page 422: Configuration Of Analog Outputs

    Flexible I/O configuration Configuration of analog outputs Analog output 1 13.16 Configuration of analog outputs 13.16.1 Analog output 1 Settings for analog input 1. Details The analog output 1 is controlled with the signal selected in 0x2639:002 (P440.02). The following settings are possible for the analog output: Definition of the signal range •...
  • Page 423 Flexible I/O configuration Configuration of analog outputs Analog output 1 Parameter Name / value range / [default setting] Info 0x2639:002 Analog output 1: Function Selection of the signal to be shown at analog output 1. (P440.02) (Analog output 1: AO1 function) 0 Not active No output signal.
  • Page 424: Example 1: Output Voltage 0

    Flexible I/O configuration Configuration of analog outputs Analog output 1 13.16.1.1 Example 1: Output voltage 0 ... 10 V ≡ output frequency 0 ... 100 Hz In this configuration, a voltage is provided at the analog output proportionately to the current output frequency of the inverter (1 V ≡...
  • Page 425: Technical Data

    Technical data Motor connection Technical data 14.1 Standards and operating conditions 14.1.1 Protection of persons and device protection Enclosure IP20 EN 60529 Type 1 NEMA 250 Protection against contact Open type only in UL-approved systems Insulation resistance Overvoltage category III EN 61800-5-1 0 …...
  • Page 426: Environmental Conditions

    Standards and operating conditions Electrical supply conditions 14.1.4 Environmental conditions Energy efficiency Class IE2 EN 50598-2 Reference: Lenze setting (switching frequency 8 kHz variable) Climate 1K3 (-25 ... +60 °C) EN 60721-3-1 Storage 2K3 (-25 ... +70 °C) EN 60721-3-2 Transport 3K3 (-10 ...
  • Page 427: 1-Phase Mains Connection 230/240

    Technical data 1-phase mains connection 230/240 V Rated data 14.2 1-phase mains connection 230/240 V 14.2.1 Rated data The output currents apply to these operating conditions: At a switching frequency of 2 kHz or 4 kHz: Max. ambient temperature 45°C. •...
  • Page 428: 3-Phase Mains Connection 230/240

    Technical data 3-phase mains connection 400 V Rated data 14.3 3-phase mains connection 230/240 V 14.3.1 Rated data The output currents apply to these operating conditions: At a switching frequency of 2 kHz or 4 kHz: Max. ambient temperature 45°C. •...
  • Page 429: 3-Phase Mains Connection 480 V

    Technical data 3-phase mains connection 480 V Rated data 14.5 3-phase mains connection 480 V 14.5.1 Rated data The output currents apply to these operating conditions: At a switching frequency of 2 kHz or 4 kHz: Max. ambient temperature 45°C. •...
  • Page 430: Appendix

    Appendix Appendix 15.1 Operate and parameterise the inverter with keypad The keypad is an easy means for the local operation, parameterisation, and diagnostics of the inverter. The keypad is simply connected to the diagnostic interface on the front of the inverter. •...
  • Page 431: Keypad Operating Mode

    Appendix Operate and parameterise the inverter with keypad Keypad operating mode 15.1.1 Keypad operating mode After switching on the inverter, the keypad plugged in is in "Operating mode" after a short initialisation phase. 15.1.1.1 Keypad status display In the operating mode, the keypad displays information on the status of the inverter. Keypad display Display Meaning...
  • Page 432: Function Of Keypad Keys In Operating Mode

    Appendix Operate and parameterise the inverter with keypad Keypad operating mode 15.1.1.2 Function of keypad keys in operating mode In the operating mode, the keypad can be used for local control and for manual setpoint selec- tion. Function of keypad keys in operating mode Actuation Condition Action...
  • Page 433: Error Reset With Keypad

    Appendix Operate and parameterise the inverter with keypad Keypad operating mode 15.1.1.3 Error reset with keypad Use the keypad key to reset a resettable error if the error condition no longer exists and no blocking time is active. "Error codes" table gives the blocking time (if available) for each error. •...
  • Page 434: Keypad Parameterisation Mode

    Appendix Operate and parameterise the inverter with keypad Keypad parameterisation mode 15.1.2 Keypad parameterisation mode In the parameterisation mode of the keypad you can have actual values of the inverter dis- played for purposes of diagnostics and change settings of the inverter. Use the to change from operating mode to the parameterisation mode.
  • Page 435: Function Of The Keypad Keys In The Parameterisation Mode

    Appendix Operate and parameterise the inverter with keypad Keypad parameterisation mode 15.1.2.2 Function of the keypad keys in the parameterisation mode In the parameterisation mode, the arrow keys serve to select and change parameters. Function of the keypad keys in the parameterisation mode Actuation Condition Action...
  • Page 436: Save Parameter Settings With Keypad

    Appendix Operate and parameterise the inverter with keypad Keypad parameterisation mode Changing inverter settings by means of the keypad (general operation) Operating mode VEL: FLEX: AIN1 0 0 0 S T O P AUTO SET Change to parameterisation Back to the operating mode mode Group level Favorites...
  • Page 437: Display Of Status Words On Keypad

    Appendix Operate and parameterise the inverter with keypad Keypad parameterisation mode 15.1.2.4 Display of status words on keypad Some diagnostics parameters contain bit-coded status words. Each single bit has a certain meaning. Display of 16-bit status words on the keypad Bit 15 Bit 0 b.0000.0000.0000.0100...
  • Page 438: Error Codes

    Appendix Error codes 15.2 Error codes The following table contains the most important error codes of the inverter in ascending order. Clicking the error code shows you a detailed description of the error message. • If the inverter indicates an "internal error" that is not listed here, restart the inverter. If the •...
  • Page 439 Appendix Error codes Error code Error message Error type Configurable in 30346 0x768A Memory module: wrong type Fault 30352 0x7690 EPM firmware version incompatible Fault 30353 0x7691 EPM data: firmware type incompatible Fault 30354 0x7692 EPM data: new firmware type detected Fault 30355 0x7693...
  • Page 440 Appendix Error codes 9024 0x2340 CiA: short circuit (inside the device) Keypad display: Motor shorted Cause Error type/response Remedy Short circuit of motor cable Fault Check motor cable for short circuit. • The inverter is inhibited immediately. The motor becomes torqueless (coasts). •...
  • Page 441 Appendix Error codes 12576 0x3120 Mains phase fault Keypad display: Mains Phase fail Cause Error type/response Remedy Mains phase failure Fault • Check wiring of the mains connection. • The inverter is inhibited immediately. The • Check fuses. motor becomes torqueless (coasts). 12672 0x3180 Operation at UPS active Keypad display: UPS oper.
  • Page 442 Appendix Error codes 12833 0x3221 DC bus undervoltage warning Keypad display: Warn.DC Bus UV Cause Error type/response Remedy DC-bus voltage has fallen below the warning Warning • Check mains voltage. threshold for undervoltage set in 0x2540:002 • Check DC-bus voltage. (P208.02).
  • Page 443 Appendix Error codes 20754 0x5112 24 V supply critical Keypad display: 24V supply low Cause Error type/response Remedy 24V voltage failed or too low. Warning • Check optional external 24V voltage supply (terminal X3/24E), if connected. • Check mains voltage. 20864 0x5180 24-V supply overload Keypad display: Overlaod 24V Cause...
  • Page 444 Appendix Error codes 25218 0x6282 User-defined fault 2 Keypad display: User fault 2 Cause Error type/response Remedy Flexible I/O configuration: the "Activate fault 2" Fault Eliminate error cause and then reset error. function was activated via the trigger selected 0x2631:044 (P400.44).
  • Page 445 Appendix Error codes 25265 0x62B1 NetWordIN1 configuration incorrect Keypad display: NetWordIN1 error Cause Error type/response Remedy Two bits of the NetWordIN1 data word Trouble Check and correct configuration of the NetWor- 0x4008:001 (P590.01) were assigned to the dIN1 data word. same function.
  • Page 446 Appendix Error codes 28802 0x7082 Error of analog input 2 Keypad display: AI2 fault Cause Error type/response Remedy The monitoring function of the input signal con- Fault • Check input signal at analog input 2. figured for analog input 2 in 0x2637:008 •...
  • Page 447 Appendix Error codes 30337 0x7681 No memory module Keypad display: EPM not present Cause Error type/response Remedy The inverter memory module was removed. Fault 1. Switch off inverter. • The default setting stored in the inverter 2. Plug the memory module into the inverter. firmware has been loaded.
  • Page 448 Appendix Error codes 30352 0x7690 EPM firmware version incompatible Keypad display: EPM-FW incomp. Cause Error type/response Remedy The parameter settings saved in the memory Fault 1. Execute device command "Load default set- module are incompatible with the firmware ver- • The data have been loaded into the RAM tings"...
  • Page 449 Appendix Error codes 30358 0x7696 EPM data: unknown parameter found Keypad display: Unkn. Par in EPM Cause Error type/response Remedy The memory module contains parameter set- Info Execute the "Save user data" 0x2022:003 tings for one or several parameters that are not (P700.03) device command.
  • Page 450 Appendix Error codes 33156 0x8184 CAN: heartbeat time-out consumer 1 Keypad display: CAN heartb. C1 Cause Error type/response Remedy Within the heartbeat time 0x1016:001 Fault • Check communication with the heartbeat (P520.01), no heartbeat telegram was received • The error type can be configured in producer.
  • Page 451 Appendix Error codes 33425 0x8291 CAN: RPDO1 time-out Keypad display: Timeout RPDO1 Cause Error type/response Remedy RPDO3 was not received within the time-out Fault • Eliminate EMC interferences. period set in 0x1402:005 (P542.05) or with the • The error type can be configured in •...
  • Page 452 Appendix Error codes 65286 0xFF06 Motor overspeed Keypad display: Motor overspeed Cause Error type/response Remedy The motor speed has reached the error thresh- Fault Check application. old for overspeed set in 0x2D44:001 (P350.01). • The error can only be reset after a blocking time of 1 s.
  • Page 453 Appendix Error codes 65305 0xFF19 Motor parameter identification error Keypad display: Motor ID fault Cause Error type/response Remedy During the automatic identification of the Fault • Set motor data so that they comply with the motor, an error has occurred. data on the motor nameplate.
  • Page 454: Parameter Attribute List

    Appendix Parameter attribute list 15.3 Parameter attribute list The parameter attribute list in particular contains some information required for reading and writing parameters via network. The parameter attribute list contains all parameters of the inverter. • The parameter attribute list is sorted by addresses (index:subindex) in ascending order. •...
  • Page 455 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x1014 COB-ID EMCY - (Read only) CANopen 0x1015 Inhibit time EMCY 0.0 ms CANopen 0x1016:000 Consumer heartbeat time: Highest sub-index sup- - (Read only) CANopen (P520.00) ported 0x1016:001 Consumer heartbeat time: Consumer heartbeat 0x00000000 CANopen...
  • Page 456 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x1600:006 RPDO1 mapping parameter: Application object 6 0x00000000 CANopen PH - 0x1600:007 RPDO1 mapping parameter: Application object 7 0x00000000 CANopen PH - 0x1600:008 RPDO1 mapping parameter: Application object 8 0x00000000 CANopen PH -...
  • Page 457 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x1A00:003 TPDO1 mapping parameter: Application object 3 0x00000000 CANopen PH - 0x1A00:004 TPDO1 mapping parameter: Application object 4 0x00000000 CANopen PH - 0x1A00:005 TPDO1 mapping parameter: Application object 5 0x00000000 CANopen PH -...
  • Page 458 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2002:004 Device module: CU type code - (Read only) general STRING[19] (P192.04) 0x2002:005 Device module: PU type code - (Read only) general STRING[19] (P192.05) 0x2002:006 Device module: CU serial number - (Read only) general STRING[23]...
  • Page 459 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2022:004 Device commands: Load user data Off / ready [0] general (P700.04) 0x2022:005 Device commands: Load OEM data Off / ready [0] general (P700.05) 0x2022:006 Device commands: Save OEM data Off / ready [0] general (P700.06)
  • Page 460 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x230A:001 CANopen statistics: PDO1 received - (Read only) CANopen (P580.01) 0x230A:002 CANopen statistics: PDO2 received - (Read only) CANopen (P580.02) 0x230A:003 CANopen statistics: PDO3 received - (Read only) CANopen (P580.03) 0x230A:005...
  • Page 461 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x232E:001 Modbus diagnostics of last Rx data: Offset Modbus RTU U8 (P583.01) 0x232E:002 Modbus diagnostics of last Rx data: Data byte 0 - (Read only) Modbus RTU U8 (P583.02) 0x232E:003 Modbus diagnostics of last Rx data: Data byte 1...
  • Page 462 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x232F:013 Modbus diagnostics of last Tx data: Data byte 11 - (Read only) Modbus RTU U8 (P585.13) 0x232F:014 Modbus diagnostics of last Tx data: Data byte 12 - (Read only) Modbus RTU U8 (P585.14) 0x232F:015...
  • Page 463 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2541:005 Brake energy management: Deceleration override 2.0 s general (P706.05) time 0x2552:002 Parameter access monitoring: Keep alive register general (P595.02) 0x2552:003 Parameter access monitoring: Time-out time 10.0 s general (P595.03) 0x2552:004...
  • Page 464 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x261C:017 Favorites settings: Parameter 17 0x2B010200 general PH - (P740.17) 0x261C:018 Favorites settings: Parameter 18 0x283A0000 general PH - (P740.18) 0x261C:019 Favorites settings: Parameter 19 0x29390000 general PH - (P740.19) 0x261C:020 Favorites settings: Parameter 20...
  • Page 465 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x261C:046 Favorites settings: Parameter 46 0x29110100 general PH - (P740.46) 0x261C:047 Favorites settings: Parameter 47 0x29110200 general PH - (P740.47) 0x261C:048 Favorites settings: Parameter 48 0x29110300 general PH - (P740.48) 0x261C:049 Favorites settings: Parameter 49...
  • Page 466 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2631:025 Function list: Activate MOP setpoint Not connected [0] general (P400.25) 0x2631:026 Function list: Activate segment setpoint (bit 0) Not connected [0] general (P400.26) 0x2631:027 Function list: Activate segment setpoint (bit 1) Not connected [0] general (P400.27)
  • Page 467 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2631:055 Function list: Activate UPS operation Not connected [0] general (P400.55) 0x2632:001 Inversion of digital inputs: Digital input 1 Not inverted [0] general (P411.01) 0x2632:002 Inversion of digital inputs: Digital input 2 Not inverted [0] general (P411.02)
  • Page 468 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2635:012 Inversion of digital outputs: NetWordOUT1.02 Not inverted [0] general 0x2635:013 Inversion of digital outputs: NetWordOUT1.03 Not inverted [0] general 0x2635:014 Inversion of digital outputs: NetWordOUT1.04 Not inverted [0] general 0x2635:015 Inversion of digital outputs: NetWordOUT1.05...
  • Page 469 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2637:009 Analog input 2: Monitoring condition Input value < trigger general (P431.09) threshold [0] 0x2637:010 Analog input 2: Error response Fault [3] general (P431.10) 0x2637:011 Analog input 2: Min torque value 0.0 % general (P431.11)
  • Page 470 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x282B:003 Inverter diagnostics: Keypad LCD status - (Read only) general (P125.03) 0x282B:004 Inverter diagnostics: Active drive mode - (Read only) general (P125.04) 0x282B:005 Inverter diagnostics: Most recently used control reg- - (Read only) general OH -...
  • Page 471 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2862 Keypad setpoint increment general (P701.00) 0x2863 Keypad language selection English [1] general (P705.00) 0x2864 Keypad status display 0x00000000 general PH - (P703.00) 0x2900:001 Speed controller settings: Gain 0.00193 Nm/rpm * MCTRL 100000 P...
  • Page 472 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2912:006 Torque setpoint presets: Preset 6 100.0 % general (P452.06) 0x2912:007 Torque setpoint presets: Preset 7 100.0 % general (P452.07) 0x2912:008 Torque setpoint presets: Preset 8 100.0 % general (P452.08) 0x2915...
  • Page 473 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2946:005 Speed limitation: Upper frequency limit Device for 50-Hz mains: general (P340.05) 50.0 Hz Device for 60-Hz mains: 60.0 Hz 0x2946:006 Speed limitation: Lower frequency limit Device for 50-Hz mains: general (P340.06) -50.0 Hz...
  • Page 474 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2B0C Override field weakening 0.0 Hz general (P319.00) 0x2B0D:001 VFC-ECO: Minimum voltage 20 % MCTRL (P330.01) 0x2B0D:006 Cos phi actual value - (Read only) general (P330.06) 0x2B0E Frequency setpoint x.x Hz (Read only) general (P102.00)
  • Page 475 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2C01:010 Motor parameters: Motor name MCTRL STRING[25] 0x2C02:001 Motor parameter (ASM): Rotor resistance 8.8944 Ω * MCTRL 10000 (P351.01) 0x2C02:002 Motor parameter (ASM): Mutual inductance 381.9 mH * MCTRL (P351.02) 0x2C02:003...
  • Page 476 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2D66:003 Mains failure control: Gain V-controller 0.01000 Hz/V general 100000 P (P721.03) 0x2D66:004 Mains failure control: Reset time V-controller 20 ms general (P721.04) 0x2D66:005 Mains failure control: DC voltage setpoint 100 % general (P721.05)
  • Page 477 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x2DA4:004 Diagnostics of analog input 1: Torque value x.x % (Read only) general (P110.04) 0x2DA4:016 Diagnostics of analog input 1: Status - (Read only) general (P110.16) 0x2DA5:001 Diagnostics of analog input 2: Value in percent x.x % (Read only) general (P111.01)
  • Page 478 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x4005 Frequency threshold 0.0 Hz general (P412.00) 0x4006:001 Load loss detection: Threshold 0.0 % general (P710.01) 0x4006:002 Load loss detection: Deceleration 0.0 s general (P710.02) 0x4008:001 Process input words: NetWordIN1 0x0000 general HK r...
  • Page 479 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x400C:005 Process output data: Drive status - (Read only) general (P593.05) 0x400C:006 Process output data: Frequency (0.01) x.xx Hz (Read only) general (P593.06) 0x400C:007 Process output data: Torque scaled - (Read only) general (P593.07)
  • Page 480 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x401F:003 Status - (Read only) general (P121.03) 0x401F:004 PID control value x.x Hz (Read only) general 0x401F:005 PID Feedforward value x.x Hz (Read only) general 0x401F:006 PID output value x.x Hz (Read only) general 0x401F:007...
  • Page 481 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x4024:003 Automatic rinsing: Rinse speed 0.0 Hz general (P615.03) 0x4024:004 Automatic rinsing: Rinse period 0.0 s general (P615.04) 0x4025 Sequencer mode Disabled [0] general (P800.00) 0x4026:001 Sequencer segment 1: Frequency setpoint 0.0 Hz general (P801.01)
  • Page 482 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x4029:003 Sequencer segment 4: Time 0.0 s general (P804.03) 0x4029:004 Sequencer segment 4: Digital outputs general (P804.04) 0x4029:005 Sequencer segment 4: Analog outputs 0.00 VDC general (P804.05) 0x4029:006 Sequencer segment 4: PID setpoint 0.00 PID unit general...
  • Page 483 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x402C:009 Sequencer segment 7: Reserved general 0x402D:001 Sequencer segment 8: Frequency setpoint 0.0 Hz general (P808.01) 0x402D:002 Sequencer segment 8: Acceleration/deceleration 5.0 s general (P808.02) 0x402D:003 Sequencer segment 8: Time 0.0 s general (P808.03)
  • Page 484 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x4039 Number of cycles sequence 5 general (P851.00) 0x403A:001 ... Sequence 6: Step 1 ... Step 16 Skip step [0] general 0x403A:016 (P855.01 ... 16) 0x403B Number of cycles sequence 6 general (P856.00) 0x403C:001 ...
  • Page 485 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x404E:002 PID setpoint limits: Maximum setpoint 300.00 PID unit general (P605.02) 0x603F Error code - (Read only) general (P150.00) 0x6040 CiA: Controlword general 0x6041 CiA: Statusword - (Read only) general (P780.00) 0x6042...
  • Page 486 Appendix Parameter attribute list Address Designation Default setting Category Data type Factor 0x6502 Supported drive modes - (Read only) general (P789.00) * Default setting depending on the size. Firmware version 05.00.00.00...
  • Page 487 © 06/2017 | 13535402 | 9.0 Ö Lenze Drives GmbH Postfach 10 13 52, D-31763 Hameln Breslauer Straße 3, D-32699 Extertal Germany HR Lemgo B 6478 +49 5154 82-0 Ü Ø +49 5154 82-2800 lenze@lenze.com Ù www.lenze.com Ú Û Lenze Service GmbH Breslauer Straße 3, D-32699 Extertal...

Table of Contents

Save PDF