Banner GM-FA-10J Original Instructions Manual page 2

Gate monitoring safety
Table of Contents

Advertisement

GM-FA-10J Gate Monitoring Safety Module
Applicable U.S. Standards
ANSI B11 Standards for Machine Tools Safety
Contact: Safety Director, AMT – The Association for Manufacturing Technology, 7901 Westpark Drive, McLean, VA 22102, Tel.:
703-893-2900
ANSI NFPA 79 Electrical Standard for Industrial Machinery
Contact: National Fire Protection Association, 1 Batterymarch Park, P.O. Box 9101, Quincy, MA 02269-9101, Tel.: 800-344-3555
ANSI/RIA R15.06 Safety Requirements for Industrial Robots and Robot Systems
Contact: Robotic Industries Association, 900 Victors Way, P.O. Box 3724, Ann Arbor, MI 48106, Tel.: 734-994-6088
Applicable International Standards
ISO 12100-1 & -2 (EN 292-1 & -2) Safety of Machinery – Basic Concepts, General Principles for Design
IEC 60204-1 Electrical Equipment of Machines Part 1: General Requirements
ISO 13849-1 (EN 954-1) Safety-Related Parts of Control Systems
ISO 13855 (EN 999) The Positioning of Protective Equipment in Respect to Approach Speeds of Parts of the Human Body
ISO 14119 (EN 1088) Interlocking Devices Associated with Guards – Principles for Design and Selection
Also, request a type "C" standard for your specific machinery.
Contact: Global Engineering Documents, 15 Inverness Way East, Englewood, CO 80112-5704, Tel.: 800-854- 7179
Certificate of Adequacy
This Safety Module datasheet (p/n 60998) satisfies the requirements of Machinery Directive 2006/42/EC, Section 1.7.4 — instructions.
Safety Circuit Integrity and ISO 13849-1 (EN954-1) Safety Circuit Principles
Safety circuits involve the safety-related functions of a machine that minimize the level of risk of harm. These safety-related functions can
prevent initiation, or they can stop or remove a hazard. The failure of a safety-related function or its associated safety circuit may result in
an increased risk of harm.
The integrity of a safety circuit depends on several factors, including fault tolerance, risk reduction, reliable and well-tried components,
well-tried safety principles, and other design considerations.
Depending on the level of risk associated with the machine or its operation, an appropriate level of safety circuit performance must be
incorporated into its design. Standards that detail safety performance levels include ANSI/RIA R15.06 Industrial Robots, ANSI B11 Ma-
chine Tools, OSHA 29CFR1910.217 Mechanical Power Presses, and ISO 13849-1 (EN954-1) Safety-Related Parts of a Control System.
Safety Circuit Integrity Levels
Safety circuits in International and European standards have been segmented into categories, depending on their ability to maintain their
integrity in the event of a failure. The most recognized standard that details safety circuit integrity levels is ISO 13849-1 (EN954-1), which
establishes five levels: Categories B, 1, 2, 3, and the most stringent, Category 4.
In the United States, the typical level of safety circuit integrity has been called "control reliability." Control reliability typically incorporates
redundant control and self-checking circuitry and has been loosely equated to ISO 13849-1 Categories 3 and 4 (see CSA Z432 and ANSI
B11.TR4).
If the requirements described by ISO 13849-1 (EN954-1) are to be implemented, a risk assessment must first be performed to determine
the appropriate category, in order to ensure that the expected risk reduction is achieved. This risk assessment must also take into ac-
count national regulations, such as U.S. control reliability or European "C" level standards, to ensure that the minimum level of perform-
ance that has been mandated is complied with.
Fault Exclusion
An important concept within the category requirements of ISO 13849-1 is the probability of the occurrence of the failure, which can be
decreased using the "fault exclusion" method. This method assumes that the possibility of certain well-defined failure(s) can be reduced
to a point where the resulting fault(s) can be disregarded.
Fault exclusion is a tool a designer can use during the development of the safety-related part of the control system and the risk assess-
ment process. It allows the designer to eliminate the possibility of various failures and justify it through the risk assessment process to
meet the requirements of Categories 2, 3 or 4. See ISO 13849-1/-2 for further information.
Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.clrwtr.com - Email: info@clrwtr.com

Hide quick links:

Advertisement

Table of Contents
loading

Table of Contents