National Instruments DAQ X Series User Manual page 54

Hide thumbs Also See for DAQ X Series:
Table of Contents

Advertisement

Chapter 4
Analog Input
X Series User Manual
Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com
Suppose a 4 V signal is connected to channel 0 and a 1 mV signal
is connected to channel 1. The input range for channel 0 is –10 V
to 10 V and the input range of channel 1 is –200 mV to 200 mV.
When the multiplexer switches from channel 0 to channel 1, the
input to the NI-PGIA switches from 4 V to 1 mV. The
approximately 4 V step from 4 V to 1 mV is 1,000% of the new
full-scale range. For a 16-bit device to settle within 0.0015%
(15 ppm or 1 LSB) of the ±200 mV full-scale range on channel 1,
the input circuitry must settle to within 0.000031% (0.31 ppm or
1/50 LSB) of the ±10 V range. Some devices can take many
microseconds for the circuitry to settle this much.
To avoid this effect, you should arrange your channel scanning
order so that transitions from large to small input ranges are
infrequent.
In general, you do not need this extra settling time when the
NI-PGIA is switching from a small input range to a larger input
range.
Insert Grounded Channel between Signal Channels—Another
technique to improve settling time is to connect an input channel
to ground. Then insert this channel in the scan list between two of
your signal channels. The input range of the grounded channel
should match the input range of the signal after the grounded
channel in the scan list.
Consider again the example above where a 4 V signal is connected
to channel 0 and a 1 mV signal is connected to channel 1. Suppose
the input range for channel 0 is –10 V to 10 V and the input range
of channel 1 is –200 mV to 200 mV.
You can connect channel 2 to AI GND (or you can use the internal
ground; refer to Internal Channels in the NI-DAQmx Help). Set
the input range of channel 2 to –200 mV to 200 mV to match
channel 1. Then scan channels in the order: 0, 2, 1.
Inserting a grounded channel between signal channels improves
settling time because the NI-PGIA adjusts to the new input range
setting faster when the input is grounded.
Minimize Voltage Step between Adjacent Channels—When
scanning between channels that have the same input range, the
settling time increases with the voltage step between the channels.
If you know the expected input range of your signals, you can
group signals with similar expected ranges together in your scan
list.
4-8
ni.com

Hide quick links:

Advertisement

Table of Contents
loading

Table of Contents