Ametek Sequoia Series Programming Manual
Ametek Sequoia Series Programming Manual

Ametek Sequoia Series Programming Manual

Ac/dc power source
Hide thumbs Also See for Sequoia Series:
Table of Contents

Advertisement

Quick Links

Sequoia Series
AC/DC Power Source
SCPI Programming Manual
M447353-01
SCPI Programming Reference Manual
Sequoia Series AC/DC Power Source
M447353-01 Rev A April 2023
www.programmablepower.com

Advertisement

Table of Contents
loading

Summary of Contents for Ametek Sequoia Series

  • Page 1 Sequoia Series AC/DC Power Source SCPI Programming Manual M447353-01 SCPI Programming Reference Manual Sequoia Series AC/DC Power Source M447353-01 Rev A April 2023 www.programmablepower.com...
  • Page 2 Sequoia Series...
  • Page 3 AMETEK Programmable Power, Inc., a unit of AMETEK Electronic Instruments Group (a division of AMETEK, Inc), is a global leader in the design and manufacture of precision, programmable power supplies for R&D, test and measurement, process control, power bus simulation and power conditioning applications across diverse industrial segments.
  • Page 4 Neither AMETEK Programmable Power Inc., San Diego, California, USA, nor any of the subsidiary sales organizations can accept any responsibility for personnel, material or inconsequential injury, loss or damage that results from improper use of the equipment and accessories.
  • Page 5 SAFETY SYMBOLS Sequoia Series...
  • Page 6 AMETEK will, at its expense, deliver the repaired or replaced Product or parts to the Buyer. Any warranty of AMETEK will not apply if the Buyer is in default under the Purchase Order Agreement or where the Product, or any part thereof, is as follows: •...
  • Page 7: Table Of Contents

    Source Subsystem - Voltage ................... 114 4.27 Status Subsystem Commands ..................120 4.28 System Commands ......................125 4.29 Trace Subsystem Commands ..................136 4.30 Trigger Subsystem ......................138 5. Common Commands ........................144 *CLS ..........................144 *ESE ..........................145 Sequoia Series...
  • Page 8 Airbus AMD24 Test Option (-AMD) ................. 210 Boeing B787-0147 Test Option (-B787) ................. 210 8.10 Watt Hour Meter (-WHM) ....................210 Appendix A: SCPI Command tree ....................213 Appendix B: SCPI Conformance Information..................218 Appendix C: Error Messages ......................219 Index ..............................225 Sequoia Series...
  • Page 9 Table 5-1 : *RST default parameter values ....................... 149 Table 5-2 : Self-Test Error ..........................152 Table 7-1: Operation Status Register ........................ 178 Table 7-2: Configuration of Status Register ....................... 180 Table 7-3: Questionable Status Register ......................181 Table 8-1 : Error Messages ..........................223 Sequoia Series...
  • Page 10: Introduction

    The following documents are related to this Programming Manual and contain additional helpful information for using these products in a remote-control environment. User Manual (M447352-01). Includes specifications and supplemental characteristics, how to use the front panel, how to connect to the instrument, and calibration procedures. Available on the AMETEK website www.programmablepower.com...
  • Page 11: Introduction To Programming

    To set up the USB interface on the PC, refer to section 3.4, “USB Interface”. The USB interface may be used to install the updated firmware for the controller if needed. Firmware updates and a Flash Loader utility program and instructions are available from the AMETEK Programmable Power website for this purpose. (www.programmablepower.com).
  • Page 12 RS232C interface, refer to section 3.3. The RS232C interface may be used to install the updated firmware for the controller if needed. Firmware updates and a Flash Loader utility program and instructions are available from the AMETEK Programmable Power website for this purpose. (www.programmablepower.com).
  • Page 13 This page is intentionally left blank. Sequoia Series...
  • Page 14: Introduction To Scpi

    Subsystem commands perform specific power source functions. They are organized into an inverted tree structure with the "root" at the top. Some are single commands while others are grouped within specific subsystems. Refer to appendix A for the power source SCPI tree structure. Sequoia Series...
  • Page 15: Figure 2-1 : Partial Command Tree

    If you enter SOURCe the active header path moves one colon to the right. The interface is now ready to accept :VOLTage :FREQuency, or :CURRent as the next header. You must include the colon because it is required between headers. Sequoia Series...
  • Page 16 Note the use of the optional header LEVel to maintain the correct path within the voltage and current subsystems and the use of the root specifier to move between subsystems. The "Enhanced Tree Walking Implementation" given in appendix A of the IEEE 488.2 standard is not implemented in the power source. Sequoia Series...
  • Page 17: Using Queries

    The simplest SCPI command is a single message unit consisting of a command header (or keyword) followed by a message terminator. FREQuency?<newline> VOLTage?<newline> The message unit may include a parameter after the header. The parameter usually is numeric, but it can be a string: VOLTage 20<newline> VOLTage MAX<newline> Sequoia Series...
  • Page 18: Figure 2-2: Command Message Structure

    Message Unit Separator The semicolons in VOLT:LEV 8; and RANG 166; Root Specifier The colon in RANG 166;:CURR? Query Indicator The question mark in CURR? Message Terminator The <NL> (newline) indicator. Terminators are not part of the SCPI syntax Sequoia Series...
  • Page 19 (VOLTage:LEVel? MAX). 2.4.5 Message Unit Separator When two or more message units are combined into a compound message, separate the units with a semicolon (STATus:OPERation?;QUEStionable?). Sequoia Series...
  • Page 20 (<NL><END>). In the examples of this manual, there is an assumed message terminator at the end of each message. If the terminator needs to be shown, it is indicated as <NL> regardless of the actual terminator character. Sequoia Series...
  • Page 21: Scpi Data Formats

    Character Response Data. Permits the return of character strings. <AARD> Arbitrary ASCII Response Data. Permits the return of undelimited 7-bit ASCII. This data type has an implied message terminator. <SRD> String Response Data. Returns string parameters enclosed in double quotes. Sequoia Series...
  • Page 22: System Considerations And Interface Setup

    Assigning the IEEE-488 Address The power source address can be set remotely or locally. Sequoia Series power sources are shipped with the IEEE-488 address set to 1 from the factory. Once the address is set, you can assign it inside programs.
  • Page 23: Rs232C Interface

    Equipment (DCE). The cable connecting to the Data Terminal Equipment (DTE) should be straight-through (one-to-one contact connections). Pin # Name DCE Signal Direction Transmit Data Output Receive Data Input Common Request To Send Input Clear To Send Output Table 3-1. RS-232C Interface Connector Pinout Sequoia Series...
  • Page 24 Serial Communication Test Program The following sample program written in GW-BASIC can be used to check communication to the Sequoia Series power source over the RS232C serial interface. 'California Instruments Sequoia Series RS232C Communication Demo Program '(c) 1995-2002 Copyright California Instruments, All Rights Reserved...
  • Page 25: Figure 3-1: Db25 To Db9 Adaptor Pinout

    PC only has a 25 pin D sub COM port, a 25 to 9 pin adaptor is required to use the serial cable supplied with the Sequoia. If none can be found, one can be constructed using the diagram shown below. Figure 3-1: DB25 to DB9 Adaptor pinout Sequoia Series...
  • Page 26: Usb Interface

    Device Manager on PC. 3. In Device Manager window under “Other Devices” there will be a “Virtual COM Port” with an exclamation point. 4. Right click “Virtual COM Port” and click Update Driver Software. Select “Browse my computer for driver software” Sequoia Series...
  • Page 27 5. Browse for the folder “cicdc_12JAUG16”. Click Next. Sequoia Series...
  • Page 28 It is recommended however to close any open USB connections to the AC source before turning it off. To use the USB interface, you may use the CI Virtual Panels GUI software supplied on the AMETEK website or develop your own application code.
  • Page 29: Lan Interface Option

    LAN Interface Option An Ethernet LAN interface option is available as an option for the Sequoia Series power sources. This option must be specified at the time of order. A –LAN option indicator will appear on the model number tag at the rear-panel of the power source to indicate the presence of this option.
  • Page 30 Address Box in the Device Interface screen. Another option if IP address is not known use the “Search Lxi Inst.” button on the Device Interface screen to bring up the IP address for the attached Sequoia unit. Highlight your device and click “Connect” button to connect to Sequoia unit. Sequoia Series...
  • Page 31: Figure 3-3: Pinging Ac Source Lan Ip Address

    PC. Also, the power source interface configuration must be set to use a baud rate of 460,800. If everything is working it will look like this: Figure 3-3: Pinging AC Source LAN IP address. Sequoia Series...
  • Page 32 This page intentionally left blank. Sequoia Series...
  • Page 33: Scpi Command Reference

    Calibrate the offset current at the low range :HROFset Calibrate the offset current at the high range [:FSCale] CALibration full-scale DC current measurements. This calibration must be done for both low and high voltage ranges :NEGative CALibration full-scale negative current measurements Sequoia Series...
  • Page 34 CALibration full-scale output dc current at high voltage range. (positive DC) :ZERO Trim output dc current offset at high voltage range. :LAST Set the last calibrated date in the format dd/mm/yy :NEXT Set the next calibration date in the format dd/mm/yy :ADC :VOLTage Sequoia Series...
  • Page 35 CAL:PASS "35461" Related Commands *IDN? 4.2.2 IHARmonic CALibrate:IHARmonic This query command retrieves the interharmonic calibration coefficient for the IEC413 option. This query returns a comma-separated list of the calibration coefficient and the frequency at which the calibration was peformed. Sequoia Series...
  • Page 36 Returned Parameters <NR2> CALibration:MEASure:CURRent[:AC]:HROFset? This command will set the high range current measurements offset value Command Syntax CALibration:MEASure:CURRent[:AC]:HROFset Parameters <NRf> (actual value reported with the command MEAS:CURR? Examples CAL:MEAS:CURR[:AC]:HROF 0.020 Query Syntax CALibration:MEASure:CURRent[:AC]:HROFset? Returned Parameters <NR2> CALibration:MEASure:CURRent:DC[:FSCale] <NRf> Sequoia Series...
  • Page 37 This command initiates the calibration of the negative DC current measurement at full scale. Command Syntax CALibration:MEASure:CURRent:DC:NEGative Parameters <NRf> (actual load current measured with external device) Examples CAL:MEAS:CURR:DC -11.5 Query Syntax CALibration:MEASure:CURRent:DC:NEG? Returned Parameters <NR2> (value range -1000 to +1000) Sequoia Series...
  • Page 38 This command initiates the calibration of the negative DC voltage measurement at full scale. Command Syntax CALibration:MEASure:VOLTage:DC:NEGative Parameters <NRf> (actual DC output voltage measured with external device) Examples CAL:MEAS:VOLT:DC -120 Query Syntax CALibration:MEASure:VOLTage:DC:NEG? Returned Parameters <NR2> (value range -1000 to +1000) Sequoia Series...
  • Page 39 Output Phase CALibration:PHASe <NRf+> The Sequoia Series power source controller can be operated using its internal timebase reference, an external clock or in external sync mode. (See FREQ:MODE command on page 78. When using in external clock or sync mode, it may be desirable to shift the phase output with respect to the external reference.
  • Page 40 /* Optional. Returns coefficient between 0 and 65535 /* Repeat last three commands for phase B and C using INST:NSEL 2 and INST:NSEL 3 respectively. CAL:SAVE /* Saves coefficient This procedure applies to both AC and DC modes and high and low voltage ranges. Sequoia Series...
  • Page 41 CALibration:VOLTage:DC:HRANge <NRf> Parameters <NRf> (value from 0 to 65535) Examples CAL:VOLT:DC:HRAN 35000 Query Syntax CALibration:VOLTage:DCHRANge? Returned Parameters <NRf> (value from 0 to 65535) CALibration[:SOURce]:VOLTage:DC[:HRANge]:ZERO <NRf+> This command will set the calibration coefficient for the dc output voltage offset. Sequoia Series...
  • Page 42 This command will set the calibration coefficient for the ac output current offset Command Syntax CALibration:CURRent:LRAN:ZERO <NRf> Parameters <NRf> (value from 0 to 255) Examples CAL:CURR:ZERO 127 Query Syntax CALibration:CURRent:LRAN:ZERO? Returned Parameters <NRf> (cal coefficient value range 0 to 255) Sequoia Series...
  • Page 43 This command will set the calibration coefficient for the dc output current offset. Command Syntax CALibration:CURRent:DC:HRANge:ZERO <NRf+> Parameters <NRf> (a value between -2000 and +2000) Examples CAL:CURR:DC:HRAN:ZERO -1003 Query Syntax CALibration:VOLTage:DC:HRANge:ZERO? Returned Parameters <NR1> (value range -2000 to +2000) Sequoia Series...
  • Page 44 CAL:LAST '15/10/23' represent October 15, 2023 Related Commands CAL:NEXT CALibration:NEXT This command will set the next calibration date in the format CAL:NEXT “<dd>/<mm>/<yy>” Command Syntax CALibration:NEXT<SRD> Parameters string character Examples CAL:NEXT '15/10/23' represent October 15, 2023 Related Commands CAL:LAST Sequoia Series...
  • Page 45 CAL:VOLT:DC:HROF 35000 Query Syntax CAL:VOLT:DC:HROF? Returned Parameters <NRf> (value from 0 to 65535) CALibration :CURRent[:AC] :LROFset <NRf> This command will result in the ADC calibration coefficient being calculated for the AC full scale output current in the low range. Sequoia Series...
  • Page 46 This command will result in the ADC calibration coefficient being calculated for the DC full scale output current in the high voltage range. Command Syntax CALibration:CURRent:DC:HROFset <NRf> Parameters <NRf> (value from 0 to 65535) Examples CAL:CURR:DC:HROF 35000 Query Syntax CAL:CURR:DC:HROF? Returned Parameters <NRf> (value from 0 to 65535) Sequoia Series...
  • Page 47 This command will result in the Calibrate the coefficient for Voltage Monitor IMON Command Syntax CALibration:MONitor:CURRent <NRf> Parameters <NRf> (value from 0 to 65535) Examples CAL:MON:CURR 35000 Query Syntax CAL:MON:CURR? Returned Parameters <NRf> (value from 0 to 65535) Sequoia Series...
  • Page 48: Instrument Subsystem

    To make sure the desired phase is selected, follow the “INST:COUP NONE” command with an “INST:NSEL <n>” command Command Syntax INSTrument:NSEL Parameters 1 | 2 | 3 Examples INST:NSEL 1 Query Syntax INST:NSEL? Returned Parameters <CRD> Related Commands INST:COUP INST:SEL Sequoia Series...
  • Page 49 To make sure the desired phase is selected, follow the “INST:COUP NONE” command with an “INST:SEL <n>” command Command Syntax INSTrument:SEL Parameters A | B | C Examples INST:SEL A Query Syntax INST:SEL? Returned Parameters <CRD> Related Commands INST:COUP INST:NSEL Sequoia Series...
  • Page 50: Array Measurement Subsystem

    Returns phase angles of the first 50 harmonics :MODE Selects waveform data transfer format :VOLTage [:DC]? Returns the digitized instantaneous voltage :HARMonic [:AMPLitude]? Returns amplitudes of the first 50 harmonics :PHASe? Returns phase angles of the first 50 harmonics Sequoia Series...
  • Page 51 Only harmonic data values from 0 (dc) to the number specified will be returned. This capability may be used to reduce the transfer time by avoiding the transfer of unwanted data. If the fundamental frequency is programmed to 400 Hz for example, there is no need to query harmonics above number Sequoia Series...
  • Page 52 Thus the maximum harmonic that can be measured is dependent on the output frequency. Any harmonics that represent frequencies greater than the above frequencies are returned as 0. Query Syntax MEASure:ARRay:CURRent:HARMonic:PHASe?<NRf> FETCh:ARRay:CURRent:HARMonic:PHASe?<NRf> Parameters None Examples MEAS:ARR:CURR:HARM:PHAS? 16 FETC:ARR:CURR:HARM:PHAS? Returned Parameters 17 NR2 values Related Commands INST:NSEL Sequoia Series...
  • Page 53 'Retrieve ASC values from eight hex byte input data sData = UCase(sData) For i = 0 To 3 c(i) = 0 For j = 0 To 1 iChar = AscB(Mid$(sData, i * 2 + j + 1, 1)) - 48 Sequoia Series...
  • Page 54 End If End If End If 'Append number sign and return value If sign Then mant_f = -mant_f StringToIEEEFloat = mant_f Exit Function '============================================================= FloatConvError: 'Conversion errors are truncated to zero StringToIEEEFloat = 0 Exit Function End Function Sequoia Series...
  • Page 55 Thus, the maximum harmonic that can be measured is dependent on the output frequency. Any harmonics that represent frequencies greater than above frequencies are returned as 0. Query Syntax MEASure:ARRay:VOLTage:HARMonic[:AMPLitude]? [<nrf>] FETCh:ARRay:VOLTage:HARMonic[:AMPLitude]? [<nrf>] Parameters None Examples MEAS:ARR:VOLT:HARM? FETC:ARR:VOLT:HARM? Returned Parameters 51 NR2 values Related Commands INST:NSEL Sequoia Series...
  • Page 56 Thus, the maximum harmonic that can be measured is dependent on the output frequency. Any harmonics that represent frequencies greater than the above frequencies are returned as 0. Query Syntax MEASure:ARRay:VOLTage:HARMonic:PHASe?<NRf> FETCh:ARRay:VOLTage:HARMonic:PHASe?<NRf> Parameters None Examples MEAS:ARR:VOLTage:HARM:PHAS? 30 FETC:ARR:VOLTage:HARM:PHAS? Returned Parameters 31 NR2 values Related Commands INST:NSEL Sequoia Series...
  • Page 57: Current Measurement Subsystem

    AC only, and will return the AC plus the DC component if the voltage mode is set for ACDC. Query Syntax MEASure[:SCALar]:CURRent[:AC]? FETCh[:SCALar]:CURRent[:AC]? Parameters None Examples MEAS:CURR:AC? FETC:CURR? Returned Parameters <NR2> Related Commands INST:NSEL Sequoia Series...
  • Page 58 Parameters None Examples MEAS:CURR:AMPL:MAX? FETC:CURR:AMPL:MAX? Returned Parameters <NR2> Related Commands INST:NSEL MEAS:CURR:AMPL:RESet MEASure:CURRent:AMPLitude:RESet Phase Selectable This command will reset the peak current measurement to zero. Query Syntax MEASure[:SCALar]:CURRent:AMPLitude:RESset. Parameters None Examples MEAS:CURR:AMPL:RES Returned Parameters None Related Commands MEAS:CURR:AMPL:MAX? Sequoia Series...
  • Page 59 Thus, the maximum harmonic that can be measured is dependent on the output frequency. Any harmonics that represent frequencies greater than above frequencies are returned as 0. Query Syntax MEASure[:SCALar]:CURRent:HARMonic[:AMPLitude]?<NRf> FETCh[:SCALar]:CURRent:HARMonic[:AMPLitude]?<NRf> Parameters 0 to 50 Examples MEAS:CURR:HARM? 3 FETC:CURR:HARM? 1 Returned Parameters <NR2> Related Commands INST:NSEL Sequoia Series...
  • Page 60 Related Commands INST:NSEL MEASure:CURRent:HARMonic:THD? ] FETCh:CURRent:HARMonic:THD? Phase Selectable These queries return the percentage of total harmonic distortion and noise in the output current. Query Syntax MEASure[:SCALar]:CURRent:HARMonic:THD? FETCh[:SCALar]:CURRent:HARMonic:THD? Parameters None Examples MEAS:CURR:HARM:THD? FETC:CURR:HARM:THD? Returned Parameters <NR2> Related Commands INST:NSEL Sequoia Series...
  • Page 61: Frequency Measurement Subsystem

    Frequency Measurement Subsystem This subsystem programs the frequency measurement capability of the Sequoia Series power source. Subsystem Syntax MEASure [:SCALar] :FREQuency? Returns the output frequency MEASure:FREQuency? This query returns the output frequency in Hertz. Query Syntax MEASure[:SCALar]:FREQuency? Parameters None Examples...
  • Page 62: Power Measurement Subsystem

    Power Measurement Subsystem This subsystem programs the power measurement capability of the Sequoia Series power source. Subsystem Syntax MEASure | FETCh [:SCALar] :POWer [:AC] [:REAL]? Returns real power :APParent? Returns VA :PFACtor? Returns power factor :TOTAL? Returns the total power...
  • Page 63 This query returns the DC component of the power being sourced at the output terminals in kilo watts (KW). The query should be used only when the voltage mode is set for DC, or an error message will be generated. Query Syntax MEASure[:SCALar]:POWer:DC? Parameters None Examples MEAS:POW? Returned Parameters <NR2> Related Commands INST:NSEL Sequoia Series...
  • Page 64: Voltage Measurement Subsystem

    Voltage Measurement Subsystem This subsystem programs the voltage measurement capability of the Sequoia Series. Two measurement commands are available: MEASure and FETCh. MEASure triggers the acquisition of new measurement data before returning a reading. FETCh returns a reading computed from previously acquired data.
  • Page 65 Thus, the maximum harmonic that can be measured is dependent on the output frequency. Any harmonics that represent frequencies greater than above frequencies are returned as 0. Query Syntax MEASure[:SCALar]:VOLTage:HARMonic:PHASe?<NRf> FETCh[:SCALar]:VOLTage:HARMonic:PHASe?<NRf> Parameters 0 to 50 Examples MEAS:VOLT:HARM:PHAS? 3 FETC:VOLT:HARM:PHAS? 1 Returned Parameters <NR2> Related Commands INST:NSEL Sequoia Series...
  • Page 66 MEASure:VOLTage:HARMonic:THD? FETCh:VOLTage:HARMonic:THD? Phase Selectable These queries return the percentage of total harmonic distortion and noise in the output voltage. Query Syntax MEASure[:SCALar]:VOLTage:HARMonic:THD? FETCh[:SCALar]:VOLTage:HARMonic:THD? Parameters None Examples MEAS:VOLT:HARM:THD? FETC:VOLT:HARM:THD? Returned Parameters <NR2> Related Commands INST:NSEL Sequoia Series...
  • Page 67: Output Subsystem

    0 volts, with output relays opened. The query form returns the output state. Note: On three phase Sequoia Series with firmware revision below 0.31, it is recommended to set the phase coupling to ALL before closing the output relay to ensure all phases are correctly programmed.
  • Page 68 Sets the power-on state to *RCL 0. Refer to the *RCL command as described later in this chapter for more information. Command Syntax OUTPut:PON[:STATE] <state> Parameters RST | RCL0 Examples OUTP:PON:STAT RST Query Syntax OUTPut:PON:STATe? Returned Parameters <CRD> Related Commands *RST *RCL Sequoia Series...
  • Page 69 When using the Remote Inhibit input, it will be necessary to disconnect any RI connection to the Sequoia leader unit when turning on the Sequoia leader unit. During initialization, the RI connection must be OPEN or initialization will be halted with the message WAITING FOR AUXILIARY displayed on the LCD screen. Sequoia Series...
  • Page 70 ACTive The remote inhabit is active, the voltage is set to zero and output relay is off. Command Syntax OUTPut:RI :STATus ? Parameters none *RST Value Examples OUTP:RI:STAT ? Query Syntax OUTPut:RI:STAT ? Returned Parameters INAC | ACT Sequoia Series...
  • Page 71 Refer to the User Manual for pin out information and signal levels for the Trigger out or Function Strobe signal. signal.) Command Syntax OUTPut:TTLTrg[:STATe]<bool> Parameters 0|1|OFF|ON *RST Value Examples OUTP:TTLT 1 OUTP:TTLT OFF Query Syntax OUTPut:TTLTrg[:STATe]? Returned Parameters 0 | 1 Related Commands OUTP:TTLT:SOUR Sequoia Series...
  • Page 72 When an event becomes true at the selected TTLTrg source, a pulse is sent to the function strobe on the system interface connector on the rear panel of the power source. Command Syntax OUTPut:TTLTrg:SOURce<source> Parameters BOT|EOT|LIST *RST Value Examples OUTP:TTLT:SOUR LIST Query Syntax OUTPut:TTLTrg:SOURce? Returned Parameters <CRD> Related Commands OUTP:TTLT Sequoia Series...
  • Page 73: Source Subsystem - Current

    4.11 Source Subsystem - Current This subsystem programs the output current of the Sequoia Series power source. Subsystem Syntax [SOURce:] CURRent [:LEVel] [:IMMediate] [:AMPLitude] <n> Sets the rms current limit :HIGH Sets the soft limits for maximum output current to which the unit could be programmed.
  • Page 74 Use CURRent:PROT:DEL to prevent momentary current limit conditions caused by programmed output changes or load changes from tripping the overcurrent protection. SOURCE: CURRent: PROTection:DELay Command Syntax Parameters 0.1 to 5 Unit seconds *RST Value 100 milliseconds Examples CURR:PROT:DEL 1.5 Query Syntax CURR:PROT:DEL? Returned Parameters <NR2> Related Commands OUTP:PROT:STATE Sequoia Series...
  • Page 75 Command Syntax [SOURce:]CURRent:ALC <bool> Parameters 0 | OFF | 1 | ON | 2 | REG Unit A/S (Ampere per second) *RST Value Examples CURR:ALC 1 Query Syntax [SOURce:]CURRent:ALC? Returned Parameters 0 | 1 | 2 Related Commands OUTP:IMP:STAT Sequoia Series...
  • Page 76: Source Subsystem - Power (Eload Power Programming)

    Subsystem Syntax [SOURce:] POWer [:REAL] Sets the Active power required as a load for the UUT :REACtive Sets the Reactive power required as a load for the [SOURce:]POWer[:REAL] Sets the Active power required as a load for the UUT Sequoia Series...
  • Page 77: Source Subsystem -Impedance (Eload Rlc Programming)

    -1 to remove the connection, <NRf> Example SOUR:IMP -1 10 13 Since -1 is programmed to Resistance, It is considered as Resistance is not connected. Query Syntax [SOURce:] IMPedance? Returned Parameters < NRf > Related Commands SOUR:IMP?MIN, SOUR:IMP?MAX Sequoia Series...
  • Page 78: Source Subsystem - Frequency

    The output frequency is changed to the value set by FREQuency:TRIGgered for a duration determined by the pulse commands. LIST The output frequency is controlled by the frequency list when a triggered transient occurs. SENSe Selects external sync mode. EXTernal Selects external clock input. Sequoia Series...
  • Page 79 The frequency slew rate is controlled by the frequency list when a triggered transient occurs. Command Syntax [SOURce:]FREQuency:SLEW:MODE<mode> Parameters FIXed | STEP | PULSe | LIST *RST Value FIXed Examples FREQ:SLEW:MODE FIX Query Syntax [SOURce:]FREQuency:SLEW:MODE? Returned Parameters <CRD> Related Commands FREQ FREQ:SLEW:TRIG Sequoia Series...
  • Page 80 This command sets the soft limits for minimum output frequency to which the unit could be programmed SOURCE: FREQuency: LOW Command Syntax Parameters <NR2> Unit Hz (Hertz) Examples FREQ: LOW 5 Query Syntax FREQ: LOW? Returned Parameters <NR2> Related Commands FREQ FREQ:MODE Sequoia Series...
  • Page 81: Source Subsystem - Function

    You cannot program a voltage that produces a higher peak voltage on the output than a 333 Vrms sinewave when in the 333 V range. Command Syntax [SOURce:]FUNCtion[:SHAPe][:IMMediate]<shape> Parameters SINusoid|SQUare|CSINe|<waveform_name> *RST Value SINe Examples FUNC SIN FUNC TABLE1 Query Syntax [SOURce:]FUNCtion[:SHAPe]? Returned Parameters <CRD> Related Commands FUNC:MODE Sequoia Series...
  • Page 82 For a sinewave, the maximum voltage that can be programmed is 400 V rms. Command Syntax [SOURce:]FUNCtion[:SHAPe]:TRIGgered<shape> Parameters SINusoid|SQUare|CSINusoid|<waveform_name> *RST Value SINusoid Examples FUNC:TRIG SIN FUNC:TRIG TABLE1 Query Syntax [SOURce:]FUNCtion[:SHAPe]:TRIGgered? Returned Parameters <CRD> Related Commands FUNC FUNC:MODEVOLT Sequoia Series...
  • Page 83: Source Subsystem - Synchronize (Eload Mode)

    Query Syntax [SOURce:]FUNCtion[:SHAPe]:CSINusoid? Returned Parameters <NR2> Related Commands FUNC:MODE 4.16 Source Subsystem – Synchronize (eLoad Mode) This subsystem programs the Synchronization settings of the Sequoia Series power source in eLoad mode. Subsystem Syntax [SOURce:] SYNChronize [:START] Start the Synchronization process between...
  • Page 84: Source Subsystem - Program (Eload Mode)

    Query Syntax [SOURce:]SYNChronize:VOLTage? Returned Parameters <NR2> Related Commands SYNC:VOLT?MIN, SYNC:VOLT?MAX 4.17 Source Subsystem – Program (eLoad Mode) This subsystem programs the Operating Mode settings of the Sequoia Series power source. Subsystem Syntax [SOURce:] PROGram [:MODE]? Responds with current operating mode :ELOAD...
  • Page 85: Regenerate Subsystem - Grid Simulator Mode

    Returned Parameters CURR | POW | IMP Related Commands [SOURce:]PROGram:ELOAD[:MODE] 4.18 Regenerate Subsystem – Grid Simulator mode This subsystem programs the Regenerate settings of the Sequoia Series power source. Subsystem Syntax REGenerate [:STATe] Turns SNK mode ON or OFF. :UNDer...
  • Page 86 REG:DEL:FREQ command. Command Syntax REGenerative:DELay:FREQuency[:SHUTdown] <NRf+> Parameters 0.25 to 10, time in seconds. Examples REGenerative:DELay:FREQuency[:SHUTdown] 10 Query Syntax REGenerative:DELay:FREQuency[:SHUTdown]? Returned Parameters <NRf+> Related Commands REG:DEL:FREQ?MIN, REG:DEL:FREQ?MAX Sequoia Series...
  • Page 87 Note that this current limit set point is different from the normal mode current limit setting. Command Syntax REGenerative:CURRent <NRf+> Parameters 0 to max. value for selected current range Unit A (rms amperes) Examples REGenerative:CURRent 10 Query Syntax REGenerative:CURRent? Returned Parameters <NRf+> Related Commands REG:CURR?MIN, REG:CURR?MAX Sequoia Series...
  • Page 88: Source Subsystem - Limit

    AC voltage ranges of the Sequoia Series. The first parameter represents the 166 V range value, the second the 333 V range. Note that the equivalent DC range values are not returned, even in the Sequoia unit is in DC mode.
  • Page 89 120° phase offset between phase A, B and C. Any other value will configure the controller as a two phase unit using phase A and C. Command Syntax [SOURce:]LIMit:PHASe<NRf> Parameters 0 to 360 [command protected] Query Syntax [SOURce:]LIMit:PHASe? Returned Parameters <NR2> Sequoia Series...
  • Page 90: Sense Subsystem - Sweep

    Command Syntax SENSe:SWEep:OFFSet <NRf+> Parameters 1000 single phase configuration -128 to 1000 for three phase configuration *RST Value Examples SENS:SWE:OFFS -5 Query Syntax SENSe:SWEep:OFFSet? Returned Parameters <NR2> Related Commands SENS:SWE:TINT? MEAS:ARR Sequoia Series...
  • Page 91 10.4 or 31.2 sec. Command Syntax SENSe:SWEep:TINTerval <NRf+> Parameters 10.666 106.666 single phase configuration 31.2 to 312 for three phase configuration *RST Value 10.4 or 31.2 Examples SENS:SWE:TINT-150 Query Syntax SENSe:SWEep:TINTerval? Returned Parameters <NR2> Related Commands SENS:SWE:OFFS MEAS:ARR Sequoia Series...
  • Page 92: Source Subsystem - List

    Returns the number of voltage slew points :CURRent [:LEVel] <n> ,<n> Sets the Current list :POINts? Returns the number of current level points :SLEW <n> ,<n> Sets the voltage slew list :POINts? Returns the number of current slew points Sequoia Series...
  • Page 93 LIST:TTLT LIST:VOLT LIST:DWELl:POINts? This query returns the number of points specified in LIST:DWELl. Note that it returns only the total number of points, not the point values. Query Syntax [SOURce:]LIST:DWELl:POINts? Returned Parameters <NR1> Example LIST:DWEL:POIN? Related Commands LIST:DWELl Sequoia Series...
  • Page 94 LIST:STEP LIST:FREQ LIST:FREQuency:SLEW:POINts? This query returns the number of points specified in LIST:FREQuency:SLEW. Note that it returns only the total number of points, not the point values. Query Syntax [SOURce:]LIST:FREQ:SLEW:POINts? Returned Parameters <NR1> Example LIST:FREQ:SLEW:POIN? Related Commands LIST:FREQ:SLEW Sequoia Series...
  • Page 95 LIST:STEP LIST:VOLT LIST:FUNCtion:POINts? This query returns the number of points specified in LIST:FUNC. Note that it returns only the total number of points, not the point values. Query Syntax [SOURce:]LIST:VOLTage:POINts? Returned Parameters <NR1> Example LIST:VOLT:POIN? Related Commands LIST:VOLT Sequoia Series...
  • Page 96 AUTO causes the entire list to be output sequentially after the starting trigger, paced by its dwell delays. As each dwell delay elapses, the next point is immediately output. Command Syntax [SOURce:]LIST:STEP<step> Parameters ONCE | AUTO *RST Value AUTO Examples LIST:STEP ONCE Query Syntax [SOURce:]LIST:STEP? Returned Parameters <CRD> Related Commands LIST:COUN LIST:DWEL Sequoia Series...
  • Page 97 OUTP:TTLT:STAT OUTP:TTLT:SOUR LIST:TTLTrg:POINts? This query returns the number of points specified in LIST:TTLT. Note that it returns only the total number of points, not the point values. Query Syntax [SOURce:]LIST:TTLTrg:POINts? Returned Parameters <NR1> Example LIST:TTLT:POIN? Related Commands LIST:TTLT Sequoia Series...
  • Page 98 ABORt. Command Syntax [SOURce:]LIST:VOLTage:SLEW <NRf+>,<NRf+> Parameters 0.1 to 1E9 | MAX Unit V/S (volts per second) Example LIST:VOLT:SLEW 10, 1E2, MAX Query Syntax [SOURce:]LIST:VOLTage:SLEW? Returned Parameters <NR2> Related Commands LIST:VOLT:SLEW:POIN? LIST:COUN LIST:DWEL LIST:STEP Sequoia Series...
  • Page 99 The order in which the points are entered determines the sequence in which the list will be output when a list transient is triggered. Changing list data while a subsystem is in list mode generates an implied ABORt. Sequoia Series...
  • Page 100: Source Subsystem - Mode

    Sets the output mode MODE The mode command switches the output voltage between the available output modes. Command Syntax [SOURce:]MODE Parameters AC | DC | ACDC Example MODE AC Query Syntax [SOURce:]MODE? Returned Parameters <CRD> Related Commands PONS:VOLT:MODE Sequoia Series...
  • Page 101: Source Subsystem - Phase

    The waveform shape is controlled by the phase list when a triggered transient occurs. Command Syntax [SOURce:]PHASe:MODE<mode> Parameters FIXed | STEP | PULSe | LIST *RST Value Examples PHAS:MODE LIST PHAS:MODE FIX Query Syntax [SOURce:]PHASe:MODE? Returned Parameters <CRD> Related Commands PHAS:TRIG PHAS Sequoia Series...
  • Page 102 Command Syntax [SOURce:]PHASe:TRIGgered<NRf+> Parameters -360° through +360° *RST Value triggered phase ø1 = 0°, triggered phase ø2 = 120°, triggered phase ø3 = 240° Examples PHAS:TRIG 120 PHASE MAX Query Syntax [SOURce:]PHASe:TRIGgered? Returned Parameters <NR3> Related Commands PHAS:MODE PHAS Sequoia Series...
  • Page 103: Source Subsystem - Ponsetup

    Sets output off relay open delay in seconds. [:HOLD] SENSe INT|EXT Set the voltage sense to internal or external VOLTage [:LEVel] <n> Set the voltage level MODE DC|AC|ACDC Set the voltage mode VRANge 166|333|220|440 Set the voltage range Sequoia Series...
  • Page 104 STANdard|MASTer|AUXiliary Examples PONSetup:CLOCk STAN Query Syntax PONSetup:CLOCk? Returned Parameters <CRD> Related Commands FREQ:MODE PONSetup:CURRent This command sets the initial current limit at the power on. The maximum allowable current is controlled by the voltage range and voltage mode. Sequoia Series...
  • Page 105 Related Commands CURR:PROT:STAT PONSetup:CURRent:PROTection:DELAY This command is used to set the protetction delay period. Command Syntax [SOURce:] PONSetup:CURRent: PROTection:DELAY Parameters 0.1 to 5 Unit Seconds Examples PONSetup:CURRent:PROTection:DELAY 0.6 Query Syntax PONSetup:CURRent:PROTection:DELAY? Returned Parameters <NR2> Related Commands OUTP:PROT:STATE PONSetup:CURRent:PHASE Sequoia Series...
  • Page 106 Examples OUTP ON OUTP 0 Query Syntax PONS:OUTP? Returned Parameters 0 | 1 PONSetup:PEAK:CURRent[:PROTection] This command can be used to disable the peak current shutdown mode. It is factory disabled and should be left disabled for most situations. Sequoia Series...
  • Page 107 Command Syntax PONSetup:SYNChronize:PHASe <NRf+> Parameters -360 to +360 Unit Examples PONS:SYNC:PHAS 240 Query Syntax PONSetup:SYNChronize:PHAS? Returned Parameters <NR2> Related Commands SYNC:PHAS?MIN, SYNC:PHAS?MAX PONSetup:SYNChronize:VOLTage Phase Selectable This command programs the sync voltage level of the power source at power-on. Sequoia Series...
  • Page 108 Command Syntax [SOURce:]PONSetup:REFerence[:MODE] <source> Parameters INTernal|EXTernal|RPVoltage Examples PONSetup:REFererence EXT Query Syntax PONSetup:REF? Returned Parameters <CRD> Related Commands PONS:REF:FSC PONSetup:REFerence:FSCale This command determines the external voltage reference level at the power on that correspond to the full scale output voltage. Sequoia Series...
  • Page 109 INTernal|EXTernal Examples PONSetup:SENSe INT Query Syntax PONSetup:SENS? Returned Parameters <CRD> Related Commands VOLTage:SENSe PONSetup:VOLTage[:LEVel] This command sets the output voltage level at the power on. This voltage level can not exceed the limit at the initial voltage range. Sequoia Series...
  • Page 110 OVP level, then the AC source output is disabled and the Questionable Condition status register OV bit is set Command Syntax [SOURce:] PONSetup:VOLTage Parameters <NRf> Unit Volts Examples PONSetup:VOLTage:PROTection 20 Query Syntax PONSetup:VOLTage:PROTection? Returned Parameters <NRf+> Related Commands SOUR:VOLT:PROT?MIN, SOUR:VOLT:PROT?MAX Sequoia Series...
  • Page 111: Source Subsystem - Pulse

    Command Syntax [SOURce:]PULSe:HOLD<parameter> Parameters WIDTh|DCYCle *RST Value WIDTh Examples PULS:HOLD DCYC Query Syntax [SOURce:]PULSe:HOLD? Returned Parameters <CRD> Related Commands PULS:COUN PULS:DCYC PULS:PER PULS:WIDT Sequoia Series...
  • Page 112: Table 4-1 : Pulse:hold = Width Parameters

    This command sets the period of a triggered output transient The command parameters are model- dependent. Command Syntax [SOURce:]PULSe:PERiod<NRf+> Parameters 2 msecs to 90,000 secs|MINimum|MAXimum Unit S (seconds) *RST Value 1 sec Examples PER 0.001PER MIN Query Syntax [SOURce:]PERiod? Returned Parameters <NR2> Related Commands PULS:COUN PULS:DCYC PULS:WIDT Sequoia Series...
  • Page 113 This command sets the width of a transient output pulse.The command parameters are model- dependent. Command Syntax [SOURce:]PULSe:WIDTh<NRf+> Parameters 1 msecs to 90,000 secs |MINimum|MAXimum Unit S (seconds) *RST Value 0.5 secs Examples PULS:WIDT 0.001PULS:WIDT MIN Query Syntax [SOURce:]PULSe:WIDTh? Returned Parameters <NR2> Related Commands PULS:COUN PULS:DCYC PULS:PER Sequoia Series...
  • Page 114: Source Subsystem - Voltage

    Set the source of reference INT|EXT|RPV :SENSe [:SOURce] INTernal | EXTernal Sets voltage sense source :SLEW [:IMMediate] <n> | MAXimum Sets the voltage slew rate :MODE <mode> Sets voltage slew mode (FIX|STEP|PULS|LIST) :TRIGgered [:AMPLitude] <n> | MAXimum Sets the transient voltage slew rate Sequoia Series...
  • Page 115 VOLT:LEV 10 Query Syntax [SOURce:]VOLTage[:LEVel][:IMMediate][:AMPLitude]? Returned Parameters <NR2> Related Commands [SOUR:]MODE VOLT:TRIG VOLTage:TRIGgered Phase Selectable This command selects the AC rms or DC amplitude that the output voltage will be set to during a triggered step or pulse transient. Sequoia Series...
  • Page 116 <NRf> Unit V (peak voltage) *RST Value Examples VOLT:PROT:UNDER 0 Query Syntax [SOURce:]VOLTage:PROTection:UNDER[:LEVel]? Returned Parameters <NR3> Related Commands VOLT:PROT:UNDER?MIN, VOLT:PROT:UNDER?MAX VOLTage:HIGH This command sets the soft limits for maximum output voltage to which the unit could be programmed Sequoia Series...
  • Page 117 <CRD> Related Commands VOLT:TRG VOLT VOLTage:RANGe[:LEVel] This command sets the voltage range of the power source. On the Sequoia Series, there are two voltage ranges available: • 166 VAC or 333 VAC range for AC-mode and (AC+DC)-mode • 220 VDC or 440 VDC range for DC-mode The LIM:VOLT? Query may be used to determine which AC or DC voltage ranges are available to select.
  • Page 118 This senses the output voltage at the user's sense terminals, which allows remote voltage sensing at the load. Command Syntax [SOURce:]VOLTage:SENSe[:SOURce] <source> Parameters INTernal | EXTernal *RST Value INTernal Examples VOLT:SENS:SOUR INT Query Syntax [SOURce:]VOLTage:SENSe[:SOURce]? Returned Parameters <CRD> Sequoia Series...
  • Page 119 MAXimum will set the slew to its maximum possible rate. The maximum allowed value is1E9. Command Syntax [SOURce:]VOLTage:SLEW:TRIGgered<NRf+> Parameters 0 to 1E9 | MAXimum Unit V/S (volts per second) *RST Value MAXimum Examples VOLT:SLEW:TRIG 1 VOLT:SLEW:TRIG MAX Query Syntax [SOURce:]VOLTage:SLEW:TRIGgered? Returned Parameters <NR2> Related Commands VOLT:SLEW:MODE VOLT:SLEW Sequoia Series...
  • Page 120: Status Subsystem Commands

    Enable specific bits in selected phase’s Event :ENABle register values Bit Configuration of Status Operation Registers Bit Position 15-5 Bit Name not used MEAS TRANS not used Bit Weight Calibration is completed TRANS Transient is completed MEAS Measurement is completed Sequoia Series...
  • Page 121 (OPER) of the Status Byte register. The operation summary bit is the logical OR of all enabled Operation Event register bits. Command Syntax STATus:OPERation:ENABle <NRf+> Parameters 0 to 32727 Default Value Examples STAT:OPER:ENAB 32 STAT:OPER:ENAB 1 Query Syntax STATus:OPERation:ENABle? Returned Parameters <NR1>(Register value) Related Commands STAT:OPER:EVEN Sequoia Series...
  • Page 122 Related Commands *CLS STATus:QUEStionable:CONDition? This query returns the value of the Questionable Condition register. This is a read-only register which holds the real-time (unlatched) questionable status of the power source. Query Syntax STATus:QUEStionable:CONDition? Example STAT:QUES:COND? Returned Parameters <NR1>(Register value) Sequoia Series...
  • Page 123 Enable register is a mask for enabling specific bits from the Questionable Event register to set the questionable summary (QUES) bit of the Status Byte register. This bit (bit 3) is the logical OR of all the Questionable Event register bits that are enabled by the Questionable Status Enable register. Sequoia Series...
  • Page 124 Command Syntax STATus:QUEStionable:INSTrument:ISUMmary:ENABle <NRf+> Parameters 0 to 32767 Default Value Examples STAT:QUES:INST:ISUM:ENAB 18 Query Syntax STATus:QUEStionable:INSTrument:ISUMmary:ENABle? Returned Parameters <NR1> (Register value) Sequoia Series...
  • Page 125: System Commands

    :PORT Set LAN socket port address :DHCP Enabel or disable DHCP :MDNS Enable or disable MDNS :SERial :BAUD Set the baud rate :PARity Set the parity type :BITS Set number of bits :SBITs Set number of stop bits Sequoia Series...
  • Page 126 In Binary mode, the query returns 2x8 bits word represent the modules present for 1U and 2U chassis. It returns 4x8 bits in the 4U chassis. The parameter 1 through 6 represent the chassis address or ALL to return all chassis in the system. Query Syntax SYSTem:CMOD? 1 Parameters 1|2|3|4|all Returned Paramters <NR1> Example SYST:CMOD? Sequoia Series...
  • Page 127 Only ASCII mode response is supported. This command will return the temparture fault of the moules that are present in the system in this format: AC3 = <data>, AC2 = <data>, AC1= <data>,DC2 = <data>,DC1 = <data>,PFC1 = <data>. Sequoia Series...
  • Page 128 Sets the query mode to ASCIIor Binary. The default mode is ASCII. No all commands will report in binary mode Command Syntax SYSTem:CMODe :QUERy :MODE < mode> Parameters ASCii | BINary Example SYST:CMOD:QUER ASC Query Syntax SYSTem:CMOD:QUER? Query response ASC | BIN Returned Paramters <CRD> Sequoia Series...
  • Page 129 ALL | CAL | LIM | PONS | SYS Example SYST: RESET PONS SYSTem:LED[:STATE] This command is used to Enable/Disable the Ambient LED Status feature. Command Syntax SYSTem:LED Parameters ON/OFF Example SYST:LED ON Quary syntax SYST:LED? Returned Parameters <bool> Sequoia Series...
  • Page 130 This command will set the power source options. This is a protected command and requires a password. The query response is available however. Available options are returned separated by a comma. Command Syntax SYSTem:CONFigure Parameters SCPI,NOUT,ADV, CLK/LOC,DO160,MIL704D,IEC411,IEC413,ABD,LF Example SYST:CONF SCPI,IEC411 SYST:CONF? Returned Parameters <CRD> Related Commands *OPT? Sequoia Series...
  • Page 131 IP address used by the LAN interface (in case the IP address is not static but assigned by a DHCP server), the NCON parameter (Network Connection Setting) must be added to the query. Command Syntax SYSTem:COMMunicate:LAN:ADDRess <NRF> Parameters ddd.ddd.ddd.ddd <IP address> SYST:COMM:LAN:ADDR “192.168.11.2” Example Query Syntax SYST:COMM:LAN:ADDR? SYST:COMM:LAN:ADDR? NCON Returned Parameters <CRD> Sequoia Series...
  • Page 132 Returned Parameters none SYSTem:COMMunicate:LAN:DESCription This command will set the user description. The description is limited to 24 characters Command Syntax SYSTem:COMMunicate:LAN:DESCription <SRD> Parameters <SRD> SYST:COMM:LAN:DESC “EVAL UNIT” Example Query Syntax SYST:COMM:LAN:DESC? Returned Parameters <SRD> Sequoia Series...
  • Page 133 SYSTem:COMMunicate:LAN:PORT This command will set the socket port number. The query format returns the port number set. The default value is 5025. Command Syntax SYSTem:COMMunicate:LAN:PORT<NRF> Parameters 0- 65535 Example SYST:COMM:LAN:PORT 5025 Query Syntax SYST:COMM:LAN: PORT? Returned Parameters <NR1> Sequoia Series...
  • Page 134 1200 | 2400 | 4800 | 9600 | 38400 | 57600 | 115200 Example SYST:COMM:SER:BAUD 9600 Returned Parameters <NR1> SYSTem:COMMunicate:SERial:PARity This command will set the SERial communication parity. Command Syntax SYSTem:COMMunicate:SERial:PARity <parity> Parameters NONE | EVEN | ODD Example SYST:COMM:SER:PAR NONE Returned Parameters <CRD> Sequoia Series...
  • Page 135 SYSTem:COMMunicate:SERial:BITS <NRF> Parameters 7 | 8 Example SYST:COMM:SER:BITS 8 Returned Parameters <NR1> SYSTem:COMMunicate:SERial:SBITs This command will set the SERial communication number of stop bits. Command Syntax SYSTem:COMMunicate:SERial:SBITs <NRF> Parameters 1 | 2 Example SYST:COMM:SER:SBITs 1 Returned Parameters <NR1> Sequoia Series...
  • Page 136: Trace Subsystem Commands

    A waveform can be selected for output using the FUNCtion:SHAPe, FUNCtion:SHAPe:TRIGgered, or LIST:SHAPe commands. Command Syntax: TRACe[:DATA]<waveform_name>,<NRf> {,<NRf>} Parameters <waveform_name>, <amplitude> Example TRAC flattop,0.1,0.3,0.7,..-0.7,-0.3,-0.1 Query Syntax: none Related Commands TRAC:DATA TRAC:DEL FUNC:SHAP Sequoia Series...
  • Page 137 This command deletes ALL user-defined waveforms at once and makes all waveform memory available for other waveforms. This command is only supported by firmware revisions 0.16 and higher. Command Syntax: TRACe:DELete:ALL Parameters <waveform name> Example TRAC:DEL:ALL Related Commands TRAC:DATA TRAC:DEL FUNC:SHAP Sequoia Series...
  • Page 138: Trigger Subsystem

    This command resets the transient trigger systems to the Idle state. Any output transient or measurement that is in progress is immediately aborted. ABORt also cancels any lists or pulses that may be in process. Command Syntax ABORt Parameters Examples ABOR Related Commands INIT *RST *TRG Sequoia Series...
  • Page 139 Idle state to the Waiting-for-Trigger state. If the trigger system is not in the Idle state, the initiate commands are ignored. Command Syntax INITiate:ACQuire Parameters None Examples INIT:ACQ Related Commands ABOR INIT:CONT *TRIG Sequoia Series...
  • Page 140 Synchronization is accomplished for every count. Command Syntax TRIGger:COUNt ALL TRIGger:COUNt NONE Parameters ALL, NONE *RST Value NONE Examples TRIG:COUN ALL TRIG:COUN NONE Query Syntax TRIG:COUN? Returned Parameters <CRD> Related Commands ABOR TRIG TRIG:DEL TRIG:SYNC TRIG:SYNC:PHAS INIT INIT:CONT *TRG WAI Sequoia Series...
  • Page 141 This command sets the phase angle with respect to an internal phase reference if TRIGger:SOURce PHASe is selected. The range is from -360 to +360 Degrees. Command Syntax TRIGger:SYNChronize:PHASe<NRf+> Parameters 360 to +360 *RST Value Examples TRIG:SYNC:PHAS 90 Query Syntax TRIGger:SYNChronize:PHASe? Returned Parameters <NR2> Related Commands ABOR TRIG:SYNC:SOUR INIT INIT:CONT *TRG Sequoia Series...
  • Page 142 Note: Firmware revision 0.31 or lower will respond with “ARM” instead of “IDLE” at the end of transient execution even if the trigger mode is immediate. Query Syntax TRIGger:STATe? Returned Parameters <CRD> Related Commands ABOR TRIG:SOUR TRIG:PHAS INIT INIT:CONT *TRG Sequoia Series...
  • Page 143 This page intentially left blank. Sequoia Series...
  • Page 144: Common Commands

    This command clears the following registers (see chapter 7 for descriptions of all status registers): • Standard Event Status • Operation Status Event • Questionable Status Event • Status Byte • Error Queue Command Syntax *CLS Parameters None Sequoia Series...
  • Page 145: Ese

    Standard Event Status Enable register (see *ESE). See chapter 7for a detailed explanation of this register. Query Syntax *ESR? Parameters None Returned Parameters <NR1>(Register value) Related Commands *CLS *ESE *ESE? *OPC Sequoia Series...
  • Page 146: Idn

    OPC status is requested. The query causes the interface to place an ASCII "1" in the Output Queue when all pending operations are completed. Command Syntax *OPC <NR1> Parameters Query Syntax *OPC? Returned Parameters <NR1> Related Commands *TRIG *WAI Sequoia Series...
  • Page 147: Opt

    The parameter list returned and their order in the sequence is shown in the table below. Syntax Description Comment SCPI SCPI language This feature is always enabled on Sequoia Series models. NOUT MODE option Phase mode selection. Available only on Sequoia 2U, 3-Phase systems.
  • Page 148: Psc

    The trigger system is set to the Idle state by an implied ABORt command (this cancels any uncompleted trigger actions) Command Syntax *RCL <NRf> Parameters 0 through 7 Example *RCL 3 Related Commands *RST *SAV WARNING: Recalling a previously stored state may place hazardous voltages at the power source output. Sequoia Series...
  • Page 149: Rst

    // Determine current PONS phase setting. <response> PONS:NOUT THR // Set to three phase initialization *RST // Issue reset commend. Delay 500msec // allow time to reset system. If <response> <> THR Then // Set back if needed PONS:NOUT <response> End if Sequoia Series...
  • Page 150: Sav

    Bit Weight OPER operation status summary master status summary event status byte summary request for service QUES questionable status summary message available Query Syntax *STB? Returned Paramters <NR1> (Register binary value) Related Commands *SRE *ESE *ESR Sequoia Series...
  • Page 151: Trg

    The *WAI command may be used when performing measurement queries (MEAS or FETCh) to force the power source to respond to the query before processing any subsequent command. *WAI can be aborted by sending any other command after the *WAI command. Command Syntax *WAI Parameters None Related Commands *OPC Sequoia Series...
  • Page 152: Tst

    Weight Description AC Module Error PFC Module Error DC-DC Module Error Over Temperature Fault Fan Fault Auxiliary Fault Not Used Not Used Table 5-2 : Self-Test Error Command Syntax *TST, *TST? Parameters None Related Commands None Sequoia Series...
  • Page 153 This page intentionally left blank. Sequoia Series...
  • Page 154: Programming Examples

    125 volts rms, use: MODE AC VOLTage 125 The DC output voltage is controlled with the VOLTage:DC command. For example, to set the DC output voltage to 100 volts DC, use: MODE DC VOLTage:DC 100 Sequoia Series...
  • Page 155 This value is expressed in the equivalent rms value of a sinewave (crest factor = 1.414). The maximum rms value is defined by the LIMIT subsystem. If a custom waveform is selected with a crest factor higher than 1.414, the maximum rms voltage will be less than the LIMIT value. Sequoia Series...
  • Page 156 The frequency slew rate applies to programmed changes in frequency while the unit is operating in fixed mode. Frequency changes made by the step, pulse, and list transients are controlled by the same rules that apply to all other functions that are subject to transient control. See section 6.4. Sequoia Series...
  • Page 157 The CURRent command is coupled with the VOLTage:RANGe. This means that the maximum current limit that can be programmed at a given time depends on the voltage range setting in which the unit is presently operating. Refer to "Coupled Commands" for more information. Sequoia Series...
  • Page 158 Because waveform shape commands are coupled with the voltage commands, changing waveforms without changing the programmed voltage may result in an error if the resulting peak voltage amplitude exceeds the maximum voltage rating of the power source. Refer to "Coupled Commands" for more information. Sequoia Series...
  • Page 159 PHASe <n> which sets the phase in degrees. If <n> is positive, the voltage waveform leads the internal reference. The INSTrument:COUPle setting is ignored by the PHASe command - it always controls the output selected by INSTrument:NSELect. Sequoia Series...
  • Page 160: Coupled Commands

    Sequoia Series...
  • Page 161: Programming Output Transients

    IMMediate values are used as the data source for a particular function. After a *RST or Device Clear command, all functions are set to FIXed, which turns off the transient functions. Sequoia Series...
  • Page 162: Figure 6-1: Output Transient System

    IMMediate level At trigger, the list starts. When list completes, LIST mode output returns to immediate level. step 2 step0 step 1 Trigger List Applied Complete Figure 6-1: Output transient system Sequoia Series...
  • Page 163 Set pulse period for 4 cycles TRIG:SOUR BUS Respond to IEEE-488 bus triggers TRIG:SYNC:SOUR:PHAS Synchronize triggers to internal phase reference TRIG:SYNC:PHAS 90 Sets internal phase reference point to 90 degrees INIT Set to Wait-for-trigger state <device trigger> Send the IEEE-488 bus trigger Sequoia Series...
  • Page 164 In this case the single-item list is treated as if it had the same number of points as the other lists, with all values being equal to the one item. For example: LIST:VOLTage 120, 100, 110;FREQuency 60 is the same as: LIST:VOLTage 120, 100, 110 LIST:FREQuency 60, 60, 60 Sequoia Series...
  • Page 165 If a trigger is received before the previous dwell time completes, the trigger is ignored. Therefore, to ensure that no triggers are lost, program the dwell time minimum. Step 6 : Use the transient trigger system to trigger the list. This is described in detail under “Triggering Output Changes” Sequoia Series...
  • Page 166: Triggering Output Changes

    INIT:CONT ON TRIGGER RECEIVED LIST NOT COMPLETE & LIST:STEP ONCE WAIT FOR SYNC STATE SYNC COMPLETED OUTPUT OUTPUT OUTPUT STEP PULSE LIST CHANGES CHANGES CHANGES PULSE COUNT DONE? LIST COMPLETE LIST:STEP ONCE Figure 6-2: Transient Trigger System Model Sequoia Series...
  • Page 167 When IMMediate is selected, the trigger system goes directly to the Output state. This is the parameter selected at *RST. 6.5.4 Generating Triggers Providing that you have specified the appropriate trigger source, you can generate triggers as follows: Sequoia Series...
  • Page 168 If the list is not completed, then the system reacts as follows: LIST:STEP ONCE programs the trigger system to return to the Initiated state to wait for the next trigger. LIST:STEP AUTO programs the trigger system to immediately execute the next list point. Sequoia Series...
  • Page 169: Acquiring Measurement Data

    For each MEASure form of the query, there is a corresponding query that begins with the header FETCh. FETCh queries perform the same calculation as their MEASure counterparts, but do not cause new data to be acquired. Data acquired by an explicit trigger or a previously programmed MEASure command are used. Sequoia Series...
  • Page 170 AC component of apparent power in VA MEASure:POWer:AC:REAL? measures the in-phase component of power in watts MEASure:POWer:AC:PFACtor? returns the output power factor MEASure:POWer:DC? measures the dc component of power 6.6.3 Frequency Measurements To measure the frequency, use the following command: MEASure:FREQuency? Sequoia Series...
  • Page 171 50th harmonics. Any harmonics that represent frequencies greater than the measurements bandwidth are returned as the value 0. To return the percentage of total harmonic distortion in the output voltage or current, use the following commands: MEASure:CURRent:HARMonic:THD? MEASure:VOLTage:HARMonic:THD? Sequoia Series...
  • Page 172 The following measurement trigger sources can be selected: IMMediate Aquire the measurements immediate SYNChronize Internal to phase A angle IEEE-488 device, *TRG, or <GET> (Group Execute Trigger) TTLTrg The signal driving the Trigger Out Sequoia Series...
  • Page 173: Figure 6-3: Measurement Acquisition Trigger Model

    Thus it will be necessary to initiate the system each time a triggered acquisition is desired. Note: You cannot initiate measurement triggers continuously. Otherwise, the measurement data in the data buffer would continuously be overwritten by each triggered measurement. Sequoia Series...
  • Page 174 By waiting for a specific phase angle of the waveform • By generating an output transient that causes the Trig Out to output a pulse. • By pressing the front panel START soft key in the HARMONICS/WAVEFORM when the unit is operating in local mode. Sequoia Series...
  • Page 175: Controlling The Instantaneous Voltage And Current Data Buffers

    Be aware of possible aliasing if higher fundamental frequencies are programmed or if higher frequency harmonics are present in the voltage or current when decreasing the sample rate. See paragraph 4.20 for command syntax. Sequoia Series...
  • Page 176: Figure 6-4: Pre-Event And Post-Event Triggering

    (Delay time = Offset  Sample period) 4096 DATA POINTS 4096 DATA POINTS 4096 DATA POINTS 4096 DATA POINTS Figure 6-4: Pre-event and Post-event Triggering Sequoia Series...
  • Page 177: Trigger System Summary

    Acquisition trigger system will respond to the first trigger generated while the transient trigger system will respond to the second trigger. Thus, the acquisition has the highest priority. TRIGGER SOURCE MEASUREMENT ACQUISITION TRIGGER TIRGGER SYSTEM OUTPUT TRANSIENT TRIGGER TRIGGER SYSTEM Figure 6-5: Trigger system block diagram Sequoia Series...
  • Page 178: Status Registers

    A register that functions as a mask for enabling specific bits from the Event register. It is a read/write register. Table 7-1: Operation Status Register The outputs of the Operation Status register group are logically-ORed into the OPER(ation) summary bit (7) of the Status Byte register. Sequoia Series...
  • Page 179: Figure 7-1: Status System Model

    STANDARD EVENT STATUS STATUS REQUEST EVENT ENABLE BYTE ENABLE OUTPUT n.u. QUEUE DATA n.u. n.u. DATA n.u. DATA QUES n.u. OPER OPERATION STATUS SERVICE CONDITION EVENTENABLE REQUEST GENERATION Trans. Compl. Meas. Compl. n.u. 6-15 Figure 7-1: Status System Model Sequoia Series...
  • Page 180: Table 7-2: Configuration Of Status Register

    Status Byte and Service Request Enable Registers QUES Questionable status summary bit Message Available summary bit Event Status Summary bit Master Status Summary bit Request Service bit OPER Operation status summary bit Table 7-2: Configuration of Status Register Sequoia Series...
  • Page 181: Questionable Status Group

    The RQS bit is a latched version of the MSS bit. Whenever the power source requests service, it sets the SRQ interrupt line true and latches RQS into bit 6 of the Status Byte register. When the controller Sequoia Series...
  • Page 182: Examples

    Byte register to generate RQS. Use: *SRE 8 Step 3 : When you service the request, read the event register to determine which Questionable Status Event register bits are set and clear the register for the next event. Use: STATus:QUEStionable:EVENt? Sequoia Series...
  • Page 183: Scpi Command Completion

    Since your program can read this status bit on an interrupt basis, *OPC allows subsequent commands to be executed. TRIG:STATe? This query will report the state of the transient trigger subsystem and will return IDLE, ARM or BUSY to allow the user monitor the state of the trigger system. Sequoia Series...
  • Page 184: Option Commands

    8. Option Commands Introduction The Sequoia Series offers a number of options that are implemented in the power source controller. If one or more of these options are installed, they may be used from both the front panel and the interface.
  • Page 185: Iec 1000-4-11 (-411)

    :STATe :VARiants :RUN [:ALL] :SINGle :HOLD :TIME :VOLTage [:PERCent] :FALL [:TIME] :RISE [:TIME] IEC411[:NOMinal]:VOLTage This command set the nominal voltage for the test Command Syntax IEC411[:NOMinal]:VOLTage <NRf> Parameters <voltage> Examples IEC411:VOLT 230 Query Syntax IEC411:VOLT? Returned Parameters <NR2> Sequoia Series...
  • Page 186 IEC411:DIPS:VOLT 20 Query Syntax IEC411:DIPS:VOLT? Returned Parameters <NR2> IEC411:DIPS:CYCLes This command defines the duration of the dip voltage expressed in the number of cycles. Command Syntax IEC411:DIPS:CYCLes Parameters <numeric> Examples IEC411:DIPS:VOLT 20 Query Syntax IEC411:DIPS:VOLT? Returned Parameters <NR2> Sequoia Series...
  • Page 187 Returned Parameters <none> IEC411: VARiants:RUN:SINGle This command will run a single variant test once. The test is defined by the variants parameters voltage, cycle and angle. Command Syntax IEC411:VARiants:RUN:SINGle Parameters <none> Examples IEC411:VAR:RUN:SING Query Syntax none Returned Parameters <none> Sequoia Series...
  • Page 188 IEC411:VAR:FALL? Returned Parameters <NR2> IEC411:VARiants:RISE[:TIME} This command will set the variant rise time in seconds. Refer to Figure 9-13 in the User Manual. Command Syntax IEC411:VARiants:RISE:TIME <NRf> Parameters <seconds> Examples IEC411:VAR:RISE:TIME 0.25 Query Syntax IEC411:VAR:RISE:TIME? Returned Parameters <NR2> Sequoia Series...
  • Page 189: Iec 1000-4-13 (-413)

    Get interharmonics current at resonant :FREQuency [:DATA]? Get interharmonics frequency :RESonant? Get interharmonics frequency at resonant :HARMonics :LEVel Set harmonics level. :PHASe Set harmonics phase. :DWELl Set harmonics dwell. :PAUSe Set harmonics pause. :TABle Select Individual harmonic table 1,2,3 or ALL. Sequoia Series...
  • Page 190 This command will select the class. There are two predefined classes 2 and 3. Class 1 is supported through the use of the USER defined class. Other tests levels can be set in the USER class as well. Command Syntax IEC413:CLASs <class> Parameters 2|3|USER Examples IEC413:CLAS 3 Query Syntax IEC413:CLAS? Returned Parameters <class> Sequoia Series...
  • Page 191 If one parameter is used, the step size for the current range setting is the only parameter that gets updated. Command Syntax IEC413:STEP[:SIZE] ] <NRf[,NRf1,...,NRf4]> Parameters query the min and max for range of data Examples IEC413:STEP 5 IEC413:STEP 2,5,10,10,50 Query Syntax IEC413:STEP? Returned Parameters NR10,..,NR14 Sequoia Series...
  • Page 192 This command will set the pause time in seconds. This is the time between tests when RUN:ALL is selected The class must be selected prior to this command. Query with min and max to find the range of the dwell time. Command Syntax IEC413:FCURve:PAUSe <NRf+> Parameters Examples IEC413:FCURve:PAUS 2 Query Syntax IEC413:FCURve:PAUS? Returned Parameters <NR1> Sequoia Series...
  • Page 193 When the selected GROUP is MCURve, the pause should normally be set to 0 as no pause is required for this test. If a pause value other than zero is set, the interharmonic levels during the pause period will be zero. Sequoia Series...
  • Page 194 This command will set the pause time in seconds. This is the time between tests when RUN:ALL is selected. The class must be selected prior to this command. Query with min and max to find the range of the pause time. Command Syntax IEC413:OSWing:PAUSe <NRf+> Parameters Examples IEC413:OSWing:PAUS 2 Query Syntax IEC413:OSWing:PAUS? Returned Parameters <NR1> Sequoia Series...
  • Page 195 IEC413:SWEep:FREQuency[:DATA]? This command will return the frequency data points that correspond to the harmonic current data points. This data is available after the sweep is completed. Command Syntax IEC413:SWEep:FREQuency? Parameters none Query Syntax IEC413:SWE:CURR:FREQ? Returned Parameters <NR2>,..,<NRn> Sequoia Series...
  • Page 196 IEC413:INDV:HARM:NUMB. The IEC413:STATe must be in the off position and the user class must be selected to accept the command. Command Syntax IEC413:HARMonics:PHASe <Nrf+> [,<Nrf>,..<Nrfn>] Parameters 0 to 360 Examples IEC413:HARM:PHAS 180,270,..,90 Query Syntax IEC413:HARM:PHAS? Returned Parameters <NR2>,...,<NR2> Sequoia Series...
  • Page 197 The IEC413:STATe must be in the off position and the user class must be selected to accept the command. Command Syntax IEC413:IHARmonics:LEVel <NRf>[,<NRf1.. NRf4]> Parameters 0 to 20% Examples IEC413:IHAR:LEV 10 Query Syntax IEC413:IHAR:LEV? Returned Parameters <NR2> Sequoia Series...
  • Page 198 This command will set the pause time in seconds between each interharmonics frequency. The class must be selected prior to this command. Query with min and max to find the range of the pause time. Command Syntax IEC413: IHARmonics:PAUSe <NRf+> Parameters <seconds> Examples IEC413:IHAR:PAUS 2 Query Syntax IEC413:IHAR:PAUS? Returned Parameters <NR1> Sequoia Series...
  • Page 199 Returned Parameters <boolean> [:SOURce]:IHARmonics:FREQuency This command will program the inter harmonic frequency. This frequency may range from 1Hz to 2400Hz with 1Hz resolution. Command Syntax [:SOURce]:IHARmonics:FREQuency <NRf> Parameters <frequency > Examples IHAR:FREQ 400 Query Syntax IHAR:FREQ? Returned Parameters <NR1> Sequoia Series...
  • Page 200 This command will program the interharmonic voltage as a percentage of the reference voltage. It will accept a value from 0 to 20%. Command Syntax [:SOURce]:IHARmonics:VOLTage <NRf> Parameters <voltage> Examples IHAR:VOLT 10 Query Syntax IHAR:VOLT? Returned Parameters <NR1> Sequoia Series...
  • Page 201: Rtca/Do-160D (-160)

    SCPI commands. The commands listed in this section apply to the firmware-based revision D only. For information on revision E and F, refer to the Avionics Software Manual, P/N 4994-972 provided on the AMETEK website www.programmablepower.com. DO160...
  • Page 202 This test is valid only for three phase power source. Command Syntax DO160:NORMal:VOLTage:UNBalance Parameters none Examples DO160:NORM:VOLT:UNB Query Syntax none DO160:NORMal:WAVeform:DISTortion This command will set the voltage distortion to 5% for the duration of the test. Command Syntax DO160:NORMal:WAVeform:DISTortion Parameters none Examples DO160:NORM:WAV:DIST Query Syntax none Sequoia Series...
  • Page 203 DO160:NORMal:VOLTage:DC:UNDer This command will generate the voltage levels required to generate a normal voltage source. Refer to Section 9.1 in the User Manual under the heading titled for detail. VOLTAGE UNDER, Command Syntax DO160:NORMal:VOLTage:DC:UNDer Parameters none Examples DO160:NORM:VOLT:DC:UND Sequoia Series...
  • Page 204 Parameters none Examples DO160:NORM:FREQ:VAR Query Syntax none Returned Parameters none DO160:EMERgency:VOLT_FREQ:MINimum This command will set the voltage and frequency to the minimum level for the emergency operation. Command Syntax DO160:EMERgency l:VOLT_FREQ:MINimum Parameters none Examples DO160:EMER:VOLT_FREQ:MIN Query Syntax none Sequoia Series...
  • Page 205 This command will set the voltage to the maximum level for the abnormal operation. Command Syntax DO160:ABNormal:VOLTage:MAXimum Parameters none Examples DO160:ABN:VOLT:MAX Query Syntax none DO160:ABNormal:VOLTage:UNDer This command will set the voltage to the under voltage level for the abnormal operation. Command Syntax DO160:ABNormal:VOLTage:UNDer Parameters none Examples DO160:ABN:VOLT:UND Query Syntax none Sequoia Series...
  • Page 206 DO160:ABN:FREQ:TRAN Query Syntax none Returned Parameters none DO160:CATegory This command will select the proper equipment category in DC mode only. It has no effect in AC mode. Command Syntax DO160:CATegory Parameters <A|B|Z> Examples DO160:CAT B Query Syntax DO160:CAT? Sequoia Series...
  • Page 207 Query Syntax DO160:STAN? DO160:GROup This command is used to select equipment Group 1, 2 or 3. It is only valid with the EUROCAE standard. Command Syntax DO160:GROup <NR1> Parameters 1 through 3 Examples DO160:GROup 2 Query Syntax DO160:GRO? Sequoia Series...
  • Page 208: Mil-Std 704E (-704)

    This capability requires the presence of the –704 option. 8.5.1 AC System :MIL704 :VERSion :SSTate :VOLT [:LEVel] :MODulation :UNBalance :PHASe [:DIFFerence] :WAVeform [:DISTortion] :FREQuency [:LEVel] :MODulation :TRANsient :VOLTage [:LOW] :HIGH :FREQuency [:LOW] :HIGH :ABNormal :VOLTage [:UNDer] :OVER :FREQuency [:UNDer] :OVER :EMERgency :VOLTage :FREQuency Sequoia Series...
  • Page 209 Some of the tests take a lengthy time to complete. The *OPC command could be used to determine the completion of the command. Example: MIL704:SST:VOLT;*OPC 1 The query *OPC? Will return a 1 when the test is completed. Sequoia Series...
  • Page 210: Airbus Abd0100.1.8 Test Option (-Abd)

    Returns the watt-hour measurement data in KWH WHMeter[:STATe] This command will start or stop the watt-hour function. Command Syntax WHMeter[:STATe]<bool> Parameters 0 | OFF | 1 | ON Examples WHM ON Query Syntax WHM[:STATe]? Returned Parameters 0 | 1 Sequoia Series...
  • Page 211 "all", the value returned is the sum of all phases in the system regardless of the selected phase. Command Syntax WHMeter:WHOur? Parameters none Query Syntax WHM:WHO? Returned Parameters <numeric value> Note If the watt-hour meter is active, the total power of all phases in the system will be returned when querying the power. Sequoia Series...
  • Page 212 This page left intentionally blank. Sequoia Series...
  • Page 213: Appendix A: Scpi Command Tree

    The following command three contains all the supported standard commands for the Sequoia Series power source. Some command listed may not apply to a specific Sequoia Series model. Check the relevant reference section for specific details on using each of these commands. Note: Available option SCPI commands are not listed in this table.
  • Page 214 ........[REAL]? ........APParent? ........PFACtor? ......DC? ....VOLTage ......[AC]? ......DC? ......HARMonic ........[AMPLitude]? <n> Sequoia Series...
  • Page 215 ......POINts? ....DWELl <n>,<n> ......POINts? ....FREQuency ......[LEVel] <n>,<n> ........POINts? ......[SLEW] <n>,<n> ........POINTs? ....FUNCtion Sequoia Series...
  • Page 216 ..........OFFset <n> ......MODE <mode> ......TRIGgered ........[AMPLitude] <n> ......MODE ....RANGe ......[LEVel] <n> ....SENSe ......[SOURce] INTernal | EXTernal Sequoia Series...
  • Page 217 ..[TRANsient] ....SOURce IMMediate | BUS ....COUNt NONE | ALL ..ACQuire ....SOURce IMMediate | BUS | TTLTrg ..SYNChronize ....SOURce IMMediate | PHAS ....PHASe <n> ..STATe? Sequoia Series...
  • Page 218: Appendix B: Scpi Conformance Information

    Appendix B: SCPI Conformance Information SCPI Version The Sequoia Series power source conforms to SCPI version 1995.0. Sequoia Series...
  • Page 219: Appendix C: Error Messages

    Data received is not a Check Programming Manual number correct command syntax. -121 "Invalid character Number received Check Programming Manual number" contains non-numeric correct command syntax. character(s) -123 "Exponent too large" Number exponent Check Programming Manual exceeds limits correct command syntax. Sequoia Series...
  • Page 220 “Directory full” -255 Too many waveform Delete one or more waveforms from directory entries waveform memory to make room. “File name not found” -256 Waveform requested Check waveform directory not in directory waveform names present. Sequoia Series...
  • Page 221 User setup register Save setup again in same registers to lost" contents lost restore content. -315 "Configuration memory Hardware Contact AMETEK Service Department lost" configuration settings to obtain instructions on restoring lost configuration data. -330 "Self-test failed" Internal error Contact AMETEK Service Department to troubleshoot problem.
  • Page 222 Power-on settings Save power-on settings again to could not be recalled. overwrite old content. "Limit memory lost" Hardware Contact AMETEK Service Department configuration settings to obtain instructions on restoring lost configuration data. "System memory lost" Memory corrupted Recycle power. Contact AMETEK Service Department for instructions if memory remains corrupted.
  • Page 223: Table 8-1 : Error Messages

    Verify that external ambient temperature is not greater than 40°C. Contact AMETEK Service Department for instructions pertaining to internal hardware fault. “Ac module error” AC Module is not able...
  • Page 224 This page intentionally left blank. Sequoia Series...
  • Page 225: Index

    ............................. 215 ABORt ............................... 140 Agilent 82350 ............................22 AMD option commands ............................. 215 B787 option commands ............................. 215 CALibrate:MEASure:CURRent[:AMBient] [:AC][:FSCale] <NRf> ............39 CALibrate:MEASure:CURRent[:AMBient]:DC[:FSCale] <NRf> ............ 39, 40 CALibrate:MEASure:VOLTage[:AMBient]:DC[:FSCale] <NRf> ............41 CALibrate:MEASure:VOLTage[:AMBient][:AC][:FSCale] <NRf> ............41 Sequoia Series...
  • Page 226 ............................11, 12 format waveform data ..........................54 formats data ..............................21 FREQency:SLEW:TRIGgered ......................81 FREQuency ............................79 FREQuency:MODE ..........................79 FREQuency:SLEW ..........................80 FREQuency:SLEW:MODE ........................80 FREQuency:TRIGgered ........................81 FUNCtion............................. 82 Function Strobe ........................... 72 Sequoia Series...
  • Page 227 IEC413:SWEep:LEVel ........................200 IEC413O:SWing:DWELl ........................199 IEEE ..............................11 setting address ..........................11 IEEE-488 ............................. 10 INITiate:ACQuire ..........................141 INITiate:CONTinuous ........................142 INITiate{:IMMediate[:TRANsient] ...................... 141 INSTrument:COUPle ........................... 49 INSTrument:NSELect .......................... 49 INSTrument:SELect ..........................50 IP address ............................30 Sequoia Series...
  • Page 228 MEASure:CURRent:CREStfactor? ..................... 60 MEASure:CURRent:HARMonic:PHASe? ................... 61 MEASure:CURRent:HARMonic:THD? ....................61 MEASure:CURRent:HARMonic? ......................60 MEASure:CURRent? .......................... 59 MEASure:FREQuency? ........................62 MEASure:PHASe? ..........................62 MEASure:POWer:AC:APParent? ....................... 63 MEASure:POWer:AC:PFACtor? ......................64 MEASure:POWer:AC? ........................63 MEASure:POWer:DC? ........................64 MEASure:VOLTage:AC? ........................65 MEASure:VOLTage:HARMonic:PHASe? ................... 66 Sequoia Series...
  • Page 229 PONSetup:PEAK:CURRent[:PROTection] ..................107 PONSetup:PHASe[:ANGLe]......................108 PONSetup:RELay[:HOLD] ........................ 110 PONSetup:VOLTage:MODE ......................111 PONSetup:VOLTage[:LEVel] ......................110 PONSetup:VRANGe ......................... 111 Port number TCP/IP ............................. 32 programming ............................22 PULSe:COUNt ..........................112 PULSe:DCYCle ..........................113 PULSe:HOLD ............................ 112 PULSe:PERiod ..........................113 PULSe:WIDTh ........................... 114 Sequoia Series...
  • Page 230 SYSTem:ERRor? ..........................128 SYSTem:ETIMe? ..........................133 SYSTem:LOCal ..........................132 SYSTem:REMote ..........................132 SYSTem:VERSion? .......................... 128 Table of Contents ..........................7 TCP/IP IP address............................30 Port number ............................. 32 terminator ............................20 TRACe ............................... 138 TRACe:CATalog ..........................139 TRACe:DEFine ..........................139 Sequoia Series...
  • Page 231 VOLTage:MODE ..........................119 VOLTage:PROTection ........................118 VOLTage:RANGe ..........................119 VOLTage:SENSe[:SOURce] ......................120 VOLTage:SLEW ..........................121 VOLTage:SLEW:MODE ........................121 VOLTage:SLEW:TRIGgered ......................121 VOLTage:TRIGgered ........................117 waveform data format modes ........................... 54 WHMeter[:ETIMe?] ..........................216 WHMeter[:STATe] ..........................215 WHMeter[:WHOur?] .......................... 216 Sequoia Series...

Table of Contents