Nidec S-FLAG Series Instruction Manual
Nidec S-FLAG Series Instruction Manual

Nidec S-FLAG Series Instruction Manual

Ac servo motor and servo amplifier
Table of Contents

Advertisement

Quick Links

AC SERVO MOTOR and SERVO AMPLIFIER Series S-FLAG
S-FLAG Ⅱ
Instruction Manual
- EtherCAT -
www.nidec.com/en/nidec-sankyo/
Specifications subject may change without notice.
Copyright © 2019 by Nidec Sankyo Corporation
AMO-NP-35475-41
DEC. 2019

Advertisement

Table of Contents

Troubleshooting

loading
Need help?

Need help?

Do you have a question about the S-FLAG Series and is the answer not in the manual?

Questions and answers

Summary of Contents for Nidec S-FLAG Series

  • Page 1 AC SERVO MOTOR and SERVO AMPLIFIER Series S-FLAG S-FLAG Ⅱ Instruction Manual - EtherCAT - www.nidec.com/en/nidec-sankyo/ Specifications subject may change without notice. Copyright © 2019 by Nidec Sankyo Corporation AMO-NP-35475-41 DEC. 2019...
  • Page 2 - The illustrations and screenshot images of S-TUNE Ⅱ included in this document may be different from the actual S-TUNE Ⅱ views. - No reproduction in any form of this Instruction Manual, in whole or in part, may be made without written authorization from Nidec Sankyo Corporation. DEC. 2019 Trademarks and Patents EtherCAT®...
  • Page 3 Please ask our distributor for the latest exclusive software (S-TUNEII) and user's manual. Manufactured and Distributed by NIDEC SANKYO CORPORATION Tokyo Office Nidec Tokyo bldg., south bldg., 1-20-13, Osaki, Shinagawa-ku, Tokyo 141-0032, Japan Tel:81-3-5740-3006 Fax:81-3-6843-3123 NIDEC SANKYO ELECTRONICS (SHENZHEN) CORPORATION No.38 Shangtang Road, Shilong, Dongguan, Guangdong Province 523325, P.R. China...
  • Page 4 Contents GENERAL HARDWARE This chapter describes the specifications and installation of the motor and This chapter describes safety precautions. amplifier, and wiring of the system and I/O connector. 1. Before Using 1. Specifications 2. Mounting and Wiring PARAMETER SOFTWARE This chapter describes parameters and This chapter describes how to use tuning methods.
  • Page 5: Table Of Contents

    COMMUNICATIONS OPERATION This chapter describes EtherCAT This chapter explains how to drive the communications. motor by EtherCAT communication. 1. System Overview 1. Operation 2. Communication Specification Position Control Mode (CSP) Velocity Control Mode (CSV) 3. Object Dictionary Torque Control Mode (CST) 4.
  • Page 6 MEMO S-FLAG Ⅱ Instruction Manual - EtherCAT -...
  • Page 7 S-FLAG Ⅱ Instruction Manual - EtherCAT - GENERAL 1. Before Using AMO-NP-35475-41 SF2-E-A DEC. 2019...
  • Page 8 MEMO S-FLAG Ⅱ Instruction Manual - EtherCAT -...
  • Page 9: Before Using

    GENERAL Before Using 1. Important Safety Instructions ..... 2 1. Safety Precautions ........2 2.
  • Page 10: Important Safety Instructions

    1. Before Using 1. Important Safety Instructions 1. Important Safety Instructions 1. Safety Precautions This manual uses the signs below to indicate serious but avoidable problems caused by misuse of the product. One is for death or serious bodily harm. The other is for bodily injury or product or equipment damage.
  • Page 11: Installation And Wiring

    1. Before Using 1. Important Safety Instructions DANGER Sign Precautionary Measures If Not Observed Installation and Wiring Never connect the motor directly to a commercial power supply. Do not place any flammable items near the motor or amplifier. Protect the amplifier with a protective case and ensure the clearance between the amplifier, the case and other devices as specified in this manual.
  • Page 12: Additional Precautions

    1. Before Using 1. Important Safety Instructions DANGER Sign Precautionary Measures If Not Observed Additional Precautions Be sure to confirm the safe condition of the equipment after each earthquake. To prevent a fire or personal injury during an earthquake, carry out installation work securely and properly.
  • Page 13 1. Before Using 1. Important Safety Instructions CAUTION Sign Precautionary Measures If Not Observed Installation and Wiring Do not directly touch the terminal portion of any connectors. Do not block the air vents. Do not allow ingress of any foreign objects to the product.
  • Page 14: Transportation And Storage

    1. Before Using 1. Important Safety Instructions CAUTION Sign Precautionary Measures If Not Observed Transportation and Storage Do not store the product at a location subject to water or moisture, or where toxic gases or liquids are present. Do not hold the cables or motor shafts during transportation. When transporting the amplifier and monitor, do not drop them or let them fall.
  • Page 15: Other Considerations And Precautions

    1. Before Using 1. Important Safety Instructions 2. Other Considerations and Precautions Export of this product or its applications If the end user or applications of the product is involved in military activities or weapons, its export may be subject to "Foreign Exchange and Foreign Trade Law (Japan)" (or equivalent in your country).
  • Page 16: Safety Standards

    1. Before Using 1. Important Safety Instructions 3. Safety Standards Applicable Rating Motor Amplifier EN60034-1 (*1) Low Voltage Directive EN61800-5-1 EN60034-5 EN61000-6-2 (*2) EU/EC Directives EMC Directive - EN55011 (Class A. Group1) Machinery Directive (N/A) UL1004-1 UL61800-5-1 (*1) UL Standards UL1004-6 (File No.E471456)...
  • Page 17: Maintenance And Inspection

    1. Before Using 1. Important Safety Instructions 4. Maintenance and Inspection Never overhaul the product. For safe use of the product, be sure to perform regular maintenance and inspection on the amplifier and motor. Ensure the electrical and mechanical safety before each inspection. This product assumes the following operating conditions.
  • Page 18: Warranty

    1. Before Using 1. Important Safety Instructions 5. Warranty Terms of Warranty The term of warranty for this product is eighteen (18) months after the date of product manufacture. However, brake-equipped motors whose number of axis accelerations and decelerations exceeded the rated maximum shall not be covered by the warranty.
  • Page 19: About Our Products

    1. Before Using 2. About Our Products 2. About Our Products Misuse or mishandling of the product will not only result in its suboptimal performance, but also failure or shorter service life. For safety and proper use of the product, please read the instruction manuals carefully. About This Product and This Instruction Manual - Product features and parts are subject to change without prior notice due to potential future product improvement initiatives.
  • Page 20: Product Label

    1. Before Using 2. About Our Products 1. Product Label Motor Label Label 1 AC SERVO MOTOR Motor Model MX401N2SN01 3φAC150V 2.7A INPUT RATED OUTPUT              W 3000 RATED REV.                     rpm Specifications Label 2 Specifications RATED FREQ.                      Hz 1.27 RATED TORQUE                 N ・ m IP                          TE  40℃ INS. Product Number (Produced year and month + Serial No.) ***********...
  • Page 21: Danger Signs

    1. Before Using 2. About Our Products 2. Danger Signs NO IMPACT/NO DISASSEMBLY LABEL Do not remove the encoder cover. Never overhaul the encoder. Beating the encoder cover will cause encoder failure. Do not apply strong impact to the motor and its shaft. HOT SURFACE WARNING Do not touch the product during operation or for a while afterward, or you may get burned from the heat.
  • Page 22 1. Before Using MEMO S-FLAG Ⅱ Instruction Manual - EtherCAT -...
  • Page 23 S-FLAG Ⅱ Instruction Manual - EtherCAT - HARDWARE 1. Specifications 2. Mounting and Wiring AMO-NP-35475-41 SF2-E-B DEC. 2019...
  • Page 24 MEMO S-FLAG Ⅱ Instruction Manual - EtherCAT -...
  • Page 25 HARDWARE Specifications 1. Motors ........2 1.
  • Page 26: Motors

    1. Specifications 1. Motor 1. Motors 1. Model Codes Motors with a 23 bit Absolute Encoder encoder MX 201 B Models Control Number Series Code Specifications Code Brake Oil Seal Shaft Low Inertia Without Without Straight With Without Straight Without Without With Key Middle Inertia...
  • Page 27: Motors With A 17 Bit Absolute Encoder

    1. Specifications 1. Motor Motors with a 17 bit Absolute Encoder encoder MX 201 A 2 Models Control Number Series Code Specifications Code Brake Oil Seal Shaft Low Inertia Without Without Straight With Without Straight Without Without With Key Middle Inertia With Without With Key...
  • Page 28: Motors With A 17 Bit Incremental Encoder

    1. Specifications 1. Motor Motors with a 17 bit Incremental Encoder encoder MX 201 A 2 Models Control Number Series Code Specifications Code Brake Oil Seal Shaft Low Inertia Without Without Straight With Without Straight Without Without With Key Middle Inertia With Without With Key...
  • Page 29 1. Specifications 1. Motor Motor Motor Model Name Mounting Encoder Rotational Amplifier Page Rated Flange Resolution Speed Rotor Inertia Capacity Size & Series Middle High Inertia Inertia Inertia / 17 MY MG MM MJ MZ MH MY500 p. 8- - -...
  • Page 30: Names Of Parts

    1. Specifications 1. Motor 2. Names of parts Motor rated Figure 1 output power MX951 Encoder Connector Brake Connector Motor Power Connector Oil seal Radial direction Flange Shaft Oil seal Thrust direction Encoder Cover Frame Mounting hole Motor rated Figure 2 output power MX102 MM102...
  • Page 31 1. Specifications 1. Motor 3. Specifications Item Specifications 0–40°C Ambient temperature for operation 20 to 85% RH (no condensation) Ambient humidity for operation -20 to 65° C (no condensation) Ambient temperature for storage (not subjected to direct sunlight) 80° C for 72 hours 20 to 85% RH (no condensation) Ambient humidity for storage Indoors (not subject to direct sunlight),...
  • Page 32: Bit

    1. Specifications 1. Motor 23 bit 50 W encoder MY500P2 □ □ * * Without brake Motor Model : MY500B2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – Middle Usage –...
  • Page 33 1. Specifications 1. Motor MG500P2 □ □ * * Without brake Motor Model : MG500B2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – Middle Usage – Holding Fitting flange size 40 sq.
  • Page 34 1. Specifications 1. Motor 100 W MY101P2 □ □ * * Without brake Motor Model : MY101B2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – Middle Usage – Holding Fitting flange size 40 sq.
  • Page 35 1. Specifications 1. Motor MG101P2 □ □ * * Without brake Motor Model : MG101B2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – Middle Usage – Holding Fitting flange size 40 sq.
  • Page 36 1. Specifications 1. Motor 200 W MX201P2 □ □ * * Without brake Motor Model : MX201B2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – Usage – Holding Fitting flange size 60 sq.
  • Page 37 1. Specifications 1. Motor MG201P2 □ □ * * Without brake Motor Model : MG201B2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – Middle Usage – Holding Fitting flange size 60 sq.
  • Page 38 1. Specifications 1. Motor MZ201P2 □ □ * * Without brake Motor Model : MZ201B2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – High Usage – Holding Fitting flange size 60 sq.
  • Page 39 1. Specifications 1. Motor 400 W MX401P2 □ □ * * Without brake Motor Model : MX401B2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – Usage – Holding Fitting flange size 60 sq.
  • Page 40 1. Specifications 1. Motor MG401P2 □ □ * * Without brake Motor Model : MG401B2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – Middle Middle Usage – Holding Fitting flange size 60 sq.
  • Page 41 1. Specifications 1. Motor MZ401P2 □ □ * * Without brake Motor Model : MZ401B2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – High Usage – Holding Fitting flange size 60 sq.
  • Page 42 1. Specifications 1. Motor 750 W MX751P2 □ □ * * Without brake Motor Model : MX751B2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – Usage – Holding Fitting flange size 80 sq.
  • Page 43 1. Specifications 1. Motor MZ751P2 □ □ * * Without brake Motor Model : MZ751B2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – High Usage – Holding Fitting flange size 80 sq.
  • Page 44 1. Specifications 1. Motor 850 W MJ851P2 □ □ * * Without brake Motor Model : MJ851B2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – High Usage – Holding Fitting flange size 130 sq.
  • Page 45 1. Specifications 1. Motor 1 kW MX951P2 □ □ * * Without brake Motor Model : MX951B2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – Usage – Holding Fitting flange size 80 sq.
  • Page 46 1. Specifications 1. Motor MX102P2 □ □ * * Without brake Motor Model : MX102B2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – Usage – Holding Fitting flange size 100 sq.
  • Page 47 1. Specifications 1. Motor MM102P2 □ □ * * Without brake Motor Model : MM102B2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – High Usage – Holding Fitting flange size 130 sq.
  • Page 48 1. Specifications 1. Motor MH102P2 □ □ * * Without brake Motor Model : MH102B2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – High Usage – Holding Fitting flange size 130 sq.
  • Page 49 1. Specifications 1. Motor 1.3 kW MJ132P2 □ □ * * Without brake 1.3 23 Motor Model : MJ132B2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – High Usage –...
  • Page 50 1. Specifications 1. Motor 1.5 kW MX152P2 □ □ * * Without brake Motor Model : MX152B2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – Usage – Holding Fitting flange size 100 sq.
  • Page 51 1. Specifications 1. Motor MM152P2 □ □ * * Without brake Motor Model : MM152B2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – High Usage – Holding Fitting flange size 130 sq.
  • Page 52 1. Specifications 1. Motor MH152P2 □ □ * * Without brake Motor Model : MH152B2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – High Usage – Holding Fitting flange size 130 sq.
  • Page 53 1. Specifications 1. Motor 2 kW MX202P2 □ □ * * Without brake Motor Model : MX202B2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – Usage – Holding Fitting flange size 100 sq.
  • Page 54 1. Specifications 1. Motor MM202P2 □ □ * * Without brake Motor Model : MM202B2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – High Usage – Holding Fitting flange size 130 sq.
  • Page 55: Bit

    1. Specifications 1. Motor 17 bit 50 W encoder MY500N2 □ □ * * Without brake Motor Model : MY500A2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – Middle Usage –...
  • Page 56 1. Specifications 1. Motor MG500N2 □ □ * * Without brake Motor Model : MG500A2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – Middle Usage – Holding Fitting flange size 40 sq.
  • Page 57 1. Specifications 1. Motor 100 W MY101N2 □ □ * * Without brake Motor Model : MY101A2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – Middle Usage – Holding Fitting flange size 40 sq.
  • Page 58 1. Specifications 1. Motor MG101N2 □ □ * * Without brake Motor Model : MG101A2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – Middle Usage – Holding Fitting flange size 40 sq.
  • Page 59 1. Specifications 1. Motor 200 W MX201N2 □ □ * * Without brake Motor Model : MX201A2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – Usage – Holding Fitting flange size 60 sq.
  • Page 60 1. Specifications 1. Motor MG201N2 □ □ * * Without brake Motor Model : MG201A2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – Middle Usage – Holding Fitting flange size 60 sq.
  • Page 61 1. Specifications 1. Motor MZ201N2 □ □ * * Without brake Motor Model : MZ201A2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – High Usage – Holding Fitting flange size 60 sq.
  • Page 62 1. Specifications 1. Motor 400 W MX401N2 □ □ * * Without brake Motor Model : MX401A2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – Usage – Holding Fitting flange size 60 sq.
  • Page 63 1. Specifications 1. Motor MG401N2 □ □ * * Without brake Motor Model : MG401A2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – Middle Usage – Holding Fitting flange size 60 sq.
  • Page 64 1. Specifications 1. Motor MZ401N2 □ □ * * Without brake Motor Model : MZ401A2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – High Usage – Holding Fitting flange size 60 sq.
  • Page 65 1. Specifications 1. Motor 750 W MX751N2 □ □ * * Without brake Motor Model : MX751A2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – Usage – Holding Fitting flange size 80 sq.
  • Page 66 1. Specifications 1. Motor MZ751N2 □ □ * * Without brake Motor Model : MZ751A2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – High Usage – Holding Fitting flange size 80 sq.
  • Page 67 1. Specifications 1. Motor 850 W MJ851N2 □ □ * * Without brake Motor Model : MJ851A2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – High Usage – Holding Fitting flange size 130 sq.
  • Page 68 1. Specifications 1. Motor 1 kW MX951N2 □ □ * * Without brake Motor Model : MX951A2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – Usage – Holding Fitting flange size 80 sq.
  • Page 69 1. Specifications 1. Motor MX102N2 □ □ * * Without brake Motor Model : MX102A2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – Usage – Holding Fitting flange size 100 sq.
  • Page 70 1. Specifications 1. Motor MM102N2 □ □ * * Without brake Motor Model : MM102A2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – High Usage – Holding Fitting flange size 130 sq.
  • Page 71 1. Specifications 1. Motor MH102N2 □ □ * * Without brake Motor Model : MH102A2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – High Usage – Holding Fitting flange size 130 sq.
  • Page 72 1. Specifications 1. Motor 1.3 kW MJ132N2 □ □ * * Without brake Motor Model : MJ132A2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – High Usage – Holding Fitting flange size 130 sq.
  • Page 73 1. Specifications 1. Motor 1.5 kW MX152N2 □ □ * * Without brake 1.5 17 Motor Model : MX152A2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – Usage –...
  • Page 74 1. Specifications 1. Motor MM152N2 □ □ * * Without brake Motor Model : MM152A2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – High Usage – Holding Fitting flange size 130 sq.
  • Page 75 1. Specifications 1. Motor MH152N2 □ □ * * Without brake Motor Model : MH152A2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – High Usage – Holding Fitting flange size 130 sq.
  • Page 76 1. Specifications 1. Motor 2 kW MX202N2 □ □ * * Without brake Motor Model : MX202A2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – Usage – Holding Fitting flange size 100 sq.
  • Page 77 1. Specifications 1. Motor MM202N2 □ □ * * Without brake Motor Model : MM202A2 □ □ * * With brake) encoder Basic Specifications Brake Specifications Item Unit Specifications Item Unit Specifications Rotor inertia – Middle Usage – Holding Fitting flange size 130 sq.
  • Page 78: Encoder

    1. Specifications 2. Encoder 2. Encoder 1. Specifications Item Specifications M□□□□P2□A** M□□□□N2□A** M□□□□N2□N** Motor model M□□□□B2□A** M□□□□A2□A** M□□□□A2□N** Resolution encoder encoder encoder Absolute 23 bit Absolute 17 bit Incremental 17 bit Ambient operating temperature 0–90°C 0–85°C Environmental requirements External disturbance magnetic field ±2 mT ( 20 G ) or below Voltage DC 4.5 to 5.5 V (Power supply ripple ≦...
  • Page 79: Amplifiers

    1. Specifications 3. Amplifier 3. Amplifiers 1. Model Codes Models Series Input Power Supply Specifications Code Main Circuit Power & Control Power Code Specifications AC200–240 V EtherCAT (*) Single- or Three-phase option depends on compatible motor. 50–750 W : Single-phase 1 kW : Single-phase / Three-phase 850 W, 1.3–2 kW...
  • Page 80: Names Of Parts

    1. Specifications 3. Amplifier 2. Names of parts Motor rated Figure 1 output power Amplifier DB6YZ41  DB61241 model DB6Z141 Mounting holes ⌀ 5.5 (one location) Mounting holes The recommended screw: M5x12 mm, with spring washer M4 (Effective depth = 5 mm) two locations (Same as bottom side) USB connector Setting panel...
  • Page 81 1. Specifications 3. Amplifier Motor rated Figure 3 output power Amplifier DB63841 model DB64A41 Mounting holes ⌀ 5.5 (one location) Mounting holes The recommended screw: M5x12 mm, with spring washer M4 (Effective depth = 5 mm) two locations (Same as bottom side) USB connector Setting panel Used for parameter settings, tuning,...
  • Page 82: Basic Specifications

    1. Specifications 3. Amplifier 3. Specifications Basic Specifications Items Specifications Amplifier model DB6YZ41 DB6Z141 DB61241 DB62441 DB63841 M□500 M□101 M□201 M□401 M□751 Compatible Motor External dimensions (See "Dimensions" ) Mass (Kg) Single-phase AC200 V–240 V±10% Main circuit power & Control power 50 / 60 Hz Input current (Arms typ) Control type...
  • Page 83 1. Specifications 3. Amplifier Items Specifications Amplifier model DB64A41 DB65B41 DB66B41 DB67C41 DB68C41 MX951 M□102 MJ851 M□152 MJ132 M□202 Compatible Motor External dimensions (See "Dimensions" ) Mass (Kg) (*1) Three-phaseAC200–240 V ±10% Main circuit power & Control power 50 / 60 Hz Single-phase :...
  • Page 84 1. Specifications 3. Amplifier Notice In the Amplifier DB64A41 (1 kW), single-phase can be used for primary circuit power source. To use single-phase 200 to 240 VAC, connect it to the primary circuit power connectors L1 and L3. For the control power supply, connect L1 and L3 of the main circuit power supply to L1C and L2C, respectively. Item Specifications Amplifier Model...
  • Page 85: Operation Mode

    1. Specifications 3. Amplifier Standard I/O Items Specifications CW limit sensor, CCW limit sensor, Home sensor, External latch(2-point), Alarm reset, Control input Emergency stop Control output Brake release, Alarm status, Servo ready Operation mode Item Specifications Operation mode EtherCAT communication mode, test mode through S-TUNEⅡ Environmental Specification Items Specifications...
  • Page 86: External Dimensions

    1. Specifications 3. Amplifier 4. External Dimensions Motor rated Figure 1 output power Amplifier DB6YZ41 model DB6Z141 2-M4: Depth 6 DB61241 ∅5.5 (30) (mm) 2-M4: Depth 6 Motor rated Figure 2 output power Amplifier DB62441 model 2-M4: Depth 6 ∅5.5 2-5.5 (30) (mm) 2-M4: Depth 6 S-FLAG Ⅱ Instruction Manual - EtherCAT -...
  • Page 87 1. Specifications 3. Amplifier Motor rated Figure 3 output power Amplifier DB63841 2-M4: Depth 6 model DB64A41 ∅5.5 (44) (mm) 2-M4: Depth 6 Motor rated Figure 4 output power Amplifier DB65B41 model 2-M4: Depth 8 DB66B41 DB67C41 DB68C41 3-∅5.5 37.5 (mm) 2-M4: Depth 8 S-FLAG Ⅱ Instruction Manual - EtherCAT -...
  • Page 88: Overload Detection Feature

    1. Specifications 3. Amplifier 5. Overload Detection Feature S-FLAGⅡ series amplifiers features overload protection - overload alarm output and emergency stop upon alarm output - in case of motor operation with load level above the overload detection curve shown below. MY500 MY101 MG500...
  • Page 89 HARDWARE Mounting and Wiring 1. Installation ........2 1.
  • Page 90: Installation

    2. Mounting and Wiring 1. Installation 1. Installation Installation and Operating Environment Ensure that the environments for installation and operation meet the requirements specified in this document. Should you use the product in conditions different from the specifications, please contact us. ■...
  • Page 91: Motor Installation

    2. Mounting and Wiring 1. Installation 1. Motor Installation Do not use any other screws but those in the recommended sizes. The motor mounting screws are depending on its flange size. Recommended Motor Mounting Screws Fitting flange size Mounting Hole Hexagon socket head bolt Motor ・50 W 2- ⌀...
  • Page 92: Horizontal Installation

    2. Mounting and Wiring 1. Installation Connection with Machines Use a coupling to absorb angle and direction deviations so that the motor shaft load will be less than the rated allowable axial load. Otherwise, the bearing life in the motor will be shorter, or the shaft may become damaged. If you are using a rigid coupling, install it very carefully such that the axial misalignment will be minimal.
  • Page 93: Amplifier Installation

    2. Mounting and Wiring 1. Installation 2. Amplifier Installation Do not turn on the primary circuit power or the control power until all wiring work is completed. Mounting Orientation and Clearance When installing amplifiers, secure required clearances for protective enclosures and control panels for heat dissipation and air flow.
  • Page 94 2. Mounting and Wiring 1. Installation Mounting Amplifiers Be sure to mount each amplifier on conductive surface such as aluminum brushed plate. Hook the U-shaped installation notch of Tighten the mounting screws on the STEP STEP the amplifier to the bolt that has been amplifier top.
  • Page 95: System Wiring

    2. Mounting and Wiring 2. System Wiring 2. System Wiring  DANGER Be mindful when wiring and handling high voltage materials To comply with the EC Directive, select appropriate devices, each of which is compliant with its applicable standards. FG connection is a must. Connect the input power of control power to the same power supply that the primary circuit power is connected to.
  • Page 96 2. Mounting and Wiring 2. System Wiring 1. System Wiring Motor rated Wiring Pattern 1 output power Main circuit power Computer Circuit breaker Surge absorber S-TUNEⅡ I/O power Noise filter Host controller Amplifier Electromagnetic contactor USB connector Accessories Main power and Control power input connector User I/O connector...
  • Page 97: Mounting And Wiring

    2. Mounting and Wiring 2. System Wiring Motor rated Wiring Pattern 2 output power MX951 Main circuit power Computer Circuit breaker Surge absorber S-TUNEⅡ I/O power Noise filter Host controller Amplifier Electromagnetic contactor USB connector Accessories Main power and Control power input connector User I/O connector ECIN...
  • Page 98 2. Mounting and Wiring 2. System Wiring Motor rated Wiring Pattern 3 output power MX102 MM102 MH102 Main circuit power Computer Circuit breaker Surge absorber S-TUNEⅡ I/O power Noise filter Host controller Amplifier Electromagnetic contactor USB connector Main power and Accessories Control power input connector User I/O...
  • Page 99 2. Mounting and Wiring 2. System Wiring Motor rated Wiring Pattern 4 output power Main circuit power Computer Circuit breaker Surge absorber S-TUNEⅡ I/O power Noise filter Host controller Amplifier Electromagnetic contactor Terminal blocks USB connector User I/O connector ECIN EtherCAT Input Regenerative resistor ECOUT...
  • Page 100: Connecting Equipment And Recommended Peripherals

    2. Mounting and Wiring 2. System Wiring 2. Connecting Equipment and Recommended Peripherals Main circuit power Please use this product in the power supply environment of Over-Voltage Category Ⅱ defined by IEC60664-1. This is the primary circuit power for amplifiers. Using a overvoltage protection relay is recommended.
  • Page 101 2. Mounting and Wiring 2. System Wiring Electromagnetic contactor This is an on/off switch for the main power supply. Use a surge absorber on the input side of the primary circuit power supply. Recommended Fuji Electric Co., Ltd. SK06G-E10 Product An equivalent product is acceptable.
  • Page 102: Wiring To Connectors And Signals

    2. Mounting and Wiring 3. Wiring to Connectors and Signals 3. Wiring to Connectors and Signals 1. Motor Connector Pinouts Motor rated Motor Connector Pinout output power MX951 Encoder Connector ・Incremental ・Incremental Housing 172168-1 Housing 172160-1 Contact 170363-1 Contact 170365-1 (Tyco Electronics JAPAN) (Tyco Electronics JAPAN) ・Absolute ・Absolute Housing 172169-1...
  • Page 103 2. Mounting and Wiring 3. Wiring to Connectors and Signals Motor rated Motor Connector Pinout output power MX102 MM102 MH102 Encoder Connector ・Incremental / Absolute Straight Plug CM10-SP10S- □ -D ・Incremental / Absolute Right Angle Plug CM10-AP10S- □ -D CM10-R10P-D (D7) □:...
  • Page 104: Amplifier Connectors And Pinouts

    2. Mounting and Wiring 3. Wiring to Connectors and Signals 2. Amplifier Connectors and Pinouts Amplifier Connector Layout Motor rated Amplifier Connectors output power USB connector Accessories User I/O connector Main power and Control power input ECIN connector      EtherCAT Input ECOUT EtherCAT Output Accessories...
  • Page 105: Terminal Blocks

    2. Mounting and Wiring 3. Wiring to Connectors and Signals Amplifier Connectors Pinout Motor rated Amplifier Connectors Pinout output power Accessories Pin No. Signal Description Main Power (Main Circuit) Main power and Control power input connector Main Power (Main Circuit) Main Power (Main Circuit) Main Power (Control Circuit ) Main Power (Control Circuit )
  • Page 106: Connector Cover

    2. Mounting and Wiring 3. Wiring to Connectors and Signals Amplifier Connectors Pinout Motor rated Amplifier Connectors Pinout output power Pin No. Signal Description VBUS USB power supply +5 V USB connector D- USB data - USB data + USB mini B - (No Connect) USB signal ground Pin No.
  • Page 107 2. Mounting and Wiring 3. Wiring to Connectors and Signals Pinout Diagram A pinout diagram of C5 connector pinout. Pins are grouped to three categories. Pins Group Description General-Purpose Input Input terminals connecting from the host controller, such as I/O power, and control signals. You can change the input logic.
  • Page 108: Pinout Diagram

    2. Mounting and Wiring 3. Wiring to Connectors and Signals User I/O Connector Pinout Diagram Encoder Output Signal Description Signal ground OUT_A A-phase Connector 10126-3000-PE (3M) /OUT_A Cover 10326 (3M) /A-phase or Equivalent alternatives OUT_B Wires : AWG26 B-phase /OUT_B /B-phase OUT_Z Z-phase...
  • Page 109 2. Mounting and Wiring 3. Wiring to Connectors and Signals C5 Connector Wiring Example Servo Amplifier Connector Servo Amplifier Encoder Signal Output INPUT INPUT OUTPUT Host Controller I/O power supply 24 V input 4.7 kΩ COM+ CW Limit Sensor OUT̲A A-phase CCW Limit Sensor /OUT̲A Home position sensor...
  • Page 110: Wiring To C1 And C2 Connectors, Or Terminal Blocks

    2. Mounting and Wiring 3. Wiring to Connectors and Signals 3. Wiring to C1 and C2 connectors, or Terminal Blocks  DANGER Be sure to follow the following precautions when wiring to the C1 and C2 connectors. ・Be sure to disconnect the connector from the amplifier before wiring. ・Insert one cable at each wire insertion point.
  • Page 111: Descriptions Of C5 Connector Signals

    2. Mounting and Wiring 3. Wiring to Connectors and Signals 4. Descriptions of C5 Connector Signals Review the functions of each pin of C5 connector before using the product. Pins marked with this icon enables you to change the input/output logic. For the diagram, refer to this page Pin number on C5 PI ...
  • Page 112: General-Purpose Output

    2. Mounting and Wiring 3. Wiring to Connectors and Signals General-Purpose Output 1, 2 Pin No. I/F Circuit  (P. 30) Signal Description Does not release the brake. OUTPUT Releases the brake. MBRK+ (Pin No.1) ■ TIP MBRK- (Pin No.2) The motor brake cannot be driven directly. To drive the motor brake, be sure to use Brake Release a relay.
  • Page 113 2. Mounting and Wiring 3. Wiring to Connectors and Signals 25, 26 Pin No. I/F Circuit  (P. 30) Signal Description In one of the following conditions An alarm is occurring. The primary circuit power is not supplied to the amplifier. OUTPUT SRDY+ (Pin No.25)
  • Page 114: General-Purpose Input

    2. Mounting and Wiring 3. Wiring to Connectors and Signals General-Purpose Input Pin No. I/F Circuit  (P. 29) Signal Description A common power supply for optical isolators of general-purpose input circuit. COM+ Power voltage: DC24 V ± 10% Use SELV power supply with reinforced insulation that is isolated from hazardous voltages. I/O power supply 24 V input P I ...
  • Page 115 2. Mounting and Wiring 3. Wiring to Connectors and Signals P I  10, 11 Pin No. I/F Circuit (P. 29) Signal Description OPEN INPUT Position feedback data is not latched. EXT1 External Latch 1 CLOSED Position feedback data is latched by the timing to which a signal was input. EXT2 External Latch 2 P I ...
  • Page 116: Encoder Output

    2. Mounting and Wiring 3. Wiring to Connectors and Signals Encoder Output 16–22 Pin No. I/F Circuit  (P. 31) Signal Description OUT_A, /OUT_A: OUT_B, /OUT_B: OUT_A (Pin No.17) OUT_Z, /OUT_Z: /OUT_A (Pin No.18) Differential output of encoder signal divided and multiplied A-phase output (equivalent to RS-422) OUT_B...
  • Page 117: C5 I/F Circuit

    2. Mounting and Wiring 3. Wiring to Connectors and Signals 5. C5 I/F Circuit Connection to DC24V Power Supply Connect I/O power supply. Amplifier INPUT   4.7 kΩ    (COM+) 7-13 Input device OUTPUT  1, 3, 25 Output device    (OUTPUT) +   2, 4, 26   ...
  • Page 118 2. Mounting and Wiring 3. Wiring to Connectors and Signals Connections to General-Purpose Output Signal The motor brake cannot be driven directly. To drive the motor brake, be sure to use a relay. When driving a load containing inductance component such as relay, connect a protection circuit (diode). Install a diode in the direction shown in the figure below.
  • Page 119 2. Mounting and Wiring 3. Wiring to Connectors and Signals Connection to Encoder Output Circuit Differential output of encoder signal (A-phase, B-phase, Z-phase) which has been processed with pulse division ratio. Be sure to connect a termination resistor to the receiver circuit of the host controller. Approximately 220 Ω...
  • Page 120: Cables

    2. Mounting and Wiring 4. Cables 4. Cables Recommended cable wires Connection cables required for this product are sold separately. Those can be purchased at the MISUMI online store. Use our recommendations below to select cables based on your actual usage. (Equivalent alternatives are also good) Should you use a cable longer than the specification, please contact us in advance.
  • Page 121: Motor Power Cable

    2. Mounting and Wiring 4. Cables Motor rated Motor Power Cable output power MX951 4 HOUSING Pin No. Signal Color WHITE BLUE GREEN - YELLOW GREEN-YELLOW Item Model Supplier NA3CT-18-4 (for fixed wiring) CABLE MISUMI Group Ink NA3CTR-18-4 (for movable wiring) RING TONGUE TERMINAL R2-4 J.S.T.
  • Page 122 2. Mounting and Wiring 4. Cables Motor rated Encoder Cable output power (Incremental) MX951 2 HOUSING Shield 4 HOUSING Pin No. Signal AWG22 Pin No. Signal AWG22 - AWG24 - + D AWG24 - ー D + D ー D SHIELD SHIELD Soldering...
  • Page 123 2. Mounting and Wiring 4. Cables Motor rated Encoder Cable output power (Absolute) MX951 2 HOUSING 4 HOUSING Shield Pin No. Signal Pin No. Signal AWG22 AWG22 - - SHIELD AWG24 - + D AWG24 + D ー D ー D -...
  • Page 124 2. Mounting and Wiring 4. Cables Motor rated Encoder Cable output power (Absolute) MX102 MM102 MH102 2 HOUSING 4 HOUSING Shield Pin No. Signal Pin No. Signal AWG22 AWG22 - - - AWG24 + D + D AWG24 ー D ー...
  • Page 125: Brake Cable

    2. Mounting and Wiring 4. Cables Motor rated Brake Cable output power MX951 2 HOUSING Pin No. Signal Color BRK + BRACK BRK - BRACK Item Model Supplier MAST-UL2517-19-2 (for fixed wiring) CABLE MISUMI Group Ink NA3UCR-18-2 (for movable wiring) HOUSING 172157-1 Tyco Electronics JAPAN...
  • Page 126 2. Mounting and Wiring MEMO S-FLAG Ⅱ Instruction Manual - EtherCAT -...
  • Page 127 S-FLAG Ⅱ Instruction Manual - EtherCAT - PARAMETER 1. Setup Panel 2. Parameter 3. Tuning AMO-NP-35475-41 SF2-E-C DEC. 2019...
  • Page 128 MEMO S-FLAG Ⅱ Instruction Manual - EtherCAT -...
  • Page 129: Setup Panel

    PARAMETER Setup Panel 1. Names of Parts ....... . . 2 2.
  • Page 130: Rotary Switch

    1. Setup Panel 1. Name of parts 1. Names of Parts 7-segment display 2-digit EtherCAT node address Status (Alarm and Warning) EtherCAT Status Indicator LED Servo status RUN (Green) This shows an operational status of a servo amplifier. ERR(Red) It lights up when an error occurs. L/A IN (Green) Link/Activity IN This shows the EtherCAT communication state.
  • Page 131: Warning Status

    1. Setup Panel 2. Functions ー 7-segment display 2. Functions ー 7-segment display When the control power supply is turned on, the following items are displayed on the 7-segment display. Turn on the control power EtherCAT Communication node address Displays the node address of the EtherCAT communication. …...
  • Page 132 1. Setup Panel MEMO S-FLAG Ⅱ Instruction Manual - EtherCAT -...
  • Page 133 PARAMETER Parameters 1. Introduction ........2 2.
  • Page 134: Introduction

    2. Parameters 1. Introduction 1. Introduction Remark Some of the tuning parameters are dependent on the settings of other parameters, which makes the values of dependent parameters invalid even if they are within the specification range. Control Mode Name Control gain 1 115.0 Control gain 2 116.0...
  • Page 135 2. Parameters 1. Introduction Characteristics of Parameters The parameters are categorized into five groups according to their functions, uses, and features. The following icons are used to represent their characteristics. Group Icon Meaning Basic Used for all Control Modes Position Control Mode Used for Position Control Mode (Red) Velocity Control Mode...
  • Page 136: List Of Parameters

    2. Parameters 2. List of Parameters 2. List of Parameters 1. In the order of S-TUNEⅡ display Basic Parameters Name EtherCAT Control mode Basic Settings Command mode Switch 144.0 Torque command Torque limit output 144.1 limit Value 1 147.0 Torque command offset 146.0 2092h Servo OFF: Delay time...
  • Page 137: Basic Parameters

    2. Parameters 2. List of Parameters In the order of S-TUNE Ⅱ display Basic Parameters Name EtherCAT Warning latch time 12.0 200Ch Error detection Alarm output timing 200Dh 13.0 settings Switch 2041h 65.0 Position deviation Value 87.0 6065h Error detection Delay time 89.0 Value...
  • Page 138: List Of Parameters

    2. Parameters 2. List of Parameters In the order of S-TUNE Ⅱ display Position Control Mode Name EtherCAT Interpolation 2020h 32.2 Position command input Pulse ratio Numerator 6091-01h 34.0 EtherCAT communication Denominator 36.0 6092-02h Feed forward delay compensation 2042h 66.3 P.31- Inertia ratio 2066h...
  • Page 139: Velocity Control Mode

    2. Parameters 2. List of Parameters In the order of S-TUNE Ⅱ display Velocity Control Mode Name EtherCAT Velocity Command Input EtherCAT Rotational direction 203Eh 62.0 communication P.51- Inertia ratio 102.0 2066h Tuning Parameters Damping ratio 2067h 103.0 Settings Tuning Parameter Inertia ratio upper bound 106.0 206Ah...
  • Page 140: Vibration Suppress Filter

    2. Parameters 2. List of Parameters In the order of S-TUNE Ⅱ display Vibration Suppress Filter Name EtherCAT Selection 2042h 66.0 Position Command Smoothing 1 Moving average counter 2050h 80.0 Filter  Notch frequency 74.0 204Ah Filter 1 Notch width 204Bh 75.0 High frequency gain 76.0...
  • Page 141 2. Parameters 2. List of Parameters 2. In the order of parameter No. Name EtherCAT Control mode P. 13 Command mode P. 13 12.0 Warning latch time 200Ch P. 26 13.0 Timing for alarm output 200Dh P. 26 32.2 EtherCAT Communication - Auto interpolations for paired ratio 2020h P.
  • Page 142 2. Parameters 2. List of Parameters In the order of parameter No. Name EtherCAT 102.0 Inertia ratio 2066h P. 33 103.0 Damping ratio 2067h P. 33 106.0 Tuning - Inertia ratio upper limit 206Ah P. 33 110.0 Tuning - Mode switch 206Eh P.
  • Page 143 2. Parameters 2. List of Parameters In the order of parameter No. Name EtherCAT 193.0 Current Control Gain Switch 20C1h P. 38 224.0 Deceleration stop - Method (at Servo Off) 20E0h P. 18 224.1 Deceleration stop - Release condition 20E0h P.
  • Page 144 2. Parameters 2. List of Parameters In the order of parameter No. Name EtherCAT 643.0 Internal position: Overflow detection P. 45 645.0 Homing - Home base signal selection P. 39 645.1 Homing - Encoder Z-phase as base signal P. 39 645.3 Homing - Re-detection of home position dog P.
  • Page 145 2. Parameters 3. Details of Parameters 3. Details of Parameters 1. Basic Parameters Basic Parameters Basic Settings Basic Settings Settings Default Characteristics No. 2.0 Control mode - - - 0, 1, 2 Select Control Mode. Settings Control Mode Function Position Control Mode Velocity Control Mode Torque Control Mode Related To...
  • Page 146: Details Of Parameters

    2. Parameters 3. Details of Parameters Basic Parameters Basic Settings Settings Default Characteristics Torque command limit: No. 144.1 Torque limit output - - - 0, 1, 2 Select one of the condition sets to output that the motor is in a "torque limiting state". T-LIMIT (Pin No.17) of I/O connector will output the torque limiting state, when, in each row in the table below, 1) any of the parameters marked ○...
  • Page 147 2. Parameters 3. Details of Parameters Basic Parameters Basic Settings Range Default Characteristics No. 237.0 Servo OFF: Delay time - - - (20EDh) 0 to 3,125 0 to 3,125 [100µs] This parameter indicates the delay time the motor excitation off after the Enable Operation (0x6040,3) turns off.
  • Page 148: Minimum Value

    2. Parameters 3. Details of Parameters Basic Parameters Basic Settings Range Default Characteristics No. 458.0 Wraparound Minimum value - - - (21CAh) -2,147,483,648 to 0 -2,147,483,648 Set the minimum value for wraparound. Function Related To No.460.0 Range Default Characteristics No. 460.0 Wraparound Maximum value -...
  • Page 149 2. Parameters 3. Details of Parameters Basic Parameters Stop Settings Stop Settings Settings Default Characteristics No. 67.0 Drive restriction input: Setup - - (2043h) 0 to 3 By installing sensors at the ends of linear motion, you can restrict the drive beyond the motion range.
  • Page 150 2. Parameters 3. Details of Parameters Basic Parameters Stop Settings Range Default Characteristics Deceleration stop: No. 151.0 2,400 Torque command limit - - - - 0 to 65,535 [ 0.1% ] If [Deceleration stop: Method (when the servo is off) (No.224.0)] = 2 (quick stop), set the value of torque command limit at the time of a quick stop as a ratio to the rated torque (100%).
  • Page 151 2. Parameters 3. Details of Parameters Basic Parameters Stop Settings Settings Default Characteristics No. 224.2 Deceleration stop: Switch (upon control power failure) - - - (20E0h) 0, 1 Enable/Disable deceleration stop when an alarm of voltage drop error in the control power supply occurs.
  • Page 152 2. Parameters 3. Details of Parameters Basic Parameters Stop Settings Settings Default Characteristics No. 225.2 Quick stop: Smoothing filter - Switch - - - (20E1h) 0, 1 0, 1 Enable/Disable the Velocity Command smoothing filter at the time of a quick stop. This filter suppresses vibration caused by drastic velocity change.
  • Page 153: Operating Time

    2. Parameters 3. Details of Parameters Basic Parameters Stop Settings Range Default Characteristics Deceleration stop: No. 228.0 Operating time - - - (20E4h) 0 to 16,383 (upon control power error) [100µs] Set Deceleration stop time in the event of the alarm output due to a control power error. ■...
  • Page 154 2. Parameters 3. Details of Parameters Basic Parameters Stop Settings Settings Default Characteristics No. 232.1 Deceleration stop: Status during free-run - - - (20E8h) 0, 1 Select on or off for deceleration stop status during free-run. Settings Deceleration stop status OFF (not consider as deceleration stop) As soon as the servo status becomes OFF, the brake release (MBRK) becomes open and the brake becomes engaged.
  • Page 155 2. Parameters 3. Details of Parameters Basic Parameters Stop Settings Settings Default Characteristics No. 233.0 Deceleration Stop: Method (when alarm is on) - - - (20E9h) 0 to 7 Select a deceleration stop method in case of alarm while motor is in motion. (*1) Each alarm group uses a different stop method.
  • Page 156 2. Parameters 3. Details of Parameters Basic Parameters Stop Settings Alarm Alarm Name Alarm Alarm Name Group Group Overvoltage error System error Switch circuitry error EEPROM data error Product code error Overcurrent error (Mismatching code) ① Inverter error 1 Overload error ④...
  • Page 157 2. Parameters 3. Details of Parameters Basic Parameters Stop Settings Range Default Characteristics No. 234.0 Deceleration Stop: Brake engagement - Delay time - - - (20EAh) 0 to 16,383 [100µs] Set the delay time between two events: 1) SVON (servo-on) opens while the motor is in motion or an alarm occurs, and 2) the brake becomes engaged.
  • Page 158: Error Detection Settings

    2. Parameters 3. Details of Parameters Basic Parameters Error Detection Settings Error Detection Settings Range Default Characteristics No. 12.0 Warning latch time - - - (200Ch) 0 to 200 [50ms] Specify the length of latch time for warning output. Setting Description No limit 1 to 200...
  • Page 159 2. Parameters 3. Details of Parameters Basic Parameters Error Detection Settings Settings Default Characteristics No. 65.0 Position deviation error detection: Switch - - - (2041h) 0 to 3 Specify what to output when excessive position deviation is detected. Settings Output selection No detect (No output) Alarm output Function...
  • Page 160 2. Parameters 3. Details of Parameters Basic Parameters Error Detection Settings Range Default Characteristics No. 90.0 Speed deviation error detection: 1,500 Value - - - (205Ah) 0 to 10,000 [r/min] This parameter sets a threshold value for a speed deviation error detection. The higher the value, the less likely to detect a speed deviation error.
  • Page 161 2. Parameters 3. Details of Parameters Basic Parameters Error Detection Settings Range Default Characteristics No. 267.0 Encoder: Overheat detection - Value - - - (210Bh) 0 to 127 [ ° C ] Set the value to detect overheat of the encoder. (for reference only) Function Related To No.259.0...
  • Page 162 2. Parameters 3. Details of Parameters Basic Parameters Error Detection Settings Range Default Characteristics No.376.0 Motor rotating position at encoder error holding method - - - (2178h) 0, 2 Select method for motor rotating position holding at encoder error. Settings Methods Function Disable...
  • Page 163: Position Control Mode

    2. Parameters 3. Details of Parameters 2. Position Control Mode Position Control Mode Position Command Input Position Command Input Settings Default Characteristics No. 32.2 Pulse train command: Interpolation with pulse ratio - - (2020h) 0, 1 Enable/Disable the interpolation to smooth a command where C-pulse Ratio is set. Settings Interpolation with pulse ratio Function...
  • Page 164 2. Parameters 3. Details of Parameters Position Control Mode Position Command Input Range Default Characteristics No. 34.0 Pulse train command: Ratio (Numerator) (6091-01h) 17bit 1 to 65,535 1,000 - - No. 36.0 Pulse train command: [ - ] 23bit Ratio (Denominator) (6091-02h) 1 to 8,388,608 Use these two parameters to set the multiplier and divider for the position C-pulse .
  • Page 165 2. Parameters 3. Details of Parameters Position Control Mode Tuning Parameters Tuning Parameters Range Default Characteristics No. 102.0 Tuning: Inertia ratio - - - (2066h) 100 to 10,000 [ % ] Specify the ratio of the device load inertia to motor rotor inertia (moment of inertia). Load Inertia + Rotor Inertia Inertia Ratio = ×...
  • Page 166 2. Parameters 3. Details of Parameters Position Control Mode Tuning Parameters Settings Default Characteristics No. 110.1 Tuning: Items - - - (206Eh) 0, 1, 2 Select Start or Stop for tuning depending on the your willing to estimate items. Estimate items Settings (Tuning) Function Inertia ratio...
  • Page 167 2. Parameters 3. Details of Parameters Position Control Mode Tuning Parameters Settings Default Characteristics No. 113.1 Tuning: Position control mode - Inertia conditions - - - (2071h) 1, 2, 3 Set the inertia conditions for Position Control Mode. This parameter is used to determine the ratio of Control Gain 1 (No.115.0) to Control Gain 2 (No.116.0), which would be appropriate to equipment characteristics.
  • Page 168 2. Parameters 3. Details of Parameters Position Control Mode Tuning Parameters Range Default Characteristics No. 115.0 Tuning: Position control mode - Control gain 1 - - - (2073h) 5 to 1,000 [ rad/s ] Set Control Gain 1 for Position Control Mode. Function Increasing this parameter value reduces position deviations after the command becomes zero.
  • Page 169 2. Parameters 3. Details of Parameters Position Control Mode Tuning Parameters Tuning: Range Default Characteristics No. 117.0 Position control mode 10,000 - - - (2075h) 0 to 15,000 - Gain FF compensation 1 [ 0.01% ] Set the Field Forward Compensation Rate (speed) with respect to Control Gain 1 (No.115.0) for Position Control Mode.
  • Page 170: Current Control Gain

    2. Parameters 3. Details of Parameters Position Control Mode Tuning Parameters Range Default Characteristics No. 120.1 Tuning: Control gain set - Upper bound - - - (2078h) 5 to 45 [ - ] Function Set the upper bound of Control Gain Set in Auto Tuning of Control Gain Set. Prerequisite Position Control Mode Related To...
  • Page 171 2. Parameters 3. Details of Parameters Position Control Mode Homing Homing Settings Default Characteristics Homing: No. 645.0 Home reference signal selection - - - 0, 1 Select the signal that the home position will be referenced to. Settings Reference Signal 1 Any user specified position Function Stopper...
  • Page 172 2. Parameters 3. Details of Parameters Position Control Mode Homing Settings Default Characteristics Homing: No. 646.0 Direction - - - 0, 1 Specify the homing direction. Settings Direction of rotation ■ When Homing Home Reference Signal selection (No.645.0) = 0 (Any user specified position) Homing direction Direction of Z-phase detection Encoder Z-phase...
  • Page 173 2. Parameters 3. Details of Parameters Position Control Mode Homing Settings Default Characteristics Homing: No. 646.1 Sensor dog polarity - - - 0, 1 Select the polarity for the home sensor signal input ORG (Pin No.11) of to detect the dog-front-end. Settings Detection Polarity Function...
  • Page 174 2. Parameters 3. Details of Parameters Position Control Mode Homing Settings Default Characteristics Homing: No. 647.1 Creep speed switch - - - 0, 1 Enable/Disable homing motion after home reference signal detection. Set to 0 to only detect the home reference signal. Set to 1 if any motions are intended after the reference signal detection.
  • Page 175 2. Parameters 3. Details of Parameters Position Control Mode Homing Range Default Characteristics Homing: No. 649.0 Creep speed - - - 0 to 6,300 [ r/min ] Specify the speed for careful approach after the home signal is detected. Function To improve accuracy to detect the home reference signal, select a lower speed.
  • Page 176 2. Parameters 3. Details of Parameters Position Control Mode Homing Range Default Characteristics Homing: No. 656.0 Torque command limit value - - - 10 to 3,000 [ 0.1% ] This parameter indicates a ratio of torque command limit value (during homing) to the rated torque.
  • Page 177 2. Parameters 3. Details of Parameters Position Control Mode Internal Position Command Settings Default Characteristics Internal position: No. 643.0 Overflow detection - - - - 0, 1 Enable/Disable the multi-turn encoder counter overflow detection function for Positioner Drive using ABS value. This function is a protective measure against absolute position loss of the encoder.
  • Page 178: Point Table Operation

    2. Parameters 3. Details of Parameters Position Control Mode Internal Position Command No. 720.1 Settings Default Characteristics Internal Position: No. 740.1 Point table … - - - - 0, 1 Operation No. 1020.1 Select the Running Motion of Point Table. Settings Running Motion Single:...
  • Page 179 2. Parameters 3. Details of Parameters Position Control Mode Internal Position Command No. 720.3 Settings Default Characteristics Internal Position: No. 740.3 Point table … - - - - 0, 1 Enable/Disable No. 1020.3 Enable/Disable Point Table. Settings Enable/Disable Disable The point number assigned "disable" is not executed and any subsequent point numbers assigned "enable"...
  • Page 180 2. Parameters 3. Details of Parameters Position Control Mode Internal Position Command No. 722.0 Range Default Characteristics Internal Position: No. 742.0 -1,073,741,823 Point table … - - - - Position [ E-pulse ] No. 1022.0 +1,073,741,823 Set the target position in Point Table. ■...
  • Page 181 2. Parameters 3. Details of Parameters Position Control Mode Internal Position Command No. 728.0 Range Default Characteristics Internal Position: No. 748.0 Point table … - - - - 0 to 20,000 Dwell time [ ms ] No. 1028.0 Set the dwell time for the Point Table. Dwell time is the wait time for the next Point-Table motion to be executed after a Point-Table motion is complete.
  • Page 182 2. Parameters 3. Details of Parameters Position Control Mode Internal Position Command Point Table Parameter List Rotational Acceleration Deceleration Command Positioning Enable Point Position Dwell time Operation speed time time method completion /Disable [C-pulse ] [ms] [r/min] [ms] [ms] [E-pulse] No.
  • Page 183 2. Parameters 3. Details of Parameters 3. Velocity Control Mode Velocity Control Mode Velocity Command Input Velocity Command Input Settings Default Characteristics No. 62.0 EtherCAT Communication Velocity command: Rotational direction - - (203Eh) 0, 1 Select the rotational direction of EtherCAT Communication velocity command input. Settings Negative Voltage Input Positive Voltage Input...
  • Page 184 2. Parameters 3. Details of Parameters Velocity Control Mode Tuning Parameters Tuning Parameters Range Default Characteristics No. 129.0 Tuning: Velocity control mode - Control gain set - - - (2081h) 1 to 46 [ - ] Set the Control Gain Set for Velocity Control Mode. With this, Control gain 1 (No.131.0) and Integral gain (No.133.0) will be set to the default together.
  • Page 185 2. Parameters 3. Details of Parameters Velocity Control Mode Tuning Parameters Range Default Characteristics No. 131.0 Tuning: Velocity control mode - Control gain 1 - - - (2083h) 100 to 6,000 [ rad/s ] Set Control Gain 1 for Velocity Control Mode. The larger this parameter is, the smaller the speed deviation of the command being input becomes.
  • Page 186 2. Parameters 3. Details of Parameters 4. Torque Control Mode Torque Control Mode Torque Command Input Torque Command Input Range Default Characteristics No. 152.0 EtherCAT Communication Torque command: Max. motor speed Speed Limit - - (6080h) 0 to 10,000 [ r/min ] Set the speed limit for Torque Control Mode.
  • Page 187 2. Parameters 3. Details of Parameters 5. Vibration Suppress Filter Vibration suppress filter Position Command Filter Position Command Filter Settings Default Characteristics No. 66.0 Position command filter 1: Selection - - (2042h) 0 to 3 Select no filter or one of the three filters: Settings Filter Type Function...
  • Page 188 2. Parameters 3. Details of Parameters Vibration suppress filter Position Command Filter Range Default Characteristics No. 74.0 Position command filter 1: Notch frequency - - (204Ah) 10 to 2,000 [ 0.1Hz ] Function Set the notch frequency for Position command filter 1. Prerequisite Position command filter 1: Type (No.66.0) = 2 (Notch filter) or 3 (γ-Notch filter) Related To...
  • Page 189 2. Parameters 3. Details of Parameters Vibration suppress filter Position Command Filter Range Default Characteristics No. 80.0 Position command filter 1: Smoothing 1 - Moving average counter (2050h) 1 to 6,250 [ - ] - - No. 81.0 Position command filter 4: 1 to 1,250 Smoothing 2 - Moving average counter [ - ]...
  • Page 190 2. Parameters 3. Details of Parameters Vibration suppress filter Position Command Filter Settings Default Characteristics No. 82.0 Position command filter 2: Selection - - (2052h) 0 to 3 Set the Position Command Filter 2. Settings Filter Type Function No filter Reserved (Do not use) Notch filter γ-Notch Filter...
  • Page 191 2. Parameters 3. Details of Parameters Vibration suppress filter Position Command Filter Range Default Characteristics No. 85.0 Position command filter 2: High frequency gain - - (2055h) 50 to 200 [ - ] Set the high frequency gain for Position Command Filter 2. Setting Effect x0.25...
  • Page 192 2. Parameters 3. Details of Parameters Vibration suppress filter Position Command Filter Range Default Characteristics No. 357.0 Position command filter 3: Notch frequency - - (2165h) 10 to 2,000 [ 0.1Hz ] Function Set the notch frequency for Position Command Filter 3. Prerequisite Position command filter 3: Type (No.82.1) = 2 (Notch filter) or 3 (γ-Notch Filter) Related To...
  • Page 193 2. Parameters 3. Details of Parameters Vibration suppress filter Torque Command Filter Torque Command Filter Settings Default Characteristics No. 160.0 Torque command filter: Low-pass filter - Switch - - - (20A0h) 0, 1 Enable/Disable Low-pass filter. This filter is a first-order IIR filter. Function Settings First-order IIR filter...
  • Page 194 2. Parameters 3. Details of Parameters Vibration suppress filter Torque Command Filter Range Default Characteristics No. 162.0 Torque command filter: (See below) Low-pass filter - Time constant - - - (20A2h) 0 to 65,535 [ 0.01 ms ] Set the primary IIR filter time constant of [Torque command filter: Low-pass filter switch (No.160.0)] = 1 (Enable) Condition for Time Constant: (0.1 to 0.2)
  • Page 195 2. Parameters 3. Details of Parameters Vibration suppress filter Torque Command Filter Range Default Characteristics Torque command filter: No. 170.0 Notch filter - Depth - - - 0 to 256 (20AAh) [ - ] Set the depth at the notch frequency of Torque command Notch filter. Setting Notch Depth Complete shutoff of notch frequency input...
  • Page 196 2. Parameters 3. Details of Parameters Vibration suppress filter Torque Command Filter Range Default Characteristics No. 173.0 Torque command filter: Notch filter 2 - Depth - - - (20ADh) 0 to 256 [ - ] Set the depth at the notch frequency of Torque command Notch filter 2. Setting Notch Depth 0% pass-through...
  • Page 197 PARAMETER Tuning 1. Introduction ........2 1.
  • Page 198 3. Tuning 1. Introduction 1. Introduction The goal of amplifier tuning is having a good control over the motor and optimizing equipment performance in responding to commands from the host controller� The position control method employs two degrees of freedom with the model-matching control� This method enables you to adjust command response and turbulence response independently without compromising the stability of your equipment�...
  • Page 199: Introduction

    3. Tuning 1. Introduction Control Gain Set The following prearranged sets of parameters for each control mode enable you to perform tuning easily� *) If the [Torque command filter: Low-pass filter auto setting (No�160�2)] is set to 1(auto setting ON), “Torque command filter: Low-pass filter” will be included in the gain set�...
  • Page 200 3. Tuning 1. Introduction 1� Control Block Diagram S-FLAG Ⅱ Instruction Manual - EtherCAT -...
  • Page 201 3. Tuning 1. Introduction S-FLAG Ⅱ Instruction Manual - EtherCAT -...
  • Page 202 3. Tuning 1. Introduction S-FLAG Ⅱ Instruction Manual - EtherCAT -...
  • Page 203 3. Tuning 1. Introduction S-FLAG Ⅱ Instruction Manual - EtherCAT -...
  • Page 204 3. Tuning 1. Introduction S-FLAG Ⅱ Instruction Manual - EtherCAT -...
  • Page 205 3. Tuning 1. Introduction S-FLAG Ⅱ Instruction Manual - EtherCAT -...
  • Page 206: Tuning Procedure

    3. Tuning 2. Tuning Procedure 2. Tuning Procedure Before getting started with tuning, be sure to implement safety measures such as hazard prevention, quick stop and impact mitigation measures� When operating the servo motor for tuning, start with acceleration/ deceleration speeds slower than your target speed� Ensure safety first, then gradually increase the speed and perform tuning each time�...
  • Page 207: Quick Tuning On S-Tuneⅱ

    3. Tuning 2. Tuning Procedure Position Control Mode Setting the Inertia ratio and Optimizing Control Gain Set The inertia ratio value is presumed automatically� The control gain set will be automatically adjusted according to the auto estimate of Stage 1 inertia ratio�...
  • Page 208 3. Tuning 2. Tuning Procedure 1. Position Control Mode Quick Tuning on S-TUNEⅡ Stage 1 Stage 1 Setting the Inertia ratio and Optimizing Control Gain Set Start Tuning Click the Quick Tuning in the Tuning tub. Is the inertia ratio known? Operation 1A Operation 1B Manually enter  Inertia ratio the inertia ratio. Quick tuning. Quick tuning Quick tuning Quick tuning Manually Input ・Automatic estimation of the inertia ratio ① Enter an inertia ratio value ・Automatic setting of the control gain set ① Select the inertia condition...
  • Page 209 3. Tuning 2. Tuning Procedure Quick Tuning on S-TUNEⅡ: Operation 1A Manually enter the inertia ratio Operation 1A Select the Tuning tab. Click the Quick Tuning  in the Tuning tub. Enter an inertia ratio value Click Let the system move. Change the inertia ratio. ・Check the motor motion by test operation     or external command input. ・Repeat the system entire motion several times.  Confirm Confirm                     Is the motor quiet? And/or Visually check  the actual motion. The following is desired:  Acceptable motion? Stage 2 Final tuning   ・ Shorter settling time   ・ Better responsiveness  ...
  • Page 210 3. Tuning 2. Tuning Procedure Quick Tuning on S-TUNEⅡ: Operation 1B Quick tuning the Inertia ratio ・Estimating the inertia ratio automatically ・Configuring the control gain set according to the inertia ratio automatically Operation 1B Select the Tuning tab. Click the Quick Tuning  in the Tuning tub. Select the appropriate inertia condition. Start the Quick tuning. Quick Tuning (Uncheck the check box if you need    the inertia ratio estimation only.) Click on the Quick Tuning check box. Start Click Check the motor motion by test operation or external command input. Repeat the system entire motion several times.  Wait for the inertia ratio estimate to converge. Stop the Quick tuning. Stop Click Let the equipment system move. ・Check the motor motion by test operation or external command input. ・Repeat the system entire motion several times.  Confirm ・Shorter settling time ・Better responsiveness And/or ・Less/no vibration Acceptable motion? Visually check the actual motion.
  • Page 211 3. Tuning 2. Tuning Procedure Final Tuning: Position Control Mode Stage 2 Stage 2 Optimizing the settling time and deviation Suppressing vibration and noise Start Final Tuning Final Tuning P� 16 Operation 3 Tuning of command Responsiveness Control Gain Set ・Tuning of Control Gain Set P� 24 Suppressing vibration and noise Confirm  N N N Torque command filter Is the motor quiet?  Notch filter  Low-pass filter...
  • Page 212 3. Tuning 2. Tuning Procedure Final Tuning Start Final Tuning Operation 3, 4, and 5 Change Control Gain Set Click Let the equipment system move. Change Gain FF Compensation Click Let the equipment system move. Change Integral Gain Click Let the equipment system move. *)  ・ Check the motor motion by test operation or external command input.      ・ Repeat the system entire motion several times.   Confirm Confirm Torque command filter Acceptable motion? And/or Position command filter Visually check  the actual motion. Operation 6 Write to the amplifier Click Tuning complete S-FLAG Ⅱ Instruction Manual - EtherCAT -...
  • Page 213 3. Tuning 2. Tuning Procedure 2. Velocity Control Mode Auto Tuning on S-TUNEⅡ Stage 1 Stage 1 Setting the Inertia ratio and Optimizing Control Gain Set Start Tuning Click the Quick Tuning in the Tuning tub. Is the inertia ratio known? Operation 1A Operation 1B Manually enter Inertia ratio the inertia ratio. Auto tuning Auto tuning Manually Input ① Set Control Gain Set to "5"  ① Set Control Gain Set to "5"  ② Setting Tuning Mode ② Enter the inertia ratio (Wait for the inertia ratio estimate to converge.)...
  • Page 214 3. Tuning 2. Tuning Procedure Auto Tuning on S-TUNE Ⅱ : Operation 1A Manually enter the inertia ratio. Operation 1A Select the Tuning tab. Set Control Gain Set to "5"  Starting tuning with a low setting  of the controller gain set will enable  successful tuning with no vibrations  accompanied by noise. Click Enter the inertia ratio Click Let the equipment system move. Change the inertia ratio. ・Check the motor motion by test operation     or external command input. ・Repeat the system entire motion several times. Confirm Confirm Is the motor quiet? And/or Visually check  the actual motion. Acceptable motion? Stage 2 Final tuning Operation 2 Write to the amplifier Click Tuning complete S-FLAG Ⅱ Instruction Manual - EtherCAT -...
  • Page 215 3. Tuning 2. Tuning Procedure Auto Tuning on S-TUNE Ⅱ : Operation 1B Inertia ratio estimation by the auto tuning Operation 1B Select the Tuning tab Set Control Gain Set to "5" Starting tuning with a low setting  of the controller gain set will enable  successful tuning with no vibrations  accompanied by noise. Click Stop Start the Auto tuning Automatic parameter update Click on the check box. Start Click Check the motor motion by test operation or external command input. Repeat the system entire motion several times. Wait for the inertia ratio estimate to converge. Stop the Auto tuning Stop Click Confirm Confirm Is the motor quiet? Manually enter the inertia ratio. And/or Visually check  the actual motion.
  • Page 216 3. Tuning 2. Tuning Procedure Final Tuning: Velocity Control Mode Stage 2 Stage 2 Optimizing the settling time and deviation Suppressing vibration and noise Start Final Tuning Operation 3 Tuning of command Responsiveness ・Tuning of Control Gain Set Control Gain Set P� 24 Suppressing vibration and noise Confirm N N N Torque command filter Is the motor quiet?  Notch filter  Low-pass filter And/or P�...
  • Page 217 3. Tuning 2. Tuning Procedure Final Tuning Start Final Tuning Operation 3 and 4 Change Control Gain Set Click Let the equipment system move. Change Integral Gain Click Let the equipment system move. *)  ・ Check the motor motion by test operation or external command input.      ・ Repeat the system entire motion several times. Confirm Confirm Torque command filter Acceptable motion?  Notch filter And/or  Low-pass filter Visually check  the actual motion. Operation 5 Write to the amplifier Click Tuning complete S-FLAG Ⅱ Instruction Manual - EtherCAT -...
  • Page 218 3. Tuning 2. Tuning Procedure Confirm Check the machine motion Check the motor motions in test operation or by external command input� Repeat the previous steps from the beginning� Confirm Select the Tuning tab Select items to measure. Select measurement conditions. Start Measuring Capture waveform Click S-FLAG Ⅱ Instruction Manual - EtherCAT -...
  • Page 219: Tuning Parameters

    3. Tuning 3. Tuning Parameters 3. Tuning Parameters 1. Tuning Inertia Condition To make the tuning operation easier, select the inertia condition suitable to your Function equipment� The inertia conditions that you select will determine the Control Gain 1-2 combination and their ratio� Parameter Position Control Mode: Inertia conditions No.113.1...
  • Page 220: Control Gain Set

    3. Tuning 3. Tuning Parameters Control Gain Set With this parameter, a set of the tuning parameters can be set to their defaults all at once� (*1) Function Increasing the value of this parameter will improve the command response, position deviation during motion, settling time, and control rigidity�...
  • Page 221: Mode Switch

    3. Tuning 3. Tuning Parameters Mode Switch Change the mode based on the direction of the load inertia and whether offset load is Function present or not� Settings Mode Balanced load or unbalanced load Parameter Standard Mode Balanced load (horizontal motion) No.110.0 Unbalanced Load Unbalanced load such as gravity is present...
  • Page 222: Final Tuning

    3. Tuning 3. Tuning Parameters 2. Final Tuning Inertia Ratio Set the ratio of the load inertia to the rotor inertia of the motor� This item represents the ratio of the motor axis moment of inertia to the load moment of inertia�...
  • Page 223 3. Tuning 3. Tuning Parameters Position Control Mode: Control Gain 1 Increasing this parameter value will reduce the position deviation after the command Function becomes zero� Increase when the convergence of the position deviation at settling is not good� Default: 50 [rad/s] Parameter No.115.0...
  • Page 224: Position Control Mode: Control Gain 1

    3. Tuning 3. Tuning Parameters Position Control Mode: Control Gain 2 Increasing this parameter value will reduce the position deviation during command input� Function Increasing the parameter value provides faster command response; however, too large a value may result in noise� Default: 200 [rad/s] Parameter...
  • Page 225: Velocity Control Mode: Control Gain 1

    3. Tuning 3. Tuning Parameters Velocity Control Mode: Control Gain 1 Increasing this parameter value will reduce the velocity deviation during the acceleration/ deceleration� Function Increasing the parameter value provides faster command response; however, too large a value may result in noise� Default: 399 [rad/s] Parameter...
  • Page 226: Position Control Mode: Gain Ff Compensation 1

    3. Tuning 3. Tuning Parameters Position Control Mode: Gain FF Compensation 1 This parameter will improve the responsiveness at a low gains setting� Set the Field Forward Compensation Rate (velocity) with respect to Control Gain 1 (No�115�0) Function for Position Control Mode� Using this parameter is effective to shorten the settling time�...
  • Page 227: Position Control Mode: Gain Ff Compensation 2

    3. Tuning 3. Tuning Parameters Position Control Mode: Gain FF Compensation 2 Increasing this parameter value will reduce the position deviation of the motor running at a constant speed� Function Raise the value of this item only after reducing the position deviation, by using Gain FF Compensation 1 (No�117�0) at settling�...
  • Page 228: Integral Gain

    3. Tuning 3. Tuning Parameters Integral Gain Set the Integral Gain� Increasing the integral gain will improve poor convergence due to friction and load Function fluctuation at settling and reduce the position deviations� This will result in rigid and sensitive motions� Default:...
  • Page 229 3. Tuning 3. Tuning Parameters 3. Position Command Filter Optimizing the settling time and deviation Suppressing vibration and noise Check the following before using Position command filter  ・The command from the host controller is correct�  ・ The equipment is installed firmly and properly�  ・The gain parameters such as inertia ratio are correctly set�...
  • Page 230: Notch Filter

    3. Tuning 3. Tuning Parameters Using Position command filter Measuring vibration frequency Machine motion and the direction of vibration Is measuring  vibration possible?  Direction of motion Is a measurement tool ①  available?  Vibration No measurement tool. ②  By using S-TUNEⅡ, measure torque command value and vibration     of position deviation. ① coaxial Measure position deviation vibration  with a laser displacement sensor or S-TUNEⅡ. A measurement tool such as a laser displacement  ② Orthogonal sensor is available. Measure the frequency with a laser displacement sensor. Directly measure vibration frequency. (S-TUNEⅡ does not work  (*1) *1)vibration that does not affect torque command value nor position deviation Setting Position command filter Find the best frequency that will suppress the vibration.  Step 1  Coarse tuning of frequency Notch filter         Change the measured vibration frequency by 1Hz at a time. P� 36  Step 2  Fine tuning of frequency        Change the setting by 0.1Hz at a time after coarse tuning is done.   Set the parameter to the vibration frequency        Frequency: 20Hz or less (given as a guideline) Check for vibration...
  • Page 231 3. Tuning 3. Tuning Parameters Position Command Smoothing Filters 1 and 2 Function The smoothing filters smooth the position command and suppress vibrations� Default: Position command filter 1: No�66�0 Type Select 0 to 3 Setting range: Default: Position command filter 4: No�66�1 Switch Select 0, 1...
  • Page 232 3. Tuning 3. Tuning Parameters Position Command Notch Filter Apply this filter if the machine end point is still vibrating after sufficient tuning was performed and the smoothing filter was applied� Has vibration suppression effect on mechanical systems where the vibrations don't Function appear in the torque output waveform�...
  • Page 233: Position Command Γ-Notch Filter

    3. Tuning 3. Tuning Parameters Position Command γ-Notch Filter Use this filter, if the machine end point is still vibrating even after applying a notch filter in addition to sufficient tuning and a smoothing filter� This filter has vibration suppression effect on mechanical systems where the vibrations Function don't appear in the torque output waveform�...
  • Page 234 3. Tuning 3. Tuning Parameters 4. Torque Command Filter Filter Overview Refer to Torque Command Filter: Notch Filter P� 39 This filter is effective in removing vibration elements from torque command Notch and suppressing noise and vibration� Torque Command Low-Pass Filter P�...
  • Page 235 3. Tuning 3. Tuning Parameters Torque Command Filter: Notch Filter This filter is effective in suppressing noise and vibrations by removing vibration factors Function from the torque command� Notch filter Filter Filter 2 Default: Switch No�160�1 No�160�3 0, 1 Settings: 2,500 Hz Default: Frequency...
  • Page 236 3. Tuning 3. Tuning Parameters Torque Command Low-Pass Filter Function Setting relatively a large value may suppress vibrations� Low-Pass Filter Default: Switch No�160�0 0, 1 Settings: Default: Parameter Auto setting No�160�2 0, 1 Settings: 0 [0�01 ms/rad]( 100 W) less than Default: 10 [0�01 ms/rad]( 200 W)
  • Page 237 3. Tuning 4. Using S-TUNEⅡ to Measure Vibration Frequency (FFT) 4. Using S-TUNEⅡ to Measure Vibration Frequency (FFT)  Load the waveforms measured or waveform data saved to display� (The example shown on the right is saved waveform data�)  Select a parameter of which the vibration frequency is to be investigated�...
  • Page 238 3. Tuning 4. Using S-TUNEⅡ to Measure Vibration Frequency (FFT)  Click on the icon for the filter that you want to set� Up to four levels of the position command filters are and three levels of torque command filters are available�  Set the filter parameters�...
  • Page 239 S-FLAG Ⅱ Instruction Manual - Standard model- - EtherCAT communication model - SOFTWARE 1. About S-TUNE Ⅱ 2. Operations AMO-NP-35475-11 SF2-P/E-D DEC. 2019...
  • Page 240 MEMO S-FLAG Ⅱ Instruction Manual...
  • Page 241 SOFTWARE About S-TUNEⅡ 1. Cautions for Proper Use ......2 2. System Requirements for S-TUNEⅡ ....3 3.
  • Page 242: Cautions For Proper Use

    Please study this manual first and use the product properly and safety. ■ Nidec Sankyo shall not be liable for any injuries or damages caused by any parameters or programs set by non-Sankyo personnel, or by malfunctions or failures of S-TUNE Ⅱ .
  • Page 243: Product Overview

    1. About S-TUNE Ⅱ 2. System Requirements for S-TUNE Ⅱ 2. System Requirements for S-TUNEⅡ Product Overview S-TUNE Ⅱ is a dedicated setup software to be installed on a user-supplied Computer connecting to a S-FLAG Ⅱ servo amplifier with a USB cable. It enables you to perform the following operations easily.
  • Page 244 S-TUNEⅡ will be installed in the following folder. Step 5 C:\Program Files \NIDEC-SANKYO CORP\S-TUNE2 C:\Program Files (x86)\NIDEC-SANKYO CORP\S-TUNE2(in 64-bit version) What to Do If Installation Is Cancelled To communicate with the amplifier, S-TUNEⅡ uses Windows system files (see below). S-TUNEⅡ installer automatically cancels installation if it cannot find those system files in your computer.
  • Page 245 SOFTWARE Operations 1. Overview ........2 2.
  • Page 246: Overview

    2. Operations 1. Overview 1. Overview Start S-TUNE Ⅱ Step Operation Step 1 Turn on the control power to the amplifier and plug in the USB cable to firmly. Step 2 Double-click on the desktop icon of S-TUNEⅡ.  S-TUNEⅡ starts and the window under the communications setup tab opens. Step 3 Close S-TUNE Ⅱ...
  • Page 247: Using Keyboard

    2. Operations 1. Overview Using Keyboard The following table explains key notations used in this document. Key/Symbol Explanation [ ↑ ] [ ← ] Up, Down, Left, and Right Arrow keys. [ ↓ ] [ → ] Use these to toggle menu items. Selected items will be highlighted. Numbers Number keys.
  • Page 248: Common Buttons

    2. Operations 1. Overview Common Buttons The following are the common buttons you can use under S-TUNEⅡ tabs. Button Function Read information from the amplifier RAM Write the parameters to the amplifier RAM Write the parameters to the amplifier EEPROM Read a file* saved in your Computer and display on the screen *For example, a parameter file or point table file Save the current settings to your Computer...
  • Page 249 2. Operations 1. Overview Parameter Data Flow EEPROM Storage (Volatile memory) (Nonvolatile memory Parameter Parameter (B), (G) File Display Tracer Execution Timing Operation Arrow ( A ) Turning on the control power Read the parameters from the amplifier EEPROM to its RAM. Completing communications connection Obtain the parameter data from the amplifier RAM to the computer ( B )
  • Page 250: Waveform Comparison

    2. Operations 2. Using Tabs in S-TUNEⅡ 2. Using Tabs in S-TUNEⅡ This section describes functions of the tabs in S-TUNEⅡ. For details, refer to the pages listed below. Communication Settings Parameter Page 8 • Connecting or disconnecting communications with the amplifier •...
  • Page 251: Alarm

    2. Operations 2. Using Tabs in S-TUNEⅡ Alarm Tuning Page 26 • Displaying alarm status of the amplifier • Checking cause and remedy of the alarm • Checking how to reset the alarm signal of the amplifier • Checking the information on the amplifier life expectancy •...
  • Page 252: Communications Setup

    2. Operations 2. Using Tabs in S-TUNEⅡ 1. Communications Setup Button/Function Explanation Click to obtain information about the amplifier. Click to open the serial port to interface with the amplifier. When the connection is complete, turns blue and changes to Online Click to close the serial port and disconnect communications from the amplifier.
  • Page 253 2. Operations 2. Using Tabs in S-TUNEⅡ 2. Parameters Button/Function Explanation In this list, related parameters are grouped together according to their usages. List of Parameter Groups Select a group to display the parameters of the group in Parameters are displayed in ascending order of the parameter numbers. Select the parameter number and double-click the value to edit.
  • Page 254 2. Operations 2. Using Tabs in S-TUNEⅡ Comparing Parameter Values Button/Function Explanation Select which data you want to compare with the data in RAM. What data to compare Select EEPROM or File. At first, click on the button. (The parameter(s) is/are written in at the RAM of the amplifier.) Executes Compare and shows the result in the data display area.
  • Page 255 2. Operations 2. Using Tabs in S-TUNEⅡ Replacing with a Different Type of Motor Use a right pair of motor and amplifier. If a wrong pair has been set accidentally, clear the parameter data in the amplifier EEPROM first, then use a right pair. Procedure for Parameter Clear Step Description...
  • Page 256: Waveform Monitor

    2. Operations 2. Using Tabs in S-TUNEⅡ 3. Waveform Monitor DANGER   Do not use an inappropriate value for any parameter. Or the motor will become uncontrolled. Secure safety for the work area before gain tuning. Secure safety in surrounding areas and take safety measures such as emergency stop.
  • Page 257 2. Operations 2. Using Tabs in S-TUNEⅡ Button/Function Explanation You can use the mouse in this area. • Drag to zoom a rectangle area that you select. • Right-click to capture the waveform. • Wheel button Chart Display Area Use the Scroll wheel to change the max value to be included in the chart while the waveform is selected.
  • Page 258 2. Operations 2. Using Tabs in S-TUNEⅡ Button/Function Explanation Select up to four state items (i.e. status variables), from the pull-down menu, that you want to display in waveform. State Item Those four items you selected will be saved in a file. In the case of 4-byte status data, only the lower 2-byte is displayed.
  • Page 259: Waveform Record

    2. Operations 2. Using Tabs in S-TUNEⅡ Set the waveform measurement conditions here. Waveform Record Save the obtained waveforms and tuning parameters to a file. Button/Function Explanation Default: 2.00 [ms]  Set in increments of: 0.05 [ms] Sampling cycle Sampling cycle = (Range of motor moving time) ÷ (Sampling Points) Enter the number of sampling points per measurement.
  • Page 260 2. Operations 2. Using Tabs in S-TUNEⅡ Use this tab to display and compare waveforms of the data read Waveform Comparison from the waveform file and waveforms of sampled data. Button/Function Explanation Select items that you want to display in waveforms. State Item Eight waveforms including those from the sampled items can be displayed.
  • Page 261 2. Operations 2. Using Tabs in S-TUNEⅡ Use these tabs to check fluctuating position deviation values and Position Command Filter torque command values in waveform chart and select the filters that you want to set. Torque Command Filter Button/Function Explanation This item changes the chart units from time [ms] to frequency [Hz].
  • Page 262 2. Operations 2. Using Tabs in S-TUNEⅡ Procedure 1 Waveform Display Step 2 Step 1 Step 4・7 Step 5・8 Step 3・6 Step Description Step 1 Select status items that you want to obtain waveforms for. Step 2 Set measurement conditions. Click on Capture waveform Capture waveform Step 3...
  • Page 263 Select the name of a waveform file you want to save the waveform data to and click Use the saved file when you want to use the same measurement conditions next time. File content Data of waveforms displayed and parameters Default directory to save waveform files C:\Users\******\Documents\NIDEC-SANKYO\S-TUNE2\Waves Default file name waveformYYMMDD_hhmmss.csv Procedure 3 Reading waveform data Step...
  • Page 264 2. Operations 2. Using Tabs in S-TUNEⅡ Procedure 4 Reading Waveform File --- Condition --- Date Data timestamp for saving a file Sampling Period [msec] Sampling cycle --- Gain Parameters --- Item Tuning parameter names Unit Tuning parameter units Value Tuning parameter values --- Waveform Data--- Unit Measurement units of status items...
  • Page 265 2. Operations 2. Using Tabs in S-TUNEⅡ MEMO S-FLAG Ⅱ Instruction Manual...
  • Page 266: Waveform Comparison

    2. Operations 2. Using Tabs in S-TUNEⅡ 4. Waveform Comparison S-FLAG Ⅱ Instruction Manual...
  • Page 267: Displaying Waveforms

    2. Operations 2. Using Tabs in S-TUNEⅡ Displaying Waveforms Button/Function Explanation Use the horizontal bar to scroll sideways. Scroll bars Use the vertical bar to scroll up and down. Cursor Move the cursor horizontally to display the x coordinate in (Time [ms]).
  • Page 268: Status Monitor

    2. Operations 2. Using Tabs in S-TUNEⅡ 5. Status Monitor Button/Function Explanation Select up to ten status variables that you want to monitor. The data is displayed at the same time. State variable Display example: [0000 0000 0000 0000(2)」 where (2) indicates binary. Technical Information Status Display Status Logging Lets you obtain status log.
  • Page 269: Troubleshooting

    2. Operations 2. Using Tabs in S-TUNEⅡ 6. Alarm Alarm Clear Button/Function Explanation Click to clear amplifier alarms. Clearing alarms 1. Remove the cause of the alarm(s). 2. Under the Parameters tab, set Operation Mode (No.9.0) to 1 (communication). 3. Click Alarm Clear. Current alarm Displays a list of current alarms.
  • Page 270: Quick Tuning

    2. Operations 2. Using Tabs in S-TUNEⅡ 7. Tuning Quick tuning Position control mode only Procedure/Button Explanation Operating Procedure This is a guidance of the "Quick Tuning". Conditions Set a load related parameter of the motor. Set the appropriate inertia condition: Step 1 Choose a inertia condition to machine system connecting to your motor.
  • Page 271: Auto Tuning

    2. Operations 2. Using Tabs in S-TUNEⅡ Auto tuning Velocity Control Mode only Button/Function Explanation Step of Auto Tuning Auto Tuning Operation Procedure Conditions Adjust load characteristic parameters. Setting rigidity (Control Gain Set): Step 1 Start with the lowest value 5, then gradually increase the value. Range Increment by  Detail setting...
  • Page 272 2. Operations 2. Using Tabs in S-TUNEⅡ Adjusting Position command filter Button/Function Explanation Position Command Filter For each filter, select whether use it or not. If selected, a pop-up box opens. Enter the specific value you want. The selected icon turns blue. Filter Off Select this if you are not setting up any filters.
  • Page 273 2. Operations 2. Using Tabs in S-TUNEⅡ Adjusting Torque Command Filter Button/Function Explanation For each filter, select whether use it or not. Torque Command Filter If selected, a dialog box opens. Enter the specific value you want. The selected icon turns blue. Select this if you are not setting up any filters.
  • Page 274: Point Table

    2. Operations 2. Using Tabs in S-TUNEⅡ 8. Point Table S-FLAG Ⅱ Instruction Manual...
  • Page 275 2. Operations 2. Using Tabs in S-TUNEⅡ Button/Function Explanation Point Table Enter point table data for up to 16-point numbers. Writes the current position to the cell in the [Position] column of the selected Point No. Click to compare the following two versions for all point numbers. a) data currently being edited in the table Comparison b) data from the EEPROM or File that you select.
  • Page 276: Test Run

    2. Operations 2. Using Tabs in S-TUNEⅡ 9. Test Run DANGER   Testing operation involves actual motor motion and could be dangerous. Secure safety in surrounding areas and take safety measures such as emergency stop. Test run is a motion control feature of S-TUNEⅡ that you can use without the host controller. Use this feature to check motor motions or perform tuning.
  • Page 277 2. Operations 2. Using Tabs in S-TUNEⅡ Button/Function Explanation Check the checkbox to disable the repeat count setting so that the motor will keep running. Aging function Click to pause, and to stop. Test run operation :Start  :Pause  :Stop Repeat count Displays how many times the specified motion was repeated.
  • Page 278: Auxiliary Functions

    2. Operations 2. Using Tabs in S-TUNEⅡ 10. Auxiliary Functions Encoder tab CAUTION Use the Encoder tab only in a Servo OFF state. Button/Function Explanation Click this to obtain encoder status and display in the This area displays encoder status. Encoder conditions If there is any abnormity (i.e.
  • Page 279 2. Operations 2. Using Tabs in S-TUNEⅡ I/O Setting tab Select from the Preset pull down menu. Button/Function Explanation Check the box under Control/Command Mode. Preset Select from the Preset pull down menu. Verify I/O input settings. Pinout - Input signals When the presetting is changed, a changed signal name will be green indication.
  • Page 280 2. Operations 2. Using Tabs in S-TUNEⅡ MEMO S-FLAG Ⅱ Instruction Manual...
  • Page 281 S-FLAG Ⅱ Instruction Manual - EtherCAT - OPERATION 1. Operation 2. Connection with Master Controller 3. Timing Diagrams AMO-NP-35475-41 SF2-E-F DEC. 2019...
  • Page 282 MEMO S-FLAG Ⅱ Instruction Manual - EtherCAT -...
  • Page 283: Operation

    OPERATION Operation 1. Overview ........2 1.
  • Page 284: Overview

    1. Operation 1. Overview 1. Overview Operation modes supported by the this product The product supports the CiA 402 drive profile.The available operation modes are as follows. The operation mode is set with the 6060 h (Modes of operation) object. Some bits of the Control word and Status word differ for each mode of operation.
  • Page 285: Velocity Control Mode (Csv)

    1. Operation 1. Overview 1. Control mode setting 6502h Supported drive modes 6052 h indicates the control mode supported by this product. 6502h Supported drive modes Sub-index: - Access: Data Type: Unit: - Default: Range: 0 to 4,294,967,295 - Indicates the supported control modes. Control mode Abbreviation Support*...
  • Page 286: Modes Of Operation

    1. Operation 1. Overview 6060h Modes of operation 6060 h sets the servo amplifier control mode. 6060h Modes of operation Sub-index: - Access: Data Type: Unit: - Default: Range: - 128 to 127 - Sets the control mode of the servo amplifier. value Mode of operation Abbreviation...
  • Page 287: Drive Profile (Cia402)

    1. Operation 1. Overview 2. Drive profile (CiA402) 6040h Controlword 6040 h is a command to control slave devices such as PDS state transition. 6040h Controlword Sub-index: - Access: Data Type: Unit: - Default: Range: 0 to 65,535 - Sets control commands to the servo amplifier such as PDS state transition. Descriptions Switch on Enable voltage...
  • Page 288: Status Word

    1. Operation 1. Overview 6041h Statusword 6041 h indicates the status of the slave device. 6041h Statusword Sub-index: - Access: Data Type: Unit: - Default: Range: 0 to 65,535 - Indicates the status of the servo amplifier. Descriptions Ready to Switch on Switch on Operation enable Fault...
  • Page 289: Pds (Power Drive System)

    1. Operation 1. Overview 3. PDS (Power Drive System) FSA (Finite State Automaton) Start Power off or Reset Auto skip0 After turning on the control power Low level power Not Ready to Switch on ・Control power supply: ON Initialization not complete ・Main circuit power supply: OFF (Ready to power on) Auto skip1...
  • Page 290 1. Operation 1. Overview The FSA State State Descriptions Control power is supplied to the slave device and control power is Not Ready to Switch on established. The slave device is initializing or performing a self-test. The slave device is initialized and ready to set parameters. Switch on Disabled The main circuit power supply should not be turned on.
  • Page 291: Cyclic Synchronous Position Mode (Csp)

    1. Operation 2. Cyclic synchronous position mode (CSP) 2. Cyclic synchronous position mode (CSP) In Cyclic synchronous position mode, the command position is generated by the master controller. The slave device operates by receiving the command position every interpolation period. To use cyclic synchronization position mode, set the 6060 h (Modes of operation) object to "8".
  • Page 292 1. Operation 2. Cyclic synchronous position mode (CSP) 6040h Controlword on Cyclic synchronous position mode 6040 h is a command to control slave devices such as PDS state transition. 6040h Controlword Sub-index: - Access: Data Type: Unit: - Default: Range: 0 to 65,535 -...
  • Page 293 1. Operation 2. Cyclic synchronous position mode (CSP) 6041h Statusword on Cyclic synchronous position mode 6041 h indicates the status of the slave device. 6041h Statusword Sub-index: - Access: Data Type: Unit: - Default: Range: 0 to 65,535 - Indicates the status of the servo amplifier. Descriptions Ready to switch on Switch on...
  • Page 294: Cyclic Synchronous Velocity Mode (Csv)

    1. Operation 3. Cyclic synchronous velocity mode (CSV) 3. Cyclic synchronous velocity mode (CSV) In Cyclic synchronous velocity mode, the command velocity is generated by the master controller. The slave device operates by receiving the command velocity every interpolation period. To use cyclic synchronization position mode, set the 6060 h (Modes of operation) object to "9".
  • Page 295 1. Operation 3. Cyclic synchronous velocity mode (CSV) 6040h Controlword on Cyclic synchronous velocity mode 6040 h is a command to control slave devices such as PDS state transition. 6040h Controlword Sub-index: - Access: Data Type: Unit: - Default: Range: 0 to 65,535 -...
  • Page 296 1. Operation 3. Cyclic synchronous velocity mode (CSV) 6041h Statusword on Cyclic synchronous velocity mode 6041 h indicates the status of the slave device. 6041h Statusword Sub-index: - Access: Data Type: Unit: - Default: Range: 0 to 65,535 - Indicates the status of the servo amplifier. Descriptions Ready to switch on Switch on...
  • Page 297 1. Operation 4. Cyclic synchronous torque mode (CST) 4. Cyclic synchronous torque mode (CST) In Cyclic synchronous velocity mode, the command torque is generated by the master controller. The slave device operates by receiving the command torque every interpolation period. To use cyclic synchronization position mode, set the 6060 h (Modes of operation) object to "10".
  • Page 298: Cyclic Synchronous Torque Mode (Cst)

    1. Operation 4. Cyclic synchronous torque mode (CST) 6040h Controlword on Cyclic synchronous torque mode 6040h is a command to control slave devices such as PDS state transition. 6040h Controlword Sub-index: - Access: Data Type: Unit: - Default: Range: 0 to 65,535 -...
  • Page 299 1. Operation 4. Cyclic synchronous torque mode (CST) 6041h Statusword on Cyclic synchronous torque mode 6041 h indicates the status of the slave device. 6041h Statusword Sub-index: - Access: Data Type: Unit: - Default: Range: 0 to 65,535 - Indicates the status of the servo amplifier. Descriptions Ready to switch on Switch on...
  • Page 300: Homing Mode (Hm)

    1. Operation 5. Homing Mode (HM) 5. Homing Mode (HM) Homing mode is a position control mode in which homing is performed by setting the operating speed, acceleration and operating method. For an incremental motor, always perform homing after turning on the power. To set the homing mode, set the 6060 h (Modes of operation) object to "6".
  • Page 301 1. Operation 5. Homing Mode (HM) 6040 h Controlword in Homing mode 6040 h is a command to control slave devices such as PDS state transition. 6040h Controlword Sub-index: - Access: Data Type: Unit: - Default: Range: 0 to 65,535 -...
  • Page 302 1. Operation 5. Homing Mode (HM) 6041 h Statusword in homing mode 6041 h indicates the status of the slave device. 6041h Statusword Sub-index: - Access: Data Type: Unit: - Default: Range: 0 to 65,535 - Indicates the status of the servo amplifier. Descriptions Ready to switch on Switch on...
  • Page 303 1. Operation 5. Homing Mode (HM) List of Homing Methods Method Type of Homing mode Support Homing on negative limit sensor and index pulse ● Homing on positive limit sensor and index pulse ● 3, 4 Homing on positive home sensor and index pulse ●...
  • Page 304 1. Operation 5. Homing Mode (HM) Homing on negative limit sensor (NOT) and index pulse Method 1 Homing on positive limit sensor (POT) and index pulse Method 2 Negative Direction Positive Direction "Homing" start position Method 1 Method 2 Index Pulse Limit sensor (backward) Limit sensor (forward) 6099h 01h Speed during search for sensor 6099h 02h Speed during search for zero...
  • Page 305 1. Operation 5. Homing Mode (HM) Method 3 Homing on positive home sensor and index pulse Method 4 Method 5 Homing on negative home sensor and index pulse Method 6 Negative Direction Positive Direction "Homing" start position Method 5 Method 3 Method 6 Method 4 Index Pulse HOME...
  • Page 306 1. Operation 5. Homing Mode (HM) Homing on negative limit sensor (NOT) Method 17 Homing on positive limit sensor (POT) Method18 Negative Direction Positive Direction "Homing" start position Method 17 Method 18 Limit sensor (backward) Limit sensor (forward) 6099h 01h Speed during search for sensor 6099h 02h Speed during search for zero Method 17 ・When the "NOT (backward direction limit sensor : pin No.
  • Page 307 1. Operation 5. Homing Mode (HM) Method 19 Homing on positive home sensor Method 20 Method 21 Homing on negative home sensor Method 22 Negative Direction Positive Direction "Homing" start position Method 21 Method 19 Method 22 Method 20 HOME HOME Origin sensor Origin sensor 6099h 01h Speed during search for sensor 6099h 02h Speed during search for zero...
  • Page 308 1. Operation 5. Homing Mode (HM) Method 33 Homing on index Pulse Method 34 Negative Direction Positive Direction "Homing" start position Method33 Method34 Index Pulse 6099h 02h Speed during search for zero Method 33 Method 34 ・The nearest index pulse position detected from "Homing" start position is the origin. ・The moving direction for Method 33 is to the left of the figure (The motor is CCW.).
  • Page 309 1. Operation 5. Homing Mode (HM) Method 35 Homing on current position Method 37 Negative Direction Positive Direction Method 35* Method 37 Start homing: 0→1 6040h 04h : Homing operation *) Method 35 (Homing on current position) was discontinued in CiA402 Work Draft CANopen Drive and motion control device profile part2 Version:3.0.1.13(26 April 2012).
  • Page 310: Object Settings

    1. Operation 5. Homing Mode (HM) Procedure for the Homing STEP1 Object Settings Set the parameters for the following objects:. Object Things to do 6098h Select the Homing method (Choose from1-6, 17-22, or 33-37) 607Ch Set the Home offset value. 6060h Change the operation mode to "6 (Homing)"...
  • Page 311: Connecting To The Master Controller

    OPERATION Connecting to the Master Controller 1. Preface ........2 2.
  • Page 312: Preface

    2. Connecting to the Master Controller 1. Preface 1. Preface Connecting to the Master Controller This product can be driven by connecting it to a master controller made by another manufacturer. If you are using a master controller other than those listed below, please refer to the operation manual of the product.
  • Page 313: Use Beckhoff's "Twincat

    2. Connecting to the Master Controller 2. Use Beckhoff's "TwinCAT" 2. Use Beckhoff's "TwinCAT" 1. Connect to the master controller Open EtherCAT communication and prepare for operation Connect the master controller and slave devices (servo amplifier) with the Start EtherCAT cable and turn on the power. Save "ESI (*) files (.xml files)"...
  • Page 314 2. Connecting to the Master Controller 2. Use Beckhoff's "TwinCAT" Save "ESI (*) files (.xml files)" to the appropriate folder on the master controller. Folder pass : "C:\TwinCAT\3.1\Config\Io\EtherCAT\" Save the ESI file. The ESI file (.xml files) contains configuration information for the product. The master controller must be restarted after the .xml file is downloaded to the master.
  • Page 315 2. Connecting to the Master Controller 2. Use Beckhoff's "TwinCAT" Start the software "TwinCAT XAE". It is useful to create a shortcut on your desktop. The TwinCAT.XAE icon is in the task tray. When the EtherCAT cable is connected correctly between the master and the slave (amplifier), the ECIN LED (green) of the amplifier lights up.
  • Page 316: Create A New Project

    2. Connecting to the Master Controller 2. Use Beckhoff's "TwinCAT" Create a new project. Select "File" → "New" → "Project" from the menu to create a new project. You can set the project or solution name. Switch TwinCAT operation mode to "CONFIG" mode after creating a project.
  • Page 317 2. Connecting to the Master Controller 2. Use Beckhoff's "TwinCAT" The master controller scans the EtherCAT network. Select "I/O" → "Device" in the TwinCAT System Manager navigation tree, right- click and select "Scan". Before execute "Scan" verify the following: 1. EtherCAT cable must be connected between master and slave. 2.
  • Page 318 2. Connecting to the Master Controller 2. Use Beckhoff's "TwinCAT" After "Scan" completes, "MOTION" is added to the TwinCAT System Manager navigation tree and "Device" is added to "I/O". " Drive (S-Flag2)" is added to the "Device" tree. The Activate Free Run dialog will appear. Click on button.
  • Page 319 2. Connecting to the Master Controller 2. Use Beckhoff's "TwinCAT" Set the system clock. Set the "System clock (= Base Time)" to 125 µs by double-clicking "Real-Time" from the "SYSTEM" in the TwinCAT System Manager navigation tree. Double Double-click "NC-Task" in the "MOTION", and set Cycle ticks to "2". Double S-FLAG Ⅱ Instruction Manual - EtherCAT -...
  • Page 320 2. Connecting to the Master Controller 2. Use Beckhoff's "TwinCAT" Set the servo amplifier. Double-click "Axis1" in "MOTION" → "NC-Task xxx" → "Axes", and set the Position Lag Monitoring setting in the Parameter tab to "FALSE" (*). Double *)【暫定】この設定により、マスタによる「位置偏差過大」が誤検出されるのを防ぎます。 Double-click "Axis1" in "MOTION" → "NC-Task xxx" → "Axes" and select the Unit setting in the Setting tab.
  • Page 321 2. Connecting to the Master Controller 2. Use Beckhoff's "TwinCAT" Set the servo amplifier. Enter a value for the Scaling Factor Numerator in the Parameter tab, (When "Degree" is selected in Unit) "Scaling Factor Numerator" value = 0.002746582 deg/INC This is an example of a 17 bit encoder. 360 (deg)/131,072 (INC) = 0.002746582 Be sure to enter the value in all digits that can be entered accurately.
  • Page 322 2. Connecting to the Master Controller 2. Use Beckhoff's "TwinCAT" Set the servo amplifier. When you have completed all the settings, click Activate Configuration to accept the settings. A confirmation dialog for switching to "RUN mode" is displayed. Select to go on. Finish Operation preparations are complete.
  • Page 323: Use "Twincat" To Run The Motor (Test Operation)

    2. Connecting to the Master Controller 2. Use Beckhoff's "TwinCAT" 2. Use "TwinCAT" to run the motor (test operation) Setting operating conditions for test operation Set the maximum speed, acceleration time and deceleration time of the motor. Double-click "Axis1" in "MOTION" → "NC-Task xxx" → "Axes" to display the Dynamics tab.
  • Page 324: Test Motion (Jog Motion And Single Motion)

    2. Connecting to the Master Controller 2. Use Beckhoff's "TwinCAT" Test motion (Jog motion and single motion) "Jog motion" moves the motor while the button is pressed. "Single motion" moves the motor toward the set target position. Double-click "Axis1" in "MOTION" → "NC-Task xxx" → "Axes" to display the Online tab.
  • Page 325: Servo Off

    2. Connecting to the Master Controller 2. Use Beckhoff's "TwinCAT" 2 Servo Status Displays the Servo status. To control the Servo status, click on the button and go to the configuration screen. Servo on To turn Servo on, click on the button and check the checkbox in the dialog below.
  • Page 326: Test Motion (Repetitive Motion)

    2. Connecting to the Master Controller 2. Use Beckhoff's "TwinCAT" Test motion (Repetitive motion) The motor can be "repetitive motion" assuming actual equipment. Double-click "Axis1" in "MOTION" "NC-Task xxx" "Axes" to display the Functions tab. 1 Current Position 2 Motion Control Double About "Servo state"...
  • Page 327 2. Connecting to the Master Controller 2. Use Beckhoff's "TwinCAT" 1 Current Position The current position is displayed in the unit set in "Unit" on the Setting tab. 2 Motion Control Items Descriptions Select the motion type. ・Reversing Sequence ・Absolute Start Mode ・Relative ・Endless + (Continuous operation in one direction)
  • Page 328: Homing On Twincat (Hm Mode)

    2. Connecting to the Master Controller 2. Use Beckhoff's "TwinCAT" 3. Homing on TwinCAT (hm mode) Executes Homing motion specified by EiA402 by using TwinCAT3. Possession of the object If Master controller recognizes the slave device as "NC" when scanning EtherCAT network, the Master has no permission to access to object.
  • Page 329 2. Connecting to the Master Controller 2. Use Beckhoff's "TwinCAT" Homing Before starting Homing motion, do enough Jog motion or single motion to Start make sure you can move safely. When using an Origin sensor, etc., confirm that the sensor is connected correctly and that it operates correctly.
  • Page 330 2. Connecting to the Master Controller 2. Use Beckhoff's "TwinCAT" Servo ON. Use "Controlword (6040 h)" to make a PDS state transition. ・Double-click "Device1 (S-Flag2)" in "I/O" to display the "General" tab. ・Right-click "Control word" in the object list and select "Online Force". Double Set the Control word value as follows.
  • Page 331 2. Connecting to the Master Controller 2. Use Beckhoff's "TwinCAT" Switch the operation mode to the homing mode. Switches Modes of Operation (6060 h) from "CSP mode" to "hm mode". ・Switch to the "CoE" tab. ・Check the "Auto Update" checkbox. ・Double-click "6060 Modes of Operation"...
  • Page 332 2. Connecting to the Master Controller 2. Use Beckhoff's "TwinCAT" Set the Homing motion conditions. Set the "Homing method (6098 h)", "Homing speeds (6099 h)", and "Homing acceleration (609 Ah)". ・Double-click "6098 Homing method", "Homing speeds", and "homing acceleration" respectively from the object list. Double Homing method Selects the type of homing operation.
  • Page 333 2. Connecting to the Master Controller 2. Use Beckhoff's "TwinCAT" Start homing. Setting bit 4 of Controlword (6040 h) to 1 starts homing. ・Right-click "Control word" in the object list and choose "Online Force". Being the Servo ON state, the "Control word" value is "15 (= 000Fh)".
  • Page 334: Save Project File

    2. Connecting to the Master Controller 2. Use Beckhoff's "TwinCAT" 4. Save Project file Save the project. The project file stores connection information, settings, and test operation conditions. You can retrieve a saved project file. Save the project file by choosing "Save All" from the "File" menu. Finish Saving the project file is complete.
  • Page 335: Open Project File

    2. Connecting to the Master Controller 2. Use Beckhoff's "TwinCAT" 5. Open Project file Open a saved project file. Select "Project/Solution" in "File" → "Open" to open the saved project. Turn on the control power to the amplifier. Wait until the L/A IN LED turns green to indicate that EtherCAT communication has been established.
  • Page 336 2. Connecting to the Master Controller MEMO S-FLAG Ⅱ Instruction Manual - EtherCAT -...
  • Page 337: Timing Diagrams

    OPERATION Timing Diagrams 1. Timing Diagram Overview ......2 2. Timing Diagrams ....... 3 Turning the Power On .
  • Page 338 3. Timing Diagrams 1. Timing Diagram Overview 1. Timing Diagram Overview List of Timing Diagrams When designing a host controller system, consider the timing of control signal input from the controller to the amplifier, or alarm signal output from the amplifier. Description Refer to 1.
  • Page 339: Turning The Power On

    3. Timing Diagrams 2. Timing Diagrams 2. Timing Diagrams 1. Turning the Power On Signal Description Name Timing Diagrams (Output Transistor Status, I/O Input Status, Internal Status, and EtherCAT-Object State) EtherCAT-Object Control Power L1C L2C ≧ 0 sec Main Circuit Power L1L2 or L1L2L3 Internal Power Ready PRDY ー...
  • Page 340: Servo Off → On

    3. Timing Diagrams 2. Timing Diagrams 2. Servo OFF → ON Signal Description Name Timing Diagrams (Output Transistor Status, I/O Input Status, Internal Status, and EtherCAT-Object State) EtherCAT-Object Main Circuit Power L1L2 or L1L2L3 Servo Ready SRDY Voltage Enabled (0x6041,4) ー...
  • Page 341: Servo On → Off (Motor Idling)

    3. Timing Diagrams 2. Timing Diagrams 3. Servo ON → OFF (Motor idling) Signal Description Name Timing Diagrams (Output Transistor Status, I/O Input Status, Internal Status, and EtherCAT-Object State) EtherCAT-Object Main Circuit Power L1L2 or L1L2L3 Servo Ready SRDY Voltage Enabled (0x6041,4) ー...
  • Page 342: Servo On → Off (Motor Rotating)

    3. Timing Diagrams 2. Timing Diagrams 4. Servo ON → OFF (Motor rotating) Signal Description Name Timing Diagrams (Output Transistor Status, I/O Input Status, Internal Status, and EtherCAT-Object State) EtherCAT-Object Main Circuit Power L1L2 or L1L2L3 Servo Ready SRDY Voltage Enabled (0x6041,4) ー...
  • Page 343: Timing Diagrams

    3. Timing Diagrams 2. Timing Diagrams 5. Alarm Occurs Signal Description Name Timing Diagrams (Output Transistor Status, I/O Input Status, Internal Status, and EtherCAT-Object State) EtherCAT-Object Main Circuit Power L1L2 or L1L2L3 Servo Ready SRDY Voltage Enabled (0x6041,4) 2 ms(typ.)  ー ー...
  • Page 344: Alarm Reset

    3. Timing Diagrams 2. Timing Diagrams 6. Alarm Reset Signal Description Name Timing Diagrams (Output Transistor Status, I/O Input Status, Internal Status, and EtherCAT-Object State) EtherCAT-Object Main Circuit Power L1L2 or L1L2L3 Servo Ready SRDY 2 ms(typ.)  Voltage Enabled (0x6041,4) ー ー...
  • Page 345: Brake Release

    3. Timing Diagrams 2. Timing Diagrams 7. Brake Release Deceleration Stop : Timing for Engaging Brake (No.232.3) = 0 Signal Description Name Timing Diagrams (Output Transistor Status, I/O Input Status, Internal Status, and EtherCAT-Object State) EtherCAT-Object ー ー Enable Operation (0x6040,3) 20 ms(typ.)  ...
  • Page 346: Dynamic Brake Release

    3. Timing Diagrams 2. Timing Diagrams 8. Dynamic Brake Release Upon Servo ON, if Deceleration stop (when Servo is OFF) : Method (No.224.0) = 3 (dynamic brake) Signal Description Name Timing Diagrams (Output Transistor Status, I/O Input Status, Internal Status, and EtherCAT-Object State) EtherCAT-Object Main Circuit Power L1L2 or L1L2L3 ー...
  • Page 347: Deceleration Stop Status During Free Run

    3. Timing Diagrams 2. Timing Diagrams 9. Deceleration Stop Status During Free Run Deceleration Stop Status where Deceleration Stop Method (at Servo OFF) (No.224.0) and Deceleration Stop Method (at Alarm ON) (No.233.0) are set to free run. Deceleration stop : Deceleration stop status during free-run (No.232.1) = 0 (OFF) Signal Description Name Timing Diagrams (Output Transistor Status, I/O Input Status, Internal Status, and EtherCAT-Object State)
  • Page 348: Deceleration Stop Status On "Quick Stop" Configuration

    3. Timing Diagrams 2. Timing Diagrams 10. Deceleration Stop Status on "Quick Stop" configuration When Servo becomes OFF while motor is in motion and then the motor decelerates to stop by the quick stop method. Deceleration stop : Method (at Servo OFF) (No.224) = 2 (quick stop) Signal Description Name Timing Diagrams (Output Transistor Status, I/O Input Status, Internal Status, and EtherCAT-Object State)
  • Page 349: Technical Information

    S-FLAG Ⅱ Instruction Manual - EtherCAT - APPENDICES 1. Troubleshooting 2. Technical Information AMO-NP-35475-41 SF2-E-Z DEC. 2019...
  • Page 350 MEMO S-FLAG Ⅱ Instruction Manual - EtherCAT -...
  • Page 351 APPENDICES Troubleshooting 1. Checking Warnings and Alarms ....2 1. Using the Setup Panel ....... . 2 2.
  • Page 352: Checking Warnings And Alarms

    1. Troubleshooting 1. Checking Warnings and Alarms 1. Checking Warnings and Alarms Warnings and alarm numbers can be viewed on the Setup Panel or S-TUNEⅡ. When an alarm and a warning occur at the same time, the alarm will be displayed first. For possible cause and remedy, verify on the warning or alarm list.
  • Page 353: Using S-Tuneⅱ

    1. Troubleshooting 1. Checking Warnings and Alarms 2. Using S-TUNEⅡ Turn on the control power AC200 V to the amplifier and start S-TUNEⅡ. For information on the warning/alarm, check "Alarm currently occurring" under the [Alarm] tab. If you are not sure what to do, contact us with the alarm number and its description. About S-TUNEⅡ...
  • Page 354: Warnings And Remedies

    1. Troubleshooting 2. Warnings and Remedies 2. Warnings and Remedies 1. Warning Output There are two ways to output warnings. 1. Setup Panel Output During waring output, the warning number will appear on the Setup Panel. Warning No. Display Warning Description Refer to Encoder overheat detection P.
  • Page 355: Warning Details

    1. Troubleshooting 2. Warnings and Remedies 2. Warning Details Encoder overheat detection Warning No. The temperature inside the absolute encoder has exceeded the temperature value specified Symptom by Encoder: Overheat detection - Value (No.267.0). Possible Cause An alarm can be output in place of the warning. Lower ambient temperatures and improve thermal radiation conditions.
  • Page 356 1. Troubleshooting 2. Warnings and Remedies Encoder communication warning Warning No. Symptom Failed to obtain ABS encoder temperature and battery voltage data. Possible Cause Check for wire disconnection or loose connection of pins. Keep the cable length no longer than 20 meters. Check for noise interference.
  • Page 357: Alarms And Remedies

    1. Troubleshooting 3. Alarms and Remedies 3. Alarms and Remedies 1. List of Alarms Alarm No. Display Alarm Name Refer to System error P. 9 …> EEPROM data error P. 9 …> Product code error P. 9 (Mismatching code) …> EtherCAT communication error P.
  • Page 358 1. Troubleshooting 3. Alarms and Remedies Alarm No. Display Alarm Name Refer to Encoder error (No response) P. 14 …> Encoder error (Hardware) P. 14 …> Encoder error (Communication) P. 14 …> Encoder error (Multi-turn data) P. 14 …> Encoder error (Voltage drop) P.
  • Page 359: Alarm Details

    1. Troubleshooting 3. Alarms and Remedies 2. Alarm Details System error Alarm No. Symptom Error in the control circuit The control circuit CPU is not operating normally. Possible Cause Remedy Please contact our distributor. Reset Method EEPROM data error Alarm No. Symptom Error at Write Parameters Possible Cause...
  • Page 360: Overspeed Error

    1. Troubleshooting 3. Alarms and Remedies Overspeed error Alarm No. Symptom The motor rotational speed exceeded the rated maximum rotational speed. The command from the host controller was not appropriate. Possible Cause There were residual pulses due to drive restriction or other reasons. Adjust the Tuning parameters.
  • Page 361 1. Troubleshooting 3. Alarms and Remedies Overload error Alarm No. Position Control Error. Immediately after the operation started 1. The motor did not move at all. 2. The motor moved a little. 3. An alarm occurred after the motor started moving. During operation 4.
  • Page 362: Overheat Error

    1. Troubleshooting 3. Alarms and Remedies Positioning command overflow error/Homing failure Alarm No. Symptom External position command exceeded the absolute value range of ± 1,073,741,823. The shift amount per one of commands exceeded the ± 2,147,483,647 range. Possible Cause Homing failed and timed out. Select a value different from the current setting of Internal Position: Overflow detection (No.643.0).
  • Page 363 1. Troubleshooting 3. Alarms and Remedies Overvoltage error Alarm No. Symptom The primary circuit voltage of the control component has exceeded the amplifier circuit limits. Possible Cause If the alarm occurs only during deceleration By using the Setup Panel or S-TUNE Ⅱ , check the regeneration status, which tells you if a regenerative resistor is necessary.
  • Page 364 1. Troubleshooting 3. Alarms and Remedies Encoder error (Received data) Alarm No. Symptom Encoder data changed rapidly for a short period of time. Possible Cause Encoder error (No response) Alarm No. Symptom Encoder communications were disconnected. Possible Cause Encoder error (Communication) Alarm No.
  • Page 365 1. Troubleshooting 3. Alarms and Remedies Encoder error (Voltage drop) Alarm No. Symptom The battery voltage dropped. The batter became disconnected. Possible Cause It was the first start-up after the battery was connected. Check for low battery voltage. Remedy Check for loose battery cable. Initialize the encoder.
  • Page 366 1. Troubleshooting 3. Alarms and Remedies Inverter error 1 Alarm No. Symptom Anomaly in the control circuit has been detected. Possible Cause Inverter error 2 Alarm No. Symptom Anomaly in the control circuit has been detected. SERVO ON timed out. Possible Cause Check the motor power cable.
  • Page 367 1. Troubleshooting 3. Alarms and Remedies Power supply error (Control circuit AC power) Alarm No. Abnormality of high or low control voltage Symptom ・The control power was not input. ・The control power supply voltage was out of the input range. Possible Cause ・The control power supply voltage fluctuated and went out of range.
  • Page 368: Troubleshooting

    1. Troubleshooting 4. Troubleshooting 4. Troubleshooting Check the following if the amplifier does not start and the motor does not rotate although no alarm is output. Problem Symptom Refer to Problem 1 No display The Setup Panel does not show. P.
  • Page 369: Problem 1. No Display On The Setup Panel

    1. Troubleshooting 4. Troubleshooting Problem 1. No display on the Setup Panel The Setup Panel does not show. Cause Remedy The controller power is not connected to the user I/O Connect the controller power to the amplifier. connector. Loose user I/O connector Connect the user I/O connector firmly.
  • Page 370: Problem 2. Servomotor Not Turning On

    1. Troubleshooting 4. Troubleshooting Problem 2. Servomotor not turning ON The Setup Panel shows, but the servo cannot be turned on. Cause Remedy The Enable Operation (0x6040,3) Check the EtherCAT communication cable for proper connections. signal is not being input. Input the Enable Operation (0x6040,3) signal.
  • Page 371: Problem 3. No Motor Rotation

    1. Troubleshooting 4. Troubleshooting Problem 3. No motor rotation The servo is on, but the motor does not rotate. Cause Remedy Correctly set the parameters required for the control mode that you are using. The parameters are not set right. Operations Check the command from the host controller.
  • Page 372: Problem 4. Unstable Motor Motions

    1. Troubleshooting 4. Troubleshooting Problem 4. Unstable motor motions The motor does rotate, but its motions are unstable. Cause Remedy FG and GND are not connected Connect FG and GND correctly. correctly. On the waveform monitor in S-TUNEⅡ, check the command from the host controller. Speed/Position commands are unstable.
  • Page 373: Problem 5. Positional Aberration

    1. Troubleshooting 4. Troubleshooting Problem 5. Positional aberration The motor does rotate, but position aberration occurs. Cause Remedy Check the following two items. 1. Status 810h Target Position (EtherCAT communication position command input) agrees with the host controller output. 2. Status No.65 "Position command" and Status No.67 "Position feedback" agree.
  • Page 374: Problem 6. Vibration And Abnormal Noise

    1. Troubleshooting 4. Troubleshooting Problem 6. Vibration and abnormal noise The motor is experiencing vibration or abnormal noise. Cause Remedy Set the Control Gain 1, Control Gain 2, Integral Gain to lower values. Especially for highly rigid equipment such as ball screws, set the Current Tuning parameter settings control gain (No.193.0) to "1"...
  • Page 375: Problem 7. Ethercat Communication Cannot Be Established

    1. Troubleshooting 4. Troubleshooting Problem 7. EtherCAT communication cannot be established Cannot transition to OP mode (ErrLED flashing) Cause Remedy The amplifier is set to internal Check if the value of parameter No.3.0 (command mode) is 10 (EtherCAT command mode. directive).
  • Page 376 1. Troubleshooting 4. Troubleshooting Problem 8. Servomotor not turning ON-2 The motor is not energized. Cause Remedy Enable the DC setting. DC (Distribution clock) is In "Disable" setting, EtherCAT communication and Object Dictionary Read/ disabled (FreeRun or SM). Write are possible, but motor operation such as servo ON is not possible. Mode of operation is set to a mode other than the available Set to CSP (8), CSV (9), CST (10) or Homing (6).
  • Page 377 1. Troubleshooting 4. Troubleshooting Problem 9. No motor rotation-2 The motor does not rotate or rotates but stops. Cause Remedy The command for each mode must be inputted with the following object CSP (8):Target position (607Ah) "Mode of operation" and CSV (9):Target velocity (60FFh) "command input method"...
  • Page 378 1. Troubleshooting MEMO S-FLAG Ⅱ Instruction Manual - EtherCAT -...
  • Page 379 APPENDICES Technical Information 1. Absolute System....... . 2 1. Overview ......... . . 2 2.
  • Page 380: Absolute System

    2. Technical Information 1. Absolute System 1. Absolute System 1. Overview By using the absolute system, you do not have to perform Homing after cycling power. Preparations To configure an absolute system, prepare the following items. ① A motor equipped with absolute-encode and an amplifier that supports absolute system. ②...
  • Page 381: System Configuration

    2. Technical Information 1. Absolute System 2. System Configuration Connection Method 1. To ensure safety, power off the primary power and the control power first, and then connect the absolute encoder cable. Refer to the figure below. 2. Be sure of the right connecting direction, and connect the backup battery correctly. P.
  • Page 382: Backup Battery

    2. Technical Information 1. Absolute System 3. Backup Battery Recommended Specifications Item Specifications Remark Manufactured by FDK Model Code CR17335E-R-CH3 Series battery:CR17335E-R Nominal Voltage 3.0 V – Nominal capacity is determined at the voltage Nominal Capacity 1,600 mAh of 2.0 V when the battery was discharged at a standard current level under the 23°...
  • Page 383 2. Technical Information 1. Absolute System Precautions for Battery Storage and Installation Avoid places subjected to any of the following: ・Direct sunlight, rain drops ・Corrosive atmosphere, oil mist, or iron powder ・Poor ventilation or high humidity ・Dirt or dust ・Vibrations ・Impact to the installed battery Securing the Battery 1.
  • Page 384 2. Technical Information 1. Absolute System 4. Absolute Encoder Cable Recommended Products You can purchase recommended cables at the online shop of Misumi Corporation. Making Your Own Cable CAUTION Ensure correct wiring. Select a battery that meets the specifications of the recommended one.
  • Page 385 2. Technical Information 1. Absolute System 5. Initializing Absolute Encoder When using an absolute system for the first time or using it after replacing the motor, you need to initialize the encoder. Use the Encoder Clear function by using S-TUNEⅡ to initialize the encoder. And then restart your amplifier. Only multi-turn data will be initialized and single-turn absolute data will not.
  • Page 386 2. Technical Information 1. Absolute System Initializing Encoder with S-TUNE Ⅱ Start Encoder Initialization Connect all cables and wires. (Connect the battery to the encoder as well.) Step 1 Is the target axis near  the home position? Can you move it close  to the home position manually? D-  About S-TUNEⅡ Manual  Command Input  motion motion. Turn the servo ON, then move it by host command or inching-motion by S-TUNEⅡ. Step 2 ① Set Parameter No.257.0 to 1 or 2.        Multi-turn counter overflow detection    1 :  Disable    2 :  Enable If you shut down the control power without saving,  ② Save the parameters and cycle power. the setting changes will not take effect. After shutting off the control power, wait for at least Turn on the control power and start communicating  5 seconds before turning the power back on.  with the amplifier by using S-TUNEⅡ. Did you disconnect Step 3B any cable or battery before reboot?
  • Page 387 2. Technical Information 1. Absolute System Initializing Encoder with S-TUNE Ⅱ (continued) Step 3B 1. Under the Alarms tab, check the following      alarms that are occurring. 2. Under the Auxiliary functions tab, select Encoder. 3. Click on Get Encoder Status. 4. Check one of the boxes. Clear encoder 5. Click         .           .  Until checking the boxes, the encoder clear button  til h th b does not work. 6. Click     .     . 7. Cycle the control power. Confirm Turn on the control power and start communicating  with the amplifier by using S-TUNEⅡ. 1. Under the Auxiliary functions tab, select Encoder. 2. Click on Show Encoder Status. 3. Verify that this value is 0. If an alarm occurs  ① Check the following.     ・ Is the battery connected correctly ?    ...
  • Page 388 2. Technical Information 1. Absolute System 6. Obtaining Absolute Data Start S-TUNEⅡ and start communicating with the amplifier. Use the  【Status monitor】tab. 1. Display the Status monitor view. 2. Select Encoder/Rotor mechanical angle              (integrated value) Encoder mechanical angle (integrated value) … (=Absolute data) 3. Set the sampling cycle, and then click                  .                  . Data capture continues until you click                    . Use the【Auxiliary functions】tab. 1. Under the Auxiliary functions tab, select Encoder. Get encoder state 2. Click on         .         . 3. Encoder data is displayed. Encoder mechanical angle (1 rotation)  … Encoder Multi-turn data                  … The formula to calculate the absolute data Below is the formula to derive absolute data (Encoder mechanical angle (integrated value) )。...
  • Page 389: Alarm

    2. Technical Information 1. Absolute System 7. Alarm By using S-TUNEⅡ, you can check alarms that has occurred when using an absolute system. These alarms cannot be cleared by Alarm Reset or cycling the control power. To reset alarms, execute ENCODER CLEAR at the Auxiliary functions tab, and then cycle the control power.
  • Page 390 2. Technical Information 1. Absolute System Encoder Alarms Use S-TUNEⅡ to check alarms from the encoder. In case of Alarm No.18, No.20, or No.21, you can check the details under the Auxiliary Functions tab in S-TUNEⅡ. These alarms cannot be cleared by Alarm Reset or cycle the control power. To reset alarms, execute ENCODER CLEAR, and then cycle the control power.
  • Page 391: Function

    2. Technical Information 2. Functions 2. Function 1. Emergency Stop When you open User I/O E-STOP, Emergency Stop Status becomes ON. Servo-OFF triggers deceleration stop and motor motion stops. No alarm is output. A warning is output by parameter settings. Close E-STOP to cancel Emergency Stop Status to resume motor operation.
  • Page 392: Amplifier Circuit System Block Diagram

    2. Technical Information 3. Amplifier Circuit System Block Diagram 3. Amplifier Circuit System Block Diagram 1. Amplifier Circuit System Block Diagram Motor rated Motor rated Amplifier output power output power Fuse + Charge Relay Over current detection Inrush current protection Voltage Current Gate drive...
  • Page 393 2. Technical Information 3. Amplifier Circuit System Block Diagram Motor rated Amplifier output power Fuse + Charge Relay Over current detection Inrush current protection Voltage Current Gate drive detection detection Dynamic Motor Voltage brake detection Insulation Control power AC/DC Gate drive Regenerative resistor B1/+...
  • Page 394 2. Technical Information 3. Amplifier Circuit System Block Diagram Motor rated Amplifier output power Terminal block Terminal block Fuse + Charge Relay Over current detection Inrush current protection Voltage Current Gate drive detection detection Dynamic Motor Voltage brake detection Insulation Control power AC/DC...
  • Page 395: Status Display

    2. Technical Information 4. Status Display 4. Status Display 1. Introduction You can check status data by using S-TUNEⅡ. Note This manual uses the following two types of pulse units to explain status variables. Unit of E-pulse (= Encoder pulse) This unit is pulse count of the amplifier control block, based on the pulses equivalent to single turn of the motor which is 23-bit (or 17-bit).
  • Page 396 2. Technical Information 4. Status Display 2. List of Status Variables Status Variables of Servo Amplifier Status No. Status Variable Units Refer to I/O Status - P. 19 Control Component Temperature ° C P. 19 Positioning Status - P. 20 Internal Command Value E-pulse P.
  • Page 397 2. Technical Information 4. Status Display 3. Details of Each Status Variable I/O Status Status Units Status No. - This item indicated the I/O Status of the CN1 connector. Description You can check the I/O Status under 【waveform monitor】 and 【status monitor】 in S-TUNEⅡ.  ...
  • Page 398: Positioning Status

    2. Technical Information 4. Status Display Positioning Status Status Units Status No. - Indicates whether positioning is completed or not Description 0: Not completed 1: Completed Internal Command Value Status Units Status No. E-pulse Indicates the command value being input to the positioning loop. Description This is a value of the position command input divided/multiplied and smoothed.
  • Page 399 2. Technical Information 4. Status Display ABS Position Command Status Units Status No. C-pulse Description This indicates a position command value based on the home-position offset. Absolute Position Feedback Status Units Status No. C-pulse Description Indicates the absolute position data returned from the encoder to the amplifier. Command Position Deviation Status Units...
  • Page 400: Speed Feedback

    2. Technical Information 4. Status Display Speed Feedback Status Units Status No. r/min Indicates the speed value returned from the encoder to the amplifier. Description With this, you can check command response and motor rotational speed. Speed Deviation Status Units Status No.
  • Page 401: Load Factor

    2. Technical Information 4. Status Display Load Factor Status Units Status No. digit Indicates the motor load factor. The value of 1,000 is equivalent to 100% of the rated load. Description This item becoming 1,440 (120%) is an indicator of overload. Adjust the operating conditions such that this value remains under 1,000.
  • Page 402 2. Technical Information 4. Status Display Encoder temperature Status Units Status No. ° C Description Indicates the encoder internal temperature. (for reference only) Encoder battery voltage Status Units Status No. 0.1 V Description Indicates the voltage of the encoder backup battery. Encoder communication retry times Status Units...
  • Page 403 2. Technical Information 4. Status Display Regeneration Status Status Units Status No. - This item indicates the regeneration status of the amplifier power circuit. Setup Panel 1 Setup Panel Description S-TUNEⅡ 【waveform monitor】displays total value of I/O bits in decimal. 【status monitor】...
  • Page 404: Target Velocity

    2. Technical Information 4. Status Display Target Position Status Units 2064 Status No. C-pulse Description Set the position command value. Position actual value Status Units 2074 Status No. C-pulse Description Displays the actual position of the motor. Target Velocity Status Units 2080 Status No.
  • Page 405 MEMO...

This manual is also suitable for:

S-flag ii

Table of Contents