Advertisement

RG91, RG92, RG93
RG510, RG515,
RG520, RG525
LMV5x
Microprocessor controlled
Light oil burners
MANUAL OF INSTALLATION - USE - MAINTENANCE
BURNERS - BRUCIATORI - BRULERS - BRENNER - QUEMADORES - ГОРЕЛКИ
M039421CA 0.1 04/2022

Advertisement

Table of Contents
loading

Summary of Contents for Unigas RG91

  • Page 1 RG91, RG92, RG93 RG510, RG515, RG520, RG525 LMV5x Microprocessor controlled Light oil burners MANUAL OF INSTALLATION - USE - MAINTENANCE BURNERS - BRUCIATORI - BRULERS - BRENNER - QUEMADORES - ГОРЕЛКИ M039421CA 0.1 04/2022...
  • Page 2: General Introduction

    DANGERS, WARNINGS AND NOTES OF CAUTION THIS MANUAL IS SUPPLIED AS AN INTEGRAL AND ESSENTIAL PART OF THE PRODUCT AND MUST BE DELIVERED TO THE USER. INFORMATION INCLUDED IN THIS SECTION ARE DEDICATED BOTH TO THE USER AND TO PERSONNEL FOLLOWING PRODUCT INSTALLATION AND MAINTENANCE.
  • Page 3: Directives And Standards

    3b) FIRING WITH GAS, LIGHT OIL OR OTHER FUELS DIRECTIVES AND STANDARDS Gas burners GENERAL European directives  The burner shall be installed by qualified personnel and in compliance -Regulation 2016/426/UE (appliances burning gaseous fuels) with regulations and provisions in force; wrong installation can cause -2014/35/UE (Low Tension Directive) injuries to people and animals, or damage to property, for which the -2014/30/UE (Electromagnetic compatibility Directive)
  • Page 4: Symbols Used

    Burner data plate Type For the following information, please refer to Model Gas - Light oil burners Year the data plate: European Directives S.Number -Regulation 2016/426/UE (appliances burning gaseous fuels) burner type and burner model: must be Output  Oil Flow -2014/35/UE (Low Tension Directive) reported in any communication with the Fuel...
  • Page 5 PART I: SPECIFICATIONS PART I: SPECIFICATIONS BURNERS FEATURES Fig. 1 Control panel Electrical panel Pump Burner flange Blast tube-combustion head Burner cover Oil pressure governor Pump motor Actuator 10 Air inlet 11 Fan Motor 12 Gun and head adjusting ring nut Light oil operation:the fuel coming from the supply line, is pushed by the pump to the nozzle and then into the combustion chamber, where the mixture between fuel and air takes place and consequently the flame.
  • Page 6: Burner Type

    Burners are identified by burner type and model. Burner model identification is described as follows. Type RG520 Model PR. S. RG91 - RG92 - RG93 - RG510 - RG515 - RG520 - RG525 (1) BURNER TYPE G - Light oil (2) FUEL K - Kerosene...
  • Page 7: Technical Specifications

    PART I: SPECIFICATIONS Technical specifications BURNERS RG91 RG92 RG93 Output min - max kW 698 - 2093 849 - 2558 550 - 4100 Light oil rate min - max kg/h 59 - 176 72 - 215 46 - 345 Fuel...
  • Page 8: Performance Curves

    PART I: SPECIFICATIONS Performance curves RG91 RG92 1200 1600 2000 2400 2800 1200 1600 2000 2400 RG93 500 1000 1500 2000 2500 3000 3500 4000 4500 RG510 RG515 1000 1800 2600 3400 4200 1200 2000 2800 3600 4400 5200 RG525...
  • Page 9 1518 242 820 421 35 380 419 1045 422 419 434 238 268 360 513 M12 417 295 698 228 185 RG91 1339 1512 242 820 421 35 380 419 1045 422 419 434 266 296 360 513 M12 417...
  • Page 10 recommended boiler drilling burner flange AC AD (AS) (AL) (BS) (BL) RG510 1451 1671 219 217 246 35 468 1141 571 1313 642 329 369 540 496 M14 552 390 390 766 328 270 RG515 1451 1671 219 217 246 35 508 1141 571 1323 642 350 390 540 496 M14 552 390 390...
  • Page 11: Transport And Storage

    PART II: INSTALLATION PART II: INSTALLATION MOUNTING AND CONNECTING THE BURNER Transport and storage ATTENTION! The equipment must be installed in compliance with the regulations in force, following the manufac- turer’s instructions, by qualified personnel. All handling operations must be carried out with appropriate resources and qualified personnel ATTENTION: Use intact and correctly dimensioned hoisting equipment, conforms to the local regulations and health and safety regulations.
  • Page 12 PART II: INSTALLATION Department. SIDE UP Note: the figure is indicative only. SIDE DOWN Matching the burner to the boiler The burners described in this manual have been tested with combustion chambers that comply with EN676 regulation and whose dimensions are described in the diagram . In case the burner must be coupled with boilers with a combustion chamber smaller in diameter or shorter than those described in the diagram, please contact the supplier, to verify that a correct matching is possible, with respect of the application involved.
  • Page 13: Gravity Circuit

    PART II: INSTALLATION OIL TRAIN CONNECTIONS Hydraulic diagrams for light oil supplying circuits GRAVITY CIRCUIT RING CIRCUIT 1 Manual valve 2 Light oil filter 3 Light oil feeding pump 4 One way valve 5 Flexible hoses 6 Relief valve SUCTION CIRCUIT NOTE: in plants where gravity or ring feed systems are provided, install an automatic interception device.
  • Page 14 PART II: INSTALLATION must be removed and the optional return port, on the pump’s body, must be sealed by steel plug and washer. Double-pipe system: as for the single pipe system, a pipe that connects the tank to the pump’s inlet is used besides another pipe that connects the pump’s return port to the tank, as well.
  • Page 15 PART II: INSTALLATION Light oil pumps The pumps provided with these burners are Suntec TA (except mod. RG525). RG525: Suntec T pump and Suntec TV pressure governor are provided. Suntec TA.. Oil viscosity 3 ÷ 75 cSt Oil temperature 0 ÷ 150°C Min.
  • Page 16 PART II: INSTALLATION Connecting the oil flexible hoses to the pump To connect the flexible oil hoses to the pump, proceed as follows, according to the pump provided: remove the closing nuts A and R on the inlet and return connections of the pump; screw the rotating nut of the two flexible hoses on the pump being careful to avoid exchanging the lines: see the arrows marked on the pump.
  • Page 17 PART II: INSTALLATION BURNERS WITH INVERTER VARIANT (if provided) KOSTAL Tipo Modello XXXXX M-. MD. xx. xx. x. x. xxx. EI. XXXXX M-. MD. xx. xx. x. x. xxx. EG. LMV5 XXXXX MG. MD. xx. xx. x. x. xxx. EK. XXXXX MG.
  • Page 18 PART II: INSTALLATION BURNERS WITH INVERTER VARIANT (if provided) Type Model XXXXX M-. MD. xx. xx. x. x. xxx. EI. XXXXX M-. MD. xx. xx. x. x. xxx. EG. LMV5 DANFOSS XXXXX MG. MD. xx. xx. x. x. xxx. EK. XXXXX MG.
  • Page 19: Electrical Connections

    PART II: INSTALLATION ELECTRICAL CONNECTIONS WARNING! Respect the basic safety rules. make sure of the connection to the earthing system. do not reverse the phase and neutral connections. fit a differential thermal magnet switch adequate for connection to the mains. WARNING! before executing the electrical connections, pay attention to turn the plant’s switch to OFF and be sure that the burner’s main switch is in 0 position (OFF) too.
  • Page 20 LOW FLAME NOZZLE PRESSURE (bar) RETURN PRESSURE (bar) RETURN PRESSURE (bar) BERGONZO A3 11 - 13 5 (recommended)) FLUIDICS WR2/UNIGAS M3 See table below 7 (recommended) FLUIDICS NOZZLE: REFERENCE DIAGRAM (INDICATIVE ONLY) Atomisation angle FLOW RATE kg/h Indicative pessure on...
  • Page 21 PART II: INSTALLATION FLUIDICS KW3...60° NOZZLE SUPPLY PRESSURE = 20 bar. VISCOSITY AT NOZZLE = 5 cSt The nominal size of the nozzle is indicated at the ends of the curve Pressure on return (bar)
  • Page 22 PART II: INSTALLATION FLUIDICS KW3...60° NOZZLE SUPPLY PRESSURE = 20 bar. VISCOSITY AT NOZZLE = 5 cSt The nominal size of the nozzle is indicated at the ends of the curve Pressure on return (bar) The nominal size of the nozzle is indicated at the ends of the curve Pressure on return (bar)
  • Page 23 PART II: INSTALLATION FLUIDICS KW3...60° NOZZLE SUPPLY PRESSURE = 20 bar. VISCOSITY AT NOZZLE = 5 cSt The nominal size of the nozzle is indicated at the ends of the curve Pressure on return (bar) The nominal size of the nozzle is indicated at the ends of the curve Pressure on return (bar) The nominal size of the nozzle is indicated at the ends of the...
  • Page 24: Start-Up Procedure

    PART II: INSTALLATION Before starting up the burner, make sure that the return pipe to the tank is not obstructed. Any obstruction would cause the pump seal to break. ATTENTION: before starting the burner up, be sure that the manual cutoff valves are open. Be sure that the mains switch is closed.
  • Page 25: Fault History

    PART II: INSTALLATION Main page Set point: temperature set-point Act value: actual temperature value Load: load percentage (burner output) Flame: percentage of flame detection current. By pressing the ENTER key the display shows the second page: Fuel Second page Fuel: it shows (in degrees) the fuel actuator position. Air: it shows (in degrees) the air actuator position.
  • Page 26 PART II: INSTALLATION alternating by an error message as: O2 control and limiter automat deactivated To see the other Fault History pages, press the arrow keys. To exit the Fault History pages, press ESC. Lockout History To visualise the Lockout History, choose the related item and press ENTER. The message will be: 10.08.07 13.47 C:71...
  • Page 27 PART II: INSTALLATION ControllerParam Configuration Adaption SW Version Choose “ControllerParam” and press ENTER: the following menu is shown: ContrlParamList MinActuatorStep SW_FilterTmeCon SetPointW1 Choose “SetPointW1” and press ENTER: SetpointW1 Curr: 90° New: 90° Curr: it shows the current set-point; use the arrows keys to change. NOTE: the availabel range for this parameter depends on the probe provided;...
  • Page 28 PART II: INSTALLATION the display will show: SD_ModOff Curr:: 10.0% New: 10.0% The deafult value for this parameter is10% that is, the burner will turn off at a temperature 1% higher than the set-point. Change value, if needed, by means of the arrow keys; press ENTER to confirm and the press ESC to exit. Press only ESC to exit without changing.
  • Page 29: System Lockout

    PART II: INSTALLATION DateFormat Curr:: DD-MM-YY New: MM-DD-YY choose the desired format and cofirm by pressing ENTER; press ESC to exit. PhysicalUnits: it allows setting the measuring units for temperature and pressure UnitTemperature UnitPressure Settable temperature units: °C or °F Settable pressure units: bar or psi.
  • Page 30 PART II: INSTALLATION SetLoad Curr:: 0.0% New: 20.0% set the required percentage and confirm by pressing ENTER; press ESC to exit. choose “Autom/Manual/Off SetLoad Autom/Manual/Off Autom/Manual/Off Automatic Curr:: New: Burner On three modes are provided: Automatic: automatic operation Burner on: manual operation Burner off: burner in stand-by If the BurnerOn mode is choosen,the burner does not follow the modulator and probe settings, but operates at the set load.
  • Page 31 PART II: INSTALLATION Oil Flow Rate Settings Once the air and gas flow rates are adjusted, turn the burner off, switch the CM switch to the heavy oil operation (OIL, on the bur- ner control panel. with the electrical panel open, prime the oil pump acting directly on the related CP contactor (see next picture): check the pump motor rotation and keep pressing for some seconds until the oil circuit is charged;...
  • Page 32 PART II: INSTALLATION Fully-modulating burners .To adjust the fully-modulating burners, use the CMF switch on the burner control panel (see next picture), instead of the TAB thermo- stat as described on the previous paragraphs about the progressive burners. Go on adjusting the burner as described before, paying attention to use the CMF switch intead of TAB.
  • Page 33 PART III: OPERATION PART III: OPERATION LIMITATIONS OF USE THE BURNER IS AN APPLIANCE DESIGNED AND CONSTRUCTED TO OPERATE ONLY AFTER BEING CORRECTLY CONNEC- TED TO A HEAT GENERATOR (E.G. BOILER, HOT AIR GENERATOR, FURNACE, ETC.), ANY OTHER USE IS TO BE CONSIDE- RED IMPROPER AND THEREFORE DANGEROUS.
  • Page 34: Operation

    PART III: OPERATION OPERATION ATTENTION: before starting the burner up, be sure that the manual cutoff valves are open. Be sure that the mains switch is closed. Light oil operation The fan motor starts and the pre-purge phase as well. Since the pre-purge phase must be carried out at the maximum air rate, the ...
  • Page 35 PART IV: MAINTENANCE PART IV: MAINTENANCE At least once a year carry out the maintenance operations listed below. In the case of seasonal servicing, it is recommended to carry out the maintenance at the end of each heating season; in the case of continuous operation the maintenance is carried out every 6 months.
  • Page 36 PART IV: MAINTENANCE Removing the combustion head Remove the top cover C; remove the photoresistor from its seat; unscrew the revolving connectors (E in figure) on the fuel pipes (use 2 spanners to avoid loosening the connections attached to the distributor block);...
  • Page 37 PART IV: MAINTENANCE Replacing the ignition electrodes ATTENTION: avoid the ignition electrodes to get in touch with metallic parts (blast tube, head, etc.), otherwise the boiler’s operation would be compromised. Check the electrodes position after any intervention on the combustion head. TTENZIONE To replace the ignition electrodes, proceed as follows: remove the burner cover;...
  • Page 38: Seasonal Stop

    PART IV: MAINTENANCE Burner service term - In optimal operating conditions, and with preventive maintenance, the burner can last up to 20 years. - Upon expiry of the burner service term, it is necessary to carry out a technical diagnosis and, if necessary, an overall repair. - The burner status is considered to be at its limit if it is technically impossible to continue using it due to non-compliance with safety requirements or a decrease in performance.
  • Page 39 PART IV: MAINTENANCE TROUBLESHOOTNG GUIDE Light oil operation * No electric power supply * Wait for electric power supply is back * Main switch open * Close the switch * Thermostats open * Check set points and thermostat connections * Bad thermostat set point or broken thermostat * Set or replace the thermostat * No gas pressure * Restore gas pressure...
  • Page 40 C.I.B. UNIGAS S.p.A. Via L.Galvani, 9 - 35011 Campodarsego (PD) - ITALY Tel. +39 049 9200944 - Fax +39 049 9200945/9201269 web site: www.cibunigas.it - e-mail: cibunigas@cibunigas.it Note: specifications and data subject to change. Errors and omissions excepted.
  • Page 41 Siemens LMV5x Service Manual M12920CC rev 2.1 08/2017...
  • Page 42 Warnings: To avoid injury to persons, damage to property or the environment, the following warning notes must be observed Qualified personal In the sense of this documentation, qualified personal are those who are knowledgeable and qualified to install, mount, commission, operate and service / maintain LMV5 system together with burner &...
  • Page 43     WIRING RECOMMENDATIONS ....................................... 4     Earthing ......................................4     1.1.1 TN earthing system ................................4     1.1.2 Protective Earth (PE) and Functional Earth (FE) ........................4     .Frequency inverter / Variable Speed Drive (VSD) ......................... 5  ...
  • Page 44: Wiring Recommendations

    1 WIRING RECOMMENDATIONS Earthing 1.1.1 TN earthing system For the LMV5x-System it is preconditioned that a TN earthing system is used. In a TN earthing system, one of the points in the generator or transformer is connected with earth, usually the star point in a three-phase system. TN−S: PE and N are separate conductors that are connected together only near the power source.
  • Page 45 .Frequency inverter / Variable Speed Drive (VSD) A VSD is one of the strongest EMC sources in a boiler house, so the following is recommended: LMV5 hi ld Earth Note: If the LMV5 is mounted in a cabinet, alternative to (X73.6 / FE), also a connection with the PE- rail in the cabinet is possible Use only VSD with EMC- filter!
  • Page 46 1.3.1 Recommendations It is recommended to use a metal "mounting plate" for the LMV5 Base Unit and the Transformer AGG5.220. Use this plate to provide the Functional Earth (FE), see also /EARTH connection example The connection of the FE to the LMV5 has to be made by connecting the X52.4 terminal with FE! Follow exactly the shield and earth connection in the wiring diagram In some cases connecting the terminal X52.2 with FE results in an improved EMC- immunity of the LMV5.
  • Page 47 Wireway and electrical conduit The following cables are recommended for separate wiring; Complete separate from all other cables: • Cable for "VSD to Fan motor" Line voltage, see also "1. Frequency inverter / Variable Speed Drive (VSD)" • Cable for ignition high voltage, see also "2. Ignition" •...
  • Page 49 1.4.1 Servomotor wiring example 1.4.2 Bus cable wiring on LMV5x and AZL doors. 1.4.3 EARTH connection example...
  • Page 50 2 AZL display/programming unit Users can set only the LMV parameters that can be accessed without password: (see “Adjusting the temperature set-point”). The Siemens AZL User Interface allows programming the Siemens LMV control box and monitoring the system data. The user interface is made of: display: it shows menus and parameters key (previous level): it goes back to the previous level menu or exits the programming mode without changing...
  • Page 51 LMV5x program operating phases Phase number Description Sequence Home run Stand by 20,21 Waiting to start realase Startup Start fan on Startup Driving to pre-purge Startup 30..34 Pre purging Startup Driving to ignition pos Startup Ingnition pos Startup 40,42,44 Fuel release 1 Startup 50,52 Fuel release 2...
  • Page 52 LMV5x program structure...
  • Page 53 NOTE: (1) only for LMV52.400, LMV51.300 without temperature compensation (2) only for LMV5.200 (controlling the oxygen level in the exhaust gas flue) and LMV52.400 (monitoring the oxygen level in the exhaust gas flue, a lock out occur if a limit value is overcoming) (3) Only for LMV51.300 (in this case VSD cannot be used), LMV52.xxx ATTENTION: LMV51.300: HAS ONE AUX.
  • Page 54: Changing Password

    Password 2.4.1 Access to service levels by password Depending on password (service or OEM), different parameters are visible. "Service" parameters, as per the actuator curves and the set-point values, are password protected. The operator must logon using the "9876" password. "User"...
  • Page 55 3 Thermostatic series and safety loop The burner shuts down properly when the thermostatic series (X5-03.1 and X5-03.4 - terminals 3 and 4 of the burner terminal block) opens. In this way, before shut-down, the burner drives to the minimum load, then the fuel valve will close. The post-purging phase will be performed if set. By re-closing the thermostatic series, the burner will start-up again.
  • Page 56 4 Actuators Addressing the actuators The addressing assigns to each actuator its proper function. The addressing is factory set by the burner manufacturer. If an actuator must be replaced, it is necessary to address it, otherwise the system will not work. The parameter that sets the actuator function is protected by the Service level password.
  • Page 57 Actuator doors configuration After the adressing of the actuators, it is necessary to activate and to configure the operation way for each servomotor. ATTENTION: Activate only the actuators that are really present, otherwise an error will occur. 1st level 2nd level 3rd level 4th level Possible choices...
  • Page 58 5 Setting the load controller Door X60 is used for IntLC... choice and a temperature modulationg probe is used. ATTENTION: in case of FGR, it is not possible to connect a modulating temperature probe at the X60 door of the LMX5...
  • Page 59 ExtLC X5-03 = three-point external controller (X5-03 terminals) Int LC = internal controller (LMV5x) (it switches between 2 set points, W1,W2 set thought AZL. the switch from W1 and W2 is realized opening/closing the LMV5x... terminals X62.1, X62.2). Int LC Bus = internal controller and set point setting via bus connection Int LC X62 = internal controller (LMV), but set point is externally controlled by means of a voltage/current signal on X62 terminals Ext LC X62 = external controller, the burner output is controlled by means of a voltage/current signal on X62 terminals Ext LC Bus = external controller, the burner output is controlled via bus...
  • Page 60 Configuration of a pressure or a temperature probe type at X61 door ATTENTION: If the external load controller is set do not connected to terminals X60 or X61. If a modulation probe is connected to the X61 terminal, proceeding as follows: 1st level 2nd level 3rd level...
  • Page 61 Setting the setpoint and the burner and the PID operative band. 6.4.1 Set-point To set the temperature set-point value, that is the generator operating temperature; proceed as follows. 1st level 2nd level 3rd level 4th level 5th level 6th level Description Params &...
  • Page 62: Pid Control Parameters

    The default value for this parameter is10% that is, the burner will turn off at a temperature 1% higher than the set-point. Press the ENTER to confirm, the press ESC to exit. Otherwise press ESC to exit without changing data. Press the ESC to exit 6.4.3 PID control parameters The controller’s memory contains 5 standard parameter sets.
  • Page 63 Setting functions “TL_ThreshOff” and “TL_SD_On” These functions enable the settable threshold for the immediate shutdown, if value set on TL_ThreshOff is exceeded. The automatic restart is performed for values lower than the one set on TL_SD_On. On display, values detected by temperature/pressure probe are shown at the same time. TL_ThreshOff turns the burner off if temperature exceeds the set value.
  • Page 64 7 VSD Standardization Motor standardization (speed acquisition) allows the LMV unit to control the motor rounds at the maximum frequency signal coming from the VSD. A temporary standardization is factory set only for test purpose. The definite standardization must be performed on site by the Service Center (only if the fan is supplied), before the plant test.
  • Page 65 8 SPECIAL POSITIONS Ignition position The ignition point is independent from the other curve points of the air/fuel ratio curve. As far as dual fuel burners, the ignition point set for the gas operation does not depend on the one set for the oil operation. LMV5x allow two different ignition position for gas mode and oil mode.
  • Page 66 9 ADJUSTING THE AIR/FUEL RATIO CURVES ATTENTION: when burners are provided with VSD, before setting the air/fuel ratio curves, the Standardization of the motor speed must be performed (see chapter “Standardization”). 1st level 2nd level 3rd level 4th level 5th level 6th level Description Params &...
  • Page 67 Setting the load points output (burners with no FGR) Following the below route access to the programming levels of the menu 1st level 2nd level 3rd level 4th level 5th level 6th level Description Params & Display RatioControl Parameter settings for fuel/ air ratio control GasSettings Parameter settings for firing...
  • Page 68 Point Load To choose the actuator to set, press the “left arrow” and choose Air or VSD Fuel Point Load Press "Enter" to access the Air actuator value to be set. Fuel Point Load Press keys to change value. Fuel Point Load Press Enter...
  • Page 69 Caution! In case it is necessary to immediately shut the burner down while working at high flame and the maximum load point is not already set observing the combustion parameters, decrease gas by means of the pressure governor as to drive the burner to a sufficient excess of air, then shut the burner down by the main switch.
  • Page 70 10 Configurations for burner with FGR 10.1 Recommendations Note! Reduction of maximum burner output Use of the flue gas recirculation (FGR) function or the flue gas mass introduced to the supply air duct might lower the burner’s maximum output. This means that the maximum amount of combustion air that can be introduced will be reduced. It is recommended to consider a proper air excess during the regulation of the burner in order to have to the right O2 content in the smoke, after the flue gas recirculation.
  • Page 71 10.2 Address and activate the AUX3 servomotor. Usually these operations are already set in the manufacturer factory. They would be necessary in same cases as: the substitution of the servomotor, in case the FGR mode were not activated yet or the LMV5x were be supplied loose…...
  • Page 72 10.3 Setting the special positions 1st level 2nd level 3rd level 4th level 5th level 6th level Description Param & Display RatioControl GasSettings OilSettings SpecialPosition Suggested positions are below. They can be modify during the commissioning according to right needs. Special Position: AUX3 POS •...
  • Page 73 10.5 FGR mode choice 1st level 2nd level 3rd level 4th level 5th level 6th level Description Param & Display Flue Gas Recirc According to the preference and FGR-Mode AUX3onCurve instruction in the table below. time temperature temp. contr. TCautoDeact deactMinpos auto deact Description of the FGR mode.
  • Page 74 10.6 Main parameter of the FGR function LMV50 LMV52.4.. Parameter Description LMV51.3 LMV52.2 DelaytimeFGR Gas Setting of delay time for auxiliary actuator 3 to be kept in the ignition position after entering phase ● ● OPERATION DelaytimeFGR Oil ThresholdFGR Gas Setting of temperature that must not be exceeded so that auxiliary actuator 3 can be kept in the ●...
  • Page 75 10.7 Example of FGR factor and FGR Maps Factor on the burner regulation. We consider to set the AUX3 for FGR with the “temp.contr.” Mode The curve is as per the below table. Point Note Load % 37,5 % 62,5 % 75 % 100 % AUX3 FGR Curve...
  • Page 76 11 Cold start thermal shock (CSTP) If there is a steam boiler or a boiler that must start up cold in the plant and to avoid thermal shocks a slow heating is required for the boiler by maintaining the burner at the minimum output, the automatic function “Cold start thermal shock” can be performed instead of the manual operation at minimum load. The CSTP (Cold Start Thermal Schock) function can be enabled by the Technical service only (access by reserved password).
  • Page 77 Note: by enabling the manual operation (this function can be set at user level also -see chapter “manual operation”) the CSTP function is momentary excluded, when enabling the automatic operation again, the CSTP function (previously set at Service level) will be enabled as well.
  • Page 78 12 BURNER MANUAL OPERATION The operator can decide if choosing burner manual operation at a settable fixed load or modulating operation through the automatic load controller, then can also set the burner shutdown by means of the “burner off” function. Choose the type of operation (Au-tom / Manual / Off).
  • Page 80 Terminal Description of connection termi- nals group Connection symbol Electrical rating PIN1 Fan motor contactor AC 230 V +10 % / -15 %, 50...60 Hz, 1 A, cos.0.4 PIN2 Alarm AC 230 V +10 % / -15 %, 50...60 X3-01 Hz, 1 A, cos.0.4 PIN1 Air pressure switch (LP)
  • Page 81 Terminal Connection symbol Description of connection terminals Electrical rating group PIN1 Protective earth (PE) Pressure switch min-oil (DWmin-oil) AC 230 V +10 % / -15 %, PIN2 50...60 Hz, Imax 1.5 mA X5-01 Power signal for pressure switch-min- AC 230 V +10 % / -15 %, oil (DWmin-oil) PIN3 50...60 Hz, Imax 500 mA...
  • Page 82 Terminal Connection symbol Description of connection termi- nals Electrical rating group PIN1 Protective earth (PE) PIN2 Neutral conductor (N) X7-01 PIN3 Fuel valve 2 (oil) AC 230 V +10 % / -15 %, 50...60 Hz, 1 A, cos.0.4 PIN1 Protective earth (PE) PIN2 Neutral conductor (N) AC 230 V +10 % / -15 %, 50...60...
  • Page 83 Terminal Connection symbol Description of connection termi- nals Electrical rating group AC 230 V +10 % / -15 %, 50...60 PIN2 Firing on oil Hz, 1 A, cos.0.4 X8-01 PIN1 Firing on gas AC 230 V +10 % / -15 %, 50...60 Hz, 1 A, cos.0.4 PIN4 Protective earth (PE)
  • Page 84 Termi- nal group Connection symbol Description of connection termi- nals Electrical rating AC 230 V +10 % / -15 %, 50...60 Hz, PIN4 Neutral conductor (N) max 1 mA PIN3 Power signal transformer AC 12 V +10 % / -15 %, 50...60 Hz, X10-01 PIN2 AC power signal GO...
  • Page 85 (functional earth) PIN4 AC power supply from transformer to LMV5... system PIN3 AC 12 V +10 % / -15 %, 50...60 Hz PIN2 Reference ground (PELV) AC power supply from transformer to LMV5... system PIN1 AC 12 V +10 % / -15 %, 50...60 Hz Terminal Connection symbol Description of connection termi- nals...
  • Page 88 Note: Specifications and data subject to change. Errors and omissions excepted.
  • Page 89 COD. M07979CD rel. 3.2 01/13 RECOMMENDATIONS FOR LMV5x CONNECTIONS Connections affected by EMC noises are related to the bus cable (actuator line cable, PLL52), detection probe cable, speed sensor cable, 4-20mA signal cable that controls the VSD. Input and power cables (400V e 230V) must be laid separately from the signal cables. The bus cable between control panel and burner and between burner and PLL52 board (used when O2 trim control must be perfomed) must be laid separately and far from power cables.
  • Page 90 Annex1 – Example for motor cable...
  • Page 92 Annex 2 – Example for sensor cable...
  • Page 95 SIEMENS Appendix: Example for wiring, earthing and shielding the LMV5-System Cabinet Siemens MM440 CAN-Bus shielded cable X52.2 X52.4 "VSD - Fan Motor" Separate conduit & shielded line voltage cable! Separate plastic conduit X51, X50 Metal plate = FE for high voltage ign. cable X9-02 X10-01 Power...
  • Page 96 Addendum 4: LMV52... with O trim control and O module General The LMV52... system is an extended LMV51... system. A special feature of the LMV52… is control of the residual oxygen content to increase the boiler’s efficiency. In addition to the features of the LMV51..., the LMV52... provides O trim control, con- trol of a maximum of 6 actuators, control of a VSD, and acquisition of cumulated fuel consumption and current fuel throughput.
  • Page 97 The maximum cable length between transformer and CAN bus users is dependent on Determination of the the type of cable (cross-sectional area), the number of actuators and the type of actua- maximum cable length tor used (current). The following graphs can be used to determine the maximum CAN bus cable lengths between the transformer and group of actuators or the AZL5…, depending on the rele- vant influencing factors.
  • Page 99: Control Panel

    Example 2 LMV5... basic unit in the control panel, actuator on the burner; CAN bus cable «LMV5... → SA» > 20 m Jumper Control panel Burner ACT 1 ACT 2 ACT 3 ACT 4 Fixed internal bus termination SQM4... SQM4... SQM4...
  • Page 100 Example 3a Installation of all components in the burner; CAN bus cable «LMV52... ↔ SA» > 20 m with 6 actuators and O2 module PLL52... Jumper Fixed internal ACT 1 ACT 2 ACT 3 ACT 4 ACT 5 ACT 6 bus termination SQM45...
  • Page 101 Notes on example 3a / 3b CAN bus cable with LMV52... and more than 4 actuators and O2 module PLL52... On LMV52... applications with more than 4 actuators (SQM45...), a second transformer is required for powering the extra actuators. In that case, transformer 1 powers the LMV52... basic unit, the AZL5..., and the first 4 actuators.
  • Page 102: Inputs And Outputs

    O2 module In comparison with the LMV51... system, the extra components to be connected with the LMV52… system are the O module and the O sensor QGO... and, optionally, the combustion air and flue gas temperature sensors. The O module is to be connected to the basic unit via the CAN bus.
  • Page 104      8      8      8...
  • Page 105 ß ß ß...
  • Page 106 ©...
  • Page 107 Technical Data PLL52... LMV52... basic unit Refer to chapter Technical Data! Mains voltage «X89-01» AC 120 V AC 230 V PLL52... –15 % / +10 % -15 % / +10 % Safety class I with parts according to II as per DIN EN 60730-1 Mains frequency 50 / 60 Hz ±6 % Power consumption...
  • Page 108 PLL52... Flue gas temperature X86.3 Shield connection Temperature sensor X86.1 Pt / LG-Ni1000 PLL52... Pt / LG-Ni1000 X86.2 Signal reference X89-01.4 Protective earth (PE) Supply air temperature X89-01.5 Power supply neutral X87.3 conductor (L) Shield connection F 6.3AT Temperature sensor X87.1 X89-01.6 Power supply live Pt / LG-Ni1000...

This manual is also suitable for:

Rg92Rg93Rg510Rg515Rg520Rg525

Table of Contents