Page 1
IceStop System INSTALLATION AND OPERATION MANUAL FOR ROOF AND GUTTER DE-ICING SYSTEMS THERMAl MANAGEMENT WWW.PENTAIRTHERMAl.COM...
Page 2
Important Safeguards and Warnings WARNING: FIRE AND SHOCK HAZARD. IceStop roof and gutter de-icing systems must be installed correctly to ensure proper operation and to prevent shock and fire. Read these important warnings and carefully follow all the installation instructions. • To minimize the risk of fire from sustained electrical arcing if the heating cable is damaged or improperly installed and to comply with Thermal Management...
Page 3
Table of Contents General Information 1.1 Use of the Manual 1.2 IceStop Applications 1.3 Safety Guidelines 1.4 Typical Roof and Gutter System 1.5 Approvals 1.6 Warranty Pre-Installation Checks 2.1 Check Materials 2.2 Connection Kits and Accessories 2.3 Review the Design Heating Cable Installation 3.1 Heating Cable Handling 3.2 Protecting the Heating Cable 3.3 Visual Inspection 3.4 Heating Cable Layout Attachment Methods 4.1 Overview 4.2 Roof Attachment Methods 4.3 Attachment Methods for Other Areas Control, Monitoring and Power Distribution...
Page 4
Troubleshooting Guide Installation and Inspection Records Raychem-IM-H58067-IceStopRoofGutterDeIcingCOM-EN 18/01...
General Information Use of the Manual This manual covers the installation of Raychem IceStop roof and gutter de-icing system. The manual covers general heating cable installation procedures and specific installation details and shows available connection kits. The manual also discusses controls, testing, and periodic maintenance. This manual assumes that the proper roof and gutter de-icing design has been completed according to the Roof and Gutter De-Icing: IceStop System Design Guide (H56070). Only the applications described in Section 1.2 are approved by Thermal Management for IceStop systems when used with approved Raychem connection kits. The instructions in this manual and the installation instructions included with the connection kits must be followed for the Thermal Management warranty to apply. Contact your Thermal Management representative for other applications and products. IceStop Applications Raychem IceStop is a roof and gutter de-icing system that provides drain paths for the following applications: • Roofs made from standard roofing materials, including shake, shingle, rubber, tar, wood, metal, and plastic. • Gutters made from standard materials, including metal, plastic, and wood. • Downspouts made from standard materials, including metal and plastic. The guide does not provide information for using an IceStop system for the following applications: • Preventing snow movement on roofs—IceStop will not keep snow or ice from falling off the roof.
For the names of manufacturers of snow guards or snow fences, contact your Thermal Management representative, or contact us directly at (800) 545-6258. • Melting snow on a roof and/or reduction of snow load—IceStop is designed to remove melt water, not accumulated snow. If your application conditions are different, or if you have any questions, contact: Thermal Management 7433 Harwin Drive Houston, TX 77036 USA Tel: +1.800.545.6258 Tel: +1.650.216.1526 Fax: +1.800.527.5703 Fax: +1.650.474.7711 thermal.info@pentair.com www.pentairthermal.com Safety Guidelines The safety and reliability of any heat-tracing system depends on the quality of the products selected and the manner in which they are installed and maintained. Incorrect design, handling, installation, or maintenance of any of the system connection kits could damage the de-icing system or the roof and may result in inadequate de-icing, electric shock, or fire. To minimize these risks and to ensure that the system performs reliably, read and carefully follow the information, warnings, and instructions in this guide. • Important instructions are marked Important • Warnings are marked...
General Information Typical Roof and Gutter System Ice dams can cause water ingress into buildings and generate dangerous icicles. An IceStop system can help prevent ice dams and icicles by maintaining a continuous path for melt water to drain from the roof. As long as a heated path from the roof to a safe discharge area is maintained, ice dams will not form. The IceStop system can be used on roofs and valleys and in downspouts and gutters made from all types of standard roofing materials, including metal, plastic, wood, shake/shingle, rubber, and tar. The IceStop system is intended to provide drain paths. A typical system is shown in Figure 1. Raychem-IM-H58067-IceStopRoofGutterDeIcingCOM-EN 18/01...
Page 8
General Information Power Connection Kits Splice Kits Heating Cable Power Distribution Panel Snow Controller Gutter Sensor / Ic / Ic e lt e lt in g in g n t r n t r o ll o ll /6 0 /6 0 E IN E IN...
Page 9
General Information Tee Kits Attachment Kits Lighted End End Seal Kit Downspout Hanger Kit Raychem-IM-H58067-IceStopRoofGutterDeIcingCOM-EN 18/01...
General Information Approvals The IceStop roof and gutter de-icing system is UL Listed, CSA Certified, and FM Approved for use in nonhazardous areas. GM-1XT and GM-2XT are also FM Approved for use in Class I, Division 2 hazardous locations. Warranty Thermal Management' limited standard warranty applies to all products. You can access the complete warranty at www.pentairthermal.com. To qualify for an extended 10-year warranty, register online within 30 days of installation at www.pentairthermal.com. Raychem-IM-H58067-IceStopRoofGutterDeIcingCOM-EN 18/01...
Pre-Installation Checks Check Materials If physical damage is found, the entire damaged sec- tion must be removed and a new section of heating cable spliced in, using only approved Raychem splice kits. Do not attempt to repair the damaged heating cable section. If the damage cannot be found, the complete circuit should be removed and replaced with new IceStop heating cable. WARNING: Shock or Fire Hazard. Damaged heating cable or connection kits can cause electrical shock, arcing, and fire. Do no attempt to energize damaged heating cable or connection kits. Replace them immediately using a new length of heating cable and the appropriate IceStop accessories.
Pre-Installation Checks Connection Kits and Accessories TABlE 1: CONNECTION KITS Heating cable Catalog number Description allowance Power connection Quick connect power con- 2 ft (0.6 m) nection kit to power 1 run of heating cable. Includes 1 end seal. Standard pkg: RayClic-PC Quick connect power con- 2 ft (0.6 m) nection kit to power 2 runs of heating cable. Includes 2 end seals. Standard pkg: RayClic-PS Quick connect power con- 3 ft (1 m) nection kit to power 3 runs of heating cable. Includes 3 end seals. Standard pkg: RayClic-PT Alternate lighted end seal 2 ft (0.6 m)
Page 13
Pre-Installation Checks TABlE 1: CONNECTION KITS Heating cable Catalog number Description allowance Junction box Junction box mounted 2 ft (0.6 m) HSP power connection kits. Includes 1 end seal. Standard pkg: FTC-P Splice connection Quick connect splice kit 2 ft (0.6 m) Standard pkg: RayClic-S Heat-shrinkable splice kit 2 ft (0.6 m) Standard pkg: FTC-HST Tee connection Quick connect tee kit 2 ft (0.6 m) Standard pkg: RayClic-T Heat-shrinkable tee kit 2 ft (0.6 m)
Page 14
Pre-Installation Checks TABlE 2: ATTACHMENT ACCESSORIES Catalog number Description No. of packages required Mounting bracket RayClic wall 1 mounting bracket/ mounting RayClic connection kit bracket (except RayClic-E) installed on a wall Standard pkg: RayClic-SB-02 Mechanical 1 box per 35' of roof edge (penetrating) when zig-zag layout is roof clip used Standard pkg: GMK-RC Hanger bracket 1 hanger per cable in downspout or as required Standard pkg: for mechanical protection GM-RAKE CT-CABLE-TIE UV-resistant...
Page 15
Pre-Installation Checks Adhesives for Metal Roofs With the adhesives that are available today, the attachment of clips to metal roofs can be as reliable as screws or nails into a wooden roof. The adhesives that perform the best allow some flexibility in the connection between the clip and the roof surface. Adhesives such as epoxies, which cure to a hard nonflexible form, should not be used. Acid-curing silicones, which are not as strong and could damage the roof, also should not be used. The adhesives listed below have been evaluated by Thermal Management. TABlE 3: ADHESIvES FOR METAl ROOFS Dispensing Adhesive Description Times equipment Momentive Neutral-cure Caulking gun Tooling Performance silicone 20 min Materials, Inc. adhesive Cure RTV167 48 hr SpeedBonder Methacrylate Two-part mixing...
Pre-Installation Checks Tooling time is the time between when the adhesive is mixed and becomes unusable for installing more clips. Cure time is the time needed to wait before the heating cable can be installed. Momentive Performance Materials, Inc. RTv 167 is a neutral-cure silicone adhesive. Silicone Adhesive Contact: (800) 332-3390. are general purpose, SpeedBonder H3300 and H4800 two-component, room-temperature curing, 1:1 mix ratio, methacrylate adhesive systems. Contact: (800) 767-8786. are two part methacry- Plexus MA310 and MA300 late adhesives designed for structural bonding of thermoplastic, metal, and composite assemblies. Contact: (800) 851-6692. Please consult with a roofing contractor before pur- chasing and installing clips with the adhesives. It is extremely important to follow the adhesive manufac- turer’s instructions carefully, especially with regard to surface preparation. Review the Design Hold a project coordination meeting. Review the design at this meeting and ensure that the cables supplied meet the design requirements.
Heating Cable Installation Heating Cable Handling Paying Out the Cable Mount the reel on a holder and place it near either end of the pipe run to be traced. Use a reel holder that pays out smoothly with little tension. Avoid jerk- ing the cable while pulling. When paying out the heating cable, AVOID: • Sharp edges • Excessive pulling force or jerking • Kinking or crushing • Walking on or running over the heating cable with equipment Connection Kits and Accessories Installation Start by installing connection kits and accessories in locations indicated on project drawings or as indi- cated in “Heating Cable Layout” beginning on the following page. Once all clips and downspout hangers are in place, and adhesives cured if applicable, the heating cable can be installed. Start at the end seal and work back. Be sure to leave a drip loop at connection kits so that water will not track down the heating cable into the com- ponent. Install heating cable using the layout shown in "Heating Cable Layout" on page 15 for your application.
Heating Cable Installation • Test installed heating cable for insulation resistance and continuity (see "Procedure" on page 54). Protecting the Heating Cable On many projects, there is a delay between installa- tion of the heating cables and installation of heating system connection kits. If there is any delay at all, take the following precautions to protect the heating cables. • Keep covers on junction boxes to prevent mois- ture from entering them. • Mechanically protect the heating cables so that they cannot be damaged by being walked on, run over, painted, sandblasted, burned, welded, or cut. visual Inspection A visual inspection of the IceStop system should be made after installation is complete. This inspection will ensure: • Proper installation of the system • No mechanical damage (cuts, burns, scrapes, etc.) to cable sustained prior to pour • Proper heating cable spacing and depth • Proper heating cable fastening • Proper treatment and location of expansion and controls joints Further visual inspection of the IceStop system is recommended following any further work per-...
Heating Cable Installation Heating Cable layout Heating cable layout depends primarily on the roof type and roof features. The following sections show typical layouts on standard roof types: • "Sloped Roof – Standard" on page 16 • "Sloped Roof – Standing Seam" on page 17 • "Flat Roof" on page 20 • "Sloped Roof without Gutters" on page 21 • "Roof Valleys" on page 23 • "Roof/Wall Intersections" on page 24 • "Gutters" on page 25 • "Downspouts" on page 27 Important: For optimum performance, the heating cable should be in contact with snow or ice. Installing the heating cable under the roofing or the roofing materials will reduce the efficiency of the heating system.
Page 20
Heating Cable Installation Roof 12" (30 cm) Area where ice dams are most likely to form Heating cable Gutter Heated area Eave overhang Exterior wall Figure 4: Side view of roof with IceStop system Sloped Roof – Standard For sloped roofs, ice dams may form at the roof edge. To maintain a continuous path for melt water runoff, route the heating cable in a zig-zag pat- tern as shown in Figure 5 and follow the appropri- ate attachment recommendations in “Attachment...
Page 21
Heating Cable Installation gutter. This will ensure that you have a continuous path where the melted water can flow. Attach the heating cables together with UV-resistant cable ties. • Table 4 was used in the design process of your project to determine the amount of heating cable required for a standard sloped roof. TABlE 4: ICESTOP HEATING CABlE lENGTH FOR SlOPED ROOF – STANDARD Feet of Meters of heating heating Eave cable per cable per overhang Tracing Tracing foot of roof meter of distance width height...
Page 22
Heating Cable Installation and follow the attachment recommendations in “Attachment Methods‚” page 29. Additional heat- ing cable may be needed for gutters, downspouts, and valleys and is covered in Section 3. Figure 6: layout on a standing seam room • Run the heating cable up the seam until it is 12" (30 cm) past the exterior wall and into a heated area, Figure 4 on page 16. • Run the heating cable up one side of the seam, loop it over to the other side, and return it to the bottom of the gutter. Continue along the bottom of the gutter to the third seam and repeat the process (Figure 5). If the seams are more than 24" (60 cm) apart, trace every seam. Raychem-IM-H58067-IceStopRoofGutterDeIcingCOM-EN 18/01...
Page 23
Heating Cable Installation TABlE 5: ICESTOP HEATING CABlE lENGTH FOR SlOPED ROOF – STANDING SEAM Feet of Meters of heating heating Eave Standing cable per cable per overhang seam Tracing foot of meter of distance spacing height roof edge roof edge 12" ( 30 cm) 18" ( 45 cm) 24" (60 cm) 2.8 ft...
Page 24
Heating Cable Installation Flat Roof Ice dams may occur on flat roofs at the edge flashing and at drains. Flat roofs are typically pitched toward drains and these paths often become obstructed by snow and ice. To maintain a continuous path for melt water to run off, route the heating cable as shown in Figure 7 and follow the appropriate attach- ment recommendations in “Attachment Methods‚” page 29. Additional heating cable may be needed for downspouts. Slope Drain Heating cable should be positioned around the perimeter and in the valleys of a flat roof. The heating cable must extend into the drain orscupper to allow the Junction melt water to exit the roof.
Page 25
Heating Cable Installation • Place heating cable around perimeter. • Trace valleys from perimeter to drain. • Extend heating cable into internal downspouts at least 12 inches (30 cm) into heated space. • External downspouts and scuppers must be treated carefully. A path must be provided for the valley/perimeter heating cable to the point of dis- charge (see Figure 15 on page 27). • To avoid damage, do not walk on the heating cable. Sloped Roof without Gutters When gutters are not used on a building, ice dams may form at the roof edge. To maintain a continuous path for melt water to run off, a drip loop or heated drip edge may be used. Drip loops and drip edges allow water to drip free of the roof edge. Route the heating cable as shown in Figure 8 or Figure 9 below and follow the appropriate attach- ment recommendations in “Attachment Methods‚” page 29. Additional heating cable may be needed for valleys. 2"–3" (5–8 cm) Figure 8: layout for heated drip loops Raychem-IM-H58067-IceStopRoofGutterDeIcingCOM-EN 18/01...
Page 26
Heating Cable Installation IceStop heating cable Figure 9: layout for heated drip edge Important: Attachment methods are not shown in the above illustrations. For attachment methods, pro- ceed to “Attachment Methods,” page 29. other considerations • Use a snow fence or snow guards to prevent snow from sliding (not shown). Extend heating cable above the snow fence a minimum of 6 inches (15 cm). • Ice will build up on the surfaces below the drip loop or drip edge if gutters are not used.
Page 27
Heating Cable Installation Roof valleys Ice dams may form at the valley on a roof where two different slopes meet. To maintain a continuous path for melt water, run the heating cable up and down the valley as shown in Figure 10 and follow the appropriate attachment recommendations in “Attachment Methods‚” page 29. Additional heat- ing cable may be needed for the roof surface, gut- ters, and downspouts. Figure 10: layout for a roof valley • Trace two-thirds of the way up each valley with a double run of heating cable (loop up and back once). • The heating cable must extend into the gutter. If you don’t have gutters, the heating cable should extend over the edge 2 to 3 inches (5 to 8 cm) to form a drip loop. • For attachment methods, proceed to “Attachment Methods‚” page 29. Raychem-IM-H58067-IceStopRoofGutterDeIcingCOM-EN 18/01...
Page 28
Heating Cable Installation Roof/Wall Intersections Roof/wall intersections can be treated in the same manner as valleys. Snow has a tendency to collect at this interface. Providing a loop of heating cable two- thirds of the way up the slope will provide a path for the extra melt water in this area to escape. 2"–3" 4"–6" Figure 11: layout for a roof/wall intersection • Extend a loop of heating cable two-thirds of the way up the slope adjacent to the wall. • Position the closest heating cable approximately 2 to 3 inches (5 to 8 cm) from the wall. Position the second heating cable 4 to 6 inches (10 to 16 cm) from the first. Raychem-IM-H58067-IceStopRoofGutterDeIcingCOM-EN 18/01...
Page 29
Heating Cable Installation Gutters Ice may accumulate in gutters and at the roof edge. To maintain a continuous path for melt water to run off, route the heating cable as shown in Figure 12 below. Additional heating cable may be needed for the roof surface, downspouts, and valleys. Figure 12: layout in standard gutters−up to 6" (16 cm) wide • Use one run of heating cable in the gutter. • No attachment to gutter is normally required. If attachment is desired, use a roof clip such as a Raychem GMK-RC clip. • Continue heating cable down the inside of the downspout. See "Downspouts" on page 27, for more information. Raychem-IM-H58067-IceStopRoofGutterDeIcingCOM-EN 18/01...
Page 30
Heating Cable Installation In wide gutters, snow and ice can bridge over the tunnel created by a single heating cable and prevent melt water from getting into the gutter and down- spouts. To maintain a continuous path for melt water to run off, run the heating cable in the gutter as shown in Figure 13 below and follow the appropri- ate attachment recommendations in “Attachment Methods‚” page 29. Additional heating cable may be needed for the roof surface, downspouts, and valleys. GM-RAKE 6" (15 cm) spacing maximum GMK-RC Figure 13: layout in wide gutters−6" to 12" wide Raychem-IM-H58067-IceStopRoofGutterDeIcingCOM-EN 18/01...
Page 31
Heating Cable Installation Downspouts Ice may form in downspouts and prevent melt water from escaping from the roof. To maintain a continu- ous path for melt water to run off, run the heating cable inside the downspout to the end as shown in Figure 14 and Figure 15 below. Follow the appropri- ate attachment recommendations in “Attachment Methods‚” page 29. Additional heating cable may be needed for the roof surface, gutters, and valleys. Figure 14: Heating cable at top of downspout 12" Drain removes melt water Accumulated ice Accumulated ice below the frost line. can be removed. may block drains. Figure 15: Heating cable at bottom of downspout • If the downspout ends underground, the heating cable should extend into a heated area or below the frost line.
Page 32
Heating Cable Installation to tee the heating cable, use two runs—by running the heating cable down to the bottom and then back to the top. • Leave drip loops below the downspout at bottom. • If a single run of heating cable is used, the end seal should be looped back up at least 12 inches (30 cm) inside the downspout. • If the downspout ends near the ground, water will refreeze on the ground and build up around the downspout, eventually blocking the opening. other considerations To prevent mechanical damage, do not leave the end seal exposed at the end of the downspout. Raychem-IM-H58067-IceStopRoofGutterDeIcingCOM-EN 18/01...
Attachment Methods Overview Heating cable attachment depends primarily upon the roof type. The following table shows the recom- mended attachment methods for typical roof materi- als and roof areas. TABlE 6: ATTACHMENT METHODS FOR TyPICAl ROOFS Recommended Alternate Roof material attachment method attachment method Shake/shingle "Mechanical Attachment" on page 30 Rubber/ "Belt Loop Approach" "Adhesive membrane on page 33 Attachment" on page 31 Metal "Adhesive "Mechanical Attachment" on Attachment" on page 31 page 30 "Belt Loop Approach"...
Attachment Methods Roof Attachment Methods Mechanical Attachment One of the most common attachment methods is to use a Raychem GMK-RC roof clip. It can be used on all surfaces that can be nailed or screwed into. Figure 16: GMK-RC mechanical attachment • The GMK-RC roof clips are used to secure IceStop heating cable. This multipurpose bracket attaches with a screw, nail, or adhesive to many types of roofs and gutters. • After determining the heating cable layout, fasten the clips to the roof before installing the heat- ing cable in the bracket. If using nails or screws, apply sufficient water-sealing material around the clips and nails or screws to prevent roof leaks. • Thread the heating cable into the clips. Use addi- tional clips wherever the heating cable may be subject to abrasion from movement. • Use pliers to close the clamps, but be careful not to crush the heating cable. • One box of 50 GMK-RC clips is sufficient to attach the heating cable on 35 feet (11 m) of roof edge using a serpentine layout. Your layout may require additional clips. • For layouts other than the standard serpentine, use one clip for each 5 to 10 feet (1.5 to 3 m) of Raychem-IM-H58067-IceStopRoofGutterDeIcingCOM-EN 18/01...
Page 35
Attachment Methods unsupported heating cable and at every change of heating cable direction. • For standard sloped roofs, the loops of heating cable being serpentined on the roof should be attached using a UV-resistant cable tie, to the heating cable run in the gutter. • For standing seam roofs, the heating cable should be cable-tied together at the bottom of the seam. Adhesive Attachment For roofs where penetrating attachments are not desired, use the GMK-RC clip attached by adhesive. Figure 17: GMK-RC adhesive attachment Figure 18: GMK-RC clip on flat roof Raychem-IM-H58067-IceStopRoofGutterDeIcingCOM-EN 18/01...
Page 36
Attachment Methods • The GMK-RC roof clips are used to secure IceStop heating cable. The clip attaches with adhesive (not supplied by Thermal Management) to many types of roofs and gutters. • Several adhesives are recommended by Thermal Management. See Table 3 on page 11 of this manual or contact Thermal Management for alternatives. • On a standing seam roof, use four clips on each seam being traced. On a flat surface, use one clip for every 5 to 10 feet (1.5 to 3 m) of unsupported heating cable and at every change of direction. • Follow all recommendations from the adhesive manufacturer with regard to cleaning and prepar- ing the roof surface for the adhesive. • After determining the heating cable layout, fasten the clips to the roof with the adhesive and allow the adhesive to cure before installing the heating cable. • Thread the heating cable through the clips. Use additional clips wherever the heating cable may be subject to abrasion from movement. Important: How well the adhesive holds can be strongly affected by how well the surface to which it will adhere is prepared and by what type of adhesive is used.
Page 37
Attachment Methods Belt loop Approach With the belt loop approach, strips of roofing materi- als are fastened to the roof using standard means for that particular type of roof. The heating cable is attached with a UV-resistant cable tie to the loop formed by this material. Heating cable Strip of roof material Cable tie Roof adhesive Figure 19: Belt loop approach on a sloped roof Figure 20: Belt loop approach on a flat roof • The belt loop method of securing the IceStop heating cable involves using a small piece of roof- ing material to form a “belt loop.”...
Page 38
Attachment Methods • After determining the heating cable layout, fasten each end using standard means for that particular type of roof. Examples of this would be attaching with solder on a copper roof, adhesive on a mem- brane roof, or tar on an asphalt roof. • The heating cable is attached with a UV-resistant cable tie to the loop formed by this material. • Use additional clips wherever the heating cable may be subject to abrasion from movement. Alternate Attachment Methods Thermal Management attachment clips were devel- oped as an easy way to provide enough support for the heating cable without crimping, crushing, or otherwise damaging the heating cable and without applying any chemicals or adhesives directly to the heating cable. Other means may be used to attach the heating cable as long as they: • Do not crush, crimp, cut, or otherwise damage the heating cable. Damage to the heating cable could cause the system to fail, resulting in electric shock or fire. • Do not apply adhesives or other chemicals directly to the heating cable. Many adhesives will not stick to the outer jacket, which could cause the attach- ment method to fail and could result in inadequate drain paths. • Provide enough strength to support the heating cable on the roof and any load from snow that col- lects on the system. If the attachment method is not strong enough, the heating cable could come loose and fall off.
Attachment Methods Attachment Methods for Other Areas Gutters The IceStop heating cable is not normally attached to the gutter. GM-RAKE 6" (15 cm) spacing maximum GMK-RC Figure 21: GMK-RC clip on a gutter • Attachment is not generally required for stan- dard gutters. If attachment is desired, such as in high-wind areas, use GMK-RC adhesive-mounted attachment clips. Several different adhesives are recommended by Thermal Management. See Table 3 on page 11. • For large gutters (6 to 12 inches wide [15 cm to 30 cm]), use two runs of heating cable separated by GMK-RC roof clips. It is not necessary to attach the clips to the gutter. Use one pair of GMK-RC roof clips for every 10 feet (3 m). Raychem-IM-H58067-IceStopRoofGutterDeIcingCOM-EN 18/01...
Page 40
Attachment Methods Downspouts The IceStop heating cable needs to be attached at the top of each downspout using one GM-RAKE downspout hanger per heating cable. The GM-RAKE downspout hanger clamps around the heating cable and attaches to the fascia with a screw or nail. Figure 22: GM-RAKE downspout hangers • GM-RAKE downspout hangers protect the heat- ing cable from damage from sharp edges and also provide support for the weight of the heating cable. • Use two GM-RAKE downspout hangers for double- traced downspouts. • Attach the GM-RAKE downspout hangers to the structure with a nail or other suitable method. Raychem-IM-H58067-IceStopRoofGutterDeIcingCOM-EN 18/01...
Page 41
Attachment Methods Heated Drip Edges When installing a heated drip edge, you can attach the heating cable to the roof’s drip edge or to a flat sheet of sheet metal with a UV-resistant cable tie, or place the heating cable in a formed (J-channel) piece of sheet metal. Roofing material Metal drip edge IceStop heating cable UV-resistant cable tie Attached to flat sheet UV-resistant cable tie Attached to standard drip edge 2 3/4" (7 cm) Installed in a formed sheet 1/4"...
Page 42
Attachment Methods rooF edGe With no GUtter Where no gutter is installed, a drip loop should be installed at the roof edge to allow melt water to drip free of the roof. No special attachment is necessary for heated drip loops. Use the same attachment as appropriate for your roof type; just make sure the heating cable extends 2 to 3 inches (5 to 8 cm) from the roof edge. connection Kits Drip loops are used where the heating cable enters a power connection, tee, or splice, to keep water from tracking into the component. No special attachment is necessary. Drip loop Drip loop Drip loop Figure 24: Drip loops Raychem-IM-H58067-IceStopRoofGutterDeIcingCOM-EN 18/01...
Control, Monitoring and Power Distribution Control Systems Three control methods are commonly used with roof de-icing systems: • Manual control • Ambient thermostat • Automatic moisture/temperature controller All three methods require contactors if any significant length of heating cable is being used. The contactor must be sized to carry the load. Each method offers a trade-off of initial cost versus energy efficiency and ability to provide effective de-icing. If the system is not energized when needed, ice will form. If the system is energized when de-icing is not needed, there will be unnecessary power consumption. Choose the control method that best meets the project performance requirements. Contact your Thermal Management representative for details. For Class I, Division 2 hazardous locations, use an agency-approved controller or thermostat suitable for the same area use. Manual Control A manually controlled system is operated by a switch that controls the system power contactor. This method requires constant supervision to work effectively. The type of control you select will affect power consumption and ensure the heating cable is on when needed. Ambient Thermostat When an ambient sensing thermostat is used, the roof and gutter system will be energized when the ambient temperature is below freezing. This will...
Page 44
Control, Monitoring and Power Distribution TABlE 7: CONTROl SySTEMS Description Electronic thermostats and accessories Electronic ambient sensing controller with 30-mA ground-fault protection. The control- ler can be programmed to maintain tempera- tures up to 200°F (93°C) at voltages from 100 to 277 V and can switch current up to 30 Amperes. The ECW-GF is complete with a 25-ft (7.6-m) temperature sensor and is housed in a NEMA 4X rated enclosure. The controller features an AC/DC dry alarm con- ECW-GF tact relay. An optional ground-fault display panel (ECW- GF-DP) can be added to provide ground-fault or alarm indication in applications where the controller is mounted in inaccessible locations. ECW-GF-DP Raychem-IM-H58067-IceStopRoofGutterDeIcingCOM-EN 18/01...
Page 45
Control, Monitoring and Power Distribution TABlE 7: CONTROl SySTEMS Snow melting controllers Automatic snow melting controller housed in a NEMA 3R enclosure provides effective, economical automatic control of all snow melting applications. CSA Certified, c-UL- us Listed, available in 120 V and 208-240 V, 50/60 Hz models, 24-Amp DPDT output relay, adjustable hold-on timer. Enclosure dimensions: 11-1/2 in x 9-1/8 in x 6-9/16 in (292 mm x 232 mm x 167 mm) APS-3C Automatic snow melting controller housed in a NEMA 3R enclosure provides effective, economical automatic control of all snow melting applications. The APS-4C operates up to ten SC-40C satellite contactors for larger loads. CSA Certified, c-UL-us Listed, available in 277 V single-phase, and 208/240, 277/480, and 600 V three-phase models, built-in 3-pole 50-Amp contactor, integral 30-mA ground-fault circuit interrupter, APS-4C adjustable hold-on timer. Enclosure dimensions: 11-1/2 in x 9-1/8 in x 6-9/16 in (292 mm x 232 mm x 167 mm) Satellite contactor power control periph- eral for an APS-4C snow melting control- ler, housed in a NEMA 3R enclosure. CSA Certified, c-UL-us Listed, available in 277 V single-phase, and 208/240, 277/480, and 600 V three-phase models, built-in 3-pole 50-Amp contactor, integral 30-mA ground-...
Page 46
Control, Monitoring and Power Distribution TABlE 7: CONTROl SySTEMS Snow melting and Gutter de-icing controllers Automatic gutter de-icing controller in a NEMA 4X enclosure that interfaces with up to two snow and ice sensors (any combination of CIT-1, GIT-1, or SIT-6E), sold separately. The controller has an adjustable Hold-On timer that continues heater operation up to 8 hours after the sensors stop detecting snow or ice to ensure snow and ice is completely melted. The Heater Cycle toggle switch allows for manual activation or cancellation PD-Pro of heater operation. Controller is c-UL-us Listed and is available for 120-277 V single- phase supply with 24-Amp relay. Enclosure dimensions: 5 1/2 in x 8 1/8 in x 4 3/8 in (140 mm x 206 mm x 111 mm) Automatic gutter de-icing controller with integrated 30-mA Ground-Fault Equipment Protection (GFEP) in a NEMA 4X enclosure that interfaces with up to two snow and ice sensors (any combination of CIT-1, GIT-1, or SIT-6E), sold separately. The controller has an adjustable Hold-On timer that continues heater operation up to 8 hours after the sensors stop detecting snow or ice ensure snow and ice is completely melted. The Heater Cycle GF-Pro toggle switch allows for manual activation or...
Page 47
Control, Monitoring and Power Distribution TABlE 7: CONTROl SySTEMS The RCU-3 provides control and status dis- play to the APS–3C controller from a remote location. It has a 2, 4, 6 or 8 hour CYCLE TIME adjustment, independent of APS-3C setting. RCU-3 The RCU-4 provides control and status dis- play to the APS-4C controller and SC-40C Satellite Contactor from a remote location. It has a 2, 4, 6 or 8 hour CYCLE TIME adjust- ment, independent of the APS-4C or SC-40C setting. RCU-4 Automatic Moisture/Temperature Controller The most conservative approach from an energy- consumption point of view is an automatic moisture/ temperature controller. Thermal Management supplies an automatic moisture/temperature sensor, which consists of an APS control panel, one or more GIT-1 gutter sensors, and one or more CIT-1 aerial snow sensors. The Roof and Gutter De-Icing: IceStop System Design Guide (H56070) outlines the options for this approach. The GIT-1 ice sensor should be mounted in gutters near downspouts. It senses the actual environmental conditions, such as temperature and moisture. A GIT-1 sensor is recommended for each critical area that needs to be monitored for icing conditions (such as when one side of a building gets sun in the morning and the other side gets sun in the afternoon, or one side gets the prevailing winds and the other side is protected). A CIT-1 aerial-mounted...
Control, Monitoring and Power Distribution Power Distribution Once the heating cable circuits and control have been defined, you must select how to provide power to them. Power to the IceStop heating cables can be provided in several ways: directly through the controller, through external contactors, or through SMPG or HTPG power distribution panels. WARNING: To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of Thermal Management, agency certifications, and national electrical codes, ground-fault eq-uipment protection must be used on each heating cable branch circuit.
Page 49
Control, Monitoring and Power Distribution Typical Wiring Schematics Single circuit control ø Heating ø cable supply Temperature controller 1-pole GFEP breaker Group control Temperature controller ø 1-pole ø GFEP breaker supply ø 3-phase ø 4-wire supply ø Contactor Figure 25: Typical controller wiring—multiple circuits Raychem-IM-H58067-IceStopRoofGutterDeIcingCOM-EN 18/01...
Page 50
Control, Monitoring and Power Distribution Pavement- mounted sensor Aerial snow sensor Gutter ice sensor Main circuit breaker (optional) Slab temperature Fuse sensor Control transformer GIT-1 EUR-5A SNOW SWITCH 24 V AUTOMATIC SNOW/ICE MELTING CONTROL PANEL CIT-1 SUPP LY Incoming HOURS HEATER SNOW/ICE CYCLE...
Page 51
Control, Monitoring and Power Distribution TABlE 8: MAxIMUM CIRCUIT lENGTH IN FEET (METERS) 15 A and 20 A Circuit breaker size Heating Start-up Max. Max. cable temperature 15 A 20 A A/ft GM-1X & 3 2°F (0°C) 100 (30) 135 (41) 0.120 0.394 GM-1XT at...
Commissioning and Preventive Maintenance System Start-up and Operation Once the system has been installed and tested, it is ready to be powered. A manually-controlled sys- tem will have to be turned on at each snow storm and turned off when the roof is cleared of all snow. Thermostatically-controlled systems and dual-sens- ing systems will turn on and off automatically. Prior to System Start-Up • Perform a final visual inspection of all circuits. • Perform a final insulation resistance test of all circuits. • Instruct owner/user on system operation and maintenance. • Be sure that owner/user has all applicable instal- lation instructions and operation manuals. Indication of Operation Some possible indicators of a properly operating system are the following: • The controller may indicate the circuit is powered. • Visible paths may show through the snow around the heating cable. • Cable may feel warm to the touch. • Water drainage may be visible at the gutter or downspout.
Page 53
Commissioning and Preventive Maintenance WARNING: The heating cable can store a large electrical charge after the insulation resistance test is performed. To prevent personal injury from electrical shock, fully discharge the cable prior to disconnecting the megohmmeter. The megohmme- ter may discharge automatically. However, it may be necessary to short the cable leads.
Page 54
Commissioning and Preventive Maintenance 5. Turn on the megohmmeter and set the voltage to 500 Vdc; apply the voltage for 1 minute. Record the resistance. 6. Repeat step 5 at 1000 Vdc and 2500 Vdc. 7. Turn off the megohmmeter. 8. If the megohmmeter does not self-discharge, discharge phase connection to ground with a suitable grounding rod. Disconnect the megohmmeter. 9. If the heating cable is installed on a metal roof, metal gutter, or metal downspout, repeat these steps with the negative lead (–) connected to the grounding braid and the positive lead (+) connected to the metal roof, gutter, and/or downspout. 10. Reconnect the thermostat or contactor and re- energize the circuit. Insulation Resistance Criteria A clean, dry, properly installed circuit should mea- sure hundreds of megohms, regardless of the heat- ing cable length or measuring voltage (0–2500 Vdc). The following criteria are provided to assist in deter- mining the acceptability of an installation where optimum conditions may not apply: • All three insulation resistance values should be greater than 1000 megohms. • Insulation resistance values for any particular circuit should not vary more than 25 percent as a function of measuring voltage.
Commissioning and Preventive Maintenance Continuity Test The continuity test is useful in determining if the heating cable is damaged or was not connected correctly. This test can be performed as part of the troubleshooting procedure. Important: Some of the heating cable connection kits, such as the end seal kit and power connection, splice, and tee kits, which utilize heat-shrink tubings, are not reenterable and must be replaced after this test is done.
Test Procedures Thermal Management requires a series of commis- sioning tests be performed on the IceStop system. These tests are also recommended at regular inter- vals for preventive maintenance. Results must be recorded and maintained for the life of the system, utilizing the “Installation and Inspection Record” (refer to Section 9). Submit this manual with initial commissioning test results to the owner. Tests A brief description of each test is found below. Detailed test procedures are found in Section 7. visual Inspection Visually inspect the pipe, insulation, and connections to the heating cable for physical damage. Check that no moisture is present, electrical connections are tight and grounded, insulation is dry and sealed, and control and monitoring systems are operational and properly set. Damaged heating cable must be replaced. Insulation Resistance Insulation Resistance (IR) testing is used to verify the integrity of the heating cable inner and outer jackets. IR testing is analogous to pressure testing a pipe and detects if a hole exists in the jacket. Ground-Fault Test Test all ground-fault breakers per manufacturer’s instructions. Insulation Resistance Test – Test 1 Insulation resistance is measured between the heating cable sheath and the tails. Thermal Management recommends that insulation resis- tance testing (using a megohmmeter) be conducted at 2500 Vdc.
Test Procedures Frequency Insulation resistance testing is recommended at four stages during the installation process and as part of regularly scheduled maintenance. • When received • After the cables have been installed • Prior to initial start-up (commissioning) • As part of the regular system inspection • After any maintenance or repair work * Under adverse weather conditions, or when the tails or terminal connections have evidence of moisture, lower insulation resistances may be encountered. Wipe tails, face of pot, and all termi- nal connections with a clean dry rag to eliminate moisture and retest. Test Criteria The minimum insulation resistance for a clean, dry, properly installed circuit should reflect the values shown above, regardless of the heating cable length. Insulation Resistance (Megohmmeter) Test The insulation resistance test is critical to ensure the safety and reliability of the heating cable system. This test should be performed as part of the installa- tion of the system, and is useful for troubleshooting an installed system. WARNING: Shock or Fire Hazard. Disconnect power to all circuits prior to testing.
Page 58
Test Procedures Procedure 1. Disconnect all power to the heating cable, ther- mostat, and contactor. 2. Set test voltage at 0 Vdc. 3. Connect the negative lead (–) to the heating cable metallic braid. 4. Connect the positive lead (+) to both heating cable bus wires. 5. Turn on the megohmmeter and set the voltage to 500 Vdc; apply the voltage for 1 minute. Record the resistance. 6. Repeat step 5 at 1000 Vdc and 2500 Vdc. 7. Turn off the megohmmeter. 8. If the megohmmeter does not self-discharge, discharge phase connection to ground with a suitable grounding rod. Disconnect the megohmmeter. 9. If the heating cable is installed on a metal roof, metal gutter, or metal downspout, repeat these steps with the negative lead (–) connected to the grounding braid and the positive lead (+) connected to the metal roof, gutter, and/or downspout. 10. Reconnect the thermostat or contactor and re- energize the circuit. Insulation Resistance Criteria A clean, dry, properly installed circuit should mea- sure thousands of megohms, regardless of the heat- ing cable length or measuring voltage (0–2500 Vdc).
Page 59
Test Procedures Continuity Test The continuity test is useful in determining if the heating cable is damaged or was not connected correctly. This test can be performed as part of the troubleshooting procedure. Note: Some of the heat- ing cable connection kits, such as the end seal kit and power connection, splice, and tee kits, which utilize heat-shrink tubings, are not reusable and will have to be replaced after this test is done. WARNING: Shock or Fire Hazard. Disconnect power to all circuits prior to testing. 1. Disconnect all power to heating cable, thermo- stat, and contactor. 2. Twist the two bus wires together at one end. 3. Take a resistance reading from bus wire to bus wire at the other end. The reading should be 3 ohms or less. High readings (above 1000 ohms) generally indicate bus wire damage or improp- erly installed connection kits. 4. If there are any tees on the circuit, each leg of the tee must be tested separately. 5. Be sure to untwist the bus wires and install new connection kits on the circuit prior to re-energiz- ing the circuit.
Test Procedures Fault location Tests There are three methods used for finding a fault within a section of heating cable. 1. Ratio method 2. Conductance method 3. Capacitance method Ratio Method The ratio method uses resistance measurements taken at each end of the heating cable to approxi- mate the location of a bus wire short. A shorted heating cable could result in a tripped circuit break- er. If the resistance can be read on a standard ohm meter this method can also be used to find a fault Braid from a bus wire to the ground braid. This type of short would trip a GFPD and show a failed insulation resistance reading. Measure the bus-to-bus heating cable resistance at each end (measurement A and measurement B) of the suspected section. Figure 27: Cable resistance measurement test The approximate location of the fault, expressed as a percentage of the heating cable length from the front end, is: Fault location: D = x 100 ________ (A + B) Example: A = 1.2 ohms B = 1.8 ohms...
Page 61
Test Procedures Braid Figure 28: low resistance ground-fault test The approximate location of the fault, expressed as a percentage of the heating cable length from the front end, is: Fault location: D = x 100 ________ (A + B) Example: A = 1.2 ohms B = 1.8 ohms Fault location: D = 1.2 / (1.2 + 1.8) x 100 = 40% The fault is located 40% into the circuit as measured from the front end. Conductance Method The conductance method uses the core resistance of the heating cable to approximate the location of a fault when the heating cable has been severed and the bus wires have not been shorted together. A sev- ered cable may result in a cold section of pipe and may not trip the circuit breaker. Measure the bus-to- bus heating cable resistance at each end (measure- ment A and measurement B) of the suspect section. Since self-regulating cables are a parallel resis- tance, the ratio calculations must be made using the conductance of the cable. Figure 29: Cable resistance measurement Braid Raychem-IM-H58067-IceStopRoofGutterDeIcingCOM-EN...
Page 62
Test Procedures The approximate location of the fault, expressed as a percentage of the heating cable length from the front end, is: Fault location: D = 1/A x 100 ________ (1/A + 1/B) Example: A = 100 ohms B = 25 ohms Fault location: D = (1/100) / (1/100 + 1/25) x 100 = 20% The fault is located 20% from the front end of the circuit. Raychem-IM-H58067-IceStopRoofGutterDeIcingCOM-EN 18/01...
Page 63
Test Procedures Capacitance Method This method uses capacitance measurement (nF) to approximate the location of a fault where the heating cable has been severed or a connection kit has not been connected. Record the capacitance reading from one end of the heating cable. The capacitance reading should be measured between both bus wires twisted together (positive lead) and the braid (negative lead). Multiply the measured capacitance with the heating cable’s capacitance factor as listed in the following example: Example: Capacitance measurement = 42.2 nF Capacitance factor = 6.0 ft/nF for all IceStop cables Fault location = 42.2 nF x 6.0 ft/nF = 253 ft (77 m) The ratio of one capacitance value taken from one end (A) divided by the sum of both A and B (A + B) and then multiplied by 100 yields the distance from the first end, expressed as a percentage of the total heating cable circuit length. Fault location: C = x 100 ________ (A + B) Raychem-IM-H58067-IceStopRoofGutterDeIcingCOM-EN 18/01...
Troubleshooting Guide Symptom A. Circuit breaker trips. Circuit breaker undersized. Circuit length too long. Start-up temperature below design temperature. Defective circuit breaker. Connections or splices may be shorting out. Physical damage to the heating cable. Bus wires in contact with each other. Excessive moisture in connec- tion boxes or splices. Nick or cut in heating cable or power feed wire with moisture present. Using 5 mA ground-fault interruptor instead of 30 mA ground-fault protection device. Raychem-IM-H58067-IceStopRoofGutterDeIcing-EN 18/01...
Page 65
Troubleshooting Guide Corrective Action Resize the circuit breakers and feed wiring per Roof and Gutter De-Icing: IceStop System Design Guide (H56070). Replace circuit breaker. To confirm that heating cable is damaged, test the insulation resistance according to the procedures described in “Test Methods.” Locate and repair incorrect connections or splices. Locates and remove damaged sections of heating cable. To locate shorting problems, follow these steps: 1. Visually inspect the power connection, splices, and end seals for proper installation. 2. Check for visual indications of damage to the cable, espe- cially in any area where there may have been maintenance work. 3. Look for damage at entrances to downspouts, around eaves, and at transitions from roof and gutter. 4. If at this point you have not located the problem, you will need to begin isolating sections of the heating cable to find the general area of damage. (For example, cut the circuit in half and, using a megohmmeter, test both halves to find the damaged section.) Then remove the damaged section of heating cable. Cut off the end seal. Re-cut the cable end and install a new end seal. Dry out and reseal connections and splices. Test with a meg- ohmmeter per installation instructions. Locate and replace damaged power feed wire.
Page 66
Troubleshooting Guide Symptom B. Power output is zero or Low or no input voltage. appears low. Circuit is shorter than design shows because splices or tees are not connected, or the heating cable has been severed. Improper connection causes a high-resistance connection. The control thermostat is wired incorrectly. C. Heating cable fails insula- Connections or splices may be tion resistance test. shorting out. Physical damage to the heating cable. Excessive moisture in connec- tion boxes or splices. Nick or cut in heating cable or power feed wire with moisture present. Raychem-IM-H58067-IceStopRoofGutterDeIcing-EN 18/01...
Page 67
Troubleshooting Guide Corrective Action Check voltage and correct. Check length of cable installed. Check all splices and tees. Check at end seals for continuity as indicated in “Test Methods,” Section 7. Check and fix splices and tees. Check and rewire controller. To confirm that heating cable is damaged or connection kits are shorting, test the insulation resistance according to the procedure described in “Test Methods,” Section 7. Locate and repair incorrect connections or splices. Locate and remove damaged sections of heating cable. To locate shorting problems, follow these steps: 1. Visually inspect the power connection, splices, and end seals for proper installation. 2. Check for visual indications of damage to the cable, espe- cially in any area where there may have been maintenance work. 3. Look for damage at entrances to downspouts, around eaves, and at transitions from roof and gutter. 4. If at this point you have not located the problem, you will need to begin isolating sections of the heating cable to find the general area of damage. (For example, cut the circuit in half and, using a megohmmeter, test both halves to find the damaged section.) Then remove the damaged section of heating cable. Dry out and reseal connections and splices. Test with a meg- ohmmeter per installation instructions. Locate and replace damaged heating cable or power feed wire. Raychem-IM-H58067-IceStopRoofGutterDeIcing-EN 18/01...
Page 68
Troubleshooting Guide Symptom D. Heating cable fails insula- Connections or splices may be tion resistance test. shorting out. Physical damage to the heating cable. Excessive moisture in connec- tion boxes or splices. Nick or cut in heating cable or power feed wire with moisture present. E. Snow is not melting Circuit breaker is tripped. around the heating cable. Controller not on or not working. Ambient temperature too cold. F. Downspouts are blocked Circuit breaker is tripped. by ice. Controller not on or not working. Ambient temperature too cold. G. The circuit does not draw Circuit breaker is tripped. sufficient power of approx- Controller not on or not imately 12 W/ft (39.36 working. W/m) at 32°F (0°C) in snow or ice (5 W/ft (16.4 W/m) at All sections not connected. 32°F (0°C) in air). Raychem-IM-H58067-IceStopRoofGutterDeIcing-EN 18/01...
Page 69
Troubleshooting Guide Corrective Action To confirm that heating cable is damaged or connection kits are shorting, test the insulation resistance according to the procedure described in “Test Methods,” Section 7. Locate and repair incorrect connections or splices. Locate and remove damaged sections of heating cable. To locate shorting problems, follow these steps: 1. Visually inspect the power connection, splices, and end seals for proper installation. 2. Check for visual indications of damage to the cable, espe- cially in any area where there may have been maintenance work. 3. Look for damage at entrances to downspouts, around eaves, and at transitions from roof and gutter. 4. If at this point you have not located the problem, you will need to begin isolating sections of the heating cable to find the general area of damage. (For example, cut the circuit in half and, using a megohmmeter, test both halves to find the damaged section.) Then remove the damaged section of heating cable. Dry out and reseal connections and splices. Test with a meg- ohmmeter per installation instructions. Locate and replace damaged heating cable or power feed wire. See Symptom A, “Circuit breaker trips.” Check controller. See Symptom A, “Circuit breaker trips.” Check controller. See Symptom A, “Circuit breaker trips.” Check controller. Repeat continuity test, as detailed in “Continuity Test,” "Insulation Resistance (Megohmmeter) Test" on page 53. Raychem-IM-H58067-IceStopRoofGutterDeIcing-EN 18/01...
Installation and Inspection Records Roof and Gutter De-Icing System Installation Record INSTAllATION lOCATION Project name: Reference drawing: Company: Address State/Province: Residential installation environment: ❑ Commercial ❑ Industrial ❑ Hazardous Area If installed in a hazardous area, fill in the following additional information: Area: Ignition temperature °F ❑ °C ❑ Group classification INSTAllED By Company: Address State/Province: Name vISUAl INSPECTION (check for all heating cables) The heating cable does not lay unprotected over sharp edges. Yes ❑ Heating cable attachment points are secure. Yes ❑ Raychem-IM-H58067-IceStopRoofGutterDeIcingCOM-EN 18/01...
Page 71
Installation and Inspection Records Installation date Roof length of installation ft ❑ m ❑ City Postal code City Postal Code Phone Raychem-IM-H58067-IceStopRoofGutterDeIcingCOM-EN 18/01...
Page 72
Installation and Inspection Records ElECTRICAl TESTING Note: Insulation resistance values should be greater than 1000 megohms. Perform insulation resistance test at 500, 1000, and 2500 Vdc (bypass controller if applicable) Megohmmeter manufacturer/model Multimeter manufacturer/model Receipt of Material Insulation Heating cable resistance Continuity catalog no. /tag no. (MΩ) (Ω) Cable #1 Cable #2 Cable #3 Cable #4 Cable #5 Cable #6 Cable #7 Cable #8 Cable #9 Cable #10 Cable #11 Cable #12 Initial Start-up (Commissioning) WARNING: Disconnect all power before performing insulation resistance and continuity tests.
Page 73
Installation and Inspection Records Megohmmeter date of last calibration Ohm setting After cable installation Insulation Heating cable resistance catalog no. /tag no. (MΩ) Cable #1 Cable #2 Cable #3 Cable #4 Cable #5 Cable #6 Cable #7 Cable #8 Cable #9 Cable #10 Cable #11 Cable #12 Insulation resistance (MΩ) Supply voltage (v) Current (A) Ground-fault trip setting mA Witnessed by: Approved by: Raychem-IM-H58067-IceStopRoofGutterDeIcingCOM-EN...
Page 74
Installation and Inspection Records Maintenance log Record Area location: CIRCUIT INFORMATION Breaker panel number: vISUAl Heating system connection kits Enclosures, junction boxes, contactors sealed Presence of moisture Signs of corrosion Damage to termination ElECTRICAl TESTING Perform insulation resistance test at 500, 1000, and 2500 Vdc (bypass controller if applicable) WARNING: Disconnect all power before performing insulation resistance and continuity tests. Heating Heating cable cable Breaker catalog no.
Page 75
Installation and Inspection Records System Reference drawing(s) Supply voltage Phase Controller and sensor Signs of corrosion/damage Delay timer set 500 vdc 1000 vdc 2500 vdc Ground-fault trip setting mA Company Date Company Date Raychem-IM-H58067-IceStopRoofGutterDeIcingCOM-EN 18/01...
Need help?
Do you have a question about the Raychem IceStop and is the answer not in the manual?
Questions and answers