Do you have a question about the E510-2P5-H-U and is the answer not in the manual?
Questions and answers
David Van Norman Sr
May 8, 2025
What ohm value is needed to connect to the unit for external speed
what terminals on the unit needs to connect the speed ****
1 comments:
Mr. Anderson
May 19, 2025
To connect an external speed potentiometer to the TECO-Westinghouse E510-2P5-H-U unit, use the built-in 10V power supply (Max current: 20mA) and connect it to a potentiometer with an approximate resistance of 5 kΩ to 10 kΩ. The typical connection uses these terminals:
- 10V terminal: Connect to one end of the potentiometer. - AGND (analog ground): Connect to the other end of the potentiometer. - AI1/AV1 (analog input): Connect to the wiper (middle terminal) of the potentiometer.
Ensure JP2 is set to the AV1 position for voltage input (0–10V).
This answer is automatically generated
Related Manuals for TECO-Westinghouse E510-2P5-H-U
Summary of Contents for TECO-Westinghouse E510-2P5-H-U
Page 1
I N V E R T E R E 5 1 0 I N S T R U C T I O N MA N U A L 2 3 0 V C l a s s 1 / 3 ~ I P 2 0 / N E M A 1 0 .
Page 2
**** STATEMENT **** Si Desea descargar el manual en español diríjase a este Link: www.tecowestinghouse.com Table of Contents Preface (English) ............................0-1 Preface (Français) ............................0-2 1 Safety Precautions (English) ........................1-1 1.1 Before Supplying Power to the Inverter ....................1-1 1.2 Wiring ................................
Page 3
3.3 External View ............................3-3 3.4 Warning Labels ............................3-6 3.5 Removing the Front Cover ........................3-7 3.6 Wire Gauges, Tightening Torque, Short Circuit, Circuit Breaker and Fuse Ratings....... 3-14 3.7 Wiring Peripheral Power Devices ......................3-16 3.8 General Wiring Diagram .......................... 3-18 3.9 User Terminals ............................
Page 4
7. Operation Method Configuration (Run / Stop) ..................7-1 7.1 Run / Stop from the Keypad ........................7-1 7.2 Run / Stop from External Switch / Contact or Pushbutton ................ 7-2 7.3 Run / Stop from Serial Communication RS485 ..................7-4 8.
Preface (English) The E510 product is an inverter designed to control a three-phase induction motor. Please read this manual carefully to ensure correct operation, safety and to become familiar with the inverter functions. The E510 inverter is an electrical / electronic product and must be installed and handled by qualified service personnel.
Page 6
Préface (Français) Le produit est un lecteur conçu pour commander un moteur à induction triphasé. lire attentivement ce manuel pour garantir le bon fonctionnement, la sécurité et pour se familiariser avec les fonctions d'entraînement. Le lecteur est un appareil électrique / électronique et doit être installé et géré par un personnel qualifié ...
1. Safety Precautions (English) 1.1 Before supplying Power to the Inverter Warning The main circuit must be correctly wired. For single phase supply use input terminals (R/L1, T/L3) and for three phase supply use input terminals (L1(L), L2, L3(N)). Terminals T1, T2, T3 must only be used to connect the motor.
1.2 Wiring Warning Always turn OFF the power supply before attempting inverter installation and wiring of the user terminals. Wiring must be performed by a qualified personnel / certified electrician. Make sure the inverter is properly grounded. (230V Class: Grounding impedance shall be less than 100Ω.
1.3 Before Operation Warning Make sure the inverter capacity matches the parameters 13-00. Reduce the carrier frequency (parameter 11-01) If the cable from the inverter to the motor is greater than 80 ft (25m). A high-frequency current can be generated by stray capacitance between the cables and result in an overcurrent trip of the inverter, an increase in leakage current, or an inaccurate current readout.
1.5 Operation Warning Be sure to install all covers before turning on power. Do not remove any of the covers while power to the inverter is on, otherwise electric shock may occur. Do not connect or disconnect the motor during operation. This will cause the inverter to trip and may cause damage to the inverter.
1.6 Maintenance, Inspection and Replacement Warning Wait a minimum of five minutes after power has been turned OFF before starting an inspection. Also confirm that the charge light is OFF and that the DC bus voltage has dropped below 25Vdc. ...
1. Consignes de sécurité (Français) 1.1 Avant d'alimenter le disque dur Avertissement Le circuit principal doit être correctement câblée. Pour les terminaux monophasés d'approvisionnement de l'utilisation des intrants (R/L1, T/L3) et de trois bornes d'entrée de l'utilisation de l'offre de phase (R/L1, S/L2, T/L3).
Attention La tension d'alimentation appliquée doit se conformer à la tension d'entrée spécifiée par le lecteur. (Voir la section signalétique du produit) Raccorder la résistance de freinage et de l'unité de freinage sur les bornes assignées. Ne pas brancher une résistance de freinage directement sur les bornes CC P (+) et N (-), sinon risque d'incendie.
1.5 Opération Avertissement Veillez à installer tous les couvercles avant de l'allumer. Ne retirez pas les capots pendant que l'alimentation du lecteur est allumé, un choc électrique peut se produire autrement. Ne pas brancher ou débrancher le moteur pendant le fonctionnement. Le variateur pourrai se déclencher et ainsi endommager le lecteur.
Attention Le variateur peut être utilisé dans un environnement avec une gamme de température allant de 14 ° -104 ° F (10-40 ° C) et l'humidité relative de 95% sans condensation. Le variateur doit être utilisé dans un environnement sans poussière, gaz, vapeur et humidité. 1.7 Mise au rebut du variateur Attention ...
(4) Check that the input voltage range meets the input power requirements. (5) Ensure that the motor HP matches the motor rating of the inverter. (1HP = 0.746 kW) PRODUCT: E510-2P5-H-U MOTOR RATING: 0.5 HP Product Name and Motor Rating INPUT : AC 1/3PH 200-240V (+10%,-15%) 50/60hz 8.5/4.5A...
Page 17
IP20 / NEMA 1 Type – 200V Class Supply Horse Motor Frame Filter Function Model voltage Power (kW) Size (Vac) (HP) ◎ ◎ E510-2P5-H-U 1 Phase ◎ ◎ E510-201-H-U 0.75 200~240V +10%-15% ◎ ◎ E510-202-H-U 50/60Hz ◎ ◎ E510-203-H-U ◎...
Page 18
IP20 / NEMA 1 Type – 400V Class Supply Horse STO Function Motor Frame Filter Model voltage Power (kW) Size (Vac) (HP) ◎ ◎ E510-401-H3-U 0.75 ◎ ◎ E510-402-H3-U ◎ ◎ E510-403-H3-U ◎ ◎ E510-405-H3-U ◎ ◎ E510-408-H3-U ◎ ◎ E510-410-H3-U ◎...
3. Environment and Installation 3.1 Environment The environment will directly affect the proper operation and the life span of the inverter. To ensure that the inverter will give maximum service life, please comply with the following environmental conditions: Protection Protection Class IP20 / NEMA 1 (Depending on models) Operating IP20 / NEMA 1 type:...
3.2 Installation Provide sufficient air circulation space for cooling as shown in examples below. Install the Inverter on surfaces that provide good heat dissipation. Frame1 models:2P5 / 201 / 202 (three phase) / 401 / 402. Inside Inside Enclosure Enclosure 4.8”...
3.4 Warning Labels Important: Warning information located on the front cover must be read upon installation of the inverter. (a) 200V 0.5HP~20HP / 400V 1HP~25HP (b) 200V 25HP~40HP / 400V 30HP~75HP...
3.5 Removing the Front Cover Caution Before making any wiring connections to the inverter the front cover needs to be removed. IP20 200V 0.5HP~1HP (Single/Three phase)/ 400V 1HP~2HP / 200V 2HP (Three phase) Step1:Remove terminal cover Step2:Wire and reinstall cover Step3:Put terminal cover back...
3.7 Wiring Peripheral Power Devices Caution After power is shut off to the inverter the capacitors will slowly discharge. Do NOT touch and of the inverter circuitry or replace any components until the “CHARGE” indicator is off. Do NOT wire or connect/disconnect internal connectors of the inverter when the inverter is powered up or when powered off and the “CHARGE””...
Page 35
~ ~ ~ Power supply: Power Supply Make sure the correct voltage is applied to avoid damaging the inverter. Molded Molded-case circuit breaker (MCCB) or fused disconnect: Circuit A molded-case circuit breaker or fused disconnect must be installed Breaker between the AC source and the inverter that conforms to the rated voltage and current of the inverter to control the power and protect the...
3.9 User Terminals (Control Circuit Terminals) AGND S(+) S(-) Jumper function descriptions Jumper Symbol Funct ion Si gn al R ef er en c e Note NPN Input J P 1 NPN/PNP selectable Factory default setting PNP Input 0~20mA / 4~20mA Set parameters Analog signal External signal type...
Page 38
Description of User Terminals Type Terminal Terminal function Signal level 24 VDC, 8 mA, Optical coupling isolation (Max, Digital Refer to parameter group 3 for more information and default voltage 30 VDC, Input impedance 3.3kΩ) inputs settings. High Logic: 13V Low Logic: 10V NO(Normally open)
Page 39
Notes: *1:Multi-function digital input can be referred to in this manual. - Group 03: External Terminals Digital Input / Output Function Group. *2:Multi-function analog input can be referred to in this manual. - Group 04 - External Terminal Analog Signal Input (Output) Function Group. *3:Multi-function analog output can be referred to in this manual.
3.10 Power Terminals Terminal symbol TM1 function description Single phase: L1(L) L1(L)/L3(N) Single/Three phase: Main power input, L1(L)/L2/L3(N) Three phase: L3(N) L1/L2/L3 Inverter output, connect to U/V/W terminals of motor Externally connected braking resistor (Please see the braking resistors reference on section 11.2) Ground terminal Main power terminal of Single phase 200V Class 0.5~1HP L1(L)
Page 41
Main power terminal of Single/Three phase 200V Class 2~3HP L1(L) L2 L3(N) P Main power terminal of Single/Three phase 200V Class 2~3HP, Three phase 200V Class 5HP and Three phase 400V Class 3~5HP L1(L) L2 L3(N) P Main power terminal of Three phase 200V Class 7.5~20HP and Three phase 400V Class 7.5~20HP L1(L) L2 L3(N) P Main power terminal of Three phase 200V Class 25HP and Three phase 400V Class 30HP...
Page 42
Main power terminal of Three phase 200V Class 30~40HP and Three phase 400V Class 40~75HP R/L1 S/L2 T/L3 U/T1 V/T2 W/T3 3-24...
3.11 Inverter Wiring Wiring Precautions Do NOT remove any protective covers or attempt any wiring while input power is applied. Connect all wiring before applying input power. When making wiring changes after power up, remove input power and wait a minimum of five minutes after power has been turned off before starting.
Page 44
(B) Grounding Connect the ground terminal (E) to ground having a resistance of less than 100Ω. Do not share the ground wire with other devices, such as welding machines or power tools. Always use a ground wire that complies with the local codes and standards for electrical equipment and minimize the length of ground wire.
3.12 Input Power and Motor Cable Length The length of the cables between the input power source and /or the motor and inverter can cause a significant phase to phase voltage reduction due to the voltage drop across the cables. The wire size shown in Tables 3.13.1 is based on a maximum voltage drop of 2%.
3.15 Power Input Wire Size, and NFB The following table shows the recommended wire size for each frame of the E510. It depends on the application whether or not to install a circuit breaker. The NFB must be installed between the input power supply and the inverter input (L1 (L), L2, L3 (N)).
3.17 Inverter Specification 200V Class:Single phase Model:E510-□□□-H1F-U* Horse power (HP) Suitable motor capacity (KW) 0.75 Rated output current (A) 10.5 Rated capacity (KVA) 2.90 4.00 Single phase:200~240V, 50/60HZ Input voltage range(V) Allowable voltage fluctuation -15%~+10% Three phase:0~240V Output voltage range(V) Input current (A)* 23.9 Inverter net weight (KG)
Page 48
200V Class:Three phase Model:E510-□□□-H3-U Horse power (HP) Suitable motor capacity (KW) Rated output current (A) 17.5 Rated capacity (KVA) 13.3 20.6 27.4 Three phase:200~240V,50/60HZ Input voltage range(V) Allowable voltage fluctuation -15%~+10% Three phase:0~240V Output voltage range(V) Input current (A)* 20.5 Inverter net weight (KG) 10.1 10.4...
Page 49
400V Class:Three phase Model:E510-□□□-H3(F*)-U Horse power (HP) Suitable motor capacity (KW) 0.75 Rated output current (A) Rated capacity (KVA) Three phase:380~480V,50/60HZ Input voltage range(V) Allowable voltage fluctuation -15%~+10% Three phase:0~480V Output voltage range(V) Input current (A)* 11.6 Inverter net weight (KG) Allowable momentary power loss time(s) Enclosure IP20/NEMA1...
Page 50
400V Class:Three phase Model:E510-□□□- H3(F*)-U Horse power (HP) HD/ND Suitable motor capacity (kW) 22/30 30/37 HD/ND Rated output current (A) 45/58 60/73 HD/ND Rated capacity (KVA) 34.3/44.2 45.7/55.6 Input voltage range(V) Three phase : 380~480V,50/60HZ Allowable voltage fluctuation +10%-15% Output voltage range(V) Three phase : 0~480V Input current (A)* 48.9/63...
3.18 General Specification Item E510 Control Mode V/F, SLV, PMSLV control mode 0.01~599.00Hz Output Frequency 150% / 1Hz (SLV mode),150% / 3Hz (V/F mode) Starting Torque Speed Control Range 1:50 Digital input: 0.01Hz Setting resolution Analog input:0.06Hz/60Hz Frequency Keypad: Set directly with▲▼ keys or the VR on the keypad External Input Terminals: AI1(0/2~10V), AI2(0/4~20mA)input Setting...
Page 52
Grounding Fault Electronic Circuit Protection Protection for overheating of heat sink, The carrier frequency decreases based on the temperature, Fault output, Reverse Other protection features prohibit, Prohibit for direct start after power up and error recovery ,parameter lock up, STO (Safety Torque Off) All frames include brake transistor Built-in RS485 communication multi-drop communication.
3.19 Inverter derating based on Carrier Frequency The curves are showing the applicable output current de-rate due to setting of carrier frequency and the ambient operating temperatures of 40 and 50 degrees. When the carrier frequency is below 10 KHz ambient temperature will not affect rated current. When the carrier frequency is higher than 10 KHz If the ambient temperature is below 40°C (104°F), 100% output rated current at 16 KHz.
IP20 Dimensions 200V Class single phase:0.5HP~1HP 200V Class three phase:2HP 400V Class three phase:1HP~2HP Dimensions in mm (inch) Net Weight in Inverter Model kg/(lbs) 151.4 90.6 80.5 80.5 E510-2P5-H-U 1.6/(3.5) (5.96) (3.57) (3.17) (3.17) (6.46) (6.02) (1.85) (0.19) 151.4 90.6 80.5...
Page 55
200V Class single/three phase:2HP 400V Class three phase:3~25HP 200V Class three phase:3~20HP Net Weight Dimensions in mm (inch) Inverter Model Kg/(lbs) 128.7 187.6 177.6 197.5 152.4 147.4 48.2 2.5/(5.5) E510-202-H-U (5.07) (4.65) (4.65) (7.39) (6.99) (7.78) (5.8) (1.9) (0.19) 128.7 187.6 177.6 197.5...
Page 57
200V Class three phase:25HP 400V Class three phase:30HP Net Weight Dimensions in mm (inch) Inverter Model Kg/(lbs) 233.2 238.2 E510-225-H3-U 10/(22.1) (9.38) (9.18) (10.43) (9.65) (9.65) (14.17) (13.39) (0.06) 233.2 238.2 E510-430-H3-U 10/(22.1) (9.38) (9.18) (10.43) (9.65) (9.65) (14.17) (13.39) (0.06) 3-39...
Page 58
200V Class three phase:30~40HP 400V Class three phase:40~75HP Net Weight Dimensions in mm (inch) Inverter Model Kg/(lbs) 269.8 286.5 E510-230-H3-U 30/(66.1) (10.62) (11.28) (8.66) (8.66) (20.67) (19.88) (0.13) 269.8 286.5 E510-240-H3-U 30/(66.1) (10.62) (11.28) (8.66) (8.66) (20.67) (19.88) (0.13) 269.8 286.5 E510-440-H3-U 30/(66.1)
Page 59
200V Class single phase:0.5~1HP 400V Class three phase:1~2HP 200V Class three phase:2HP Net Weight Dimensions in mm (inch) Inverter Model Kg/(lbs) 90.6 80.5 186.2 189.2 120.5 151.4 E510-2P5-H-U 1.8/(3.9) (5.96) (3.57) (3.17) (7.33) (7.45) (1.85) (4.74) (0.19) 90.6 80.5 186.2 189.2...
Page 60
200V Class single phase/three phase:2HP 400V Class three phase:3~25HP 200V Class three phase:3~20HP Dimensions in mm (inch) Net Weight Inverter Model in kg/(lbs) 147.4 128.7 210.6 213.6 48.2 121.1 152.4 E510-202-H-U 2.7/(5.9) (5.8) (5.06) (4.65) (8.29) (8.41) (1.9) (4.77) (0.19) 147.4 128.7 210.6...
4. Keypad and Programming Functions 4.1 LED / LCD Keypad 4.1.1 LED Keypad Display and Keys LED Display Reverse Direction Forward Direction Status Indicator Status Indicator 8 button Membrane Keypad Frequency Potentiometer Run Key Stop Key DISPLAY Description 5 Digit LED Display Monitor inverter signals, view / edit parameters, fault / alarm display.
Page 67
4.1.2 Display Description Actual LED Display Actual LED Display Actual LED Display Actual LED Display ° Display output frequency Frequency Reference Set Frequency Reference LED lights on LED flashes Flashing digit At power-up the display will show the frequency reference setting, all LEDs are flashing. Press the ▲UP or ▼DOWN key to enter the frequency reference edit mode, use the ◄/ENT key to select which digit to edit (flashing).
Page 68
LED display examples Seven Segment display Description 1. Displays the frequency reference at power-up 2. Display the actual output frequency in operation status. Display parameter code Display the setting value of parameter Display input voltage Display inverter current. Display DC Bus Voltage Display temperature Display PID feedback value.
Page 69
4.1.3 LED Status description Hz/ RPM LED State Description Hz/RPM LED Display doesn’t show frequency or line speed Illuminated Display shows frequency or line speed Forward LED State Description FWD LED Inverter in reverse direction Illuminated Inverter is running in forward direction Flashing Forward direction active, no run command Reverse LED...
Page 70
4.1.4 Power-Up Monitor Power Up: DSP/ DSP/ After 2 sec. Display at Power-up Frequency Reference Parameter Selection Change Monitor at Power-Up 12-00 Display selection Highest bit -> 0 0 0 0 0 <- Lowest bit The setting range for each bit is 0 ~ 8 from the highest bit to the lowest bit. Range 0: No display 4: Temperature...
Page 71
Example: 12-00 = 12345 DSP/ Heatsink Temperature <4> DSP/ DSP/ DC Voltage <3> Output Voltage <2> DSP/ DSP/ PID Feedback <5> After 2 sec. Display Voltage Class Output Current <1> Parameter Selection at Power-up DSP/ DSP/ Frequency Reference 4.1.5 Modifying Parameters / Set Frequency Reference Frequency Short Press: DSP/FUN...
Page 72
4.1.6 Operation Control Stopped Running Stopping Stopped Output Frequency Indicator Indicator...
Page 73
4.1.6 LCD Keypad Display and Keys Note: LCD Copy Keypad is an optional keypad for remote mounting only. The LCD keypad (PN: JN5-OP-A02) has a built-in parameter copy function (non-volatile memory) to copy parameters from one inverter to another one. Reverse Direction External Sequence Forward Direction...
Page 74
KEYS (8) Description RUN Inverter in Local Mode STOP STOP Inverter ▲ Parameter navigation Up, Increase parameter or reference value ▼ Parameter navigation down, decrease parameter or reference value FWD/REV Used to switch between Forward and Reverse direction Used to scroll to next screen DSP/FUN Frequency screen Function selectionMonitor parameter Selects active seven segment digit for editing with the ▲▼...
Page 75
4.1.8 Keypad Menu Structure Main Menu The E510 inverter main menu consists of four main groups (modes). The DSP/FUN key is used to switch between the modes. Power On Power Up Monitor Mode View inverter status, signals and fault data Assess to available parameter groups Parameter Group Mode READ...
Page 76
Monitor Mode In monitor mode inverter signals can be monitored such as output frequency, output current and output voltage, etc…) as well as fault information and fault trace. See Fig 4.1.8.1 for keypad navigation. Power ON Group Monitor 00 Basic Func. Freq Ref 12-16=005.00Hz 01 V/F Pattern.
Page 77
Programming Mode In programming mode inverter parameters can be read or changed. See Fig 4.1.8.2 for keypad navigation. Power ON Monitor Freq Ref 12-16=005.00Hz 12-17=000.00Hz 12-18=0000.0A Parameter Parameter Parameter Group Edit Mode Group Mode Selection Mode READ READ ENTER Edit 00-00 ENTER Group...
Page 78
Auto-tuning Mode In the auto-tuning mode motor parameters can be calculated and set automatically based on the selected control mode. See Fig 4.1.8.3 for keypad navigation. Group 17 Auto-tuning 18 Slip Compen 19 Traverse Func. READ ENTER Press ▲ or ▼ key to change the value. READ Edit 17-00...
Page 79
Notes: 1. Use the up and down keys to scroll though the auto-tuning parameter list. Depending on the selected control mode in parameter 00-00, some of the auto-tuning parameters will not be accessible. (Refer to the Auto-tuning Group 17 parameters). 2.
4.2 Parameters Parameter group Name Group 00 Basic Parameters Group 01 V/F Control Parameters Group 02 Motor Parameters Group 03 External Digital Input and Output Parameters Group 04 External Analog Input and Output Parameters Group 05 Preset-Speed Parameters Group 06 Automatic Program Operation Parameters Group 07 Start /Stop Parameters...
Page 81
Group 00 Basic Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute 0:V/F 00-00 Control Mode Selection 2:SLV 5:PMSLV Motor’s Rotation 0:Forward 00-01 Direction 1:Reverse 0:Keypad Main Run Command 1:External Terminal (Control Circuit) 00-02 Source Selection 2:Communication Control (RS-485) 3:PLC 0:Keypad 1:External Terminal (Control Circuit)
Page 82
Group 00 Basic Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute 00-12 Frequency Upper Limit 0.01-599.00 00-13 Frequency Lower Limit 0.00-598.99 00-14 Acceleration Time 1 0.1~6000.0 00-15 Deceleration Time 1 0.1~6000.0 00-16 Acceleration Time 2 0.1~6000.0 00-17 Deceleration Time 2 0.1~6000.0 00-18 Jog Frequency *1*7...
Page 83
Group 01 V/F Control Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute 01-00 Volts/Hz Pattern of Motor 1 0~FF 01-02 Maximum Frequency of Motor 1 4.8~599.0 50.0/60.0 200V:0.1~255.0 230.0 01-03 Maximum Output Voltage of Motor 1 400V:0.2~510.0 400.0 01-04 Middle Output Frequency 2 of Motor 1 0.0~599.0...
Page 84
Group 02 IM Motor Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute 02-00 No-Load Current of Motor1 0.01~600.00 V/F mode: 10%~200% of inverter rated current. 02-01 Rated Current of Motor1 SLV mode: 25%~200% of inverter rated current. Rated Rotation Speed of 02-03 0~60000...
Page 85
Group 03 External Digital Input and Output Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute 0:Forward/Stop Command 1:Reverse/Stop Command 2:Multi-Speed/Position Setting Command 0 Multifunction Input 3:Multi-Speed/Position Setting Command 1 03-00 Terminal S1 4:Multi-Speed/Position Setting Command 2 5:Multi-Speed/Position Setting Command 3 6:Forward Jog Run Command 7:Reverse Jog Run Command 8:UP Frequency Increasing Command...
Page 86
Group 03 External Digital Input and Output Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute 0:When Up/Down is used, the preset frequency is held as the inverter stops, and the UP/Down function is disabled 1:When Up/Down is used, the preset frequency Up/Down Keep is reset to 0 Hz as the inverter stops.
Page 87
Group 03 External Digital Input and Output Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute 14:Brake Control 15:PID Feedback Signal Loss 16:Single pre-set count (3-22~23) 17:Dual pre-set count (3-22~23) 18:PLC Status Indicator (00-02) 19:PLC control * 20:Zero Speed 54:Turn on short-circuit braking Relay (R2A-R2C) 03-12...
Page 88
Group 03 External Digital Input and Output Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute 0:General Pulse Input Selection of Pulse 03-30 Input 1:PWM 03-33 Pulse Input Bias -100.0~100.0 Filter Time of Pulse 03-34 0.00~2.00 Input *:If the maximum output frequency of motor is over 300HZ, the frequency resolution is changed to 0.1Hz 4-23...
Page 89
Group 04 Analog signal inputs / Analog output Control mode Code Parameter Name Setting Range Default Unit Attribute 0:AI1 0~10V AI2 0~10V / 0~20mA 1:AI1 0~10V AI2 4~20mA / 2~10V 04-00 Analog Input Signal Type 2:AI1 2~10V AI2 0~10V / 0~20mA 3:AI1 2~10V AI2 4~20mA / 2~10V AI1 Signal Scanning and...
Page 90
Group 05 Preset Frequency Selection Control mode Code Parameter Name Setting Range Default Unit Attribute 0:Accel/Decel 1~4 apply to all speeds Preset Speed Control 05-00 1:Individual Accel/Decel for each preset Mode Selection speed 05-01 * Preset Speed 0 0.00~599.00 5.00 05-02 * Preset Speed 1 0.00~599.00...
Page 91
Group 05 Preset Frequency Selection Control mode Code Parameter Name Setting Range Default Unit Attribute Preset Speed 7-Dec time 05-32 0.1~6000.0 10.0 Preset Speed 8-Acc time 05-33 0.1~6000.0 10.0 Preset Speed 8-Dec time 05-34 0.1~6000.0 10.0 Preset Speed 9-Acc time 05-35 0.1~6000.0 10.0...
Page 92
Group 06 Automatic Program Operation Control mode Code Parameter Name Setting Range Default Unit Attribute 0:Disabled 1:Execute a single cycle operation mode. Restart speed is based on the previous stopped speed. 2:Execute continuous cycle operation mode. Restart speed is based on the previous stopped speed.
Page 93
Group 06 Automatic Program Operation Control mode Code Parameter Name Setting Range Default Unit Attribute * Frequency Setting of 06-10 0.00~599.00 5.00 Operation-Stage 10 * Frequency Setting of 06-11 0.00~599.00 5.00 Operation-Stage 11 * Frequency Setting of 06-12 0.00~599.00 5.00 Operation-Stage 12 * Frequency Setting of 06-13...
Page 94
Group 06 Automatic Program Operation Control mode Code Parameter Name Setting Range Default Unit Attribute 0:Stop Operation Direction Selection of 1:Forward 06-32 Speed Stage 0 2:Reverse 0:Stop Operation Direction Selection of 1:Forward 06-33 Speed Stage 1 2:Reverse 0:Stop Operation Direction Selection of 1:Forward 06-34 Speed Stage 2...
Page 95
Group 06 Automatic Program Operation Control mode Code Parameter Name Setting Range Default Unit Attribute 0:Stop Operation Direction Selection of 1:Forward 06-47 Speed Stage 15 2:Reverse * :If the maximum output frequency of motor is over 300Hz, the frequency resolution is changed to 0.1Hz 4-30...
Page 96
Group 07 Start/Stop Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute 0:Disable Momentary Power Loss and 07-00 Restart 1:Enable 07-01 Fault Reset Time 0~7200 Number of Auto Restart 07-02 0~10 Attempts 0:Enable Reset Only when Run Command is Off Reset Mode Setting 07-03 1:Enable Reset when Run...
Page 97
Group 07 Start/Stop Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute Low Voltage Detection Time 07-25 0.00~1.00 0.02 0:Maximum Output Frequency Start Frequency of Speed 07-33 Search Selection 1:Frequency Command Start Short-Circuit Braking 07-34 0.00~100.00 0.00 Time Stop Short-Circuit Braking 07-35 0.00~100.00...
Page 98
Group 08 Protection Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute xxx0b:Stall prevention is enabled in acceleration. xxx1b:Stall prevention is disabled in acceleration. xx0xb:Stall prevention is enabled in deceleration. xx1xb:Stall prevention is disabled in Stall Prevention deceleration. 08-00 0000b Function...
Page 99
Group 08 Protection Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute Phase Loss Protection 1:Enable 0:Over-Torque Detection is Disabled. Selection of 1:Start detection when reaching the set 08-13 Over-Torque Detection frequency. 2:Start detection during running 0:Decelerate to Stop when Over Torque is Detected.
Page 100
Group 08 Protection Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute 08-44 PTC Warning Level 0.1~10.0V ***STO function only available in inverters with built-in EMC filter. 4-35...
Page 101
Group 09 Communication Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute INV Communication 09-00 1~32 Station Address 0:MODBUS 1:BACnet Communication Mode 09-01 2:Reserved Selection 3:Reserved 4:Reserved 2:4800 3:9600 Baud Rate Setting 09-02 (bps) 4:19200 5:38400 0:1 Stop Bit 09-03 Stop Bit Selection 1:2 Stop Bit 0:No Parity...
Page 102
Group 10 PID Parameters Control Mode Code Parameters Setting Range Default Unit Attribute 0:Keypad 1:AI1 Input 10-00 PID Target Value Source Setting 2:AI2 Input 3:Communication 4:10-02 given 0:Keypad 1:AI1 Input 10-01 PID Feedback Value Source Setting 2:AI2 Input 3:Communication 10-02 PID Target Value 0.00~100.00 0.00 xxx0b:PID Disable...
Page 103
Group 10 PID Parameters Control Mode Code Parameters Setting Range Default Unit Attribute 0:No Allowing Reversal Output 10-25 PID Reversal Output Selection 1:Allow Reversal Output PID Target Acceleration/ 0.0~25.5 10-26 Deceleration Time 10-27 PID Feedback Display Bias 0 ~ 9999 10-28 PID Feedback Display Gain 0.00~100.00 100.00...
Page 104
Group 11 Auxiliary Parameters Control Mode Code Parameters Setting Range Default Unit Attribute 0:Allow Forward and Reverse Rotation 1:Only Allow Forward Rotation 11-00 Direction Lock Selection 2:Only Allow Reverse Rotation 0:Carrier Output Frequency Tuning 11-01 Carrier frequency 1~16:1~16KHz 0:Disable Soft PWM Function 1:Soft PWM 11-02 Selection...
Page 105
Group 11 Auxiliary Parameters Control Mode Code Parameters Setting Range Default Unit Attribute Frequency gain of OV 11-36 0.000 ~ 1.000 Prevention Frequency limit of OV 11-37 0.00 ~ 599.00 Prevention 230V:200V~400V Deceleration start voltage 11-38 of OV prevention 400V:400V~800V 230V:300V~400V Deceleration end voltage 11-39...
Page 106
* If the maximum output frequency of motor is over 300Hz, the frequency resolution is changed to 0.1Hz Note:The parameter of 11-01 can be changed during run operation, the range is 1~16KHz. Group 12 Monitoring Parameters Control Mode Code Parameters Setting Range Default Unit Attribute...
Page 107
Group 12 Monitoring Parameters Control Mode Code Parameters Setting Range Default Unit Attribute 0 : O P E N 1 : C L O S E N o t u s e d N o t u s e d In p u t T e rm in a l(S 6 ) In p u t T e rm in a l(S 5 ) In p u t T e rm in a l(S 4 )
Page 108
Group 12 Monitoring Parameters Control Mode Code Parameters Setting Range Default Unit Attribute (100% corresponds to the maximum frequency set by 01-02 or 01-16) Display the target value of the PID controller 12-38 PID Setting (100% corresponds to the maximum frequency set by 01-02 or 01-16) Display the feedback value of the PID controller 12-39 PID Feedback...
Page 109
Group 13 Maintance Parameters Control Mode Code Parameters Setting Range Default Unit Attribute Inverter Capacity 13-00 ---- Selection 13-01 Software Version 0.00-9.99 13-02 Fault Record Cumulative 13-03 0~23 Operation Hours 1 Cumulative 13-04 0~65535 Operation Hours 2 Selection of 0: Cumulative time in power on Cumulative 13-05 1: Cumulative time in operation...
Page 110
Group 14 PLC Setting Parameters Control Mode Code Parameters Setting Range Default Unit Attribute 14-00 T1 Set Value 1 0~9999 14-01 T1 Set Value 2 (Mode 7) 0~9999 14-02 T2 Set Value 1 0~9999 14-03 T2 Set Value 2 (Mode 7) 0~9999 14-04 T3 Set Value 1 0~9999...
Page 111
Group 14 PLC Setting Parameters Control Mode Code Parameters Setting Range Default Unit Attribute 14-35 AS4 Set Value 3 0~65535 14-36 MD1 Set Value 1 0~65535 14-37 MD1 Set Value 2 0~65535 14-38 MD1 Set Value 3 0~65535 14-39 MD2 Set Value 1 0~65535 14-40 MD2 Set Value 2 0~65535...
Page 112
Group 15 PLC Monitoring Parameters Control Mode Code Parameters Setting Range Default Unit Attribute T1 Current Value1 15-00 0~9999 T1 Current Value 2 (Mode7) 15-01 0~9999 T2 Current Value 1 15-02 0~9999 T2 Current Value 2 (Mode7) 15-03 0~9999 T3 Current Value 1 15-04 0~9999 T3 Current Value 2 (Mode7)
Page 113
Group 16 LCD Function Parameters Control Mode Code Parameters Setting Range Default Unit Attribute 5~39 Main Screen when using LCD to operate, the monitored item 16-00 displays in the first line. (default is frequency Monitoring command) 5~39 Sub-Screen when using LCD to operate, the monitored item 16-01 displays in the second line.
Page 114
Group 16 LCD Function Parameters Control Mode Code Parameters Setting Range Default Unit Attribute 5:GPM 6:IN 7:FT 8:/s 9:/m 10:/h 11:°F 12:inW 13:HP 14:m/s 15:MPM 16:CMM 17:W 18:KW 19:m 20:°C 21:RPM 22:Bar 23:Pa 16-05 LCD Backlight 0:Do not copy parameters 1:Read inverter parameters and store parameters settings in the operator.
Page 115
Group 17 Automatic Tuning Parameters Control Mode Code Parameter Name Setting Range Default Unit Attribute 0:Rotation Auto-tuning 1:Static Auto-tuning 2:Stator Resistance Measurement 3:Reserved Mode Selection of V/F: 2 17-00 4:Loop Tuning Automatic Tuning* SLV: 6 5:Rotation Auto-tuning Combination (item: 4+2+0) 6:Static Auto-tuning Combination (item: 4+2+1) 17-01 Motor Rated Output Power 0.00~600.00...
Page 116
Selection of Rotation 0: V/f Rotation Auto-tuning 17-14 Auto-tuning 1: Vector Rotation Auto-tuning KVA:The default value of this parameter will be changed by different capacities of inverter It is suggested that HD/ ND mode (00-27) be selected first before motor performs auto-tuning. Note:The value of mode selection of automatic tuning is 6 (Static Auto-tuning Combination).
Page 117
Group 20 Speed Control Parameters Control Mode Code Parameters Setting Range Default Unit Attribute ASR Gain 1 20-00 0.00~250.00 ASR Integral Time 1 20-01 0.001~10.000 ASR Gain 2 20-02 0.00~250.00 ASR Integral Time 2 20-03 0.001~10.000 ASR Integral Time 20-04 0~300 Limit 0:PI speed control will be enabled...
Page 118
Group 20 Speed Control Parameters Control Mode Code Parameters Setting Range Default Unit Attribute Constant Speed Compensation Gain of 20-34 0~25600 Derating Compensation Time of 20-35 0~30000 Derating Group 21 Torque And Position Control Parameters Control mode Code Parameters Setting Range Default Unit Attribute...
Page 119
Group 22 PM Motor Parameters Control Mode Code Parameters Setting Range Default Unit Attribute Q-axis Inductance of 22-16 0.01 ~ 300.00 10.00 PM Motor Flux-Weakening Limit 0~100 22-18 0:PM Motor Tuning is not Active. PM Motor Tuning 22-21 1:Parameter Auto-tune PMSLV acceleration 0.1~10.0 22-23...
Page 120
Attachment 1:Parameter default values and ranges dependent on inverter model. Maximum Output Maximum Output Heat Sink SLV default Frequency (Hz) in Frequency (Hz) in Temperature value(18-00) Model Frame SLV Mode for SLV Mode for Displayed, (Low speed slip 11-01 <= 8KHz 11-01 >...
Page 121
The maximum The maximum Factory Default value Default value Default value value of 11-01 value of 11-01 setting Model of 21-05~21-08 of 20-08 (ASR of 00-14~00-17 in HD mode in HD mode of 11-01 in (Torque limit) filter time) 00-23~00-27 (SLV control (Other control HD mode...
4.3 Description of Parameters 00 Basic Parameters 00-00 Control Mode Selection 【0】: V/F 【2】: SLV Range 【5】: PMSLV The inverter offers the following control modes: 00-00 Mode Information Application Value General Purpose Applications which do not require high precision speed control - V/F Control without PG Auto-tuning is not required.
Page 123
Motor’s Rotation Direction 00-01 【0】: Forward Range 【1】: Reverse Use the FWD/REV key to change motor direction when Run Command Selection (00-02 = 0) is set to keypad control. 00-02 Main Run Command Source Selection 00-03 Alternative Run Command Source Selection 【0】: Keypad control 【1】: External terminal control Range...
Page 124
■ 3-wire operation Set parameter 00-04 to 2 for 3-wire program initialization, multi-function input terminal S1 is set to run operation, S2 for stop operation and S3 for forward/reverse command. Note: Terminal S1 must be closed for a minimum of 50ms to activate operation. Operation (normally open Momentary switch)
Page 125
00-03=3: PLC control The inverter is controlled by the inverter built-in PLC logic. Refer to section 4.4. 00-04 Operation Modes for External Terminals 【0】: Forward/Stop-Reverse/Stop Range 【1】: Run/Stop- Reverse/ Forward 【2】: 3 Wire Control Mode - Run/Stop 00-04 is valid when run command is set to external mode by 00-02/00-03 =1. 2 Wire Operation Mode, Set 00-04=【0/1】first, before setting (03-00, 03-04) to【0】or【1】...
Page 126
0~20mA / 4~20mA Analog signal External signal type JP2/JP3 selection 0~10VDC / 2~10VDC Analog signal Main Frequency Reference Command 2KΩ (voltage or current input) Main Frequency Reference Command (voltage or current input) AGND Figure 4.3.4 Analog input as main frequency reference command 00-05/00-06= 4: Terminal UP / DOWN The inverter accelerates with the UP command closed and decelerates with the DOWN command closed.
Page 127
Serial pulse input (Input resistance : 3.89 KΩ ) Specifications Low Input Level:0.0 to 0.5 V High Input Level:4.0 to 13.5 V Duty cycle: (ON / OFF) 30 % to 70% Pulse Input Frequency Range: 50 to 25 KHz Figure 4.3.5 Frequency reference from pulse input 00-07 Main and Alternative Frequency Command Modes 【0】: Main reference frequency...
Page 128
00-12 Upper Limit Frequency 【0.01~599.00】Hz Range Set the maximum frequency reference. Maximum output frequency depends on motor selection. Motor Maximum frequency parameter 01-02. 00-13 Lower Limit Frequency 【0.00~598.99】Hz Range Set the maximum frequency reference is 100% of the 01-02 or 01-16. The inverter will display the SE01 error when 00-12 value is set lower than value in parameter 00-13.
Page 129
The default values for the acceleration / deceleration times are dependent on the inverter size. Size Acceleration / Deceleration Default Value 200V series 400V series 1~10HP 1~15HP 15~20HP 20~30HP 30~40HP 40~75HP (00-14)x(set frequency - the minimum starting frequency) Actual acceleration time= Maximum output frequency (00-15)x(set frequency - the minimum starting frequency) Actual deceleration time=...
Page 130
00-18 Jog Frequency 【0.00~599.00】Hz Range 00-19 Jog Acceleration Time 【0.1~600.0】Sec Range 00-20 Jog Deceleration Time 【0.1~600.0】Sec Range The JOG function is operational by using the multi-function input terminals S1 to S6 and setting the relevant parameters 03-00~03-05 to 【6】JOG FWD or【7】JOG REV. Refer to parameter group 3. Notes: - To activate the JOG FWD function set any of the multi-function input terminals S1 to S6 to 6.
Page 131
Multi-function digital input terminals (03-00 ~ 03-05) set to 14: When the emergency stop input is activated the inverter will decelerate to a stop using the time set in parameter 00-26. Note: After an emergency stop command the run command and emergency stop command have to be removed before the inverter can be restarted.
Page 132
00-34 Language 【0】: English 【1】: Simplified Chinese Range 【2】: Traditional Chinese 【3】: Turkish LCD keypad is required to display languages. Selection of parameter 00-34 00-34=0: LCD keypad displays in English. 00-34=1: LCD keypad displays in Simplified Chinese. 00-34=2: LCD keypad displays in Traditional Chinese. 00-04=3: LCD keypad displays in Turkish.
Page 133
01 V/F Control Parameters 01-00 Volts/Hz Patterns 【0~FF】 Range The V/F curve selection is enabled for V/F mode. Make sure to set the inverter input voltage parameter 01-14. There are three ways to set V/F curve: (1) 01-00 = 0 to 0E: choose any of the 15 predefined curves (0 to 17). (2) 01-00 = 0F, use 01-02~01-09 and 01-12 ~ 01-13, with voltage limit (2) 01-00 = FF, use 01-02~01-09 and 01-12 ~ 01-13, without voltage limit The default parameters (01-02 ~ 01-09 and 01-12 ~ 01-13) are the same when 01-00 is set to 0F and 01-00 is set...
Page 158
01-02 Maximum frequency of motor 1 【4.8~599.0】Hz Range 01-03 Maximum output voltage of motor 1 200V:【0.1~255.0】V Range 400V:【0.2~510.0】V 01-04 Middle output frequency 2 of motor 1 【0.0~599.0】Hz Range 01-05 Middle output voltage 2 of motor 1 200V:【0.0~255.0】V Range 400V:【0.0~510.0】V 01-06 Middle output frequency 1 of motor 1 【0.0~599.0】Hz Range...
Page 159
Custom V/F Curve Setting: A custom curve selection allows users to set parameters 01-02 ~ 01-13 whereas a predefined curve selection does not. Output Voltage ( 01 - 03 ) Vmax ( 01 - 13 ) Vbase ( 01- 05 ) Vmid ( 01 - 07) Vmid ( 01 - 09) Vmin Output...
Page 160
SLV Mode (Sensorless Vector Control) Enter the motor data in parameter group 17 for SLV control mode (00-00) and perform auto-tuning. In the SLV mode the V/F curve normally does not have to be re-adjusted after a successful auto-tune. The maximum output frequency setting 01-02 (Fmax), base frequency 01-12 (Fbase), minimum output frequency 01-08 (Fmin), maximum output voltage 01-03 (Vmax) or base output voltage 01-13 (Vbase) can be adjusted but the voltage is automatically adjusted by the internal current controller.
Page 161
Selection of Torque compensation mode (01-11) 01-11=0: Torque compensation mode 0 is for use in general applications. 01-11=1: Torque Compensation Mode 1 is for use in high speed (120~160Hz) application where the torque compensation decreases as the frequency increases. When the output frequency is between 0~120Hz the torque compensation amount is the same as when using torque compensation mode 0.
Page 162
01-16 Maximum output frequency of motor 2 【4.8~599.0】Hz Range 01-17 Maximum output voltage of motor 2 200V:【0.1~255.0】V Range 400V:【0.2~510.0】V 01-18 Middle output frequency 2 of motor 2 【0.0~599.0】Hz Range 01-19 Middle output voltage 2 of motor 2 200V:【0.0~255.0】V Range 400V:【0.0~510.0】V 01-20 Middle output frequency 1 of motor 2 【0.0~599.0】Hz...
Page 163
02 IM Motor Parameters 02-00 No-load current of motor 1 【0.01~600.00】A Range 02-01 Rated current of motor 1 V/F mode is 10%~200% of inverter rated current Range SLV mode is 25%~200% of inverter rated current 02-03 Rated rotation speed of motor1 【0~60000】rpm Range 02-04...
Page 164
02-00: Motor no-load current Value is calculated based on the motor rated frequency (17-05) and motor rated current (17-03). 02-01: Motor rated current Set the motor rated current according to the motor nameplate. 1. The value of 02-01 needs to be set to a value greater than the value set in parameter 02-00; otherwise warning message "SE01"...
Page 165
4. It is required to refer to the actual no-load voltage of parameter 12-76 to tune the motor excitation current parameter 02-09. Changing the excitation current affects the no-load voltage fluctuation; adjust parameter 02-09 to a value so the output voltage matches the no-load voltage (17-08). Setting of motor core’s saturation coefficient 1, 2 and 3 (02-10, 02-11, 02-12) These parameters are automatically set during auto-tune.
Page 166
02-23 Rated voltage of motor 2 200V:【50.0~240.0】V Range 400V:【100.0~480.0】V 02-24 Rated power of motor 2 【0.01~600.00】KW Range 02-25 Rated frequency of motor 2 【4.8~599.0】Hz Range 02-26 Number of Motor Poles of Motor 2 【2~16】 Range 02-32 Line-to-line Resistance of motor 2 【0.001~60.000】Ω...
Page 167
02-33: Proportion of Motor Leakage Inductance 1. In most applications motor leakage current does not need to be adjusted. The value is not set by the auto-tuning function. LlKg 2. Leakage inductance proportion is the ratio between leakage inductance and rotor inductance. The default value is set to 3.4%.
Page 169
Refer to the multi-function digital input and parameters in the following figure 4.3.16 Related Parameters 03-00 03-01 03-02 03-03 03-04 03-05 24VG Figure 4.3.16 Multi-function digital input and related parameters Table 4.3.27 Multi-function digital input setting (03-00 to 03-05) (“O”:Enable, “X”:Disable) Function Control Mode Value...
Page 170
Function Control Mode Value Description Name LCD Display Main/ Alternative Frequency Command Source is set in Frequency Switch Freq Change Sel parameter of alternative frequency Function command (00-06) Emergency Stop (decelerate to zero and E-Stop ON: Emergency stop active stop) External Baseblock Command (rotation freely Ext.
Page 171
Function Control Mode Value Description Name LCD Display Motor 1/Motor 2 Motor 2 Switch ON: Select motor 2 Selection Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved ON: Fire Mode Active (disables hardware Fire Mode (Forced Fire Mode and software fault /alarm protection and...
Page 172
Table 4.3.28 Multi-speed operation selection Multi-function digital input (S1 to S6) Multi-speed Multi-speed Multi-speed Multi-speed Speed Frequency selection frequency frequency frequency frequency frequency reference Frequency command 0( 05-01) or main speed frequency Frequency command 1 ( 05-02) *3 Frequency command 2 ( 05-03) Frequency command 3 ( 05-04) Frequency command 4 ( 05-05) Frequency command 5 ( 05-06)
Page 173
Wiring Example: Figure 4.3.17 and 4.3.18 is the example of a 9 speed operation selection S1 Forward Run / Stop (03-00 = 0) S2 Reverse Run / Stop (03-01 = 1) S3 External Fault (03-02 = 25) S4 Fault Reset (03-03 = 17) S5 Multi-Step Speed Ref 0 (03-04=2) S6 Multi-Step Speed Ref 1 (03-05=3) 24VG...
Page 174
03-0X =06: Forward jog run command, uses jog frequency parameter 00-18. Note: Jog command has a higher priority than other frequency reference commands. Jog command uses stop mode set in parameter 07-09 when Jog command is active > 500ms. 03-0X =07: Reverse jog run command, uses jog frequency parameter 00-18.
Page 175
Power Supply Forward Command Down Command (00-12) Output Frequency (00-13) Hold Hold Figure 4.3.20 UP / DOWN command timing diagram UP / DOWN Command Operation When the Forward Run command is active and the UP or Down command is momentarily activated the inverter will accelerate the motor up to the lower limit of the frequency reference (00-13).
Page 176
03-0X =10: Acceleration/deceleration 1 selection 03-0X =30: Acceleration/deceleration 2 selection Refer to the "multi-function digital input terminals select acceleration / deceleration time” 03-0X =11: Inhibit Acceleration/deceleration command (hold command) When activated suspends the acceleration / deceleration operation and maintains the output frequency at current level.
Page 177
03-0X =14: Emergency stop (decelerate to zero and stop) Refer to the "deceleration time of emergency stop" of parameter 00-26 03-0X =15: External Baseblock Command (coast to stop) When active the inverter output is turned off. During run: When an external base block command is activated, the keypad displays "BBn BaseBlock (Sn)", indicating the inverter output is turned off (n indicates the digital input number 1 –...
Page 178
03-0X =17: Fault reset When the inverter trips on a fault the fault output contact is activated, the inverter output is turned off (base block) and the keypad displays a dedicated fault message. The following options are available to reset a fault: 1.
Page 179
03-0X =24: PLC Input It is required to be with the software of Drive Link. PLC software program conducts the ladder diagram editing. When the signal output conducts, it will be transmitted to the inverter to be active. 03-0X =25: Pulse Width Measurement Can only be used for terminal S3 (03-02=25) for pulse width measurement functions.
Page 180
03-0X =26: Pulse Input Frequency To following parameters have to be set to use the Pulse Input Frequency function. 00-05=7: Pulse with speed control 03-02=26: Pulse input frequency 03-28=100.0 ~ 1000.0%: pulse input gain setting Inverter reference frequency= (Pulse input frequency) x (03-28) Hz, reference frequency limit is the inverter frequency upper limit Example 1: Pulse input frequency is 20Hz, frequency upper limit is 50Hz (00-12=50.00), and 03-28=100.0, Inverter reference...
Page 181
03-0X =27: Local / Remote selection. Switch the inverter frequency reference source between Local (keypad) or Remote (control circuit terminals or RS485). Use parameter 00-05 (Main frequency command source selection) and 00-02 (Run command selection) to select the remote source. Note: In 3-wire operation terminal S1 and S2 are reserved for run/stop operation and the Local / Remote function can only be set to digital input terminals S3 to S6 (03-02 to 03-05).
Page 182
03-0X =33: DC braking When input is active DC-Injection braking is enabled during start and stopping of the inverter. DC Injection braking is disabled when a run or jog command is active. Refer to the DC braking time diagram in Figure 4.3.24.
Page 183
03-0X =65: Short Circuit braking When active stops inverter by turning on Short-circuit braking. Short-circuit braking is disabled when a run or jog command is active. Run Command Jog Command Short Circuit Braking Command The large of 01-08 or 07-07 Output 01-08 Frequency...
Page 184
Mode 3: When 03-40 > 0 Hz and multi-function input terminals are active for more than 2 sec, frequency changes based upon acceleration / deceleration ramp. Upper frequency limit Actual output frequency Lower frequency limit 2Sec 2Sec Notes: △H1: frequency increase during acceleration, t1: Multi-function Input active time during acceleration, △H2: frequency increase during deceleration, t2: Multi-function Input active time during deceleration.
Page 185
03-07 UP/DOWN Keep Frequency Status after Stop Command 0: Hold last set frequency when stopped 1: Set frequency to 0 when stopped Range 2: Allow speed changes from last set frequency when stopped 3: Refresh frequency during acceleration 03-07=0: When the run command is removed the UP/DOWN frequency reference before deceleration is stored. The next time the run command is applied the output frequency will ramp up to the previously stored frequency reference (05-01).
Page 186
Each bit of 03-09/03-10 represents an input: 03-09= 0 0: normally open switch s4 s3 s2 s1 1: normally close switch 03-10= 0 0: normally open switch s6 s5 1: normally close switch Example: S1 and S2 wired to a normally closed contact / switch set 03-09=0011. Do not set the operation command parameter 00-02 to terminal control before setting the digital input type.
Page 187
03-11 Relay (R1A-R1C) output 03-12 Relay (R2A-R2C) output 【0】: During Running 【1】: Fault Contact Output 【2】: Frequency Agree 【3】: Setting Frequency Agree (03-13 ± 03-14) 【4】: Frequency Detection 1 (≧ 03-13, hysteresis range is the setting value of 03-14) 【5】: Frequency Detection 2 (≦03-13, hysteresis range is the setting value of 03-14) 【6】: Automatic Restart 【7】: Momentary AC Power Loss 【8】: Rapid Stop...
Page 188
Table 4.3.29 Function table of multi-function digital output Function Control mode Value Contents Name LCD display During Running Running ON:Dring running (Run command is ON) ON:Fault contact output (except CF00 and Fault Contact Output Fault CF01) ON:Frequency agree (frequency agree width Frequency Agree Freq.
Page 189
ON:Output frequency < Minimum output Zero Speed Zero Speed frequency (Fmin) Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Motor 2 Selection Motor 2 Selection ON:Switch to Motor 2 Reserved...
Page 190
03-1X=0: During Running ON: Run command is ON or output frequency is greater than 0 OFF: Run command is OFF and the inverter is stopped. 03-1X=1: Fault contact output Output is active during fault condition. Note: Communication error (CF00, CF01) do not activate the fault contact. 03-1X=2: Frequency Agree Output is active when the output frequency falls within the frequency reference minus the frequency detection width (o3-14).
Page 191
03-1X=18: PLC status (setting =18) Output is active when operation command parameter (00-02) is set to 3: PLC Control. 03-1X=19: PLC control contact Output is controlled by the PLC logic 03-1X=20: Zero-speed Output is active during zero-speed when output frequency ≦ minimum output frequency (01-08). Output Frequency 01-08(Fmin)
Page 192
Function Frequency Detection Function Description Freq Output Reference Output is active when the output frequency Frequency 03-14 falls within the frequency reference minus the frequency detection width (03-14). time Frequency agree Frequency Freq Any of the digital outputs function (03-11, 03-14 Reference Agree...
Page 193
03-15 Current Agree Level 【0.1~999.9】A Range 03-16 Delay Time of Current Agree Detection 【0.1~10.0】 Sec Range 03-11=13, then, Output is active when the output current > 03-15 for time specified in 03-16. 03-15: Sets the output current level (0.1~the motor rated current). 03-16: Output Current detection delay time ON: Output current has to rise above specified level (03-15) for time specified in 03-16.
Page 194
03-17≤03-18, the following is the sequence applies: 03-18 03-17 STOP 03-11=14 03-17≥03-18, the following is the sequence applies 03-17 03-18 STOP 03- 19 Relay (R1A-R2A) Type xxx0b: R1 A contact xxx1b: R1 B contact Range xx0xb: R2 A contact xx1xb: R2 B contact Parameter 03-19 selects the digital output type between a normally open and a normally closed contact.
Page 195
03-24 Output Under Current Detection 【0】: Invalid Range 【1】: Valid 03-25 Output Under Current Detection Level 【0~999.9】A Range 03-26 Output Under Current Detection Delay Time 【0.0~655.35】 Sec Range If 03-11=55 Low Current Detection Relay ON: When output current ≦ 03-25 for the time specified in 03-26. Relay OFF: When output current >...
Page 196
Note: The time deviation in PWM mode is ±12.5%. If pulse PWM is outside of the deviation range the pulse input is not active. Diagram for pulse input selection: 03-30 = 0 (Normal Mode) T Period Sample Pulse train Frequency Pulse command= x 100%(01-02) T(Period)
Page 197
04 Analog Signal Inputs / Analog Output 04-00 Analog Input Signal Type 【0】: AI1 0~10V / 0~20mA AI2 0~10V / 0~20mA 【1】: AI1 0~10V / 0~20mA AI2 2~10V / 4~20mA Range 【2】: AI1 2~10V / 4~20mA AI2 0~10V / 0~20mA 【3】: AI1 2~10V / 4~20mA AI2 2~10V / 4~20mA 04-01...
Page 198
(1) Analog Input Level Adjustment AI1, AI2 (04-02, 04-03, 04-07, 04-08) Each analog input AI1and AI2 has a separate gain and bias parameter associated with it. Analog input signal AI1 can be adjusted with parameter 04-02 and 04-03; Analog input signal AI2 can be adjusted with parameter 04-07 and 04-08.
The filter time constant (range: 0.00 to 2.00 seconds) is defined as the time that the input step signal reaches 63% of its final value. Note: Increasing the filter time causes the drive operation to become more stable but less responsive to change to the analog input.
Page 200
Gain: Use parameter 04-12 to adjust the gain for AO. Adjust the gain so that the analog output (10V) matches 100% of the selected analog output signal (04-11 for AO). Bias: Use parameter 04-13 to adjust the bias for AO. Adjust the bias so that the analog output (0V) matches 0% of the selected analog output signal (04-11 for AO).
Page 201
0-100Hz 0-200Hz 0-50Hz AGND AGND AGND Ratio C Ratio B Ratio A Master Parameter Preset: 00-05=2 00-05=2 00-05=2 00-12=100 00-12=200 00-12=50 04-16=1 04-16=1 04-16=1 Frequency 200Hz upper limit (Hz) 100Hz C 50Hz Analog Input Signal Master Figure 4.3.53 Diagram of F-Gain function 04-20 AO signal scanning and filtering time 【0.00~0.50】Sec...
Page 202
05 Preset Frequency Parameters 05-00 Preset Speed Control mode Selection 【0】: Acceleration and deceleration time 1 ~ 4 used. Range 【1】: Use independent acceleration and deceleration time for each multi-speed setting. 05-01 Preset Speed 0 (Keypad Frequency) 05-02 Preset Speed 1 05-03 Preset Speed 2 05-04...
Page 203
05-00=0: Standard Acceleration and deceleration times parameters 00-14 ~ 00-17 apply to all preset speeds. 05-00=1: Each multi-speed uses a dedicated acceleration and deceleration time parameters 05-17 ~ 05-48. There are two different modes for acceleration / deceleration timing when 05-00 is set to 1, see time example on the next page.
Page 204
Example: Acceleration / deceleration timing when 05-00 is set to 1. In this example the following parameters are set: 00-02=【1】(External Terminal Operation) 00-04=【1】(Operation Mode: Run/Stop-Forward/Reverse). 03-00=【0】(Terminal S1: Run /Stop) 03-01=【1】(Terminal S2: Reversal /Stop) 03-02=【2】(Terminal S3: Preset Speed 0) 03-03=【3】(Terminal S4: Preset Speed 1) 03-03=【4】(Terminal S5: Preset Speed 2) If the run command is cycled on and off, acceleration and deceleration time (a ~ f) is calculated based on the active speed command as follows:...
Page 205
Acceleration / Deceleration Calculation Mode 2: If the run command is remains on, acceleration and deceleration time (a ~ f) is calculated based on the active speed command as follows: 06-02 06-01 06-03 06-05 05-01 06-04 Stop Terminal S1 Terminal S2 Terminal S3 Terminal S4 Terminal S5...
Page 206
06 Automatic Program Operation 06- 00 Auto Run Mode Select 【0】: Disabled 【1】: Execute a single cycle operation. Restart speed is based on the previous stopped speed. 【2】: Execute continuous cycle operation. Restart speed is based on the previous cycle stop speed. 【3】: After completion of a single cycle, the on-going operation speed is based on the speed of the Range last stage.
Page 207
06-25 Operation time setting of speed-stage 9 06-26 Operation time setting of speed-stage 10 06-27 Operation time setting of speed-stage 11 06-28 Operation time setting of speed-stage 12 06-29 Operation time setting of speed-stage 13 06-30 Operation time setting of speed-stage 14 06-31 Operation time setting of speed-stage 15 【0】: Stop...
Page 208
Example 1: Automatic operation mode – Single cycle In this example the inverter executes a single cycle and then stops. Parameter Settings: 06-00 = 1 or 4 (Single cycle operation) 06-32~06-34= 1 (Forward for multi-step speed 0 - 2) 06-47= 2 (Reversal for multi-step speed 15) 06-35~06-46= 0 (Stop for multi-step speed 3 - 14) 05-01=...
Page 209
Example 2: Automatic operation mode – Continuous cycle In this example the inverter repeats the same cycle. Parameter Settings: 06-00 = 2 or 5 (Continuous cycle operation) 06-01~06-47= Enter same setting as that of Example 1. Freq. 06-02 06-02 50 Hz 06-01 06-01 30 Hz...
Page 210
06-00= 1 to 3: After a stop the inverter will start with the incomplete step when the run command is re-applied. 06-00= 4 to 6: After a stop the inverter will start with the first step of the cycle when the run command is re-applied. 06-00 1 to 3 06-00...
Page 211
07 Start/Stop Parameters 07-00 Momentary power loss and restart 【0】: Disabled Range 【1】: Enabled 07-01 Fault reset time 【0~7200】 Sec Range 07-02 Number of restart attempts 【0~10】 Range 07-03 Reset Mode Setting 【0】: Enable Reset Only when Run Command is Off Range 【1】: Enable Reset when Run Command is On or Off Inverter output will be turned off during a sudden drop in input voltage below the under voltage level.
Page 212
Notes: Fault restart function contains momentary power loss restart and auto reset restart. Refer to chapter 10 for the for troubleshooting and fault diagnostics. Refer to speed search function (07-19~07-24) for speed search modes selection when power is restored. Fault reset time (07-01) Time the inverter waits to reset fault.
Page 213
Automatic restart operation: Inverter trips and inverter output is turned off, keypad shows the active fault. Next inverter waits for the minimum baseblock time parameter 07-18 to expire before accepting an automatic restart command. After the minimum baseblock time (07-18) and speed search delay time have expired, the active fault is reset and a speed search operation is performed.
Page 214
07-05 Delay-ON Timer (Seconds) 【1.0~300.0】 Sec Range When 07-04=0 the inverter will wait for the time specified in 07-05 to start after power is applied. Note: If this mode is required for the application all safety measures must be taken to ensure safe operation, including warning labels.
Page 215
PMSLV Control Mode (00-00=5): In this control mode short-circuit braking is used. Short Circuit Braking Start Frequency parameter (07-06) is the level the output frequency has to reach before Short Circuit Braking function is de-activated at start. The same level is used to activate Short Circuit Braking when the output frequency falls below this level.
Page 216
DC Injection Braking Operation (V/f + SLV Mode) When DC Injection braking is active DC voltage is applied to the motor, increasing the braking current and resulting in an increase in the strength of the magnetic field trying to hold the motor shaft. To enable DC injection braking during a start operation set the DC injection braking current (07-07) to a value greater than 0.
Page 217
07-09 =0: Deceleration to stop When a stop command is issued, the motor will decelerate to the minimum output frequency (01-08) Fmin and then stop. Deceleration rate depends on the deceleration time (factory default: 00-15). When the output frequency reaches the DC braking stop frequency (07-06) or the minimum output frequency (01-08), DC injection braking is activated and the motor stops.
Page 218
Stop Command Time Output Frequency Time Minimum baseblock time (07-18) Figure 4.3.59 Coast to Stop 07-09 =2: DC braking to stop When a stop command is issued, the inverter will turn off the output (Baseblock) and after the minimum Baseblock time (07-18) has expired activate DC braking (07-07). The DC braking time (tDCDB) of Figure 4.3.60 is determined by the value of 07-08 (DC Braking start time) and the output frequency at the time the stop command was issued.
Page 219
07-09 =3: Coast to stop with timer When a stop command is issued the motor will coast to a stop after the minimum Baseblock time (07-18) has expired and the inverter ignores the run command until the timer has expired. The total time of the timer is determined by the deceleration time (00-15, 17, 22 or 24) and the output frequency upon stop, refer to figure 4.3.61 for details.
Page 220
When the AC input voltage is lower than the value set in 07-13 divided by 1.414 (AC voltage detection level) for the time specified in 07-25 a low-voltage error "UV" will be displayed. If 07-25 = 0.00 sec., the UV error will be displayed immediately.
Page 221
07-19 Speed Direction Search Operation Current 【0~100】% Range 07-20 Speed Search Operating Current 【0~100】% Range 07-21 Integral time of speed searching 【0.1~10.0】Sec Range 07-22 Delay time of speed searching 【0.0~20.0】Sec Range 07-23 Voltage recovery time 【0.1~5.0】Sec Range 07-24 Direction-Detection Speed Search Selection 【0】: Disable Range 【1】: Enable...
Page 222
07-19: Speed Direction Search Operating Current - Used in bidirectional speed search only (07-24 = 1). - Set bidirectional current level. - Increase value if speed search is not successful at low speeds (above 5Hz) Note: If value is too high may cause DC braking effect. 07-20: Speed Search Operating Current - Can be used for bidirectional (07-24 = 1) or unidirectional (07-24 = 0) speed search.
Page 223
1: Enable Direction-Detection Speed Search At start the current controller will send a step current to the motor (07-19) to determine the motor direction. Once direction is determined the current controller will perform a speed search using speed search operating current defined in parameter 07-20.
Page 224
(b) Speed search in recovery period of momentary power failure Momentary power loss Minimum b.b. time (07-18) Run command Search command (07-18) Speed search decel time (07-21) Output frequency V/f during speed search Return to voltage at normal operation Voltage recovery time (07-23) Output voltage Output current (07-20)
Page 225
Notes: The time for the flux to reach 100% is a function of the motor’s electrical time constant, see figure 4.3.62. Electrical time constant can be calculated by using the motor parameter settings (group 02). Motor leakage inductance (02-17) + motor mutual inductance (02-18) Electrical time constant T2 = Motor leakage resistance Set the pre-excitation time (07-37) based on the electrical time constant T2...
Page 226
08 Protection Parameters 08-00 Stall prevention function 【xxx0b】: Stall prevention function is enabled during acceleration. 【xxx1b】: Stall prevention function is disabled during acceleration. 【xx0xb】: Stall prevention function is enabled during deceleration. 【xx1xb】: Stall prevention function is disabled during deceleration. Range 【x0xxb】: Stall prevention function is enabled during operation.
Page 227
Inverter Output 08-01 Current Output Frequency Stall prevention Figure 4.3.67 Stall prevention during acceleration If the motor is used in the constant power (CH) region, the stall prevention level (08-01) is automatically reduced to prevent the stall. Stall prevention level during acceleration (Constant horsepower) Stall Prev.
Page 228
Stall prevention selection during deceleration (08-00=xx0xb) Stall prevention during deceleration automatically increases the deceleration time based on the DC-bus voltage to prevent over-voltage during deceleration. Refer to Figure 4.3.69 for stall prevention during deceleration When the DC-bus voltage exceeds the stall prevention level, deceleration will stop and the inverter will wait for the DC-bus voltage to fall below the stall prevention level before continuing deceleration.
Page 229
Load 08-03 (Hysteresis) Inverter Output Current Output (00-15) dec1 Frequency (00-17) dec2 08-22 (detection time) Figure 4.3.70 Stall prevention selection in operation 08-05 Selection for motor overload protection (OL1) 【xxx0b】: Motor overload is disabled 【xxx1b】: Motor overload is enabled 【xx0xb】: Cold start of motor overload 【xx1xb】: Hot start of motor overload Range 【x0xxb】: Standard motor...
Page 230
With hot start enabled (08-05 = xx1xb), motor overload protection occurs in 3 and a half minutes when operating the motor at 150% of the motor rated current at an output frequency greater than 60Hz. Refer to the following figure 4.3.71 for an example of motor overload protection curve. Low Speed Hot Start Motor Load Current (%)
Page 231
Figure 4.3.72 Motor overload rating at different output frequencies 08-06 Start-up mode of overload protection operation (OL1) 【0】: Stop output after overload protection Range 【1】: Continuous operation after overload protection. 08-06=0: When the inverter detects a motor overload the inverter output is turned off and the OL1 fault message will flash on the keypad.
Page 232
08-07=2: Fan turns on when the heat-sink temperature rises above the maximum heat-sink temperature. When the heat-sink temperature falls below the maximum heat-sink temperature for the time specified in 08-38, the fan turns off. Note: The cooling fan stays running when 08-07=0 and the heatsink temperature is still above the maximum heat-sink temperature 08-08 Automatic voltage regulation (AVR)
Page 233
08-13 Selection of over-torque detection 【0】: Over-torque detection is disabled 【1】: Start detection when reaching the set frequency Range 【2】: Start detection during running 08-14 Selection of over-torque action 【0】: Deceleration to stop when over-torque is detected. 【1】: Displays warning when over-torque is detected. Continue operation. Range 【2】: Coast to stop when over-torque is detected 08-15...
Page 234
Multi-function digital outputs (R1A-R1C, R2A-R2C) can be set to an over torque detection condition by setting parameters 03-11 or 03-12 to 12. Refer to figure 4.3.72 } 03-11 } 03-12 Figure 4.3.72 Over/Low torque detection for DI/DO terminals Inverter output current ( or motor output torque) Detection level (08-15) 10% hystersis...
Page 235
08-35 Motor Overheat Fault Selection 【0】: Disabled 【1】: Deceleration to Stop Range 【2】: Free run to Stop 【3】: Continue Running 08-36 PTC Input Filter Time Constant 【0.00 ~ 5.00】 Range 08-39 Delay Time of Motor Overheat Protection 【1 ~ 300】Sec Range 08-42 PTC Protection Level...
Page 236
-------- Formula (1) Class F Class H Resistance (Ω) 150°C 180°C 1330 +10V Divider Resistor(R) 1~2KΩ AI 2 200KΩ PTC Thermistor Temperature Internal circuit Tr + 5 Tr - 5 (b) PTC Thermistor connections Tr:Temperature threshold value (a) PTC Thermistor Characteristics Figure 4.3.65 (a) PTC Thermistor Characteristics...
Page 237
09 Communication Parameters 09-00 INV Communication Station Address 【1~32】 Range 09-01 Communication Mode Selection 【0】: MODBUS 【1】: BACnet 【2】: Reserved Range 【3】: Reserved 【4】: Reserved 09-02 Baud Rate Setting (bps) 【2】: 4800 【3】: 9600 Range 【4】: 19200 【5】: 38400 09-03 Stop Bit Selection 【0】: 1 stop bit Range...
Page 238
The built-in RS-485 can support the following communication protocols: Modbus communication protocol BACnet communication protocol The communication port RJ45 (S+, S-) can be used to monitor, control, program and trouble-shoot the inverter. Modbus communication can perform the following operations, independent of the frequency command selection (00-05) setting and Operation command selection (00-02) setting: ...
Page 239
09-02: RS-485 communication baud rate setting = 2: 4800 bps = 3: 9600 bps = 4: 19200 bps = 5: 38400 bps 09-03: Stop bit selection = 0: 1 stop bit = 1: 2 stop bits 09-04: Parity selection of RS-485 communication = 0: No parity.
Page 240
10 PID Parameters 10-00 PID target value source setting 【0】: Keypad 【1】: AI1 (Analog Input 1) 【2】: AI2 (analog Input 2) Range 【3】: Communication 【4】: Use 10-02 setting Parameter 10-00 sets the PID target selection when frequency source selection is set to PID parameters 00 - 05 / 00 - 06= 6.
Page 241
10-02 PID target value 【0.00~100.00】% Range Parameter 10-02 sets the PID target from the keypad when 10-00=4. 10-03 PID control mode 【xxx0b】: PID disable 【xxx1b】: PID enable 【xx0xb】: PID positive characteristic 【xx1xb】: PID negative characteristic Range 【x0xxb】: PID error value of D control 【x1xxb】: PID feedback value of D control 【0xxxb】: PID output 【1xxxb】: PID output + Frequency Command...
Page 242
(b) PID control with differential feedback: (10-03 = 2, 4) Set Value Control Feedback Figure 4.3.80c PID control for feedback differential value Feedback (detected value) is derivative controlled and set by parameter 10-07. Make sure to adjust the PID parameters without causing system instability. Refer to Figure 4.3.9 for PID control for feedback value differential.
PID control (fan and pump) do not require differential control. Refer to Figure 4.3.77 for PID control operation Deviation PID Control I Control Control P Control Figure 4.3.80d PID Control PID Control Setting PID control block diagram, the following figure shows PID control block diagram. (Bias) PID=OFF 10-09...
Page 244
PID Tuning Use the following procedures to enable PID control: (1) Enable PID control (set 10-03 to a value greater than "xxx0b"). (2) Increase the proportional gain (10-05) to the highest value possible without causing the system to become unstable. (3) Decrease the integral time (10-06) to the lowest value possible without causing the system to become unstable.
Page 245
10-24 PID output gain 【0.0~25.0】 Range Use parameter 10-24 to adjust PID output. 10-25 PID reversal output selection 【0】: Do not allow the reversal output Range 【1】: Allow the reversal output In case the PID control output value goes negative, parameter 10-25 (PID reversal output selection) can be used to reverse the motor direction.
Page 246
Output After To quickly stabilize the PID control, reduce the Before integral time (I) and increase the differential time (D) in case overshoot occurs. (3) Reduce long-period oscillation Output Before Adjust the integral time (I) in case of long-periodical After system oscillation.
Page 247
(PID feedback loss detection level) for the time set in parameter 10-13 (PID feedback loss detection time). PID feedback loss fault message "Pb" will be displayed on the keypad, the inverter stops and the fault contact is activated. Feedback Value 10-12 Detection 10-13...
Page 248
10-40 Selection of PID Sleep Compensation Frequency 【0】: Disabled Range 【1】: Enabled The PID Sleep function is used to stop the inverter when the PID output falls below the PID sleep frequency level (10-17) for the time specified in the PID sleep delay time parameter (10-18). The inverter wakes up from a sleep condition when the PID output (Reference frequency) rises above the PID wake-up frequency level (10-19) for the time specified in the PID wake-up delay time (10-20).
Page 249
10-40: Selection of PID Sleep Compensation Frequency 10-40=0, refer to Figure 4.3.83(b) When the output frequency (Fout) falls below the PID sleep frequency (10-17) for the time specified in in the PID sleep delay time (10-18) the inverter will decelerate to a stop and enter sleep mode. 10-40=1, refer to Figure 4.3.83(c) When the output frequency (Fout) falls below the PID sleep frequency (10-17), the PID sleep timer starts and the inverter decelerates to the minimum output frequency (Fmin) set by 01-08.
Page 250
10-30 Upper Limit of PID Target 【0 ~ 100】% Range 10-31 Lower Limit of PID Target 【0 ~ 100】% Range PID target value will be limited to the range specified in the upper & lower limit set by 10-30 and 10-31. 10-33 Maximum Value of PID Feedback 【1~10000】...
Page 251
11 Auxiliary Parameters 11-00 Direction Lock Selection 【0】: Allow forward and reverse rotation 【1】: Only allow forward rotation Range 【2】: Only allow reverse rotation If Direction Lock Selection parameter 11-01 is set to 1 or 2, the motor only operates in that specific direction. A run command for the opposite direction will run in the selected direction.
Page 252
11-02 Soft PWM Function Selection 【0】: Disable 【1】: Soft PWM 1 enabled Range 【2】: Soft PWM 2 enabled 11-02=0: Soft PWM control disabled. 11-02=1: Soft PWM 1 control enabled. Software PWM control can improve noise produced by the motor, more comfortable for the human ear.
Page 253
Total acceleration and deceleration time when the S curve is used: Accelerating time = Accelerating time 1 (or 2) + (11-04) + (11-05) Deceleration time = Deceleration time 1 (or 2) + (11-06) + (11-07) 11-08 Jump Frequency 1 11-09 Jump Frequency 2 11-10 Jump Frequency 3...
Page 254
Output Frequency Actual jump width Jump 2 Jump 1 Frequency Reference Figure 4.3.87 Jump frequency overlap 11-12 Manual Energy Saving Gain (VF) 【0~100】% Range 11-18 Manual Energy Saving Frequency 【0.0~599.0】Hz Range Manual energy savings reduces the output voltage for the purpose of saving energy. To enable manual energy savings set one of the multi-function digital input (03-00 to 03-05) to 20 and activate the input or use parameter 11-18 to set the manual energy savings activation frequency.
Page 255
11-14 OV Prevention Level 230V :【200~400】V Range 400V :【400~800】V 11- 17 Acceleration/Deceleration Gain 【0.1~10.0】 Range When 11-40=3, the inverter will increase the output frequency to prevent an “OV” condition. The output frequency in this mode will not exceed the maximum output frequency of motor 1, set 01-02 according to the application. Parameter 11-14 sets the Regeneration prevention voltage level.
Page 256
Example: Press Application In this application there are two conditions causing regenerative energy back to the inverter and therefore recharging the DC bus. (1) When the brake is not set, the motor will accelerate and rotate the flywheel. When motor decelerates, the rotation speed will exceed the motor speed due to the large flywheel’s inertia feeding back regenerative energy to the inverter resulting in an increased DC bus.
Page 257
Output Frequency After SFS Fout DC bus 11-40= 0 Output voltage Frequency Frequency Reference 12-20 11-40 = 1 or 2 11-40 = 1 11-37 DC bus accel / voltage decel DC bus filter time 11-40 = 2 11-33 11-36 Frequency 11-34 Gain Reference...
Page 258
Deceleration Time 00-24 (Tdec 4) 00-22 (Tdec 3) DC bus voltage 700V 750V Deceleration Deceleration Start (11-38) Stop (11-39) Figure 4.3.92 OVP deceleration time 3) When the inverter is stopped, the deceleration rate can be set with parameter 00-15 (Tdec1). In case the DC voltage is too high, the inverter will decelerate based on the OVP deceleration time as shown in Figure 4.3.92.
Page 259
11-47 KEB Deceleration Time 【0.0~25.5】Sec Range 11-48 KEB Detection Level 230V :【190~210】V Range 400V :【380~420】V KEB function can be used to keep the inverter from tripping on a under voltage condition due to a momentary power-loss. To enable the KEB function set parameter 11-47 to a value greater than 0.0 sec. Upon detection of a power-loss the inverter uses the KEB deceleration time (11-47) to decelerate the motor and using the regenerative energy from the motor to maintain the DC-bus at a nominal level.
Page 260
11-55 STOP Key Selection 【0】: Stop key is disabled when the operation command is not set to operator control Range 【1】: Stop key is enabled when the operation command is not set to operator control This function can be used to enable or disable the stop key on keypad display when 00-02 is set to 1 (external terminal) or 00-02 is set to 3 (communication).
Page 261
11-66 2/3 Phase PWM Switch Frequency 【6.00~60.00】 Range Inverter will modulation mode from 2 phase PWM to 3 phase PWM when the output frequency is higher than the value set in parameter 11-66. 11-67 RPWM Frequency Bias 【0~12000】 Range 11-68 RPWM Switch Frequency 【6.00~60.00】Hz Range...
Page 262
11-72 Switching Frequency 1 of Preventing Oscillation 2 【0.01~300.00】Hz Range 11-73 Switching Frequency 2 of Preventing Oscillation 2 【0.01~300.00】Hz Range Parameters 11-72 and 11-73 define the oscillation prevention mode switching frequencies. 4-197...
Page 263
12 Monitoring Parameters 12-00 Display Screen Selection (LED) 00000~88888 Each digit can be set from 0 to 8 as listed below. 【0】: No display 【1】: Output current 【2】: No display Range 【3】: DC bus voltage 【4】: heatsink temperature 【5】: PID feedback 【6】: AI1 value 【7】: AI2 value 【8】: Counter...
Page 264
12-05 Status display of digital input terminal (LED / LCD) Range Read-only Terminals S1-S6 are represented using two segments of each digit. Segment turns on when input is active. The bottom segments of each of the first three digits are used to represent the digital outputs (R1, R2). Segments turn on when output is active.
Page 266
13-07 Parameter Lock Key Code 【00000~65534】 Range When parameter lock key code is enabled (13- 07>0), all parameters except the main frequency can be modified. Example: Setting parameter lock key number Step 1: ▲ READ/ 1st entry ENTER ▼ DSP/FUN READ/ ENTER Step 2:...
Page 268
13-08=3: 2 Wire Initialization (230V/400V) Multi-function digital input terminal S1 controls forward operation / stop command, and S2 controls reverse operation / stop command. Refer to figure 4.3.1. Inverter input voltage (01-14) is automatically set to 220V (220V class) or 400V (440V class). When 01-00 (V/F curve) = F, 01-02 will automatically set to 50Hz. 13-08=4: 2 Wire Initialization (230V/460V) Multi-function digital input terminal S1 controls forward operation / stop command, and S2 controls reverse operation / stop command.
Page 269
13-10 Parameter Password Function 2 【0~9999】 Range 13-51 Clear Cumulative Operation Hours 【0】: Do not clear Cumulative Operation Hours Range 【1】: Clear Cumulative Operation Hours 4-204...
Page 270
14 PLC Parameters 【0~9999】 Range 14-00 T1 set value 1 14-01 T1 set value 2 (mode 7) 14-02 T2 set value 1 14-03 T2 set value 2 (mode 7) 14-04 T3 set value 1 14-05 T3 set value 2 (mode 7) 14-06 T4 set value 1 14-07...
Page 271
【0~65535】 Range 14-36 MD1 set value 1 14-37 MD1 set value 2 14-38 MD1 set value 3 14-39 MD2 set value 1 14-40 MD2 set value 2 14-41 MD2 set value 3 14-42 MD3 set value 1 14-43 MD3 set value 2 14-44 MD3 set value 3 14-45...
Page 272
15 PLC Monitoring Parameters 【0~9999】 Range 15-00 T1 Current Value1 15-01 T1 Current Value 2 (Mode7) 15-02 T2 Current Value 1 15-03 T2 Current Value 2 (Mode7) 15-04 T3 Current Value 1 15-05 T3 Current Value 2 (Mode7) 15-06 T4 Current Value 1 15-07 T4 Current Value 2 (Mode7) 15-08...
Page 273
16 LCD Function Group Note: LCD Copy Keypad is an optional keypad for remote mounting only. 16-00 Main Screen Monitoring 【5~43】 Range 16-01 Sub-Screen Monitoring 1 【5~43】 Range 16-02 Sub-Screen Monitoring 2 【5~43】 Range At power-up the inverter shows two monitor sections on the display, main monitor section consisting of one monitor (large font) and a sub-screen monitor section consisting of two monitors (smaller font).
Page 274
16-03 Set / displayed contents 0.01 Hz 0.01 % (maximum output frequency 01-02=100%) Frequency display unit is rpm 3- 39 Reserved Set the decimal point by using the fifth place i.e. □ □□□□ Sets full display scaling excluding decimals Set the number of decimal places □□□□...
Page 275
16-05 LCD Backlight 【0~7】 Range Adjust the screen contrast of the digital operator. If set to 0 the screen backlight is turned off. 16-07 Copy Function Selection 【0】: Do not copy parameter 【1】: Read inverter parameters and save to the keypad Range 【2】: Write the keypad parameters to inverter 【3】: Compare parameters of inverter and keypad...
Page 276
READ: Copy inverter parameters to the keypad Steps LCD Display (English) Description Group 14 PLC Setting 15 PLC Monitor Select function group (16) from the group menu. 16 LCD Keypad Func. PARA -07:Copy Sel Press the Read / Enter key and select parameter (16-07) -08:READ Sel copy sel.
Page 277
WRITE: Copy Keypad parameters to the Inverter Steps LCD Display (English) Description Group 14 PLC Setting Select function group (16) from the group menu. 15 PLC Monitor 16 LCD Keypad Func. PARA -07:Copy Sel Press the Read / Enter key and select parameter (16-07) copy -08:READ Sel sel.
Page 278
Verify: Compare Inverter Parameters against Keypad Parameters. Steps LCD Display (English) Description Group 14 PLC Setting Select function group (16) from the group menu. 15 PLC Monitor 16 LCD Keypad Func. PARA -07:Copy Sel Press the Read / Enter key and select parameter (16-07) copy -08:READ Sel sel.
Page 279
17 Automatic Tuning Parameters 17-00 Mode selection of automatic tuning 【0】: Rotational auto-tuning 【1】: Static auto-tuning 【2】: Stator resistance measurement 【3】: Reserved Range 【4】: Loop tuning 【5】: Rotational Auto-tuning Combination (Item: 4+2+0) 【6】: Static Auto-tuning Combination (Item: 4+2+1) 17-01 Motor rated output power 【0.00~600.00】KW Range 17-02...
Page 280
Auto-tuning Based on the motor nameplate set the motor rated output power (17-01), motor output rated current (17-02), motor rated voltage (17-03), motor rated frequency (17-04), motor rated speed (17-05) and number of motor poles (17-06) to perform an auto-tune. Automatic tuning mode selection (17-00=0) Rotational auto-tuning (17-00=0) Perform rotational auto-tune (High performance auto-tune)
Page 281
Motor rated frequency (17-04) Set motor base frequency based on the motor nameplate. Motor rated speed (17-05) Set motor base speed frequency based on the motor nameplate. Number of poles (17-06) Set number of motor poles, range is 2~16 poles. Motor no-load voltage (17-08) Motor no-load voltage is mainly used in SLV mode, set to a value of 10~50V lower than the input voltage to ensure good torque performance at the motor rated frequency.
Page 282
Proportion of Motor Leakage Inductance (17-12) Parameter can only be set when using stator resistance auto tuning (17-00=2). Static non-rotational and rotational type auto tuning automatically measure the proportion of motor leakage inductance so there for this parameter is not active in these tuning modes. Default value is 4%.
Page 283
Example 2: The inverter input voltage and frequency (460V/50Hz) are higher than the motor rated voltage and frequency (380V/33Hz), set 17-03 to 380V (rated motor voltage) and 17-04 to 33Hz (motor rated frequency). Rotational Auto-tuning (17-14) (1) The parameter can only be set when rotational auto-tuning (17-00=0) or rotational auto-tuning combination (17-00=5) is selected.
Page 284
18 Slip Compensation Parameters Slip compensation gain at low speed 18-00 【0.00~2.50 】 Range Slip compensation gain at high speed 18-01 【-1.00~1.00】 Range 18-02 Slip compensation limit 【0~250】% Range 18-03 Slip compensation filter 【0.0~10.0】Sec Range 18-04 Regenerating slip compensation selection 【0】: Disabled Range 【1】: Enabled...
Page 285
Load Torque Larger Load Smaller Load Speed Figure 4.3.99 Slip compensation output frequency 18-01: Slip compensation gain at high speed It is not required to adjust the Slip compensation gain at high speed for a loaded motor. After adjusting parameter 18-00 it is recommended to increase the reference frequency and check the motor speed.
Page 286
18-02: Slip compensation limit Sets slip compensation limit in constant torque and the constant power operation (Figure 4.3.100). If 18-02 is set to 0%, the slip compensation limit is disabled. Slip Compensation Limit 01-02 × 18-02 01-12 18-02 base (01-12) (01-02) Figure 4.3.100 Slip compensation limit When the slip compensation gain 18-00 at low speed is adjusted, and the actual motor speed is still lower than...
Page 287
The impact of 18-00 on the speed and torque are shown in figure 4.3.101 Torque Increase 18-00 Decrease 18-00 Speed Figure 4.3.101 18-00 Effect on the torque and speed 18-05: FOC (Flux Orient Control) delay time (18-05) In the SLV mode, the slip compensation of the magnetic flux depends on the torque current and excitation current. If the motor load rises above 100% while running at the motor rated frequency, the motor voltage and resistance drop sharply, which may cause the inverter output to saturate and current jitter may occur.
Page 288
20 Speed Control Parameters 20-00 ASR gain 1 【0.00~250.00】 Range 20-01 ASR integral time 1 【0.001~10.000】Sec Range 20-02 ASR gain 2 【0.00~250.00】 Range 20-03 ASR integral time 2 【0.001~10.000】Sec Range 20-04 ASR integral time limit 【0~300】% Range 20-07 Selection of acceleration and deceleration of P/PI 【0】: PI speed control will be enabled only in constant speed.
Page 289
Parameter 20-33 is used when 20-07 is set to 0 and frequency command source is set to analog input. A noisy analog input signal might cause a problem where the inverter determines that the operation does not reach its constant speed. Adjust parameter 20-33 according to avoid this situation from occurring. The following diagram is an overview of the automatic speed regulator (ASR) block.
Page 290
ASR Setting (SLV/PMSLV control mode) In SLV mode the ASR gain is divided into a high-speed and low-speed section. The speed controller has a high-speed gain 20-00/20-01 and a low-speed gain 20-02/20-03 that can be set independently. a) The high/low switch frequency can be set with parameter 20-15 and 20-16. Similar to the ASR gain, the speed estimator has a high-speed gain 20-09/20-10 and a low-speed gain 20-11/20-12.
Page 291
SLV mode gain tuning (20-00~20-03, 20-09~20-18) Tune the low-speed ASR P and I gain 20-02 ~ 20-03, make sure the reference frequency is set below the value of parameter 20-15. Tune the high-speed ASR PI gain 20-00~20-01, make sure the reference frequency is above the value set in parameter 20-16 value.
Page 292
18) Use parameter 20-17 to adjust the torque compensation gain for the low speed range. By tuning 20-17 an offset is added to the torque-speed curve. Increase 20-17 when the no-load speed is lower than the frequency reference. Decrease 20-17 when the no-load speed is higher than the frequency reference. The effect on the speed-torque curve from 20-17 is shown in the following figure Torque Decrease 20-17 Increase 20-17...
Page 293
This gain effect is the same as ASR proportional gain (20-00, 20-02). And if this parameter is coupled with low-pass filter time constant (20-35), it can avoid oscillation. It is suggested that the setting value of parameter 20-34 is 30~50. This time constant is used for suppressing the oscillation produced by 20-34.
Page 294
21 Torque Limit Parameters 21-05 Positive torque limit 【0~300】% Range 21-06 Negative torque limit 【0~300】% Range 21-07 Forward regenerating torque limit 【0~300】% Range 21-08 Reversal regenerating torque limit 【0~300】% Range SLV and PMSLV control mode offer four torque limits that can be adjusted independently: Positive torque limit in forward direction (21-05 positive torque limit) Positive torque limit of reverse direction (21-06 negative torque limit) III.
Page 295
22 PM Motor Parameters 22-00 PM Motor Rated Power 【0.00~600.00】kW Range 22-02 PM Motor Rated Current 25%~200% inverter’s rated current Range PM Motor’s Pole Number 22-03 【2~96】Poles Range PM Motor’s Rated Rotation Speed 22-04 【6~65535】rpm Range PM Motor’s Maximum Rotation Speed 22-05 【6~65535】rpm Range...
Page 296
22-06: PM motor rated frequency Set the motor rated frequency according to the motor nameplate. Only one of the two values is required, either PM motor rated speed (22-04) or PM motor rated frequency (22-06), the inverter will automatically calculate the other upon entering the data based on the formula below: 120 x f (PM motor rated frequency (PM motor rated speed) N = P (PM motor pole number)
Page 297
22-16: Q-axis Inductance of PM Motor Set motor’s Q-axis Inductance in increments of 0.001mH. Value is set automatically during motor tuning (22-21). 22-18: Flux-Weakening Limit Sets the flux-weakening limit as a percentage of the motor rated current. If the motor maximum rotation speed (22-05) is set to a value greater than the motor rated rotation speed (22-04) the inverter will automatically enable flux-weakening control.
5. Check motor rotation and direction This test is to be performed solely from the inverter keypad. Apply power to the inverter after all the electrical connections have been made and protective covers have been re-attached. At this point, DO NOT RUN THE MOTOR, the keypad should display as shown below in Fig.
Page 299
LCD Operator (Optional Keypad) Monitor Monitor Fref Ref Fref Ref 12-16=005.00Hz 12-16=005.00Hz 12-17=000.00Hz 12-17=005.00Hz 12-18=0000.0A 12-18=0001.2A Fig 5.1: Keypad (Stopped) Fig 5.2: Keypad (Running) Next press the RUN key, see Fig 5.2. The motor should now be operating at low speed running in forward (clockwise) direction.
6. Speed Reference Command Configuration The inverter offers users several choices to set the speed reference source. The most commonly used methods are described in the next sections. Frequency reference command is selected with parameter 00-05. 00-05: Main Frequency Command (Frequency Source) This function sets the frequency command source.
Page 301
6.2 Reference from External Analog Signal (0-10V / 4-20mA) Analog Reference: 0 – 10 V (Setting 00-05 = 2) S(+) S(-) AGND Common/0V, GND Analog Input AI1 Control Terminals / User Terminals Set jumper JP2 to position 2 & 3 0 –...
Page 302
Analog Reference: 4 – 20mA (Setting 00-05 = 2) AGND S(+) S(-) Common, GND Control Terminals / Analog Input AI2 User Terminals Set jumper JP3 to position 1 & 2 4 – 20mA...
6.3 Reference from Serial Communication RS485 (00-05=5) CON2 8 7 6 5 4 3 2 1 Control board Cable Shield RS485 Port RS485 PLC / Computer Connection To set the speed reference for the inverter via serial communication parameter 00-05 has be set to “5” for frequency command via serial communication.
Page 304
Examples: Frequency Reference Command: 10.00 Hz (Inverter Node Address: 01) Command String (hexadecimal): 01 06 25 02 03 E8 23 B8 To set the frequency reference to 10.00, a value of ‘1000’ (03E8h) has to be send to the inverter. Frequency Reference Command: 30.00 Hz (Inverter Node Address: 01) Command String (hexadecimal): 01 06 25 02 0B B8 24 44 To set the frequency reference to 30.00, a value of ‘3000’...
6.4 Reference from Pulse Input (00-05=7) Serial pulse input (Input resistance : 3.89 K) Specifications Low Input Level:0.0 to 0.5 V High Input Level:4.0 to 13.5 V Duty cycle:(ON / OFF) 30 % to 70% Pulse Input Frequency Range:50 to 25 KHz Set Pulse Input Setup as Frequency Reference Set parameter 00-05 to 7 and 03-02 to 26 to use the pulse input terminal S3 as the frequency reference source.
6.5 Change Frequency Unit from Hz to rpm 12-03 Custom Units (Line Speed) Display Mode 【0~65535】Rpm Range Set motor rated RPM for the inverter to display the actual motor speed based on the output frequency. Motor synchronous speed = 120 x Rated frequency ÷ Number of poles. 12- 04 Custom Units (Line Speed) Display Mode 【0】:Drive Output Frequency is Displayed...
7. Operation Method Configuration (Run / Stop) The inverter offers users several choices to run and stop from different sources. The most commonly used methods are described in the next sections. Operation command is selected with parameter 00-02. 00-02: Run Command Selection This function sets the frequency command source.
7.2 Run/Stop from External Switch / Contact or Pushbutton (00-02=1) Use an external contact or switch to Run and Stop the inverter. Set parameter 00-04 to 0 for 2-wire operation, multi-function input terminal S1 is set to run operation forward command.
Page 309
Momentary Contacts (Push Buttons) Use push button / momentary switch to Run and Stop the inverter. Set parameter 00-04 to 2 for 3-wire operation, multi-function input terminal S1 is set to run operation, S2 for stop operation and S3 for forward/reverse command. 00-02 Run Command Selection = 1 AGND S(+)
7.3 Run/Stop from Serial Communication RS485 (00-02=2) CON2 8 7 6 5 4 3 2 1 Control board Cable Shield RS485 Port RS485 PLC / Computer Connection To control (Run/Stop) the inverter via serial communication parameter 00-02 has be set to a “2” for communication control.
Page 311
Examples: Run Forward Command (Inverter Address: 01) Command String (hexadecimal): 01 06 25 01 00 01 12 C6 Run Reverse Command (Inverter Address: 01) Command String (hexadecimal): 01 06 25 01 00 03 93 07 Stop Command (Inverter Address: 01) Command String (hexadecimal): 01 06 25 01 00 00 D3 06 Note: The last 2 bytes of the command strings consist of a CRC16 checksum, please refer to section 4.5 of the instruction manual for additional information.
8. Motor and Application Specific Settings It is essential that before running the motor, the motor nameplate data matches the motor data in the inverter. 8.1 Set Motor Nameplate Data (02-01, 02-05) 02-05 Motor Rated Power The nominal motor rated capacity is set at the factory. Please verify that the motor name plate data matches the motor rated capacity shown in parameter 02-05.
8.2 Acceleration and Deceleration Time (00-14, 00-15) Acceleration and Deceleration times directly control the system dynamic response. In general, the longer the acceleration and deceleration time, the slower the system response, and the shorter time, the faster the response. An excessive amount of time can result in sluggish system performance while too short of a time may result in system instability.
Page 314
8.3 Torque Boost (V/f Curve Modification) (01-10) This parameter sets the relationship between output frequency and output voltage. Constant torque applications have the same torque requirements at low speed as well as at high speed. Initial Setup For Variable Torque / Normal Duty applications set parameter 01-10 to an initial value of 0.5. For Constant Torque / Heavy Duty applications set parameter 01-10 to an initial value of 1.0.
8.4 Emergency Stop Deceleration time 2 is used in combination with multi-function digital input function #14 (Emergency stop). When rapid stop input is activated the inverter will decelerate to a stop using the Deceleration time 2 (00-17) and display the [E.S.] condition on the keypad. Note: To cancel the emergency stop condition the run command has to be removed and emergency stop input deactivated.
8.5 Forward and Reverse Jog The jog forward command is used in combination with multi-function digital input function #6 (Jog Forward) and the jog reverse command is used in combination with multi-function digital input function #7 (Jog Reverse). Example: Jog Forward input terminal S5 (03-04 = 06) and Jog Reverse input terminal S6 (03-05=7) AGND S(+) S(-)
8.6 Analog Output Setup Signal: Use parameter 04-11 to select the analog output signal for AO. Gain: Use parameter 04-12 to adjust the gain for AO. Adjust the gain so that the analog output (10V) matches 100% of the selected analog output signal (04-11). Use parameter 04-15 to set slope direction. Bias: Use parameter 04-13 to adjust the bias for AO.
9. Using PID Control for Constant Flow / Pressure Applications 9.1 What is PID Control? The PID function in the inverter can be used to maintain a constant process variable such as pressure, flow, temperature by regulating the output frequency (motor speed). A feedback device (transducer) signal is used to compare the actual process variable to a specified setpoint.
Page 319
Example 1: Example 2: Gain = 1.0 Gain = 2.0 Set-Point = 80% Set-Point = 80% Feedback = 78% Feedback = 78% Error = Set-point - Feedback = 2% Error = Set-point - Feedback = 2% Control Error = Gain x Error = 2% Control Error = Gain x Error = 4% Please note that an excessive gain can make the system unstable and oscillation may occur.
Commonly used PID control modes 1: Forward operation: PID operation enabled, motor speeds increases when feedback signal is smaller than set-point (most fan and pump applications) 3: Reverse operation: PID operation enabled, motor slows down when feedback signal is smaller than set-point (e.g.
Feedback Signal 0 – 10V (10-01 = 1) AGND S(+) S(-) Common/0V, GND Analog Control Terminals / Input AI1 User Terminals Set jumper JP2 to position 2 & 3 0 – 10 V 9.3 Engineering Units PID Feedback Display Scaling The PID feedback signal can be scaled to represent actual engineering units.
9.4 Sleep / Wakeup Function The PID Sleep function can be used to prevent a system from running at low speeds and is frequently used in pumping application. The PID Sleep function is turned on setting parameter 10-29 to a value greater than 0. The inverter output turns off when the PID output falls below the PID sleep level (10-17) for the time specified in the PID sleep delay time parameter (10-18).
10. Troubleshooting, Fault Diagnostics and Maintenance 10.1 General Inverter fault detection and early warning / self-diagnosis function. When the inverter detects a fault, a fault message is displayed on the keypad. When the inverter detects a warning / self-diagnostics error, the digital operator will display a warning or self-diagnostic code, the fault output does not energize in this case.
Page 324
LED display Description Cause Possible solutions urrent The inverter output current Set longer acceleration Deceleration time is set too short exceeds the overcurrent level time during deceleration Replace motor. Ground Fault Check motor wiring. The ground fault exceeds ...
Page 325
LED display Description Cause Possible solutions Input phase Phase loss at the input side of Check input wiring. loss Loose wire at inverter input terminal. Fasten wire terminal the inverter or input voltage Momentary power loss. screws.
Page 326
LED display Description Cause Possible solutions Inverter output torque is Over torque Check over torque higher than 08-15 (over detection detection parameters torque detection level) for the (08-15 / 08-16). Load too heavy. Check and reduce motor time specified in 08-16.
Page 327
LED display Description Cause Possible solutions External Modbus communication 0x2501 bit 2= fault 0 Reset Modbus communication External fault (Modbus) "1" 0x2501 bit 2= "1" External fault External fault (Terminal S1) (S1) Active when 03-00= 25, and Inverter external fault selection 08-24=0 or 1.
Page 328
LED display Description Cause Possible solutions Motor control Increase the value of fault 22-10 and 22-23. Perform auto-tune (22-21) Start or Run fault in PMSLV mode. Motor control fault Check if the load is too heavy to raise torque output limit.
Page 329
LED display Description Cause Possible solutions Short circuit or ground fault (08-23 Short Circuit Check motor wiring. Inverter output short circuit = 1). Disconnect motor and try Motor damaged (insulation). or ground fault. running the inverter. Wire damage or deterioration. 10-7...
Page 330
Table 2 Warning/Self-diagnosis and Corrective actions LED display Description Cause Possible solutions Deceleration time set too Increase deceleration time short, resulting in Reduce input voltage to comply DC bus voltage exceeds the OV regenerative energy OV (flash) detection level:...
Page 331
LED display Description Cause Possible solutions OT (flash) Over torque Inverter output torque is higher than Check over torque detection detection 08-15 (over torque detection level) parameters (08-15 / 08-16). Load too heavy. for the time specified in 08-16. Check and reduce motor load, Parameter 08-14 = 0 to activate.
Page 332
LED display Description Cause Possible solutions Voltage setting V/F mode too Motor high, resulting in Check V/f curve. overload Internal motor overload protection over-excitation of the motor. Check motor rated current tripped, active when protection curve Motor rated current (02-01) Check and reduce motor load, 08-05 = xxx1.
Page 333
LED display Description Cause Possible solutions EF1 ( flash ) External fault External fault (Terminal S1) Active when 03-00= 25, and (S1) Inverter external fault selection 08-24=2. EF2 ( flash ) External fault External fault (Terminal S2) (S2) Active when 03-01= 25, and Inverter external fault selection 08-24=2.
Page 334
LED display Description Cause Possible solutions EF9 ( flash ) error of forward/ Forward run and reverse run are Forward run and reverse active within 0.5 sec of each reverse run active (see Check run command wiring rotation other. Stop method set by 2-wire control).
Page 335
LED display Description Cause Possible solutions PID selection 10-00 and10-01 set to 1(AI1) error or set to 2(AI2). Check 10-00 and 10-01 When 23-05=0 and PID selection error. Check 10-33,10-34, 23-05. 10-33 >= 1000 or 10-34≠1. Model selection ...
Page 336
LED display Description Cause Possible solutions Direct start Run command from the warning Remove the run command The inverter can’t start directly, terminal is enabled and from the terminal first, and due to 07-04=1 07-04=1 enabled later. External External Terminal is main run Terminal ...
Page 337
LED display Description Cause Possible solutions Parameter Lock Remove parameter lock, by Parameter lock key code is Inverter parameters locked. entering the correct code in already active (13-07) parameter for 13-07 Set password failed Enter the correct code for Parameter key code entered is To enable the parameter lock the 13-07 to enable the parameter incorrect.
Page 338
Warning Message (LCD display only) LCD display Description Cause Possible solutions Operator Copy Error Inverter data transmission error, Parameters cannot be Check operator and cannot upload the data to uploaded to the operator control connection operator The control mode in the operator Operator Write does not match the inverter.
10.3 General Troubleshooting Status Checking point Remedy Motor wiring correct to inverter output Inverter must be connected to U, V, and W terminal of Motor runs in terminals? the motor. wrong Control wiring correct for forward and direction Check wiring. reverse commands? Wiring for the analog frequency Check wiring.
10.4 Inverter Troubleshooting 10.4.1 Quick troubleshooting of inverter IN V F a u lt Is fa u lt k n o w n ? Y E S S y m p to m s o th e r th a n A n y S y m p to m s b u rn t o r C h e c k b u rn t a n d Y E S...
Page 341
F ro m p re v io u s p a g e C h e c k In v e rte r p a ra m e te rs P e rfo rm p a ra m e te r in itia liz a tio n S p e c ify o p e ra tio n c o n tro l m o d e...
Page 342
10.4.2 Overcurrent and Overload Troubleshooting T h e in v e rte r d is p la y s O C , O L e rro rs A re th e m a in c irc u it IG B T s R e p la c e IG B T s w o rk in g ? Y E S...
Page 343
10.4.3 Overvoltage and Undervoltage Troubleshooting T h e in v e rte r d is p la y s O V , L V Is th e m a in c irc u it fu s e in ta c t? C o n s u lt w ith th e s u p p lie r Y E S A n y v is u a l d a m a g e ?
Page 344
10.4.4 Motor not running T h e m o to r d o e s n o t ru n Is M C C B O n ? C a n M C C B b e tu rn e d O n ? C h e c k w irin g Y E S Y E S...
Page 345
10.4.5 Motor overheating M o t o r O v e r h e a t in g Is lo a d o r c u r r e n t e x c e e d in g C o n s id e r r e d u c in g th e lo a d a n d in c r e a s in g Y E S th e s p e c ifie d v a lu e ? th e s iz e o f th e in v e r te r a n d m o to r...
Page 346
10.4.6 Motor runs unbalanced M o to r ru n s u n b a la n c e d O c c u rs d u rin g Is th e a c c e le ra tio n Y E S In c re a s e th e A c c / D e c tim e a c c e le ra tio n ?
10.5 Routine and periodic inspection To ensure safe and problem free operation, check and maintain the inverter at regular intervals. Use the checklist below as a maintenance guideline. Disconnect power and wait approximately 10 minutes unit charge led is no longer lit to make sure no voltages are present on the output terminals before performing inspection or maintenance.
Page 348
Checking period Items Details Methods Criteria Remedies Daily 1Year Circuit boards and components Check for damage to ◎ PCBs Clean or Printed circuit replace the Check for discolored, board circuit board overheated, or ◎ burned parts Correct Check for unusual ◎...
Page 349
10.6 Maintenance To ensure long-term reliability, follow the instructions below to perform regular inspection. Turn the power off and wait for a minimum of 5 minutes before inspection to avoid potential shock hazard from the charge stored in high-capacity capacitors. To ensure stable and safe inverter operation it is recommended to perform routine inverter maintenance at regular intervals.
11. Accessories 11.1 Options Accessories Model Function Notes JN5-CB-01M 3.14ft (1m) IP20/NEMA1 JN5-CB-02M 6.28ft (2m) Used for remote control purposes with the Digital Operator remote keypad operator (JN5-CU). JN5-CB-03M 9.84ft (3m) Extension cable JN5-CB-05M 16.4ft (5m) JN5-NK-E01 Frame 1 Includes dust cover for top of inverter and JN5-NK-E02 Frame 2 conduit box for bottom of the meet NEMA1.
Page 351
RJ45 to USB Communication Cable (6ft / 1.8m) (JN5-CM-USB) / (JN5-CM-USB for 10ft / 3m cable) The communication cable is used to communicate with the TECO Link software directly to the inverter using the PC USB port. Note: Contact factory for software download link. ...
Page 353
Appendix: UL Instructions Danger Electric Shock Hazard Do not connect or disconnect wiring while the power is on. Failure to comply will result in death or serious injury. Warning Electric Shock Hazard Do not operate equipment with covers removed. Failure to comply could result in death or serious injury. The diagrams in this section may show inverters without covers or safety shields to show details.
Page 354
Warning Fire Hazard Tighten all terminal screws to the specified tightening torque. Loose electrical connections could result in death or serious injury by fire due to overheating of electrical connections. Do not use an improper voltage source. Failure to comply could result in death or serious injury by fire. Verify that the rated voltage of the inverter matches the voltage of the incoming power supply before applying power.
Page 355
UL Standards The UL/cUL mark applies to products in the United States and Canada and it means that UL has performed product testing and evaluation and determined that their stringent standards for product safety have been met. For a product to receive UL certification, all components inside that product must also receive UL certification. ...
Page 356
Horse Power ( HP ) Current ( A ) Voltage ( V ) 1 - 50 5,000 240 / 480 51 - 200 10,000 240 / 480 Inverter Motor Overload Protection Set parameter 02-01 (motor rated current) to the appropriate value to enable motor overload protection. The internal motor overload protection is UL listed and in accordance with the NEC and CEC.
Page 357
■ 08-06 Motor Overload Operation Selection 08-06 Start-up mode of overload protection operation (OL1) 0: Coast-to-Stop After Overload Protection is Activated Range 1: Drive Will Not Trip when Overload Protection is Activated (OL1) 08-06=0: When the inverter detects a motor overload the inverter output is turned off and the OL1 fault message will flash on the keypad.
Page 358
I N V E R T E R E 5 1 0 D i s t r i b u t o r T e c o - We s t i n g h o u s e Mo t o r C o mp a n y 5 1 0 0 N .
Need help?
Do you have a question about the E510-2P5-H-U and is the answer not in the manual?
Questions and answers
What ohm value is needed to connect to the unit for external speed what terminals on the unit needs to connect the speed ****
To connect an external speed potentiometer to the TECO-Westinghouse E510-2P5-H-U unit, use the built-in 10V power supply (Max current: 20mA) and connect it to a potentiometer with an approximate resistance of 5 kΩ to 10 kΩ. The typical connection uses these terminals:
- 10V terminal: Connect to one end of the potentiometer.
- AGND (analog ground): Connect to the other end of the potentiometer.
- AI1/AV1 (analog input): Connect to the wiper (middle terminal) of the potentiometer.
Ensure JP2 is set to the AV1 position for voltage input (0–10V).
This answer is automatically generated