TECO-Westinghouse A510 Instruction Manual

TECO-Westinghouse A510 Instruction Manual

Hide thumbs Also See for A510:
Table of Contents

Advertisement

A 5 1 0
I N S T R U C T I O N MA N U A L
2 3 0 V C l a s s 1 / 3 ~
2 3 0 V C l a s s 3 ~
4 6 0 V C l a s s 3 ~
5 7 5 / 6 9 0 V C l a s s 3 ~
R e a d a l l o p e r a t i n g i n s t r u c t i o n s b e f o r e i n s t a l l i n g ,
c o n n e c t i n g ( w i r i n g ) , o p e r a t i n g , s e r v i c i n g , o r i n s p e c t i n g
t h e i n v e r t e r .
E n s u r e t h a t t h i s ma n u a l i s ma d e a v a i l a b l e t o t h e e n d u s e r o f
t h e i n v e r t e r .
S t o r e t h i s ma n u a l i n a s a f e , c o n v e n i e n t l o c a t i o n .
T T h e ma n u a l i s s u b j e c t t o c h a n g e w i t h o u t p r i o r n o t i c e .
0 . 7 5 - 2 . 2 k W
1 - 3 H P
3 . 7 - 1 1 0 k W
5 - 1 5 0 H P
0 . 7 5 - 3 1 5 k W
1 - 4 2 5 H P
0 . 7 5 - 2 0 0 k W
1 - 2 7 0 H P
I N V E R T E R
D O C U ME N T - T E C O - A 5 1 0 I M
V e r 0 1 : 2 0 1 6 . 1 1

Advertisement

Table of Contents
loading
Need help?

Need help?

Do you have a question about the A510 and is the answer not in the manual?

Questions and answers

Summary of Contents for TECO-Westinghouse A510

  • Page 1 I N V E R T E R A 5 1 0 I N S T R U C T I O N MA N U A L 2 3 0 V C l a s s 1 / 3 ~ 0 .
  • Page 2: Table Of Contents

    **** STATEMENT **** Si Desea descargar el manual en español diríjase a este Link: www.tecowestinghouse.com Table of Contents Preface ................................0-1 1 Safety Precautions ............................ 1-1 1.1 Before Supplying Power to the Inverter ....................1-1 1.2 Wiring ................................ 1-2 1.3 Before Operation ............................1-3 1.4 Parameters Setting ...........................
  • Page 3 3.12 Inverter Wiring ............................3-32 3.13 Input Power and Motor Cable Length ....................3-33 3.14 Cable Length vs, Carrier Frequency..................... 3-33 3.15 Installing an AC Line Reactor ....................... 3-33 3.16 Power Input Wire Size, NFB and MCB Part Numbers ................. 3-34 3.17 Control Circuit Wiring ..........................
  • Page 4 7. Operation Method Configuration (Run / Stop) ..................7-1 7.1 Run / Stop from the Keypad ........................7-1 7.2 Run / Stop from External Switch / Contact or Pushbutton ................ 7-3 7.3 Run / Stop from Serial Communication RS485 ..................7-4 8.
  • Page 5 11. Inverter Peripheral Devices and Option ..................... 11-1 11.1 Braking Resistors and Braking Units ....................11-1 11.2 AC Line Reactors ..........................11-4 11.3 Input Noise Filters ..........................11-4 11.4 Input Current and Fuse Specifications ....................11-4 11.5 PG Speed Feedback Card ........................11-7 11.6 Other Options .............................
  • Page 6: Safety Precautions

    1. Safety Precautions 1.1 Before Supplying Power to the Inverter Warning The main circuit must be correctly wired. For single phase supply use input terminals (R/L1, T/L3) and for three phase supply use input terminals (R/L1, S/L2, T/L3). Terminals U/T1, V/T2, W/T3 must only be used to connect the motor.
  • Page 7: Wiring

    1.2 Wiring Warning  Always turn OFF the power supply before attempting inverter installation and wiring of the user terminals.  Wiring must be performed by a qualified personnel / certified electrician.  Make sure the inverter is properly grounded. (230V Class: Grounding impedance shall be less than 100Ω.
  • Page 8: Before Operation

    1.3 Before Operation Warning  Make sure the inverter capacity matches the parameters 13-00.  Reduce the carrier frequency (parameter 11-01) If the cable from the inverter to the motor is greater than 80 ft (25m). A high-frequency current can be generated by stray capacitance between the cables and result in an overcurrent trip of the inverter, an increase in leakage current, or an inaccurate current readout.
  • Page 9: Operation

    1.5 Operation Warning  Be sure to install all covers before turning on power. Do not remove any of the covers while power to the inverter is on, otherwise electric shock may occur.  Do not connect or disconnect the motor during operation. This will cause the inverter to trip and may cause damage to the inverter.
  • Page 10: Maintenance, Inspection And Replacement

    1.6 Maintenance, Inspection and Replacement Warning  Wait a minimum of five minutes after power has been turned OFF before starting an inspection. Also confirm that the charge light is OFF and that the DC bus voltage has dropped below 25Vdc. ...
  • Page 11: Model Description

    2. Model Description 2.1 Nameplate Data It is essential to verify the A510 inverter nameplate and make sure that the A510 inverter has the correct rating so it can be used in your application with the proper sized AC motor.
  • Page 12: Inverter Models – Motor Power Rating

    2.2 Inverter Models – Motor Power Rating (HD – Heavy Duty) 230V Class Applied Applied Filter Voltage A510 Model Motor Motor with without (KW) (HP) 1ph/3ph, ◎ A510-2001-C-U 0.75 200~240V ◎ A510-2002-C-U +10%/-15% ◎ A510-2003-C-U 50/60Hz ◎ A510-2005-C3-U ◎ A510-2008-C3-U ◎...
  • Page 13 460V Class Applied Applied Filter Voltage A510 Model Motor Motor with without (KW) (HP) ◎ A510-4001-C3-U 0.75 A510-4001-C3F-U 0.75 ◎ ◎ A510-4002-C3-U A510-4002-C3F-U ◎ A510-4003-C3-U ◎ A510-4003-C3F-U ◎ A510-4005-C3-U ◎ ◎ A510-4005-C3F-U A510-4008-C3-U ◎ ◎ A510-4008-C3F-U A510-4010-C3-U ◎ ◎ A510-4010-C3F-U A510-4015-C3-U ◎...
  • Page 14 575/690V Class Applied Filter Applied Voltage A510 Model Motor Motor with without (KW) (HP) A510-5001-C3-U 0.75 ◎ A510-5002-C3-U ◎ 3ph, 575V A510-5003-C3-U ◎ +10%/-15% A510-5005-C3-U ◎ 50/60Hz A510-5008-C3-U ◎ A510-5010-C3-U ◎ A510-6015-C3-U ◎ A510-6020-C3-U ◎ A510-6025-C3-U 18.5 ◎ A510-6030-C3-U ◎...
  • Page 15: Environment And Installation

    3. Environment and Installation 3.1 Environment The environment will directly affect the proper operation and the life span of the inverter. To ensure that the inverter will give maximum service life, please comply with the following environmental conditions: Protection Protection Class IP20/NEMA 1 or IP00 Operating Ambient Temperature: (-10°C - +40°C (14 -104 °F)
  • Page 16: Installation

    Air Flow 150mm 150mm Fig 3.2.1: A510 Installation space X = 1.18” (30mm) for inverter ratings up to 25HP X = 1.96” (50mm) for inverter ratings 30HP or higher Important Note: The inverter heatsink temperature can reach up to 194°F / 90°C during operation; make sure...
  • Page 17: External View

    3.3 External View 230V 1 ~ 5 HP / 460V 1 ~ 7.5 HP / 575V 1 ~ 3HP (Wall-mounted type, IEC IP20) (Wall-mounted type, IEC IP20, NEMA1) 230V 7.5 ~ 25 HP / 460V 10 ~ 30 HP / 575V 5 ~ 10HP / 690V 15 ~ 40 HP (Wall-mounted type, IEC IP20) (Wall-mounted type, IEC IP20, NEMA1)
  • Page 18 230V 30 ~ 40 HP / 460V 40 ~ 60 HP / 690V 50 ~ 75 HP (Wall-mounted type, IEC IP20, NEMA1) 230V 50 ~ 100 HP / 460V 75 ~ 215 HP / 690V 100 ~ 270 HP (Wall-mounted type, IEC IP00) (Wall-mounted type, IEC IP20, NEMA1)
  • Page 19: Warning Labels

    230V 125 ~ 150 HP / 460V 250 ~ 425 HP (Wall-mounted type, IEC IP00) (Wall-mounted type, IEC IP20, NEMA1) 3.4 Warning Labels Important: Warning information located on the front cover must be read upon installation of the inverter. (a) 230V: 1-7.5HP / 460V: 1-7.5HP /575V 1~ 3 HP (b) 230V: 10HP / 460V: 10-20HP /575V 5~10HP (c) 230V: 15-150HP / 460V: 20(F)-425HP/690V 15~270HP...
  • Page 20: Removing The Front Cover And Keypad

    3.5 Removing the Front Cover and Keypad Caution  Before making any wiring connections to the inverter the front cover needs to be removed.  It is not required to remove the digital operator before making any wiring connections.  Models 230V, 1 –...
  • Page 21 Step 3: Make wire connections and place cover back Step 4: Fasten screw 230V: 10 ~ 25 HP / 460V: 10 ~ 30 HP / 575V: 5 ~ 10 HP / 690V: 15 ~ 40 HP Step 1: Unscrew cover Step 2: Remove cover...
  • Page 22 Step 3: Make wire connections and place cover back Step 4: Fasten screw 230V: 30 ~ 40 HP / 460V: 40 ~ 75 HP / 690V: 50 ~ 75 HP (Chassis Type) Step 1: Unscrew cover Step 2: Remove cover...
  • Page 23 Step 3: Make wire connections and place cover back Step 4: Fasten screw 230V: 50 ~ 100 HP / 460V: 75 ~ 215 HP / 690V: 100 ~ 270 HP (Chassis Type) Step 1: Unscrew cover Step 2: Remove cover...
  • Page 24 Step 3: Make wire connections and place cover back Step 4: Fasten screw 230V: 125 ~ 150 HP / 460V: 270 ~ 425 HP (Chassis Type) Step 1: Unscrew cover Step 2: Remove cover 3-10...
  • Page 25 Step 3: Make wire connections and place cover back Step 4: Fasten screw 3-11...
  • Page 26: Built-In Filter Type (460V 1 ~60Hp)

    3.5.2 Built-in filter type (460V: 1 ~ 60 HP) Step 1: Unscrew cover Step 2: Remove cover Step 3: Unscrew filter section Step 4: Remove filter cover Step 5: Make connections and place filter cover back Step 6: Fasten screw 3-12...
  • Page 27 3.6 Wiring Gauges and Tightening Torque To comply with UL standards, use UL approved copper wires (rated 75° C) and round crimp terminals (UL Listed products) as shown in table below when connecting to the main circuit terminals. TECO recommends using crimp terminals manufactured by NICHIFU Terminal Industry Co., Ltd and the terminal crimping tool recommended by the manufacturer for crimping terminals and the insulating sleeve.
  • Page 28: Wiring Peripheral Power Devices

    3.7 Wiring Peripheral Power Devices Caution  After power is shut off to the inverter the capacitors will slowly discharge. Do NOT touch and of the inverter circuitry or replace any components until the “CHARGE” indicator is off.  Do NOT wire or connect/disconnect internal connectors of the inverter when the inverter is powered up or when powered off and the “CHARGE””...
  • Page 29  To protect peripheral equipment, install fast acting fuses in accordance with the specifications in section 11 for peripheral devices. Input Noise filter: A510  A filter must be installed when there are inductive loads affecting the Inverter inverter. The inverter meets EN55011 Class A, category C3 when the TECO special filter is used.
  • Page 30: General Wiring Diagram

    SOURCE PNP Digital Inputs Multi-Step Speed Ref. 3 Section Note 1 SINK NPN (DEFAULT) Fault Reset Jog Command A510 Option Card (PG) External base block Factory Default 24V Power terminal for digital signal (source) (R1A) Multi-Function 24VG Digital signal common (sink)
  • Page 31: User Terminals

    3.9 User Terminals (Control Circuit Terminals) 230V: 1 ~ 2 HP, 460V: 1 ~ 3HP 24VG 24V +10V GND R1A R1B R1C DO1 DOG AO1 AO2 RJ45 230V: 3 ~ 150 HP, 460V: 5 ~ 425HP, 575V:1~10HP, 690V:15~270HP S(+) S(-) 24V +10V GND -10V R1A R1B R1C R2A R2C...
  • Page 32 Description of User Terminals Type Terminal terminal function Signal level / Information Forward rotation─ stop command (default), multi-function input terminals * 1 Reversal rotation- stop command (default), multi-function input terminals * 1 UP command(default), multi-function input Signal Level 24 VDC terminals * 1 (opto isolated) Digital...
  • Page 33 Type Terminal terminal function Signal level / Information Pulse output, Band width 32KHz, only above Max. Frequency: 32KHz Pulse 230V 3HP/ 460V 5HP (include) support this Open Collector output output (Load: 2.2kΩ) terminal function. signal Analog signals ground terminal ---- L: from 0.0 to 0.5V H: from 4.0 to 13.2V Max.
  • Page 34 Caution  Maximum output current capacity for terminal 10V is 20mA.  Maximum output current capacity for terminal -10V is 20mA.  Multi-function analog output AO1 and AO2 are for use for an analog output meter. Do not use these output for feedback control. ...
  • Page 35: Power Terminals

    3.10 Power Terminals 230V: 1 ~ 25HP 230V: 30 ~ 150HP 460V: 1 ~ 40HP Terminal 460V: 50 ~ 425HP 575V: 1 ~ 10HP 690V: 50 ~ 270HP 690V: 15 ~ 40HP R/L1 S/L2 Input Power Supply (For single phase use terminals R/L1 and S/L2) T/L3 B1/P ...
  • Page 36 575V: 5 ~ 10HP Terminal screw size B1/P B1/R Dynamic Brake To Motor Power In CHARGE 460V: 20HP (Frame 3) Terminal screw size B1/P B2 230V: 15~25HP, 460V: 20 ~ 30HP, 690V: 15~40HP Terminal screw size B1/P B2 460V: 40HP Terminal screw size B1/P B2 3-22...
  • Page 37 230V: 30 ~40HP, 460V: 50 ~ 75HP Terminal screw size 690V: 50~75HP ‧ Terminal screw size ‧ T ‧ ‧ M6 ‧ M6 230V: 50~60HP, 460V: 100HP Terminal screw size Power supply 460V 75HP 230V 50-60HP/ 460V 100HP 3-23...
  • Page 38 690V: 100~150HP Power supply 690V 100~150HP 460V : 125HP Terminal screw size 3-24...
  • Page 39 230V: 75~100HP, 460V: 150~215HP, 690V: 175~270HP Terminal screw size 230V: 125~150HP, 460V: 270~425HP Terminal screw size Note: For wire gauges and screw torques, please refer to the table in section 3.6. 3-25...
  • Page 40 3.11 Input / Output Power Section Block Diagram The following diagrams 1 - 8 show the basic configuration of the power sections for the range of horsepower and input voltages. This is shown for reference only and is not a detailed depiction. 1: 230V: 1 HP / 460V: 1 ~ 2 HP B1/P L1/R...
  • Page 41 3: 230V: 30 ~ 40 HP / 460V: 40 ~ 60 HP L1/R U/T1 L2/S V/T2 L3/T W/T3 Control DC /DC Circuit Converter Cooling Fan Main Power Section 4: 230V: 50 ~ 60 HP / 460V: 75 ~ 100 HP DC Link L1/R Reactor...
  • Page 42 5: 230V: 75 ~ 100 HP DC Link L1/R Reactor U/T1 L2/S V/T2 L3/T W/T3 Control DC /DC Circuit Converter AC/DC Cooling Fan Main Power Section 6: 460V: 125 ~ 215 HP DC Link L1/R Reactor U/T1 L2/S V/T2 L3/T W/T3 Control DC /DC...
  • Page 43 7: 230V: 125 ~ 150 HP DC Link L1/R Reactor U/T1 L2/S V/T2 L3/T W/T3 Control DC /DC Circuit Converter AC/DC Cooling Fan Main Power Section 8: 460V: 250 ~ 425 HP DC Link L1/R Reactor U/T1 L2/S V/T2 L3/T W/T3 Control DC /DC...
  • Page 44 3.11.1 Cooling Fan Supply Voltage Selection (460V class) The inverter input voltage range of the A510 460V class models ranges from 380 to 480Vac. In these models the cooling fan is directly powered from the power supply. Inverter models A510-4125/ 4150/ 4175/ 4215/ 4250/ 4300/ 4375/ 4425-C3-U requires the user to select the correct jumper position based on the inverter input voltage ("460V"...
  • Page 45 (3) 690V:175HP ~ 270HP 3-31...
  • Page 46: Inverter Wiring

    Always use a ground wire that complies with the local codes and standards for electrical equipment and minimize the length of ground wire. When using more than one inverter, be careful not to loop the ground wire, as shown below in Fig. 3.12.1. A510 A510 A510...
  • Page 47: Input Power And Motor Cable Length

    3.13 Input Power and Motor Cable Length The length of the cables between the input power source and /or the motor and inverter can cause a significant phase to phase voltage reduction due to the voltage drop across the cables. The wire size shown in Tables 3.16.1 is based on a maximum voltage drop of 2%.
  • Page 48: Power Input Wire Size, Nfb And Mcb Part Numbers

    The following table shows the recommended wire size, molded case circuit breakers and magnetic contactors for each of the A510 models. It depends on the application whether or not to install a circuit breaker. The NFB must be installed between the input power supply and the inverter input (R/L1, S/L2, T/L3).
  • Page 49 A510 Model wire diameter (mm Rated horse Grounding Rated current Main Control Power power line circuit line (HP) E(G) HD/ND 125HP 180/208 TO-400S(300A) CN-300 0.5~2 150HP 216/250 TO-400S(300A) CN-300 0.5~2 175HP 260/296 TO-400S(400A) CN-300 0.5~2 215HP 295/328 TO-400S(400A) CN-300 0.5~2 0.5~2...
  • Page 50 *1: Constant torque rating *2: The main circuit terminals R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, B1/P, B2, P, N *3: Control line is the terminal wire on the control board. *4: The NFB and MCB listed in the table are of TECO product numbers, products with same rated specification of other brands may be used.
  • Page 51: Control Circuit Wiring

    Fig. 3.17.2 below. Relay Coil 50 mA max. DO1, DO2 + 48V max. Free-wheeling diode (100V, > 100mA) A510 Fig. 3.17.2 Photo-Coupler Connected to an External Relay 3-37...
  • Page 52 In Section 3.8 the control boards referenced have a jumper SW3 that can select the digital input to terminals  -  to be set for SINK or SOURCE. The following Fig. 3.17.3 (a.) – (d.) shows examples for the various SINK / Source interfaces. Sink Configuration +24V Source...
  • Page 53: Inverter Specifications

    3.18 Inverter Specification Basic Specifications 230V class Inverter capacity (HP) Rated output Capacity (KVA) 12.6 17.9 22.9 27.8 Heavy Duty type Rated output current (A) 17.5 H.D. (150%/1min) Maximum applicable motor *1HP (KW) (0.75) (1.5) (2.2) (3.7) (5.5) (7.5) (11) (15) (18.5) Rated output Capacity (KVA)
  • Page 54 Basic Specifications 460V class Inverter capacity (HP) Rated output Capacity (KVA) 11.3 13.7 18.3 23.6 29.7 34.3 Heavy Duty type Rated output current (A) 14.8 H.D. (150%/1min) Maximum applicable motor *1HP (KW) (0.75) (1.5) (2.2) (5.5) (7.5) (11) (15) (18.5) (22) Rated output Capacity (KVA) 13.3...
  • Page 55 Inverter capacity (HP) Rated Output capacity (KVA) Heavy Duty type Rated output current (A) H.D. Maximum applicable motor *1HP (150%/1min) (KW) (185) (220) (280) (315) Rated Output capacity (KVA) Normal Duty type Rated output current (A) N.D. Maximum applicable motor *1HP (120%/1min) (KW) (200)
  • Page 56 *2: A510 model is designed to use in heavy duty conditions, the factory setting is the HD (Heavy Duty type) mode. *3: The overload capacity of A510 model HD (Heavy Duty) is 150% / 1min, 200% / 2sec. See the table below for the carrier frequency default setting and range.
  • Page 57 The following table shows maximum output frequency for each control mode. Duty Cycle Control mode Other settings Maximum output frequency maximum frequency 599 Hz V/F + PG set to 599 Hz 230V 1~10HP, 460V 1~15HP 150Hz 230V 15~25HP, 460V 20HP 110Hz 460V 25~30HP 100Hz...
  • Page 58: General Specifications

    3.19 General Specifications Operation mode LCD keypad with parameter copy function (Optional Seven-segment display * 5 + LED keypad) Control mode V/F, V/F+PG, SLV, SV, PMSV, PMSLV with space vector PWM mode Frequency control range 0.1Hz ~ 599 Hz Frequency accuracy Digital references: ±0.01%(-10 to +40°C) Analog references: ±0.1% (25°C ±10°C ) (Temperature change)
  • Page 59 Location Indoor (protected from corrosive gases and dust). -10~+40°C (14°F~104°F) (IP20/NEMA1), -10~+50°C (14°F~122°F) (IP00) ) without de-rating; Ambient temperature with de-rating, its maximum operation temperature is 60°C (140°F) Storage temperature -20~+70°C (-4°F~+158°F) Humidity 95%RH or less ( no condensation ) Altitude and vibration Altitude of 1000m (3181ft) or below,.5.9m/s2(0.6G) Communication function...
  • Page 60: Inverter Derating Based On Carrier Frequency

    3.20 Inverter Derating Based on Carrier Frequency 230V Models 1 - 20 HP 25 HP Iout Iout 80% of HD 80% of HD 0 2kHz 8kHz 16kHz 0 2kHz 6kHz 12kHz 30 – 40 HP 50 - 100 HP Iout Iout 80% of HD 80% of HD...
  • Page 61 460V Models 1 - 30 HP 40 - 50 HP Iout Iout 60% of HD 80% of HD 0 2kHz 8kHz 16kHz 0 2kHz 5kHz 12kHz 60 – 175 HP 125 - 150 HP Iout Iout 70% of HD 0 2kHz 5kHz 10kHz 2kHz...
  • Page 62 425 HP Iout 90% of HD 2kHz 5kHz 575/690V Models 575V 1 - 10 HP 575/690V 15 - 30 HP Iout I o u t 80% of HD 8 3 % o f H D 0 2kHz 8kHz 16kHz 0 2 k H z 5 k H z 8 k H z 575/690V 40 - 60 HP...
  • Page 63: Inverter Derating Based On Temperature

    575/690V 100 - 150 HP 575/690V 175 - 270 HP Iout Iout 70% of HD 70% of HD 0 2kHz 3kHz 6kHz 0 1.5kHz 2kHz 4kHz 3.21 Inverter Derating Based on Temperature Iout 60% of ND 60% of HD Temperature 40°C 60°C 3-49...
  • Page 64: Inverter Dimensions

    3.22 Inverter Dimensions (a) 230V: 1 – 7.5HP / 460V: 1 - 7.5HP/ 575V:1-3HP (IP20/NEMA1) Dimensions in mm (inch) Inverter Model Net Weight in kg (lbs) A510-2001-C (5.12) (8.46) (5.91) (4.65) (7.99) (0.20) (4.9) A510-2002-C (5.12) (8.46) (5.91 (4.65) (7.99) (0.20)
  • Page 65 230V: 10 - 25HP / 460V: 10 - 30HP / 575V: 5~10HP / 690V: 15~40HP (IP20/NEMA1) Dimensions in mm (inch) Inverter Model Net Weight in kg (lbs) A510-2010-C3-U (8.27) (11.81) (8.46) (7.56) (11.26) (0.06) (13.67) A510-2015-C3-U (10.43) (14.17) (8.86) (9.65) (13.39)
  • Page 66 Dimensions in mm (inch) Inverter Model Net Weight in kg (lbs) A510-5010-C3-U (8.27) (11.81) (8.46) (7.56) (11.26) (0.06) (13.67) A510-6015-C3-U (10.43) (14.17) (8.86) (9.65) (13.39) (0.06) (22.05) A510-6020-C3-U (10.43) (14.17) (8.86) (9.65) (13.39) (0.06) (22.05) A510-6025-C3-U (10.43) (14.17) (8.86) (9.65) (13.39)
  • Page 67 230V: 30 - 40HP / 460V: 40 - 75HP / 690V 50~75HP (IP20/NEMA1) Dimensions in mm (inch) Inverter Model Net Weight in kg (lbs) 286.5 A510-2030-C3-U (11.29) (20.67) (9.92) (8.66) (19.88) (0.13) (66.14) 286.5 A510-2040-C3-U (11.29) (20.67) (9.92) (8.66) (19.88) (0.13)
  • Page 68 230V: 50 - 100HP / 460V: 100 - 215HP / 690V: 100~270HP (IP00) Dimensions in mm (inch) Inverter Model Net Weight in kg (lbs) 46.7 A510-2050-C3-U (13.54) (22.83) (11.81) (9.84) (22.05) (0.06) (102.96) 46.7 A510-2060-C3-U (13.54) (22.83) (11.81) (9.84) (22.05) (0.06)
  • Page 69 324.5 A510-4215-C3-U (18.07) (31.10) (12.78) (12.60) (29.92) (0.06) (194.01) 46.7 A510-6100-C3-U (13.54) (22.83) (11.81) (9.84) (22.05) (0.06) (102.96) 46.7 A510-6125-C3-U (13.54) (22.83) (11.81) (9.84) (22.05) (0.06) (102.96) 46.7 A510-6150-C3-U (13.54) (22.83) (11.81) (9.84) (22.05) (0.06) (102.96) 324.5 A510-6175-C3-U (18.07) (31.10) (12.78)
  • Page 70 Dimensions in mm (inch) Inverter Model Net Weight in kg (lbs) 348.5 49.7 A510-2050-C3-U (13.72) (29.13) (11.81) (9.84) (22.05) (0.06) (109.57) 348.5 49.7 A510-2060-C3-U (13.72) (29.13) (11.81) (9.84) (22.05) (0.06) (109.57) 463.5 1105 324.5 94.4 A510-2075-C3-U (18.25) (43.50) (12.78) (12.60) (29.92)
  • Page 71 230V: 125 - 150HP / 460V: 270 - 425HP (IP00) Dimensions in mm (inch) Inverter Model Net Weight in kg (lbs) 1000 A510-2125-C3-U (27.17) (39.37) (16.14) (20.87) (10.43) (37.80) (0.08) (405.65) 1000 A510-2150-C3-U (27.17) (39.37) (16.14) (20.87) (10.43) (37.80) (0.08) (405.65)
  • Page 72 230V: 125 - 150HP / 460V: 270 - 425HP (IP20/NEMA1) Dimensions in mm (inch) Inverter Model Net Weight in kg (lbs) 1313 A510-2125-C3-U (27.24) (51.69) (16.14) (20.87) (10.43) (37.80) (0.08) (432.11) 1313 A510-2150-C3-U (27.24) (51.69) (16.14) (20.87) (10.43) (37.80) (0.08) (432.11)
  • Page 73: Dimensions For Models With Built-In Filter

    3.23 Dimensions for Models with Built-in Filter (a) 460V: 1 - 7.5HP Dimensions in mm (inch) Inverter Model Net Weight in kg (lbs) A510-4001-C3F-U (5.12) (12.05) (5.91) (4.65) (7.99) (8.46) (7.71) A510-4002-C3F-U (5.12) (12.05) (5.91) (4.65) (7.99) (8.46) (7.71) A510-4003-C3F-U (5.12)
  • Page 74 460V: 10 - 30HP Dimensions in mm (inch) Inverter Model Net Weight in kg (lbs) 416.5 A510-4010-C3F-U (8.27) (16.40) (8.46) (7.56) (11.26) (11.81) (0.06) (17.63) 416.5 A510-4015-C3F-U (8.27) (16.40) (8.46) (7.56) (11.26) (11.81) (0.06) (17.63) 12.5 A510-4020-C3F-U (10.43) (19.69) (8.86) (9.65)
  • Page 75 460V: 40 - 60HP Dimensions in mm (inch) Inverter Model Net Weight in kg (lbs) 286.5 32.5 A510-4040-C3F-U (11.28) (26.73) (9.92) (8.66) (19.88) (20.67) (0.13) (71.65) 286.5 32.5 A510-4050-C3F-U (11.28) (26.73) (9.92) (8.66) (19.88) (20.67 (0.13) (71.65) 286.5 32.5 A510-4060-C3F-U (11.28)
  • Page 76: Keypad And Programming Functions

    4. Keypad and Programming Functions 4.1 LCD Keypad 4.1.1 Keypad Display and Keys Reverse Direction External Sequence Forward Direction Status Indicator Indicator Status Indicator External Reference Fault Status Indicator Indicator LCD Display Monitor Fref Ref 12-16=005.00Hz 12-17=000.00Hz 12-18=0000.0A 8 button Run Status Membrane Keypad Indicator...
  • Page 77 KEYS (8) Description RUN Inverter in Local Mode STOP STOP Inverter ▲ Parameter navigation Up, Increase parameter or reference value ▼ Parameter navigation down, decrease parameter or reference value FWD/REV Used to switch between Forward and Reverse direction Used to scroll to next screen DSP/FUN Frequency screen Function selectionMonitor parameter Selects active seven segment digit for editing with the ▲▼...
  • Page 78: Keypad Menu Structure

    4.1.2 Keypad Menu Structure Main Menu The A510 inverter main menu consists of two main groups (modes). The DSP/FUN key is used to switch between the monitor mode and the parameter group mode. Power On Power-up Monitor Mode Parameter Group Mode...
  • Page 79 Monitor Mode In monitor mode inverter signals can be monitored such as output frequency, output current and output voltage, etc…) as well as fault information and fault trace. See Fig 4.1.2.2 for keypad navigation. Power ON Group Monitor 00 Basic Func. Freq Ref 12-16=005.00Hz 01 V/F Pattern.
  • Page 80 Programming Mode In programming mode inverter parameters can be read or changed. See Fig 4.1.2.3 for keypad navigation. Power ON Monitor Freq Ref 12-16=005.00Hz 12-17=000.00Hz 12-18=0000.0A Parameter Parameter Parameter Group Edit Mode Group Mode Selection Mode READ READ ENTER Edit 00-00 ENTER Group...
  • Page 81 Auto-tuning Mode In the auto-tuning mode motor parameters can be calculated and set automatically based on the selected control mode. See Fig 4.1.2.4 for keypad navigation. Group 17 Auto-tuning 18 Slip Compen 19 Traverse Func. READ ENTER Press ▲ or ▼ key to change the value. READ Edit 17-00...
  • Page 82 Notes: 1. Use the up and down keys to scroll though the auto-tuning parameter list. Depending on the selected control mode in parameter 00-00, part of auto-tuning parameters will not be accessible. (Refer to the Auto-tuning Group 17 parameters). 2. After entering the motor nameplate rated output power (17-01), rated current (17-02), rated voltage (17-03), rated frequency (17-04), rated speed (17-05) and number of motor poles (17-06), select the automatic tuning mode and press the RUN key to perform the auto-tuning operation.
  • Page 83: Led Keypad

    4.2 LED Keypad 4.2.1 Keypad Display and Keys Reverse Direction External Sequence Forward Direction Status Indicator Indicator Status Indicator External Reference Fault Status Indicator Indicator 5 Digit, 7 Segment LED Display 8 button Run Status Membrane Keypad Indicator Stop Status Indicator DISPLAY Description...
  • Page 84 KEYS (8) Description RUN Inverter in Local Mode STOP STOP Inverter ▲ Parameter navigation Up, Increase parameter or reference value ▼ Parameter navigation down, decrease parameter or reference value FWD/REV Used to switch between Forward and Reverse direction Used to scroll to next screen DSP/FUN Frequency screen Function selectionMonitor parameter Selects active seven segment digit for editing with the ▲▼...
  • Page 85: Parameters

    PLC Parameters * Group15 PLC Monitoring Parameters * Group16 LCD Parameters Group17 Automatic Tuning Parameters Group18 Slip Compensation Parameters Group19 Wobble Frequency Parameters Group20 Speed Control Parameters Group21 Torque And Position Control Parameters Group22 PM Motor Parameters *A510 software A1.X version 4-10...
  • Page 86 Group 00: Basic Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 0: V/F 1: V/F+PG 2: SLV Control Mode 00-00 3: SV Selection 4: PMSV 5: PMSLV 6: SLV2 Motor’s Rotation 0: Forward 00-01 1: Reverse Direction 0: Keypad...
  • Page 87 Group 00: Basic Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 5: Reserved 6: Reserved 7: AI2 Auxiliary Frequency Main and 0: Main Frequency Alternative 00-07 Frequency 1: Main frequency + Command Modes Alternative Frequency Communication Frequency 0.00~599.00...
  • Page 88 Group 00: Basic Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Acc/Dec Time 1 and Time 4 Emergency Stop 0.1~6000.0 00-26 Time 0: HD (Heavy Duty HD/ND Mode Mode) 00-27 Selection *** 1: ND (Normal Duty Mode) 0: Positive Characteristic (0~10V/4~20mA is...
  • Page 89 Group 00: Basic Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 00-47 User parameter 6 00-47 00-48 User parameter 7 00-48 00-49 User parameter 8 00-49 00-50 User parameter 9 00-50 00-51 User parameter 10 00-51 Set 13-06 = 1, start user 00-52 User parameter 11...
  • Page 90 Group 01: V/F Control Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 V/F Curve 01-00 0~FF Selection 01-01 Reserved Maximum Output Frequency of 01-02 5.0~599.0 60.0 Motor 1 230V: 0.1~255.0 220.0 Maximum Output 460V: 0.2~510.0 440.0 Voltage of Motor 01-03...
  • Page 91 Group 01: V/F Control Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Compensation Mode Base Frequency 01-12 5.0~599.0 60.0 of Motor 1 230V: 0.0~255.0 220.0 Base Output 460V: 0.0~510.0 440.0 Voltage of 01-13 575V: 0.0~670.0 575.0 Motor 1 690V: 0.0~804.0...
  • Page 92 Group 01: V/F Control Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Motor 2 575V: 0.0~670.0 575.0 690V: 0.0~804.0 690.0 V/F Curve 01-26 Selection of 0~FF Motor 2 *: Refer to the attachment 1. Group 02: IM Motor Parameters Control mode Code Parameter Name...
  • Page 93 Group 02: IM Motor Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Core loss of 02-13 0.0~15.0 Motor 1 02-14 Reserved Resistance Ω 02-15 between Wires of 0.001~60.000 Motor 1 02-16 02-17 Reserved 02-18 230V: 50~240 460V: 100~480 No-Load Voltage...
  • Page 94 Group 03: External Digital Input and Output Parameters Control mode Code Parameter Name Setting Range Default Unit SLV SV SLV2 Attribute 0: 2-Wire Sequence (ON: Forward Run Multi-Function Command). Terminal 1: 2-Wire Sequence 03-00 (ON: Reverse Run Function Command). Setting-S1 2: Multi-Speed/Position Setting Command 1 3: Multi-Speed/Position...
  • Page 95 Group 03: External Digital Input and Output Parameters Control mode Code Parameter Name Setting Range Default Unit SLV SV SLV2 Attribute 26: 3-Wire Sequence (Forward/Reverse command). 27: Local/ Remote Selection 28: Remote Mode Selection 29: Jog Frequency Selection 30: Acceleration/ Deceleration Time Selection 2 31: Inverter Overheating...
  • Page 96 Group 03: External Digital Input and Output Parameters Control mode Code Parameter Name Setting Range Default Unit SLV SV SLV2 Attribute Mode (Stop Command) 54: Reserved 55: Reserved 56: Reserved 57: Reserved 58: Safety Function 59: Reserved 60: Reserved 61: Reserved 62: EPS Function (S1~S8) DI Scan 0: Scan Time 4ms...
  • Page 97 Group 03: External Digital Input and Output Parameters Control mode Code Parameter Name Setting Range Default Unit SLV SV SLV2 Attribute 14: Mechanical Braking Control (03-17~18) 15: Reserved 16: Reserved 17: Reserved 18: PLC status 19: PLC Control Contact 20: Zero Speed 21: Inverter Ready 22: Under Voltage Detection...
  • Page 98 Group 03: External Digital Input and Output Parameters Control mode Code Parameter Name Setting Range Default Unit SLV SV SLV2 Attribute 44: Reserved 45: PID sleep 46: Reserved 47: Reserved 48: Reserved 49: Reserved 50: Frequency Detection 3 (> 03-44+03-45) 51: Frequency Detection 4 (<...
  • Page 99 Group 03: External Digital Input and Output Parameters Control mode Code Parameter Name Setting Range Default Unit SLV SV SLV2 Attribute from last set frequency when stopped 3: Refresh frequency at acceleration. Range and definition are Photo-coupler the same as those of 03-28 Output 03-11, 03-12...
  • Page 100 Group 03: External Digital Input and Output Parameters Control mode Code Parameter Name Setting Range Default Unit SLV SV SLV2 Attribute Selection Deceleration Time 2 Frequency 03-44 0.0~599.0 Detection Level 2 Frequency 03-45 0.1~25.5 Detection Width 2 Frequency 03-46 0.0~599.0 Detection Level 3 Frequency 03-47...
  • Page 101 Group 04: External Analog Input and Output Parameter Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 8: Frequency Lower Limit 9: Jump Frequency 4 10: Added to AI1 11: Positive torque limit 12: Negative torque limit 13: Regenerative Torque Limit 14: Positive / Negative...
  • Page 102 Group 04: External Analog Input and Output Parameter Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 22: PID Output 23: PID Target Value 24: PID Feedback Value 25: Output Frequency of the Soft Starter 26: PG Feedback 27: Reserved 28: Communication control...
  • Page 103 Group 05: Multi-Speed Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 *Frequency Setting 05-07 0.00~599.00 50.00 of Speed-Stage 6 *Frequency Setting 05-08 0.00~599.00 50.00 of Speed-Stage 7 *Frequency Setting 05-09 0.00~599.00 5.00 of Speed-Stage 8 *Frequency Setting 05-10 0.00~599.00...
  • Page 104 Group 05: Multi-Speed Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Acceleration Time Setting of Multi 05-27 0.1~6000.0 10.0 Speed 5 Deceleration Time Setting of Multi 05-28 0.1~6000.0 10.0 Speed 5 Acceleration Time Setting of Multi 05-29 0.1~6000.0 10.0...
  • Page 105 Group 05: Multi-Speed Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Deceleration Time Setting of Multi 05-44 0.1~6000.0 10.0 Speed 13 Acceleration Time Setting of Multi 05-45 0.1~6000.0 10.0 Speed 14 Deceleration Time Setting of Multi 05-46 0.1~6000.0 10.0...
  • Page 106 Group 06: Automatic Program Operation Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 0: Disable 1: Execute a single cycle operation mode. Restart speed is based on the previous stopped speed. 2: Execute continuous cycle operation mode.
  • Page 107 Group 06: Automatic Program Operation Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 *Frequency Setting 06-04 of Operation-Stage 0.00~599.00 30.00 *Frequency Setting 06-05 of Operation-Stage 0.00~599.00 40.00 *Frequency Setting 06-06 of Operation-Stage 0.00~599.00 50.00 *Frequency Setting 06-07 of Operation-Stage...
  • Page 108 Group 06: Automatic Program Operation Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Operation Time Setting of 06-19 0.0~6000.0 Speed-Stage 3 Operation Time Setting of 06-20 0.0~6000.0 Speed-Stage 4 Operation Time Setting of 06-21 0.0~6000.0 Speed-Stage 5 Operation Time...
  • Page 109 Group 06: Automatic Program Operation Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Operation 0: Stop 1: Forward Direction Selection 06-36 2: Reverse of Speed-Stage 4 Operation 0: Stop 1: Forward Direction Selection 06-37 2: Reverse of Speed-Stage 5 Operation...
  • Page 110 Group 07: Start /Stop Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Momentary Power 0: Disable Loss/Fault Restart 07-00 1: Enable Selection Fault Auto-Restart 07-01 0~7200 Time Number of Fault Auto-Restart 07-02 0~10 Attempts 07-03 Reserved 0: When the external run...
  • Page 111 Group 07: Start /Stop Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Direction-Detection Speed Search 07-19 0~100 Operating Current Speed Search 07-20 0~100 Operating Current Integral Time of 07-21 0.1~10.0 Speed Searching Delay Time of 07-22 0.0~20.0 Speed Searching...
  • Page 112 Group 08: Protection Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 xxx0b: Stall prevention is enabled in acceleration. xxx1b: Stall prevention is disabled in acceleration. xx0xb: Stall prevention is enabled in deceleration. xx1xb: Stall prevention is disabled in deceleration.
  • Page 113 Group 08: Protection Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Overload x0xxb: Standard Motor x1xxb: Inverter Duty Motor 0xxxb: Reserved 1xxxb: Reserved 0: Stop Output after Start-up Mode of Overload Protection Overload 08-06 1: Continuous Operation Protection after Overload...
  • Page 114 Group 08: Protection Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 0: Low-Torque Detection is Disabled. 1: Start to Detect when Selection of Reaching the Set Low-Torque 08-17 Frequency. Detection 2: Start to Detect when the Operation is Begun.
  • Page 115 Group 08: Protection Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 0: Disable 1: Deceleration to Stop Motor Overheat 08-35 Fault Selection 2: Free Run to top 3: Continue Running Input Filter 08-36 0.00 ~ 10.00 0.20 Time Constant 0: Start in operation...
  • Page 116 Group 09: Communication Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 2: 4800 3: 9600 4: 19200 5: 38400 0: 1 Stop Bit 09-03 Stop Bit Selection 1: 2 Stop Bit 0: No Parity 09-04 Parity Selection 1: Even Bit 2: Odd Bit...
  • Page 117 Group 10: PID Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 1: AI1 given 2: AI2 given 3: PI given PID Target Value 4:10-02 given 10-00 Source Setting 5: Reserved 6: Frequency Command (00-05) 1: AI1 given PID Feedback Value Source...
  • Page 118 Group 10: PID Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Delay Time of PID 10-18 0.0~255.5 Sleep *Frequency of PID 10-19 0.00~599.00 0.00 Waking up Delay Time of PID 10-20 0.0~255.5 Waking up 10-21 Reserved 10-22...
  • Page 119 Group 10: PID Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 14: m/s 15: MPM 16: CMM 17: W 18: KW 19: m 20: °C 21: RPM 22: Bar 23: Pa 10-36 Reserved 10-38 *Output Frequency Setting 10-39...
  • Page 120 Group 11: Auxiliary Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Setting at the Stop of Acceleration S-curve Time Setting at the Start 0.00~2.50 11-06 0.20 of Deceleration S-curve Time Setting at the 0.00~2.50 11-07 0.20 Stop of...
  • Page 121 Group 11: Auxiliary Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Variable Carrier Frequency Max. 2~16 11-30 Limit Variable Carrier Frequency Min. 1~16 11-31 Limit Variable Carrier Frequency 00~99 11-32 Proportional Gain DC Voltage Filter 11-33 0.1~10.0 Rise Amount...
  • Page 122 Group 11: Auxiliary Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Frequency Hold 11-46 0.0~10.0 Time at Stop KEB Deceleration 11-47 0.0~25.5 Time 230V: 190~210 460V: 380~420 KEB Detection 11-48 Level 575V: 540~570 690V: 540~684 11-49 Zero-servo Gain 0~50 11-50 Zero-servo Count...
  • Page 123 Group 11: Auxiliary Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Preventing Oscillation Time Parameter of 11-61 Preventing 0~100 Oscillation Selection of 0: Mode1 11-62 Preventing 1: Mode2 Oscillation 0: Disable Strong Magnetic 11-63 Selection 1: Enable Acceleration...
  • Page 124 Group 12: Monitoring Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 0: xxxxx (no unit) PID Feedback Display Unit 1: xxxPb (pressure) 12-02 Setting (LED) 2: xxxFL (flow) Line Speed 1500/ 12-03 0~65535 Display (LED) 1800 0: Display Inverter Output Frequency...
  • Page 125 Group 12: Monitoring Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Output Current of Display the output current 12-11 Current Fault of current fault Output Voltage of Display the output voltage 12-12 Current Fault of current fault Output Frequency Display the output...
  • Page 126 Group 12: Monitoring Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Display the current Al2 input 12-26 AI2 Input (0V or 4mA corresponds to 0%, 10V or 20mA corresponds to 100%) Display the current torque command 12-27 Motor Torque (100% corresponds to...
  • Page 127 Group 12: Monitoring Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 (100% corresponds to the maximum frequency set by 01-02 or 01-16) Display the feedback value of the PID controller 12-39 PID Feedback (100% corresponds to the maximum frequency set by 01-02 or 01-16) 12-40...
  • Page 128 12-77 Reserved Z-Phase Bias 12-78 -9999~9999 Pulse Value Pulse Input 12-79 0.0~100.0 Percentage *: Refer to the following attachment 1 ** A510 230V 50HP (and the above) and 460V 100HP (and the above) don’t support heatsink temperature display function. 4-53...
  • Page 129 Group 13: Maintenance Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Inverter Capacity 13-00 ---- Selection 13-01 Software Version 0.00-9.99 0: Disable to Clear Cumulative Operation Clear Cumulative 13-02 Hours Operation Hours 1: Clear Cumulative Operation Hours Cumulative 0~23...
  • Page 130 10: 3 wire Initialization (60Hz) (220/440V) Others: Reserved 0: No Clearing Fault Fault History History Clearance 13-09 Function 1: Clear Fault History Parameter 13-10 Password 0 ~ 9999 Function 2 13-11 C/B CPLD Ver. 0.00~9.99 0.00 13-12 Option Card Id 0~255 13-13 Option Card Ver.
  • Page 131 Group 14: PLC Setting Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 14-16 C1 Set Value 0~65535 14-17 C2 Set Value 0~65535 14-18 C3 Set Value 0~65535 14-19 C4 Set Value 0~65535 14-20 C5 Set Value 0~65535 14-21 C6 Set Value 0~65535...
  • Page 132 Group 15: PLC Monitoring Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 15-00 T1 Current Value1 0~9999 T1 Current Value 2 15-01 0~9999 (Mode7) 15-02 T2 Current Value 1 0~9999 T2 Current Value 2 15-03 0~9999 (Mode7)
  • Page 133 Group 16: LCD Function Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute V/F+ SLV SV SLV2 5~79 when using LCD to Main Screen operate, the monitored 16-00 Monitoring item displays in the first line. (default is frequency command) 5~79 when using LCD to...
  • Page 134 Group 16: LCD Function Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute V/F+ SLV SV SLV2 2: CFM 3: PSI 4: GPH 5: GPM 6: IN 7: FT 8: /s 9: /m 10: /h 11: °F 12: inW 13: HP 14: m/s 15: MPM...
  • Page 135 Group 17: Automatic Tuning Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute V/F+ SLV SV SLV2 0: Rotation Auto-tuning 1: Static Auto-tuning 2: Stator Resistance Measurement VF:2 3: Reserved VF+PG Mode Selection of 4: Loop Tuning 17-00 Automatic Tuning* SLV:6 5: Rotation Auto-tuning...
  • Page 136 8: Motor’s acceleration error 9: Warning Proportion of 17-12 Motor Leakage 0.1~15.0 Inductance Motor Slip 17-13 0.10~20.00 1.00 Frequency Selection of 0:VF Rotation Auto-tuning 17-14 Rotation 1: Vector Rotation Auto-tuning Auto-tuning KVA: The default value of this parameter will be changed by different capacities of inverter. *: The default value is 1 in VF/ VF+PG mode while the default value is 0 in SLV/ SV/ SLV2 mode.
  • Page 137 Group 18: Slip Compensation Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute V/F+ SLV SV SLV2 Slip VF:0.0 Compensation 18-00 0.00~2.50 Gain at Low SLV* Speed. Slip Compensation 18-01 -1.00~1.00 Gain at High Speed. Slip Compensation 18-02 0~250 Limit Slip...
  • Page 138 Group 20: Speed Control Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute V/F+P SLV SV SLV2 20-00 ASR Gain 1 0.00~250.00 ASR Integral Time 0.001~10.000 20-01 20-02 ASR Gain 2 0.00~250.00 ASR Integral Time 0.001~10.000 20-03 ASR Integral Time 0~300 20-04 Limit...
  • Page 139 Group 20: Speed Control Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute V/F+P SLV SV SLV2 0: Deceleration to stop Over Speed (OS) 1: Coast to stop 20-19 Selection 2: Continue to operate Over Speed (OS) 0~120 20-20 Detection Level Over Speed (OS)
  • Page 140 Group 21: Torque And Position Control Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute V/F+P SLV SV SLV2 0: Speed Control Torque Control 21-00 Selection 1: Torque Control Filter Time of 0~1000 21-01 Torque Reference 0: According to AI Input 1: According to the Set Value of 21-03 Speed Limit...
  • Page 141 Group 21: Torque And Position Control Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute V/F+P SLV SV SLV2 The Command of the Pulse Number 21-17 -9999 ~ 9999 of Section 3 The Command of Rotation Cycle 21-18 -9999 ~ 9999 Number of Section The Command of...
  • Page 142 Group 21: Torque And Position Control Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute V/F+P SLV SV SLV2 The Command of Rotation Cycle 21-32 -9999 ~ 9999 Number of Section The Command of the Pulse Number 21-33 -9999 ~ 9999 of Section 11 The Command of...
  • Page 143 Group 22: PM Motor Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute V/F+P SLV SV SLV2 PM Motor Rated 22-00 0.00~600.00 Power 22-01 Reserved 25%~200% inverter’s PM Motor Rated 22-02 Current rated current PM Motor ‘s Pole 22-03 2~96 poles X...
  • Page 144 Group 22: PM Motor Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute V/F+P SLV SV SLV2 22-19 Reserved Offset Angle of the 22-20 Magnetic Pole and 0~360 PG Origin 0: PM Motor Tuning is not Active. 1: Parameter Auto-tune 22-21 PM Motor Tuning 2: Magnetic Pole Alignment and Loop...
  • Page 145 Attachment 1: Parameters’ default value and upper limit value are adjusted by different capacities of inverter. The initial value of Max. frequency Max. frequency Display parameter 18-00 in (Hz) in SLV (Hz) in SLV when parameter Models Frame SLV/ SV (Slip when carrier carrier frequency 12-41 (Inverter...
  • Page 146 The initial The initial value of The initial value (V) of The initial Max. carrier parameters value (s) of Default Max. carrier in parameter value (s) in HD kHz Models 21-05 parameter carrier in HD HD kHz 08-02(Stall of Accel. (SLV, Max.
  • Page 147 230V Models 01-09 01-07 01-23 01-21 11-59 11-60 Minimum Middle Output Minimum Middle Output Gain of Upper Limit of Model Output Voltage Voltage 1 of Output Voltage Voltage 1 of Preventing Preventing 1 of Motor 1 Motor 1 1 of Motor 2 Motor 2 Oscillation Oscillation...
  • Page 148 460V Models 01-09 01-07 01-23 01-21 11-59 11-60 Minimum Middle Output Minimum Middle Output Gain of Upper Limit of Model Output Voltage Voltage 1 of Output Voltage Voltage 1 of Preventing Preventing 1 of Motor 1 Motor 1 1 of Motor 2 Motor 2 Oscillation Oscillation...
  • Page 149 575/690V Models The initial value of Max. frequency Max. frequency Display parameter parameter 18-00 in (Hz) in SLV for (Hz) in SLV for Model Frame 12-41 (Inverter SLV/ SV carrier frequency carrier frequency temperature) (Slip compensation at <= 8K > 8K low speed) 5001 5002...
  • Page 150 The initial value of The initial value The initial Max. carrier in parameters (s) of parameter value (s) of Default carrier Models HD kHz 21-05 ~21-08 20-08 (ASR Accel. & in HD kHz (others) (Torque Limit) Filter Time) Decel 5001 5002 200% 0.002...
  • Page 151: Description Of Parameters

    4.4 Description of Parameters 00-00 Control mode selection 0: V/F 1: V/F+PG 2: SLV Range 3: SV 4: PMSV 5: PMSLV 6: SLV2 The inverter offers the following control modes: Value Mode Info Application General Purpose Applications which do V/F Control without PG not require high precision speed control - Auto-tuning is not required.
  • Page 152 00-00=2: Sensorless Vector Control Verify the inverter rating matches the motor rating. Perform rotational auto-tune to measure and store motor parameters for higher performance operation. Perform non-rotational auto-tune if it’s not possible to rotate the motor during auto-tune. Refer to parameter group 17 for details on auto-tuning. 00-00=3: Closed Loop Vector Control Verify the inverter rating matches the motor rating.
  • Page 153 00-02=0: Keypad Control Use the keypad to start and stop the inverter and set direction with the forward / reverse key). Refer to section 4-1 for details on the keypad. 00-02=1: External terminal control External terminals are used to start and stop the inverter and select motor direction. 00- 03 Alternative RUN Command Selection 0: Keypad control...
  • Page 154 Note: Terminal S1 must be closed for a minimum of 50ms to activate operation. Operation (normally open Momentary switch) Run Command (On:Run) Stop (Normally closed Momentary Stop Command switch) (Off: Stop) S7 Forward/Reverse selection 24VG Figure 4.4.2 wiring example of 3-wire >= 50ms Run Command Time...
  • Page 155 Forward Run Command (On: Run Forward) Reverse Run Command Momentary switches (On: Run Reverse) (Push buttons) S5 Stop (On: Stop) 24VG Note: Terminal S1, S2 and S5 must be closed for a minimum of 50ms to activate operation. Note: The inverter will display SE2 error when input terminals S1-S8 is set to 53 and 26 simultaneously. >50 ms Forward Command...
  • Page 156 00- 04 Language English Simplified Chinese Range Traditional Chinese Turkish It is required to be with LCD keypad to display the language selection of parameter 00-04. 00-04=0, LCD keypad displays in English. 00-04=1, LCD keypad displays in Simplified Chinese. 00-04=2, LCD keypad displays in Traditional Chinese. 00-04=3, LCD keypad displays in Turkish.
  • Page 157 +10V Main Speed Frequency Reference 2KΩ Command (Voltage Input) Main Speed Frequency Reference Command (Current Input) -10V Figure 4.4.4 Analog input as main frequency reference command 00-05/00-06= 2: Terminal UP / DOWN The inverter accelerates with the UP command closed and decelerates with the DOWN command closed. Please refer to parameter 03-00 ~ 03-07 for additional information.
  • Page 158 00-05/00-06= 7: AI2 Auxiliary Frequency When 04-05 is set to 0 (auxiliary frequency), frequency command is provided by multi-function analog input AI2 and the maximum output frequency (01-02, Fmax) = 100%. When 04-05 is not set to 0, the frequency is 0. Refer to p4-76 for multi-speed descriptions. 00- 07 Main and Alternative Frequency Command modes 0: Main frequency...
  • Page 159 Communication frequency command – READ ONLY 00- 08 Range 0.00~599.00 Hz Display the frequency reference when 00-05 or 00-06 is set to communication control (3). Communication frequency command memory 00-09 0: Don’t save when power supply is off. (00-08) Range 1: Save when power is off.
  • Page 160 Output Frequency 100% 00-12 00-13 Frequency Reference 100% Figure 4.4.6 Frequency reference upper and lower limits 4-85...
  • Page 161 00-14 Acceleration time 1 Range 0.1~6000.0 Sec 00-15 Deceleration time 1 Range 0.1~6000.0 Sec 00-16 Acceleration time 2 Range 0.1~6000.0 Sec 00-17 Deceleration time 2 Range 0.1~6000.0 Sec 00-21 Acceleration time 3 Range 0.1~6000.0 Sec 00-22 Deceleration time 3 Range 0.1~6000.0 Sec 00-23 Acceleration time 4...
  • Page 162 Acceleration / Deceleration Size Default Value 1~3HP 575V series 5~10HP 15~40HP 690V series 50~535HP A: Select acceleration and deceleration time via the digital input terminals The following table shows the acceleration / deceleration selected when the digital input function Accel/ Decel time 1 (#10) and Accel/Decel time 2 1(#30) are used.
  • Page 163 B. Switch of Acceleration/Deceleration time based on motor selection 03-00~03-07 set to 40 (Switching between motor 1/motor 2) allows for switching between motor 1 and motor 2 via a digital input. This function is only available in V/F control mode and V/F +PG mode. Motor1, acceleration and deceleration time of multi-speed depends on Figure 4.4.1.
  • Page 164 Motor 1: Maximum frequency is set by parameter 01-02 and Motor 2 Maximum frequency is set by parameter 01-16. When run command selection is external terminal control (00-02=1) and the inverter uses the jog frequency (00-18, default 6.0 Hz) as its frequency reference with 03-00~03-07=6 or 7(6: Forward jog run command 7: Reverse jog run command).The motor will run by the setting.
  • Page 165 00-27 HD/ND selection 0: HD (Heavy Duty / Constant Torque) Range 1: ND (Normal Duty / Variable Torque) The inverter overload curve, carrier frequency, stalls prevention level, rated input/output current and maximum frequency are automatically set based on the inverter duty (HD/ND) selection. Please refer to table 4.4.2 for detailed information.
  • Page 166 00- 28 Command characteristic selection of master frequency 0: Positive characteristic (0-10V / 4-20mA = 0 -100%) Range 1: Negative / inverse characteristic (0-10V / 4~20mA = 100 - 0%) 00-28= 0: Positive reference curve, 0 – 10V / 4 – 20mA = 0 – 100% main frequency reference. 00-28= 1: Negative reference curve, 0 –...
  • Page 167 Figure 4.4.11 Zero-speed operation of sensor vector (SV) and PM vector (PMSV) mode DC injection braking activates when the run command is removed and output frequency falls below the DC injection braking start frequency (07-06). DC injection braking will be active for the time set in parameter 07-08 DC injection braking execution time.
  • Page 168 00-32 Application Selection ** 0: General 1: Water supply pump 2: Conveyor 3: Exhaust fan Range 4: HVAC 5: Compressor 6: Hoist- * Consult TECO for the settings 7: Crane- * Consult TECO for the settings Note: Before to set up 00-32 Application, it should do initialized setting (parameter 13-08) first. When setting 00-32, the I/O port function changed automatically.
  • Page 169 00-32=2: Conveyor Parameter Name Value 00-00 Control mode selection 0: V/F 00-14 Acceleration time 1 3.0 sec 00-15 Deceleration time 1 3.0 sec 00-27 HD/ND selection 0: HD 08-00 Stall prevention function xx0xb: Stall prevention during deceleration 00-32=3: Exhaust fan Parameter Name Value...
  • Page 170 00-32=6: Hoist* Consult TECO for the detailed settings Parameter Name Value 00-00 Control mode selection 2: SLV 00-05 Main Frequency command source selection 0: keypad 11-43 Hold Frequency at start 3.0 Hz 11-44 Frequency hold Time at start 0.3 sec 00-14 Acceleration time 1 3.0 sec...
  • Page 171 00-32=7: Crane* Consult TECO for the detailed settings Parameter Name Value 00-00 Control mode selection 0: V/F 00-05 Main Frequency Command Source Selection 0: keypad 00-14 Acceleration time 1 3.0 sec 00-15 Deceleration time 1 3.0 sec 00-27 HD/ND Mode selection 0: HD 11-01 Carrier frequency...
  • Page 172 Example: Set 00-03 (modify alternative run command source selection). Steps LCD Display Descriptions Group 00 Basic Func. The starting parameter group (00) in the setting modes of ▲ (Up)/ 01 V/F Pattern ▼ (Down) selection groups. 02 Motor Parameter PARA -01.
  • Page 173 User parameter setting (00-41 to 00-56) (only for LCD keypad) 00- 41 User parameter 0 00- 42 User parameter 1 00- 43 User parameter 2 00- 44 User parameter 3 00- 45 User parameter 4 00- 46 User parameter 5 00- 47 User parameter 6 00- 48...
  • Page 174 Example 1: Set 03-00 (Multi-function terminal Function Setting-S1) to user parameter 0 (00-41) Steps LCD Display Descriptions Group 00 Basic Func. 01 V/F Pattern Select the start parameter group (00) in the advanced modes. 02 Motor Parameter PARA -41. User P0 Press (READ/ ENTER) key and ▲...
  • Page 175 Example 2: After one or more parameters in 00-41 ~ 00-56 are set, user parameters settings are as follows. Step LCD Display Descriptions Group 13 Driver Status Select the start parameter group (03) in the advanced modes. 14 PLC Setting 15 PLC Monitor PARA Press (READ/ ENTER) and ▲...
  • Page 176 Step LCD Display Descriptions Press (READ/ ENTER) key to enter the screen of data setting/ read. Edit 00-41 *The selected setting value will flash. S1 Function Sel 2-Wire (FWD-RUN) In this example, 03-00 (Multi-function terminal Function Setting-S1) (00~57) has been defined as user parameters (00-41). The right bottom <...
  • Page 177 Note: User level (13-06=1) can be set by one or more parameters in the user parameters of 00-41 ~ 00-56. [Main Screen] [Main Menu] [Subdirectory] [READ/ ENTER] READ ENTER PARA Monitor Group Freq Ref -00 KVA Sel 12 – 16 = 000 . 00Hz 13 Driver Status -01 S/W Version 1 ----------------------------------...
  • Page 178 01-V/F Control Parameters 01-00 V/F curve selection Range 0~FF The V/F curve selection is enabled for V/F mode with or without PG or SLV2 mode. Make sure to set the inverter input voltage parameter 01-14. There are three ways to set V/F curve: (1) 01-00 = 0 to E: choose any of the 15 predefined curves (0 to E).
  • Page 179 Table 4.4.3: 1 - 2HP V/F curve selection Type Specification 01-00 V/F curve Type Specification 01-00 V/F curve Starting Torque 50Hz 50Hz 16.8 High 16.1 15.4 Starting (Hz) (Hz) 0 1.3 Torque 1.3 2.5 60Hz Starting Saturation Torque (Def. 60Hz Val.) 16.8 (1),(F)
  • Page 180 Type Specification 01-00 setting V/F curve 599Hz (00-31 = 1 ) 57.5 (Hz) 0 100 *1. Values shown are for 200V class inverters; double values for 400V class inverters. 4-105...
  • Page 181 Table 4.4.4: 3 - 30HP V/F curve selection Type Specification 01-00 V/F curve Type Specification 01-00 V/F curve Starting Torque 50Hz 50Hz 15.9 High 15.3 Starting 14.6 Torque (Hz) (Hz) 0 1.3 1.3 2.5 60Hz Saturati Starting (Def. Torque Val.) 60Hz 60Hz 15.9...
  • Page 182 Type Specification 01-00 setting V/F curve 599Hz (Set 00-31 to 1 ) 57.5 (Hz) 0 100 *1. Values shown are for 200V class inverters; double values for 400V class inverters. 4-107...
  • Page 183 Table 4.4.5 40HP and above V/F curve selection Type Specification 01-00 V/F curve Type Specification 01-00 V/F curve Starting Torque 50Hz 50Hz High 16.7 16.0 Starting 15.6 Torque (Hz) 0 1.3 (Hz) 1.3 2.5 60Hz Starting Saturation (Def. Torque Val.) 60Hz 60Hz 16.7...
  • Page 184 01-02 Maximum output frequency of motor 1 Range 5.0~599.0 Hz 01-03 Maximum output voltage of motor 1 200V: 0.1~255.0 V 400V: 0.2~510.0 V Range 575V: 0.1~670.0 V 690V: 0.1~804.0 V 01-04 Middle output frequency 2 of motor 1 Range 0.0~599.0 Hz 01-05 Middle output voltage 2 of motor 1 200V: 0.0~255.0 V...
  • Page 185 V/F curve setting (01-02~01-09 and 01-12~01-13) Select any of the predefined V/F curves setting ‘0’ to ‘E’ that best matches your application and the load characteristic of your motor, choose a custom curve setting ‘F’ or ‘FF’ to set a custom curve. Important: Improper V/F curve selection can result in low motor torque or increased current due to excitation.
  • Page 186 When setting the frequency related parameters for a custom V/F curve values make sure that: > F > F > >F base mid2 mid1 (01-02) (01-12) (01-04) (01-06) (01-08) The ‘SE03’ V/F curve tuning error is displayed when the frequency values are set incorrectly. When 01-04 and 01-05 (or 01-18 and 01-19) are set to 0, the inverter ignores the set values of Fmin2 and Vmin2.
  • Page 187 01-10 Torque compensation gain Range 0.0~2.0 In V/F or V/F + PG and SLV2 mode the inverter automatically adjusts the output voltage to adjust the output torque during start or during load changes based on the calculated loss of motor voltage. Torque compensation gain (01-10) can adjust in the running time.
  • Page 188 the increasing frequency. When the speed is at 0~120Hz, the compensation amount is the same as that in Torque compensation mode 0. 01-14 Input voltage setting 200V: 155.0~255.0 V 400V: 310.0~510.0 V Range 575V: 540.0~670.0 V 690V: 648.0~804.0 V The minimum input voltage of inverter is 0.1V. Set the inverter input voltage (E.g.
  • Page 189 Range 0.0~599.0 Hz 01- 21 Middle output voltage 1 of motor 2 200V: 0.0~255.0 V 400V: 0.0~510.0 V Range 575V: 0.0~670.0 V 690V: 0.0~804.0 V 01- 22 Minimum output frequency of motor 2 Range 0.0~599.0 Hz 01-23 Minimum output voltage of motor 2 200V: 0.0~255.0 V 400V: 0.0~510.0 V Range...
  • Page 190 02-06 Rated frequency of motor 1 Range 5.0~599.0 Hz+ 02-07 Pole of motor 1 Range 2~16 02-09 Excitation current of motor 1 <1> Range 15.0~70.0 % 02-10 Core saturation coefficient 1 of motor 1 <1> Range 1~100 % 02-11 Core saturation coefficient 2 of motor 1 <1>...
  • Page 191 02-19 No-Load Voltage of motor 1 200V: 50~240 V 400V: 100~480 V Range 575V: 420~600 V 690V: 504~720 V Motor parameters are automatically set when performing an auto-tune (17-10=1). In most case no adjustment is required after performing an auto-tune except when using the inverter in special applications (e.g. machine tool, positioning, etc…).
  • Page 192 These parameters are automatically set during auto-tune. No adjustment required. Parameters are set to 50% for 02-10, 75% for 02-11 and 137.5% for 02-12 to reduce the impact of core saturation. The motor core’s saturation coefficient is defined as a percentage of the motor excitation current. When the motor flux reaches 137.5% level, the core’s saturation coefficient shall be greater than 137.5%.
  • Page 193 02-22 Rated rotation speed of motor 2 Range 0~ 60000 rpm 02- 23 Rated voltage of motor 2 200V: 50.0~240.0 V 400V: 100.0~480.0 V Range 575V: 150.0~670.0 V 690V: 200.0~804.0 V 02- 24 Rated power of motor 2 Range 0.01~600.00 kW 02-25 Rated frequency of motor 2 Range...
  • Page 194  1800 1700   Slip Rated speed in the nameplate is 1700 rpm, then Adjusting motor slip will change the rotor resistance parameter. The motor slip is adjusted depending on the motor performance. 02-37 Motor Mechanical Loss Range 0.0~10.0 % Range of mechanical loss is 0.0~10.0% and is only active in speed mode with speed command being 0.
  • Page 195 03- External Digital Input and Output Parameters Multi-function terminal function setting – S1 03-00 Multi-function terminal function setting – S2 03-01 Multi-function terminal function setting – S3 03-02 Multi-function terminal function setting – S4 03-03 Multi-function terminal function setting – S5 03-04 Multi-function terminal function setting –...
  • Page 196 41: PID Sleep 42: PG disable 43: PG integral reset 44: Mode switching between speed and torque 45: Negative torque command 46: Zero-Servo Command 47: Fire Mode (Forced Operation mode) 48: KEB acceleration 49: Parameter writing allowable 50: Unattended Start Protection (USP) 51: Mode switching between speed and position 52: Multi Position Reference Enable 53: 2-Wire Self Holding Mode (Stop Command)
  • Page 197 Table 4.4.6 Multi-function digital input setting (03-00 to 03-07) (“O”: Enable, “X”: Disable) Function Control mode Value Description V/F V/F+P Name LCD Display SLV SV 2-wire type 2-Wire 2- wire (ON : Forward operation (Forward (FWD-RUN) command). operation) 2-wire type 2-Wire 2- wire (ON : Reverse operation (Reverse...
  • Page 198 Function Control mode Value Description V/F+P Name LCD Display SLV SV PID integral reset PID I-Reset ON: PID integral value reset Reserved Reserved Reserved Reserved Reserved Reserved PLC input PLC Input ON: Digital PLC input External fault Ext. Fault ON: External fault alarm 3-wire control (forward/reverse command).
  • Page 199 Function Control mode Value Description V/F+P Name LCD Display SLV SV Lower Deviation of ON: Lower offset off frequency Lower Dev Run traverse operation wobbling Switching between motor Motor 2 Switch ON: Start motor 2 1/motor 2 PID Sleep PID Sleep ON: PID Sleep PG disabled PG disabled...
  • Page 200 Function Control mode Value Description V/F+P Name LCD Display SLV SV EPS function EPS Input ON:EPS input 03-0X =00: 2-wire control: forward operation 03-0X =01: 2-wire control: reverse operation. Refer to the 2-wire operation mode in Figure 4.4.1. 03-0X =02: Multi-speed/position setting command 1. 03-0X =03: Multi-speed/position setting command 2.
  • Page 201 Table 4.4.7 Multi-speed operation selection Multi-function digital input (S1 to S8) Speed Frequency selection Multi-speed Multi-speed Multi-speed Multi-speed frequency frequency 4 frequency 3 frequency 2 frequency 1 reference Frequency command 0( 05-01) or main speed frequency Auxiliary speed frequency (04-05 = 0) or frequency reference 1 ( 05-02) *3 Frequency command 2 ( 05-03) Frequency command 3 ( 05-04)
  • Page 202 Wiring Example: Figure 4.4.17 and 4.4.18 show an example of a 9-speed operation selection. S1 Forward Run / Stop (03-00 = 0) S2 Reverse Run / Stop (03-01 = 1) S3 External Fault (03-02 = 25) S4 Fault Reset (03-03 = 17) S5 Multi-Step Speed Ref 1 (03-04=2) S6 Multi-Step Speed Ref 2 (03-05=3) S7 Multi-Step Speed Ref 3 (03-06=4)
  • Page 203 03-0X =06: Forward jog run command, uses jog frequency parameter 00-18. Note:  Jog command has a higher priority than other frequency reference commands.  Jog command uses stop mode set in parameter 07-09 when Jog command is active > 500ms. 03-0X =07: Reverse jog run command, uses jog frequency parameter 00-18.
  • Page 204 Power Supply Forward Command Down Command ( 00 - 12) Output Frequency ( 00 - 13 ) Hold Hold Figure 4.4.20 Up / Down command timing diagram UP / DOWN Command Operation When the Forward Run command is active and the UP or Down command is momentarily activated the inverter will accelerate the motor up to the lower limit of the frequency reference (00-13).
  • Page 205 the frequency reference value is saved even when powering down the inverter. Refer to Figure 4.4.21. for an example. Power Supply Forward Inhibit ACC / DEC Command Frequency Fref 1 Reference Fref Fref 1 Output Fref Frequency Hold Hold Figure 4.4.21 Inhibit acceleration / deceleration command operation 03-0X =12: Main/ Alternative Run Switch Function When function terminals conduct, run command source is set in alternative run command (00-03).
  • Page 206 During acceleration: When an external base block command is activated, the keypad displays "BBn BaseBlock (Sn)", indicating the inverter output is turned off (n indicates the digital input number 1 – 8). Upon removing the base block signal, the motor will run at the frequency reference. If speed seach from frequency reference is active the inverter output frequency starts from the frequency reference and searches for the coasting motor speed and continue to operate.
  • Page 207 03-0X =21: PID integral reset 03-0X =24: PLC Input It is required to be with the software of Drive Link. PLC software program conducts the ladder diagram editing. When the signal output conducts, it will be transmitted to the inverter to be active. 03-0X =25: External fault Activating the external fault input will turn off the inverter output and the motor will coast to a stop.
  • Page 208 03-0X =28: Remote mode selection Switch between terminal source and communication (RS-422/RS-485) source for frequency reference and operation command. In Remote mode, indicators of SEQ and REF are on; you can use terminals AI1 and AI2 to control the frequency command, and use terminals S1, S2 or communication terminal RS-485 to control the operation command.
  • Page 209 03-0X =32: Sync command Selects between frequency reference source from pulse input or frequency reference source selected by parameter 00-05. Refer to page 4-116 for more information. Input Ref. Source Frequency Reference / Run/Stop Command Source Pulse Input - Frequency reference set by pulse input Parameter 00-05 - Frequency reference source selected by parameter 00-05 Note: - Function is disabled when the Local/Remote selection (25) or Remote mode selection (26) is active.
  • Page 210 03-0X =41: PID Sleep Set parameter 10-29 to 2 (active by DI) and refer to the descriptions of parameters 10-17~10-20. 03-0X =42: PG disable When input is active PG feedback is disabled and speed control is set to V/F control. 03-0X =43: PG integral reset When input is active, reset PG speed control integral accumulator.
  • Page 211 03-0X =50: Unattended Start Protection (USP) When input is active prevents inverter from starting automatically when a run command is present at time of power-up. Please refer to Figure 4.4.24a for more details. Power Supply Run Command Fault (Alarm) Fault Reset UPS Command Output Frequency UPS active on power-up.
  • Page 212 03-09 Multi-function terminal S1-S4 type selection xxx0b: S1 A contact xxx1b: S1 B contact xx0xb: S2 A contact xx1xb: S2 B contact Range x0xxb: S3 A contact x1xxb: S3 B contact 0xxxb: S4 A contact 1xxxb: S4 B contact 03-10 Multi-function terminal S5-S8 type selection xxx0b: S5 A contact xxx1b: S5 B contact...
  • Page 213 03-11 Relay (R1A-R1C) output 03-12 Relay (R2A-R2C) output 0: During Running 1: Fault contact output 2: Frequency Agree 3: Setting Frequency Agree (03-13 ± 03-14) 4: Frequency detection 1 (> 03-13, hysteresis range is the setting value of 03-14) 5: Frequency detection 2 (< 03-13, hysteresis range is the setting value of 03-14) 6: Automatic restart 7~8: Reserved 9: Baseblock...
  • Page 214 Default function Related parameter Fault signal 03-11 Zero 03-12 speed *use DO2/DOG on Frame 1. Figure 4.4.25 Multi-function digital output and related parameters 4-139...
  • Page 215 Table 4.4.8 Function table of multi-function digital output Function Control mode Setting Contents Name LCD display SLV SV During Running ON: During running (Run Command is ON) Running Fault contact ON: Fault contact output (except CF00 and Fault output CF01 ) Frequency ON: frequency agree (frequency agree Freq.
  • Page 216 Function Control mode Setting Contents Name LCD display SLV SV Source of Run Cmd ON: operation command from LED digital operation Status operator (local mode) command Source of ON: reference frequency from LED digital reference Freq Ref Status operator (local mode) command Low torque Under Torque ON: Low-torque detection is ON...
  • Page 217: Invalid Do Func

    Function Control mode Setting Contents Name LCD display SLV SV PID sleep PID Sleep ON: During PID Sleep Invalid Do Reserved Reserved Func. Invalid Do Reserved Reserved Func. Invalid Do Reserved Reserved Func. Invalid Do Reserved Reserved Func. Frequency ON: output frequency > 03-44,Hysteresis Freq.
  • Page 218 03-1X=0: During Running Run command is OFF and the inverter is stopped. Run command is ON or output frequency is greater than 0. 03-1X=1: Fault contact output Output is active during fault condition. Note: Communication error (CF00, CF01) do not activate the fault contact. 03-1X=2: Frequency Agree Output is active when the output frequency falls within the frequency reference minus the frequency detection width (o3-14).
  • Page 219 Output Frequency 01-08(Fmin) Zero Speed Figure 4.4.26 Zero-speed operation 03-1X=21: Inverter Ready Output is active when no faults are active and the inverter is ready for operation. 03-1X=22: Undervoltage Detection Output is active when the DC bus voltage falls below the low voltage detection level (07-13). 03-1X=23: Source of operation command Output is active in local operation command.
  • Page 220 03-1X=28: Traverse operation UP status Output is controlled by frequency wobbling operation; refer to Parameter group 19 for details. 03-1X=29: During Traverse operation status Output is controlled by the acceleration period or frequency wobbling operation, refer to Parameter group 19 for details.
  • Page 221: Frequency Detection

    03-44 Frequency Detection Level 2 Range 0.0~599.0 Hz 03-45 Frequency Detection Width 2 Range 0.1~25.5 Hz 03-46 Frequency Detection Level 3 Range 0.0~599.0 Hz 03-47 Frequency Detection Width 3 Range 0.1~25.5 Hz 4-146...
  • Page 222: Frequency Detection

    Table 4.4.9 Frequency detection operation Function Detection operation of frequency confirmation Description Freq Output Reference Output is active when the output frequency Frequency 03-14 falls within the frequency reference minus the frequency detection width (03-14). time Frequency agree Frequency Freq Any of the digital outputs function (03-11, 03-14 Agree...
  • Page 223: Frequency Detection

    Function Detection operation of frequency confirmation Description Output is active when the output frequency is below the frequency detection level 03-45 Output Frequency 2(03-44) + frequency detection width 03-44 03-44 2(03-45) and turns off when the output Output time frequency falls below frequency detection frequency 03-45 level 2(03-44).
  • Page 224 03-15 Current Agree Level Range 0.1~999.9 A 03-16 Delay Time of Current Agree Detection Range 0.1~10.0 Sec 03-11=13, then, When the output current >03-15, relay is active. 03-15: The recommended setting value is from 0.1~ the motor rated current. 03-16: The delay time performs depending on the setting value. Note: Delay time to go from ON to OFF for the output relay is 100ms.
  • Page 225 03-17≤03-18, the following is the sequence applies: 03-18 03-17 STOP 03-11=14 03-17≥03-18, the following is the sequence applies 03-17 03-18 STOP 4-150...
  • Page 226 03-19 Relay (R1A-R2C) type xxx0b: R1 A contact xxx1b: R1 B contact Range xx0xb: R2 A contact xx1xb: R2 B contact Parameter 03-19 selects the digital output type between a normally open and a normally closed contact. Each bit of 03-19 presents an output: 03-19= 0 0: normally open contact R2 R1...
  • Page 227 Mode 2: When 03-40 > 0 Hz and multi-function input terminals are active less than 2 sec, frequency change (△Hz) based on setting in parameter 03-40. Upper Limit of Output Frequency Frequency Reference △Hz Lower Limit of Frequency Reference Terminal S1 Terminal S2 Mode 3: When 03-40 >...
  • Page 228 03-29 Photo-coupler Output Selection Range xxx0b: Photo-coupler A Contact xxx1b: Photo-coupler B Contact 0 = Normally open (A), 1 = Normally closed (B) 03- 30 Function setting of pulse input 0: General Pulse Input Range 1: PWM Pulse input has two modes of operation: 0: General pulse input: Frequency reference = Pulse input frequency divided by the pulse input scale set by parameter 03-31 x Maximum Motor Frequency of Motor 1 (01-02).
  • Page 229 03-31 Scale of pulse input Depending on the setting of 03-30 Range 03-30=0: 50~32000Hz 03-30=1: 10~1000Hz Pulse input scaling, 100% = Maximum pulse frequency. 03- 32 Pulse input gain Range 0.0~1000.0 % Frequency reference value in % = Pulse input frequency scaled to 100% based on maximum pulse frequency (03-31) times the gain (03-32) + bias (03-33).
  • Page 230 Set Pulse Input as PID target value Set parameter 00-05 to 5 and 03-30 to 2 to use the pulse input terminal PI as the PID target (setpoint) value. Next set the pulse input scaling (03-31), enter the pulse input frequency to match the maximum output frequency. Adjust the pulse input filter time in case interference or noise is encountered.
  • Page 231 (Hz) Pulse output 03-36 Pulse output items 100% Figure 4.4.29 Pulse output proportion When setting 03-35 to 2 (output frequency) and setting 03-36 to 1 (0 Hz), PO's pulse output and the inverter output frequency are sync. For the pulse output signal level, please refer to figure 4.4.30. 2.2K Ω...
  • Page 232 Inverter Fwd Run/Stop Rev Run/Stop 24VG (*1 ) Figure 4.4.31 Speed follower from external PG Parameter settings: 1. Frequency reference selection: 00-05=4 (Pulse input) 2. Pulse input’s function selection: 03-30=0 (General pulse input) 3. Pulse input scale: 03-31 (set the number of pulse in Hz to match maximum output frequency, 01-02) 4.
  • Page 233 6. Pulse input’s filter time: 03-34 (if the pulse input is unstable due to the interference, increase value.) 7. Pulse output function selection: 03-35=1 (Pulse output is output frequency 8. Scale pulse output parameter 03-36 to 100% of output frequency Inverter #1 parameter settings: Frequency reference from analog signal 1.
  • Page 234 Pulse (Follower) (Master) Input Frequency Reference SYNC 03-00 ~ 03-00 ~ 03-07=32 03-07=32 Sync Sync (Synchronized Operation) Figure 4.4.34 Synchronized operation master follower Master inverter parameter settings: 1. Pulse output function selection: 03-35=1 (Pulse output is output frequency 2. Scale pulse output parameter 03-36 to 100% of output frequency 3.
  • Page 235: Range :03-45

    Timer output is turned OFF after the multi-function timer input is turned OFF for the time specified in parameter 03-38. Timing example: Timer input Timer output function 03-38 03-38 03-37 03-37 03- 41 Torque Detection Level Range 0~300 % 03-42 Brake Release Delay Time Range 0.00~65.00 Sec...
  • Page 236: Range :03-47

    Motor Speed (Output Frequency) Output Torque > 03-41 Output Torque < 03-41 11-44 11-45 11-44 11-46 DO 03-11, 03-12, 03-28 set 38 Brake Release 03-42 03-42 Brake Release delay time Brake Release delay time 03-43 UP/DOWN Acceleration/ Deceleration Selection 0: Acceleration/Deceleration Time 1 Range 1: Acceleration/Deceleration Time 2 Parameter selects acceleration/deceleration times for UP/DOWN frequency control.
  • Page 237: Range :03-47

    04-External Analog Input / Output Parameter 04-00 AI input signal type 0: AI1: 0~10V AI2: 0~10V/ 0~20mA 1: AI1: 0~10V AI2: 4~20mA/ 2~10V Range 2: AI1: -10~10V AI2: 0~10V/ 0~20mA 3: AI1: -10~10V AI2: 4~20mA/ 2~10V 04-01 AI1 signal scanning and filtering time Range 0.00~2.00 Sec 04-02...
  • Page 238 If AI2 is 0~10V, set parameter 04-00 to 0 or 2 and tune SW2 on the control board to V. If AI2 is 0~20mA, set parameter 04-00 to 0 or 2 and tune SW2 on the control board to I. If AI2 is 4~20mA, set parameter 04-00 to 1 or 3, tune SW2 on the control board to I.
  • Page 239: Slv Sv Pm

    (2) AI1 signal filtering time (04-01) (3) AI2 signal filtering time (04-06) All analog inputs (AI1, AI2) have a 1 order programmable input filter that can be adjusted when noise is present on each of the incoming analog signal to prevent erratic drive control. The filter time constant (range: 0.00 to 2.00 seconds) is defined as the time that the input step signal reaches 63% of its final value.
  • Page 240 Function Control mode Setting Description SLV2 Name Screen display SLV SV Adjust the lower limit (0 to 100%) of frequency command based on analog input, the maximum output = 100%. The Frequency lower Ref. Low Bound lower limit of frequency command is the limit greater one of the actual frequency command’s lower limit 00-13 or the...
  • Page 241 Example: When the internal gain of AI1 (04-02) is set to 100% and AI2 to 5V (for example FGAIN = 50%), the reference frequency of terminal AI1 will be 50%, as shown in Figure 4.4.39. Frequency Reference 04 - 02 = 100% 100% 04 - 02 ×...
  • Page 242 Example: Terminal AI1 input is 0V, 04-02 = 100% (AI1 gain), 04-03 = 0% (AI1 bias) and terminal AI2 input is 3V. The reference frequency will be 30% as shown in Figure 4.4.41. Frequency Reference 100% Bias Terminal AI1 input voltage Figure 4.4.41 Frequency Reference bias adjustment (example) 04-05=3: Output Voltage Bias (VBIAS) Multi-function analog input AI2 can be used to adjust the output voltage.
  • Page 243 Terminal AI2 analog input 1 2 3 4 5 6 7 8 9 (20mA) (4mA) 100% Actual Accel / Decel time Terminal AI2 analog input Figure 4.4.43 Acceleration / deceleration time reduction coefficient 04-05=5: DC braking current Multi-function analog input AI2 can be used to adjust the DC Injection braking current. DC braking current parameter 07-07 setting should be set to 0% to use this function.
  • Page 244 Detection Level 100% Terminal AI2 analog input -10V (20mA) (4mA) Figure 4.4.45 Over-torque detection level adjustment 4-05=7: Stall prevention level during running Multi-function analog input AI2 can be used to adjust the stall prevention level during operation. Inverter rated current = 100%. When AI2 is set to control stall prevention level (04-05 = 7) and parameter 08-03 (Stall prevention level during operation) is used, then the lesser of the two value becomes the active stall prevention level during operation.
  • Page 245 Frequency Reference Lower Bound Terminal AI2 analog input -10V (20mA) (4mA) Figure 4.4.47 Adjustment of lower limit of frequency reference 04-05=9: Jump frequency 4 Multi-function analog input AI2 can be used to adjust Jump frequency 4. Maximum output frequency (01-02, Fmax) = 100%. Setting 11-08 to 11-10 to 0.0Hz turns of the Jump frequency function.
  • Page 246 Frequency Reference Bias 100% -10V Terminal AI2 analog input (20mA) (4mA) 100% Figure 4.4.49 Operation of being added to Al1 as bias Example: 04-02 (AI1 gain) = 100%, 04-03 (AI2 gain) = 0%, and terminal AI2 level is 2V. If input terminal AI1 is 0V, the internal reference frequency of terminal AI1 will be 20 %.
  • Page 247 04-11 AO1 function Setting 0: Output frequency 1: Frequency command 2: Output voltage 3: DC voltage 4: Output current 5: Output power 6: Motor speed 7: Output power factor 8: AI1 input 9: AI2 input 10: Torque command 11: q -axis current 12: d-axis current Range 13: Speed deviation...
  • Page 248 Related Parameters 04-11 (Function Selection) 04-12 (Gain) 04-13 (Bias) 04-16 (Function Selection) 04-17 (Gain) 04-18 (Bias) Figure 4.4.50 Analog outputs and related parameters Analog output AO1 and AO2 adjustment (04-12, 04-13 and 04-17, 04-18) Signal: Use parameter 04-11 to select the analog output signal for AO1 and parameter 04-16 to select the analog output signal for AO2.
  • Page 249: O O O O O Oo

    Table 4.4.12 Selection of analog output terminals function (04-11 and 04-16) Control Mode Monitoring 04-11, 04-16 Function Parameter Parameters VF VF+PG SLV SLV SLV2 (Keypad display) setting Group 12 Output Freq 12-17 Freq Ref 12-16 Output Voltage 12-19 DC Voltage 12-20 Output Current 12-18...
  • Page 250 05- Multi-Speed Parameters 05-00 Acceleration and deceleration selection of multi-speed 0: Acceleration and deceleration time 1 ~ 4 used. Range 1: Use independent acceleration and deceleration time for each multi-speed setting. 05-00=0: Standard Acceleration and deceleration times parameters 00-14 ~ 00-17 / 00-21 ~ 00-24 are used for multi-speed 0 ~ 15.
  • Page 251 Example: Acceleration / deceleration timing when 05-00 is set to 1. In this example the following parameters are set: 00-02=1 (External Terminal Operation) 03-00=0 (Terminal S1: Forward /Stop) 03-01=1 (Terminal S2: Reversal /Stop) 03-02=2 (Terminal S3: Speed 1) 03-03=3 (Terminal S4: Speed 2) 03-03=4 (Terminal S5: Speed 3) *Speed 1 is required to confirm if AI2 function setting (04-05) is set to 0 (Auxiliary frequency).
  • Page 252 Acceleration / Deceleration Calculation Mode 2: If the run command is remains on, acceleration and deceleration time (a ~ f) is calculated based on the active speed command as follows: 05-03 05-02 05-04 05-06 05-01 05-05 Stop Terminal S1 Terminal S2 Terminal S3 Terminal S4 Terminal S5...
  • Page 253 05-01 Frequency setting of speed-stage 0 Range 0.0~599.00 Hz 05-17 Acceleration time setting for multi speed 0 Range 0.0~6000.0 Sec 05-18 Deceleration time setting for multi speed 0 Range 0.0~6000.0 Sec 05-19 Acceleration time setting for multi speed 1 Range 0.0~6000.0 Sec 05-20 Deceleration time setting for multi speed 1...
  • Page 254 05-32 Deceleration time setting for multi speed 7 Range 0.0~6000.0 Sec 05-33 Acceleration time setting for multi speed 8 Range 0.0~6000.0 Sec 05-34 Deceleration time setting for multi speed 8 Range 0.0~6000.0 Sec 05-35 Acceleration time setting for multi speed 9 Range 0.0~6000.0 Sec 05-36...
  • Page 255 06-Automatic Program Operation Parameters 06-00 Automatic operation mode selection 0: Disable 1, 4: Execute a single cycle operation. Restart speed is based on the previous stopped speed. 2, 5: Execute continuous cycle operation. Restart speed is based on the previous cycle stop speed.
  • Page 256 Freq. 06-02 50 Hz 06-01 30 Hz 05-01 15 Hz 06-15 20 Hz 06-31 06-16 06-17 06-18 Figure 4.4.52 Single cycle automatic operation (stop) Example 2: Automatic operation mode – Continuous cycle In this example the inverter repeats the same cycle. Parameter Settings: 06-00 = 2 or 5 (Continuous cycle operation)
  • Page 257 Example 3: Automatic operation mode – Single cycle and continue running at last speed of the cycle In this example the inverter executes a single cycle and continue running at last speed of the cycle. Parameter Settings: 06-00= 3 or 6 (Single cycle operation) 06-32~06-35= 1 (Forward) 06-36~06-47=...
  • Page 258 Automatic operation frequency reference settings 06-01 Frequency setting of speed-stage 1 06-02 Frequency setting of speed-stage 2 06-03 Frequency setting of speed-stage 3 06-04 Frequency setting of speed-stage 4 06-05 Frequency setting of speed-stage 5 06-06 Frequency setting of speed-stage 6 06-07 Frequency setting of speed-stage 7 06-08...
  • Page 259 Automatic operation direction settings 06-32 Operation direction selection of speed-stage 0 06-33 Operation direction selection of speed-stage 1 06-34 Operation direction selection of speed-stage 2 06-35 Operation direction selection of speed-stage 3 06-36 Operation direction selection of speed-stage 4 06-37 Operation direction selection of speed-stage 5 06-38 Operation direction selection of speed-stage 6...
  • Page 260 07- Start/Stop Parameters 07-00 Momentary Power Loss/Fault Restart Selection 0: Disable Range 1: Enable 07-00=0: Inverter trips on “UV” fault if power loss time is greater than 8ms. 07-00=1: Inverter restarts after restarting the power at the momentary power loss. Note: When 07-00=1, inverter restore automatically the motor rotation after restarting the power even if momentary power loss occurs.
  • Page 261 Automatic restart operation: a) Fault is detected. The inverter turn off the output, displays the fault on the keypad and waits for the minimum baseblock time parameter 07-18 to expire before accepting another run / automatic restart command. b) After the minimum baseblock time (07-18) and delay time of speed search have expired, the active fault is reset and a speed search operation is performed.
  • Page 262 07- 04 Direct Start at Power on 0: When the external run command is enabled, direct start at power up Range 1: When the external run command is enabled, unable to direct start at power-up. 07-04=0: The inverter will automatically start if the run command is active at power up. 07-04=1: The inverter will not start if the run command is active at power up, warning STP1 will flash on the keypad.
  • Page 263 Range 0.00~10.00 Sec Duration of DC injection braking during a start operation. DC injection braking at start is disabled when parameter 07-16 is set to 0 sec. DC Injection Braking Operation When DC Injection braking is active DC voltage is applied to the motor, increasing the braking current and resulting in an increase in the strength of the magnetic field trying to lock the motor shaft.
  • Page 264 DC braking operation can be controlled via any one of the multi-function input terminals (03-00 to 07) function 33. Refer to figure 4.4.57 for DC braking operation. DC braking current can be controlled via the multi-function analog input (04-05) function 5. Refer to Figure 4.4.44. 07-09 Stop mode selection 0: Deceleration to stop...
  • Page 265 07-09=1: Coast to stop When a stop command is issued, the motor will coast to a stop. Stop time depends on motor load and friction of the system. The inverter waits for the time set in the minimum baseblock time (07-18) before accepting the next run command.
  • Page 266 Output frequency DCDB Stop 07-08 × 10 Time Output frequency upon stop command Time 07-08 × 1 Time tb.b DCDB Maximum output tb.b :Minimum baseblock time (07 -18) frequency :DC braking time DCDB (Fmax, 01- 02) Figure 4.4.60 DC braking to stop 07-09=3: Coast to stop with timer When a stop command is issued the motor will coast to a stop after the minimum Baseblock time (07-18) has expired.
  • Page 267 07-13 Low voltage detection level 200V: 150~210Vdc 400V: 300~420Vdc Range 575V: 500~600Vdc 690V: 500~600Vdc 07-25 Low voltage detection time Range 0.00~1.00 Sec Adjust the 07-13 voltage level from 150 to 300 Vdc (200V class) or from 250 to 600 Vdc (400V class). When the AC input voltage is lower than the 07-13 value (07-13/ 1.414 = AC voltage detection level) for the time specified in 07-25 the low-voltage error "UV"...
  • Page 268 In order to quickly magnetize the motor, reduce the pre-excitation time (07-14) and set the pre-excitation level (07-15) to a high level. If 07-15 is set greater than 100%, providing a high excitation current during the pre-excitation time (07-14), motor’s magnetization time is shorted. When the setting reaches 200%, magnetization is reduced by roughly half. A high pre-excitation level (07-15) might result in excessive motor sound during pre-excitation.
  • Page 269 07-18 Minimum base block time Range 0.1~5.0 Sec In case of a momentary power failure, the inverter continues to operate after the power has been restored when parameter 07-00 is set to 1. Once the momentary power failure is detected; the inverter will automatically shut down the output and maintain B.B for a set time (07-18).
  • Page 270 07-22 Delay time of speed searching 0.0~20.0 Sec Range 07-23 Voltage recovery time 0.1~5.0 Sec Range 07-24 Direction-Detection Speed Search Selection 0: Disable Range 1: Enable 07-26 SLV Speed Search Function 0: Enable Range 1: Disable 07-27 Start Selection after fault during SLV mode 0: Start with speed search Range 1: Normal start...
  • Page 271 Speed search command Run command Figure 4.4.64 Speed search and operation commands Notes: Speed Search Operation - The speed search cannot be used when the motor rated power is greater than the inverter rated power. - The speed search cannot be used when the motor rated power is two inverter sizes smaller than the inverter currently used.
  • Page 272 07-23: Voltage recovery time - Sets the voltage recovery time. - Sets the time for the inverter to restore the output voltage from 0V to the specified V/f level after speed search function is completed. 07-24: Direction-Detection Speed Search Selection 0: Disable Direction-Detection Speed Search Speed search is executed using speed search operating current defined in parameter 07-20.
  • Page 273 ■ Speed search based on current detection (a) Speed search at starting Run command Search command Speed search decel time (07-21) Output frequency V/f during speed search (07-18) Return to voltage at normal operation Voltage recovery time (07-23) Output voltage Output current (07-20) Speed search...
  • Page 274 Notes: If the minimum base block time (07-18) is longer than the momentary power failure time, the speed search starts operation after the minimum base block time (07-18). If the minimum base block time (07-18) is too short, the speed search operation begins immediately after power has been restored.
  • Page 275 08-Protection Parameters 08-00 Stall prevention function. xxx0b: Stall prevention function is enabled during acceleration. xxx1b: Stall prevention function is disabled during acceleration. xx0xb: Stall prevention function is enabled during deceleration. xx1xb: Stall prevention function is disabled during deceleration. Range x0xxb: Stall prevention function is enabled during operation. x1xxb: Stall prevention function is disabled during run.
  • Page 276 Inverter Output 08-01 Current Output Frequency Stall prevention Figure 4.4.67 Stall prevention during acceleration If the motor is used in the constant power (CH) region, the stall prevention level (08-01) is automatically reduced to prevent the stall. Stall prevention level during acceleration (Constant horsepower) Stall Prev.
  • Page 277 When the DC-bus voltage exceeds the stall prevention level deceleration will stop and the inverter will wait for the DC-bus voltage to fall below the stall prevention level before continuing deceleration. Stall prevention level can be set by 08-02, see Table 4.4.13. Table 4.4.13 Stall prevention level Inverter model 08-02 default value...
  • Page 278 Load 08-03 (Hysteresis) Inverter Output Current Output (00-15) dec1 Frequency (00-17) dec2 08-22 (detection time) Figure 4.4.70 Stall prevention selection in operation Note: Stall prevention level in operation is set by multi-function analog input AI2 (04-05=7). 08-05 Selection for motor overload protection (OL1) xxx0b: Motor overload is disabled xxx1b: Motor overload is enabled xx0xb: Cold start of motor overload...
  • Page 279 With hot start enabled (08-05 = xx1xb), motor overload protection occurs in 3 and a half minutes when operating the motor at 150% of the motor rated current at an output frequency greater than 60Hz. Refer to the following figure 4.4.71 for an example of motor overload protection standard curve. Low Speed Hot Start Motor Load Current (%)
  • Page 280 Figure 4.4.72 Motor overload rating at different output frequencies 08-06 Start-up mode of overload protection operation (OL1) 0: Stop output after overload protection Range 1: Continuous operation after overload protection. 08-06=0: When the inverter detects a motor overload the inverter output is turned off and the OL1 fault message will flash on the keypad.
  • Page 281 08-09 Selection of input phase loss protection 0: Disable Range 1: Enable 08-09=0: Input phase loss detection is disabled. 08-09=1: Input phase loss detection is enabled. Keypad shows "IPL input Phase Loss" (IPL), when an input phase loss is detected the inverter output is turned off and the fault contact is activated. Note: The input phase loss detection is disabled when the output current is less than 30% of the inverter rated current.
  • Page 282 08-19 Level of low-torque detection Range 0~300% 08-20 Time of low-torque detection Range 0.0~10.0 Sec The over torque detection function monitor the inverter output current or motor torque and can be used to detect increase in inverter current or motor torque (e.g. heavy load). The low torque detection function monitor the inverter output current or motor torque and can be used to detect a decrease in inverter current or motor torque (e.g.
  • Page 283 Low-torque detection Parameter 08-18 selects low-torque detection function. An low-torque condition is detected when the output current / torque falls below the level set in parameter 08-19 (low-torque detection level) for the time specified in parameter 08-20 (Low-torque detection time). 08-17=0: Low-torque detection is disabled.
  • Page 284 08-23 Ground Fault (GF) selection 0: Disable Range 1: Enable 08-23=1: If the inverter leakage current is greater than 50% of inverter rated current and the ground fault function is enabled (08-23), the keypad will display a "GF Ground Fault" (GF), motor will coast to a stop and fault contact is activated.
  • Page 285 Note : There is no 08-37=2 for the models of 2050, 4100 or the above. Motor Overheat Fault Selection 08-35 0: Disable 1: Deceleration to Stop Range 2: Free Run to top 3: Continue Running 08-36 PTC Input Filter Time Constant Range 0.00 ~ 10.00 sec 08-39...
  • Page 286 level rises above the value set in 08-42 for the time specified in 08-39 the motor coast to stop. 08-35=1, 2 or 3: When the motor cools down and AI2 voltage level falls below the value in 08-43, [OH3/OH4 Motor Overheat] will reset. Note: The resistor (PTC) according to the British Standards Institution: Tr is 150°C for Class F and is 180°C for Class H Tr - 5°C : RT≦...
  • Page 287 09-Communication Parameters 09-00 INV Communication Station Address Range 1~31 09-02 Baud rate setting (bps) 0: 1200 1: 2400 2: 4800 Range 3: 9600 4: 19200 5: 38400 09-03 Stop bit selection 0: 1 stop bit Range 1: 2 stop bits 09-04 Parity selection 0: No Parity...
  • Page 288 Modbus (RS-485) communication specification: Items Specification Interface RS-485 Communication type Asynchronous (start - stop synchronization) Baud rate: 1200, 2400, 4800, 9600, 19200 and 38400 bps Data Length: 8 bits (Fixed) Communication parameters Parity: options of none, even and odd bit. For even and odd selection stop bit is fixed at 1 bit.
  • Page 289 09-06: RS-485 communication error detection time 09-07: Stop selection of RS-485 communication failure = 1: Deceleration to stop by deceleration time 00-15 = 2: Coast to stop = 2: Deceleration to stop using the deceleration time of 00-26 (emergency stop time) = 3: Continue to operate (only shows a warning message, press the stop button to stop operation) 09-08: Comm.
  • Page 290 10-PID Parameters 10-00 PID target value source setting 1: AI1 given 2: AI2 given 3: Pulse given Range 4: Use 10-02 setting 5: Reserved 6: Frequency Command (00-05) Note: Parameter only active when frequency command selection (00-05) is set to 5. When 10-00=1 or 2, Source of signal is proportional to be corresponding to PID target via analog input terminal.
  • Page 291 10-01 PID feedback value source setting 1: AI1 given Range 2: AI2 given 3: Reserved Note: Parameter 10-00 and 10-01 cannot be set to the same source. If both parameters are set to the same source the keypad will show a SE05 alarm. 10-02 PID target value Range...
  • Page 292 10-09 PID bias Range -100~100 % 10-10 PID Primary delay time Range 0.00~10.00 % 10-14 PID integral limit Range 0.0~100.0 % 10-23 PID limit Range 0.00~100.0 % 10-24 PID output gain Range 0.0~25.0 10-25 PID reversal output selection 0: Do not allow the reversal output Range 1: Allow the reversal output 10-26...
  • Page 293 PID Control Type The inverter offers two types of PID control: (a) PID control with differential feedback: (10-03 = x1xxb) Make sure to adjust the PID parameters without causing system instability. Refer to Figure 4.4.78 for PID control for feedback value differential. Set Value Control Feedback...
  • Page 294 Select PID target value (10-00): 10-00: PID target value =1: analog AI1 given (default) =2: analog AI2 given =3: Pulse given =4:10-02 =6 frequency command (00-05) Select PID feedback value (10-01): 10-01: PID feedback value = 1: Analog AI1 given = 2: Analog AI2 given =3: Pulse given AI 1...
  • Page 295 PID Control Setting PID control block diagram. The following figure shows the PID control block diagram. (Bias) PID=OFF 10-09 10-03=1xxxb +109% ±200% Limit 10-25=0 10-03=xx0xb (PID output gam) ×1 Frequency PID=0N 10-24 Reference (Fref) 10-03=0xxxb 10-03=xx1xb +109% PID Output 10-25=1 PID=OFF -109% 1.
  • Page 296 PID Tuning Use the following procedures to start PID control, (1) Enable PID control (set 10-03 to a value greater than "xxx0b"). (2) Increase the proportional gain (10-05) to the highest value possible without causing the system to become unstable. (3) Decrease the integral time (10-06) to the lowest value possible without causing the system to become unstable.
  • Page 297 PID Fine Tuning All PID control parameters are related to each other and require to be adjusted to the appropriate values. Therefore, the procedure achieving the minimum steady-state is shown as following: (1) Increase or decrease the proportion (P) gain until the system is stable using the smallest possible control change.
  • Page 298 10-11 PID feedback loss detection selection 0: Disable Range 1: Warning 2: Fault 10-12 PID feedback loss detection level Range 0~100 % 10-13 PID feedback loss detection time Range 0.0~10.0 Sec The PID control function provides closed-loop system control. In case PID feedback is lost, the inverter output frequency may be increase to the maximum output frequency.
  • Page 299 10-17 Start frequency of PID sleep Range 0.00~599.00 Hz 10-18 Delay time of PID sleep Range 0.0~255.5 Sec 10-19 Frequency of PID wakeup Range 0.00~599.00 Hz 10-20 Delay time of PID wakeup Range 0.0~255.5 Sec 10-29 PID sleep selection 0: Disable Range 1: Enable 2: Set by DI...
  • Page 300 Output Frequency Frequency Reference (Fref) Wake- up Frequency Output Frequency (Fout) (10-19) Sleep Frequency (10-17) Fmin (01-08) sleep delay time wake up delay time (10-18) (10-20) Figure 4.4.83: (b) Timing diagram PID sleep / wakeup Output Frequency Frequency Reference (Fref) Wake- up Frequency Output Frequency (Fout)
  • Page 301 Example: -- When wakeup frequency< sleep frequency, inverter starts by the sleep frequency and sleeps depending on sleep frequency. -- When wakeup frequency> sleep frequency, inverter starts by the wakeup frequency and sleeps depending on sleep frequency. Parameter 10-00 and 10-01 cannot be set to the same source. If both parameters are set to the same source the keypad will show a SE05 alarm.
  • Page 302 10-30 Upper Limit of PID Target Range 0 ~ 100 10-31 Lower Limit of PID Target Range 0 ~ 100 Target value of PID will be limited to the range of upper & lower limit of PID target. 10-33 Maximum Value of PID Feedback Range 1~10000 When the maximum value of PID feedback is active, it will become 100% the corresponding value of 10-02.
  • Page 303 11-Auxiliary Parameters 11-00 Direction Lock Selection 0: Allow forward and reverse rotation Range 1: Only allow forward rotation 2: Only allow reverse rotation If motor operation direction is set to 1 or 2, the motor can only operate in that specific direction. Run commands in the opposite direction are not accepted.
  • Page 304 11-02 Software PWM Function Selection 0: Disable Range 1: Enable 11-02=0: Software PWM control disabled. 11-02=1: Software PWM control enabled. Software PWM control can improve the ‘metal’ noise produced by the motor, more comfortable for the human ear. At the same time, Software PWM also limits RFI noise to a minimum level.
  • Page 305 11-08 Jump frequency 1 11-09 Jump frequency 2 11-10 Jump frequency 3 Range 0.0~599.0 Hz 11-11 Jump frequency width Range 0.0~25.5 Hz These parameters allow “jumping over” of certain frequencies that can cause unstable operation due to resonance within certain applications. Note: Prohibit any operation within the jump frequency range.
  • Page 306 11-13 Automatic return time Range 0~120 sec If the keypad is not pressed within the time specified in 16-06 (returning time of automatic back button), the keypad will automatically return to the mode screen. When it is set to 0, the automatic return function is off. Press the back button to return to the previous directory. 11-12 Manual energy saving gain Range...
  • Page 307 11-19 Automatic energy saving function 0: Automatic energy saving is disabled Range 1: Automatic energy saving is enabled 11-20 Filter time of automatic energy saving Range 0~200 msec 11-21 Voltage upper limit of energy saving tuning Range 0~100% 11-22 Adjustment time of automatic energy saving Range 0~5000 msec 11-23...
  • Page 308 Voltage Limit 11-21 Output Voltage 11-21 Figure 4.4.89 Voltage limit value of commissioning operation 11-22: Adjustment time of automatic energy saving Sets sample time constant for measuring output power. Reduce the value of 11-22 to increase response when the load changes. Note: If the value of 11-22 is too low and the load is reduced the motor may become unstable.
  • Page 309 11-30 Variable Carrier Frequency Max. Limit Range 2~16 KHz 11-31 Variable Carrier Frequency Min. Limit Range 1~16 KHz 11-32 Variable Carrier Frequency Proportional Gain Range 00~99 Carrier frequency method depends on the selected control mode. Variable Carrier Frequency Fixed Carrier Frequency Control Mode (11-01 = 0) (11-01 = 2-16 kHz)
  • Page 310 11-34 DC Voltage Filter Fall Amount Range 0.00~1.00 V 11-35 DC Voltage Filter Deadband Level Range 0.0~99.0 V 11-36 Frequency gain of OV prevention Range 0.000~1.000 11-37 Frequency limit of OV prevention Range 0.00~10.00 Hz 11-38 Deceleration start voltage of OV prevention 200~400 V : 200V 400~800 V : 400V Range...
  • Page 311 FLYWHEEL Gear clutch motor Motor Inverter Motoring : f > f motor Overhauling : f < f motor Figure 4.4.90 Stamping Operation Over-voltage prevention (OVP) function monitors the DC-bus voltage and adjusts the speed reference, acceleration and deceleration rate, to prevent the inverter from tripping on an overvoltage. When the speed reference is reduced, the motor will start to decelerate.
  • Page 312 When 11-40=1: OV prevention Mode 1 1) DC voltage filter is used to provide a stable reference value for determining the change in DC voltage change during regenerative operation. - Adjust the DC voltage filtering increase rate parameter 11-33 (DC Voltage Filter Rise Amount). When the DC voltage exceeds 11-33 +11-35 (DC Voltage Filter Deadband Level), the output of the filter will increase.
  • Page 313 - When DC voltage reaches the setting of 11-39 (stop voltage of OVP deceleration), it will decelerate based on the set value of 00-24 (Tdec4) - Deceleration rate is linear based on the slope defined by the start point (11-38) and end point (11-39). 4).
  • Page 314 The inverter will return to normal operation when: (1) The reference frequency is restored while running and the reference level exceeds 80% of the master frequency command. (2) Stop command is issued. Notes: - Reference frequency loss level (11-42) is corresponding to the maximum output frequency of Motor 1 (01-02). - Reference frequency loss level is used in the analog signal (1: AI1 or 7: AI2) from the selection of main frequency source (00-05).
  • Page 315 Output Frequency 11-43 11-45 11-44 11-46 command Figure 4.4.94 Reserved function When the inverter is in stop mode, this function can also be used to prevent wind milling. In addition, it can be used for the purpose of braking using the motor to consume the braking energy resulting in a better controlled stop.
  • Page 316 DC Bus 10V for 220V series 20V for 440V series KEB Detection Level Re-acceleration Output Frequency operation Command Re-acceleration Command Figure 4.4.95 KEB operation 11-49 Zero-servo gain Range 0~50 11-50 Zero-servo count Range 0~4096 11-51 Braking selection of zero-speed 0: Zero-speed DC braking is disabled Range 1: Zero-speed DC braking is enabled When the motor is stopped, the zero-servo function is used to maintain the motor shaft position in SV control...
  • Page 317 Use one of multi-function digital inputs (03-00 to 03-07) set to 46 to execute the zero-servo command. If the frequency reference is lower than the zero speed level (the larger of 01-08 or 07-06 (DC braking start frequency)), zero servo operation is active (zero servo start position) and the motor shaft will remain in the same position even if the analog reference signal level is greater than 0.
  • Page 318 Figure 4.4.97 Zero-speed braking operation 11-52 Droop control level Range 0.0~100.0% 11-53 Droop control delay Range 0.00~2.00 Sec Droop control is used for load balancing when using two standard AC motors to drive the load in applications such as cranes and conveyors. When droop control is active the inverter reduces the speed when the torque reference rises and increases the speed when the torque reference drops.
  • Page 319 - Droop function is disabled when 11-52 is set to 0.0%. Torque droop amount 11-52 ( slip equivalent ) 100% Speed of Rotation Synchronous speed 11-53: Droop control delay This setting is used adjust the response speed of the droop function. Increase value in case of current oscillation. 11-54 Output KWHr initialization 0: Do not clear output KWHr...
  • Page 320 11-58 Record reference frequency 0: Disable Range 1: Enable This function is enabled only when one of multi-function digital input terminals (03-00 to 03-07) is set to 11 (ACC / DEC disabled) or to 8 and 9 (up / down). 11-58= 0: When ACC / DEC is enabled, frequency command is set to 0 Hz when stop command and power cut is reset.
  • Page 321 11-59 Gain of Preventing Oscillation Range 0.01~2.50 It is used to adjust preventing oscillation function. If the oscillation in driving motor occurs at normal duty, it is required to increase the setting value gradually in the unit of 0.01. 11-60 Upper Limit of Preventing Oscillation Range 0~100 %...
  • Page 322 12-Monitoring Parameters 12-00 Display screen selection (LED) Highest bit => 0 0 0 0 0 <= lowest bit The value range of each bit is 0~7 from the highest bit to the lowest bit, 0: No display 1: Output current 2: Output voltage Range 3: DC bus voltage...
  • Page 323 Example2: S1~S8, R1, R2 and DO1 are OFF 0: OPEN 1: CLOSE Input Terminal(S8) Input Terminal(S7) Input Terminal(S6) Input Terminal(S5) Input Terminal(S4) Input Terminal(S3) Input Terminal(S2) Input Terminal(S1) Output Terminal(DO1) Output Terminal(R2) Output Terminal(R1) Note: Refer to section 4.3 for monitors 12-11~12-64. Monitoring parameter12-66: Encoder Angle Encoder PG pulse (20-27) is set to correct connection with the encoder wiring.
  • Page 324 13-00 Inverter Capacity Selection Range ---- 230V class 460V Class 575V Class Inverter model: 13- 00 display Inverter model: 13- 00 display Inverter model: 13- 00 display A510-2001-XXX A510-4001-XXX A510-5001-XXX A510-2002-XXX A510-4002-XXX A510-5002-XXX A510-2003-XXX A510-4003-XXX A510-5003-XXX A510-2005-XXX A510-4005-XXX A510-5005-XXX A510-2008-XXX...
  • Page 325 13-01 Software version Range ---- 13-02 Clear Cumulative Operation Hours 0: Disable to Clear Cumulative Operation Hours Range 1: Clear Cumulative Operation Hours 13- 03 Cumulative operation hours 1 Range 0~23 hours 13- 04 Cumulative operation hours 2 Range 0~65535 days 13-05 Selection of cumulative operation time 0: Accumulative operation time while power on...
  • Page 326 13-08=3: 3-wire initialization (230V/460V/690V) Multi-function digital input terminal S7 controls the forward / reverse direction, and terminals S1 and S2 are set for 3-wire start operation and stop command. Refer to Figure 4.4.2 and Figure 4.4.3 for 3-wire type operation mode. Inverter input voltage (01-14) is automatically set to 220V (200V class) or 440V (400V class) 13-08=4: 2-wire initialization (230V/415V) Multi-function digital input terminal S1 controls forward operation / stop command, and S2 controls reverse...
  • Page 327 13-08=6: 2-wire initialization (200V/380V/575V) Multi-function digital input terminal S1 controls forward operation / stop command, and S2 controls reverse operation / stop command. Refer to Figure 4.4.1. Inverter input voltage (01-14) is automatically set to 220V (200V class) or 440V (400V class) 13-08=7: 3-wire initialization (200V/380V/575V) Multi-function digital input terminal S5 controls the forward / reverse direction, and terminals S1 and S2 are set for 3-wire start operation and stop command.
  • Page 328 13-10 Parameter Password Function 2 Range 0 ~ 9999 13-11 C/B CPLD Software Version Range 0.00~9.99 This parameter displays the CPLD software version of the control board. 13-12 Option Card ID Range 0~255 This parameter displays option card ID as installed on the control board. Option card ID is only visible when an option card is installed.
  • Page 329 14-PLC Parameters 14-00 T1 set value 1 14-01 T1 set value 2 (mode 7) 14-02 T2 set value 1 14-03 T2 set value 2 (mode 7) 14-04 T3 set value 1 14-05 T3 set value 2 (mode 7) 14-06 T4 set value 1 14-07 T4 set value 2 (mode 7) 14-08...
  • Page 330 14-36 MD1 set value 1 14-37 MD1 set value 2 14-38 MD1 set value 3 14-39 MD2 set value 1 14-40 MD2 set value 2 14-41 MD2 set value 3 14-42 MD3 set value 1 14-43 MD3 set value 2 14-44 MD3 set value 3 14-45...
  • Page 331 16-LCD Function group 16-00 Main screen monitoring Range 5~67 16-01 Sub-screen monitoring 1 Range 5~67 16-02 Sub-screen monitoring 2 Range 5~67 At power-up the inverter shows two monitor section on the display, main monitor section and the sub-screen monitor section (smaller font). Choose the monitor signal to be displayed as the main-screen monitor screen in parameter 16-00, and the monitor signals to be displayed on the sub-screen monitor in parameters 16-01 and 16-02, similar to monitor parameters 12-5 ~ 12-64.
  • Page 332 16-03 Set / displayed contents 0.01 Hz 0.01 % (maximum output frequency 01-02=100%) Frequency display unit is rpm 3 - 39 Reserved Set the decimal point by using the fifth place. i.e. □ □□□□ Sets full display scaling excluding decimals Set the number of decimal places 00040 - 09999: □□□□...
  • Page 333 16-05 LCD backlight Range Adjust the screen contrast of the digital operator. If it is set to 0, the screen backlight is turned off. 16-07 Copy function selection 0: Do not copy parameter 1: Read inverter parameters and save to the keypad Range 2: Write the keypad parameters to inverter 3: Compare parameters of inverter and keypad...
  • Page 334 ■ READ: Copy inverter parameters to the keypad Steps Keypad (English) Description Group 14 PLC Setting Select the copy function group (16) from the group menu. 15 PLC Monitor 16 LCD Keypad Func. PARA -07:Copy Sel Press the Read / Enter key and select parameter (16-07) copy sel. -08:READ Sel -09:Keypad Loss Sel Edit...
  • Page 335 WRITE: Copy Keypad parameters to the Inverter  Steps LCD Display (English) Description Group 14 PLC Setting Select the copy function group (16) from the group menu. 15 PLC Monitor 16 LCD Keypad Func. PARA -07:Copy Sel Press the Read / Enter key and select parameter (16-07) copy -08:READ Sel sel.
  • Page 336 ■ Verify: Compare Inverter Parameters against Keypad Parameters Steps LCD Display (English) Description Group 14 PLC Setting Select the copy function group (16) from the group menu. 15 PLC Monitor 16 LCD Keypad Func. PARA -07:Copy Sel Press the Read / Enter key and select parameter (16-07) copy sel. -08:READ Sel -09:Keypad Loss Sel Edit...
  • Page 337 17-Automatic Tuning Parameters 17-00 Mode selection of automatic tuning 0: Rotational auto-tuning 1: Static auto-tuning 2: Stator resistance measurement Range 3: Reserved 4: Loop tuning 5: Rotational Auto-tuning Combination (Item: 4+2+0) 6: Static Auto-tuning Combination (Item: 4+2+1) 17-01 Motor rated output power Range 0.00~600.00 kW 17-02...
  • Page 338 17-11 Error history of automatic tuning 0: No error 1: Motor data error 2: Stator resistance tuning error 3: Leakage induction tuning error 4: Rotor resistance tuning error Range 5: Mutual induction tuning error 6: Encoder error 7: DT Error 8: Motor’s acceleration error 9: Warning Notes:...
  • Page 339 When tuning a special motor (e.g. constant power motor, high-speed spindle motor), with a motor rated voltage or rated motor frequency that is lower than a standard AC motor, it is necessary to confirm the motor nameplate information or the motor test report. Prevent the inverter output voltage from saturation when the motor rated voltage is higher than the inverter input voltage (see Example 1).
  • Page 340 ■ Motor no-load voltage (17-08) a) Motor no-load voltage is mainly used in SV or SLV mode, set to value 10~50V lower than the input voltage to ensure good torque performance at the motor rated frequency. b) Set to 85 ~ 95% of the motor rated voltage. In general, the no-load voltage can be closer to the motor rated voltage for larger motors, but cannot exceed the motor rated voltage.
  • Page 341 17-12 Proportion of Motor Leakage Inductance Range 0.1~15.0 % Only the stator resistance auto tune (17-00=2) can be set. The static non-rotational type and rotational type auto tune will automatically measure the proportion of motor leakage inductance so this parameter is not active. It is set the value to 4%.
  • Page 342 18-Slip Compensation Parameters 18-00 Slip compensation gain at low speed Range 0.00~2.50 18-01 Slip compensation gain at high speed Range -1.00~1.00 18-02 Slip compensation limit Range 0~250% 18-03 Slip compensation filter Range 0.0~10.0 Sec 18-04 Regenerating slip compensation selection 0: Disable Range 1: Enable 18-05...
  • Page 343 (Motor no-load synchronous speed – Motor full load rated speed)(N) x Motor Poles (P) Motor Rated Slip Frequency (f) = Load Torque Larger Load Smaller Load Speed Figure 4.4.99 Slip compensation output frequency 18-02: Slip compensation limit Sets slip compensation limit in constant torque and the constant power operation (figure 4.4.100). If 18-02 is 0%, the slip compensation limit is disabled.
  • Page 344 SLV mode adjustment 18-00: Slip compensation gain a) Slip compensation can be used to control the full rang speed accuracy under load condition. b) If the speed is lower than 2 Hz and the motor speed decreases, increase the value of 18-00. c) If the speed is lower than 2 Hz and the motor speed increases, reduce the value of 18-00.
  • Page 345 Slip compensation 18-01 18-00 Frequency Reference Figure 4.4.102 18-00/18-01 Slip compensation gain versus frequency reference Torque Decrease Increase Decrease Increase 18-01 18-01 18-01 18-01 Speed Figure 4.4.103 18-01 Effect on torque speed curve 18-05: FOC (Flux Orient Control) delay time In the SLV mode, the slip compensation of the magnetic flux depends on the torque current and excitation current.
  • Page 346 19–Wobble Frequency Parameters 19-00 Center frequency of wobble frequency Range 5.00~100.00% 19-01 Amplitude of wobble frequency Range 0.1~20.0% 19-03 Jump time of wobble frequency Range 0~50 msec 19-04 Wobble frequency cycle time Range 0.0~1000.0 Sec 19-05 Wobble frequency ratio Range 0.1~10.0 msec 19-06 Upper offset amplitude of wobble frequency...
  • Page 347 In wobble operation, the inverter operates uses the in the wobble time (19-04, tup + tdown) and wobble frequency (19-05, tup / tdown). Set multi-function digital output terminals (R1A-R1C, R2A-R2C) to output wobble operation (in acceleration) by setting from 03-11 to 03-12 to 20 or 21. Refer to the figure 4.4.105 for the wobble ON / OFF control.
  • Page 348 In wobble operation, the center frequency can be controlled by one of multi-function digital inputs. The wobble upper and lower deviation command (03-00 to 07 = 38) and the wobble lower deviation command (03-00 to 07 = 39) cannot be active at the same time, this will result in the inverter operating at the original center frequency (19 - 00).
  • Page 349 20-Speed Control Parameters 20-00 ASR gain 1 Range 0.00~250.00 20-01 ASR integral time 1 Range 0.001~10.000 Sec 20-02 ASR gain 2 Range 0.00~250.00 20-03 ASR integral time 2 Range 0.001~10.000 Sec 20-04 ASR integral time limit Range 0~300 % 20-05 ASR positive limit Range 0.1 ~ 10 %...
  • Page 350 20-15 ASR gain change frequency 1 Range 0.0~599.0 Hz 20-16 ASR gain change frequency 2 Range 0.0~599.0 Hz 20-17 Torque compensation gain at low speed Range 0.00~2.50 20-18 Torque compensation gain at high speed Range -10~10% 20-33 Detection Level at Constant Speed Range 0.1~5.0 % Parameter 20-33 is used when 20-07 is set to 0 and frequency command source is set to analog input mode.
  • Page 351 SLV control mode: The ASR function adjusts the output frequency to control the motor speed to minimize the difference between the frequency reference and actual motor speed. The ASR controller in SLV mode uses a speed estimator to estimate the motor speed. In order to reduce speed feedback signal interference, a low-pass filter and speed feedback compensator can be enabled.
  • Page 352 SV control mode and PMSV mode: The ASR function adjusts the output frequency to control the motor speed to minimize the difference between the frequency reference and actual motor speed. The ASR controller in SLV mode uses a speed estimator to estimate the motor speed. In order to reduce speed feedback signal interference, a low-pass filter and speed feedback compensator can be enabled.
  • Page 353 b) ASR gain tuning at maximum output frequency 1. Operate the motor at the highest output frequency (Fmax). 2. Increase the ASR proportional gain 1 (20-00) as much as possible without causing instability. 3. Decrease the ASR integral time 1(20-01) as much as possible without causing instability. c) The gain tuning of acceleration / deceleration integral control (20-07) 1.
  • Page 354 ASR setting (SV/SLV/PMSV control mode) In SLV mode the ASR gain is divided into a high-speed and low-speed section. The speed controller has a high-speed gain 20-00/20-01 and a low-speed gain 20-02/20-03 that can be set independently. a) The high/low switch frequency can be set with parameter 20-15 and 20-16. Similar to the ASR gain, the speed estimator has a high-speed gain 20-09/20-10 and a low-speed gain 20-11/20-12.
  • Page 355 Motor Speed :20-00 setting is too high(oscillation occurs) :20-00 setting is too low(slow response) Figure 4.4.113 System response of ASR proportion gain a) Reduce ASR integral time 1(20-01), ASR integral time 2 (20-02) and carefully monitor system stability. 1. A long integral time will result in poor system response. 2.
  • Page 356 reduce the system response. Increasing the low-pass time reduces the speed feedback signal interference but may results in sluggish system response when the load suddenly changes. Adjust the low-pass filter time if the load stays fairly constant during normal operation. The low bandwidth of the speed feedback must be supported by the low gain of ASR to ensure the stable operation.
  • Page 357  Use parameter 20-17 to adjust the torque compensation gain for the low speed range. By tuning 20-17an offset is added to the torque-speed curve. Increase 20-17 when the no-load speed is lower than the frequency reference. Decrease 20-17 when the no-load speed is higher than the frequency reference. The effect on the torque-speed curve from 20-17 is shown as the following figure: Torque Decrease 20-17 Increase 20-17...
  • Page 358 20-19 Overspeed (OS) selection 0: Deceleration to stop Range 1: Coast to stop 2: Continue to operate 20-20 Overspeed (OS) detection level Range 0~120 % 20-21 Overspeed (OS) detection time Range 0.0~2.0 sec 20-22 Speed deviation (DEV) selection 0: Deceleration to stop Range 1: Coast to stop 2: Continue to operate...
  • Page 359 ■ PG feedback setting (1) Over speed operation setting (20-19 to 20-21) a) When the motor speed exceeds the tuning limit, an error is detected. If the motor speed feedback exceeds the value of 20-20 (overspeed detection level) for the time specified in 20-12 (over speed detection delay time) an over-speed (OS) condition is detected.
  • Page 360 20-28=0: Forward operation, phase A is leading (phase B is leading for reversal operation). 20-28=1: Forward operation, phase B is leading (phase A is leading for reversal operation). Inverter phase (20-28= 0) Forward phase Command phase Motor (Forward) (20-28= 1) phase Figure 4.4.118 PG and motor rotation direction Motor direction is determined as below:...
  • Page 361 Examples: 20-29=001 → n=0, k=1, proportion = (1+0)/1=1 20-29=032 → n=0, k=32, proportion = (1+0)/32=1/32 20-29=132 → n=1, k=32, proportion = (1+1)/32=1/16 (7) Gear ratio of PG and motor (20-30, 20-31). Gear ratio specifies when a gearbox is connected between the PG and the motor a) Set the gear ratio of the load side parameter 20-31.
  • Page 362 21-Torque And Position Control Parameters 21-00 Torque control selection 0: Speed control Range 1: Torque control 21-01 Filter time of torque reference Range 0~1000 msec 21-02 Speed limit selection 0: according AI input Range 1: according to the set value of 21-03 2: Input by the Communication Address (2502H) 21-03 Speed limit value...
  • Page 363 Torque Control The torque reference command (Tref) uses analog input AI2 (04-05=15) Note: Torque reference command cannot be set via the keypad. Multi-function analog input (AI2) can used for torque reference (04-05=15) (torque) or torque compensation level (04-05=16). The direction (torque output) of the motor depends on the polarity of the analog input signal (AI2) instead of the direction of the run command.
  • Page 364 Table 4.4.17 Speed limit input method Related Input method Input terminal parameter Description setting 21-02=0 Analog input (AI1 or AI2) as speed limit Voltage input Analog input (AI1 or AI2 is set by 04-05 ) as reference 00-05=1 (-10V – 10V) frequency input Terminal AI1 signal level : -10V - 10V 04-00=2,3...
  • Page 365 Example 1: Set 30% speed limit in forward and reverse direction. ‧Set speed limit value (21-03)=0 Output torque (T) speed limit bias (21-04)=30% ‧The speed range of the torque Control is 21-04 21-04 from –30% to 30% of maximum output frequency. Torque reference (Tref) Motor speed (N) -100%...
  • Page 366 Example: Torque limit and speed limit operation: In this example the torque limit and speed limit are used in a winding and unwind operation. Winding operation The line speed (N) and motor torque (T) are in the same direction of the motor. Refer to Figure 4.4.124 Output torque Torque Limit...
  • Page 367 The relationship among Tref (torque reference), NLmt (speed limit) and N (motor speed) is shown below when used in winding operation and roll-out operation. Operations Winding operation Unwind operation 21-08 21-08 21-08 21-08 21-04 21-04 21-04 21-04 T-N curve 21-04 21-04 21-04 21-04...
  • Page 368 21-05 Positive torque limit Range 0~300 % 21-06 Negative torque limit Range 0~300 % 21-07 Forward regenerating torque limit Range 0~300 % 21-08 Reversal regenerating torque limit Range 0~300 % Use the torque limit function to limit the torque applied to the load, or limit the regenerative torque. In speed control the torque limit function has a higher priority than the motor speed control and compensation.
  • Page 369 Torque limit setting by using multi-function analog input AI2 (04-05) Table 4.4.18 Torque limit analog input 04-05 (AI2) Function Positive torque limit Negative torque limit Regenerative torque limit (for both forward and reversal directions). Positive/negative torque limit (positive and negative detection torque limit ) Set the analog input terminal (AI2) signal level (04-00), gain (04-07) and bias (04-08) The default setting for the analog input AI2 is 0 -10V representing 0 –...
  • Page 370 When the analog input is at maximum (10V or 20mA), the torque limit is 100% of the motor rated torque. In order to increase the torque limit above 100% the analog input gain (04-07) has to set to a value greater than 100%. For example: 200.0% of the gain will result in the torque limit of 200% of motor rated torque at 10V (20mA) analog input level.
  • Page 371 21-26 The command of rotation cycle number of section 8 Range -9999~9999 21-27 The command of the pulse number of section 8 Range -9999~9999 21-28 The command of rotation cycle number of section 9 Range -9999~9999 21-29 The command of the pulse number of section 9 Range -9999~9999 21-30...
  • Page 372 21-09 Maximum frequency for position control Maximum output frequency when moving to the next position. The position control function uses deceleration time 1 (00-15). In the SV control mode, multi-function digital input terminals (03-00 to 03-07) can be used to select the position. See table 4.4.19.
  • Page 373 Spindle Positioning Function (Z-phase locked function) Parameter 21-42 is set to 1 and the speed is lower than the lowest frequency so the inverter will enter into the position mode when Z-phase signal appears. The origin is positioned in z phase signal and the setting value of parameter 21-43.
  • Page 374 External Position 2 Position 1 Position 3 Position 0 Position 4 Position Position 5 Command Position Command Enable Position Position 0 Position 3 Position 3 Position 1 Command Position 1 Position 3 of Inverter Fig. 4.4.131 Position Enable Diagram Multi-position mode is the absolute type. If the first section is at 100 pulse and make the motor rotate at more than 100 pulse, then the second section is required to set at 200 pulse.
  • Page 375 22- PM Motor Parameters 22-00 PM motor rated power Range 0.00~600.00 Kw 22-02 PM motor rated current 25%~200% inverter’s rated current Range PM motor’s pole number 22-03 Range 2~96 Poles PM Motor’s rated rotation speed 22-04 Range 1~60000 rpm PM motor’s maximum rotation speed 22-05 Range 1~60000 rpm...
  • Page 376 22-08 PM Encoder Type 0: TAMAGAWA Non Wire-Saving Encoder 1: TAMAGAWA Wire-Saving Encoder Range 2: SUMTAK Wire-Saving Encoder 3: General Incremental Encoder 4: Sine Wave 22-10 PM SLV Start Current Range 0 ~ 120% Motor Rated Current 22-11 I/F Mode Start Frequency Switching Point Range 1.0 ~ 20% 22-12...
  • Page 377 22-08: PM Encoder Type When PM encoder type is changed it is recommended to perform auto-tuning or set data manually. Select option 3 to use a standard incremental encoder with a magnetic starting current of approximately 80% of the rated current (22-02) . Sine Wave card is for Heidenhain ERN 1387 and ECN 1313 22-10: PM SLV Start Current Set torque current at start as a percentage of motor rated current.
  • Page 378 WARNING! Electric Shock Hazard High voltage is supplied to the motor when performing an auto-tune, even when the motor is stopped, which could result in death or serious injury. Do not touch the motor when performing magnetic pole realignment until the auto-tuning procedure is completed.
  • Page 379 Attachment 1: Parameters’ default value and upper limit value are adjusted by different capacities of inverter. The initial value of Max. frequency Max. frequency Display parameter 18-00 in (Hz) in SLV (Hz) in SLV when parameter Models Frame SLV/ SV (Slip when carrier carrier frequency 12-41 (Inverter...
  • Page 380 The initial The initial The initial Max. Parameter value of value (V) of initial Default Max. value (s) of carrier in 11-59 parameters parameter value carrier carrier in Models parameter HD kHz (Gain of 21-05 ~21-08 08-02(Stall (s) of in HD HD kHz 20-08 (ASR (SLV, Max.
  • Page 381 200V Models 01-07 01-09 01-21 01-23 11-59 11-60 Middle Output Minimum Middle Output Minimum Gain of Upper Limit of Model Voltage 1 of Output Voltage Voltage 1 of Output Voltage Preventing Preventing Motor 1 1 of Motor 1 Motor 2 1 of Motor 2 Oscillation Oscillation...
  • Page 382 400V Models 01-07 01-09 01-21 01-23 11-59 11-60 Middle Output Minimum Middle Output Minimum Gain of Upper Limit of Model Voltage 1 of Output Voltage Voltage 1 of Output Voltage Preventing Preventing Motor 1 1 of Motor 1 Motor 2 1 of Motor 2 Oscillation Oscillation...
  • Page 383 575/690V Models The initial value of Max. frequency Max. frequency Display parameter 18-00 in (Hz) in SLV when (Hz) in SLV when parameter Model Frame SLV/ SV (Slip carrier carrier frequency 12-41 (Inverter compensation at low frequency <= 8K > 8K temperature) speed) 5001...
  • Page 384 The initial value of The initial value (s) The initial Default Max. carrier parameters 21-05 of parameter 20-08 value (s) of Models carrier in in HD kHz ~21-08 (ASR Accel. & HD kHz (others) (Torque Limit) Filter Time) Decel 5001 5002 200% 0.002...
  • Page 385: Check Motor Rotation And Direction

    5. Check motor rotation and direction LCD Keypad This test is to be performed solely from the inverter keypad. Apply power to the inverter after all the electrical connections have been made and protective covers have been re-attached. At this point, DO NOT RUN THE MOTOR, the keypad should display as shown below in Fig.
  • Page 386 LED Keypad This test is to be performed solely from the inverter keypad. Apply power to the inverter after all the electrical connections have been made and protective covers have been re-attached. At this point, DO NOT RUN THE MOTOR, the keypad should display as shown below in Fig. 5.3 and the speed reference 005.00Hz should be blinking.
  • Page 387: Speed Reference Command Configuration

    6. Speed Reference Command Configuration The inverter offers users several choices to set the speed reference source. The most commonly used methods are described in the next sections. Frequency reference command is selected with parameter 00-05. 00-05: Main Frequency Command (Frequency Source) This function sets the frequency command source.
  • Page 388 6.2 Reference from External Analog Signal (0-10V / 4-20mA) Analog Reference: 0 – 10 V (Setting 00-05 = 1) Terminal representation for 230V: 1 ~ 2 HP, 460V: 1 ~ 3HP 24VG +10V Common/0V, GND Analog Control Terminals / Input AI1 User Terminals Connect shield to control ground terminal...
  • Page 389 Analog Reference: Potentiometer / Speed Pot (Setting 00-05 = 1) Terminal representation for 230V: 1 ~ 2 HP, 460V: 1 ~ 3HP +10V 24VG Common/0V, GND Control Terminals / User Terminals Connect shield to Analog control ground terminal Input AI1 Potentiometer 1 ~ 5K Ohm Terminal representation for 230V: 3 ~ 150 HP, 460V: 5 ~ 425HP, 575V:1~10HP, 690V:15~270HP...
  • Page 390 Analog Reference: 4 – 20mA (Setting 00-05 = 1) Terminal representation for 230V: 1 ~ 2 HP, 460V: 1 ~ 3HP +10V 24VG Common, GND Control Terminals / Analog Input AI2 User Terminals Set switch SW2 to ‘I’ (Factory Default) Connect shield to control ground terminal 4 –...
  • Page 391: Reference From Serial Communication Rs485

    6.3 Reference from Serial Communication RS485 (00-05=3) 8 7 6 5 4 3 2 1 Control board Cable Shield RS485 Port RS485 PLC / Computer Connection To set the speed reference for the inverter via serial communication parameter 00-05 has be set to “3” for frequency command via serial communication.
  • Page 392 Examples: Frequency Reference Command: 10.00 Hz (Inverter Node Address: 01) Command String (hexadecimal): 01 06 25 02 03 E8 23 B8 To set the frequency reference to 10.00, a value of ‘1000’ (03E8h) has to be send to the inverter. Frequency Reference Command: 30.00 Hz (Inverter Node Address: 01) Command String (hexadecimal): 01 06 25 02 0B B8 24 44 To set the frequency reference to 30.00, a value of ‘3000’...
  • Page 393: Reference From Pulse Input

    6.4 Reference from Pulse Input (00-05=4) Serial pulse input (Internal resistence : 3.89 K) Specification Low Input Level: 0.0 to 0.5 V High Input Level: 4.0 to 13.5 V Duty cycle: (ON / OFF) 30 % to 70% Pulse Input frequency range: 50 to 32 KHz Set Pulse Input Setup as Frequency Reference Set parameter 00-05 to 4 and 03-30 to 0 to use the pulse input terminal PI as the frequency reference source.
  • Page 394: Reference From Two Analog Inputs

    6.5 Reference from two Analog Inputs Analog input AI1 is used as master frequency reference and analog input AI2 is used as auxiliary frequency reference. Analog Reference AI1: 0 – 10 V (Setting 00-05 = 1) Analog Reference AI2: 0 – 10 V (Setting 00-06 = 1, 04-05 = 1) Dipswitch SW2 04-00 Setting AI1 –...
  • Page 395: Change Frequency Unit From Hz To Rpm

    Terminal representation for 230V: 3 ~ 150 HP, 460V: 5 ~ 425HP, 575V:1~10HP, 690V:15~270HP +10V -10V S(+) S(-) 24VG Common/0V, GND Control Terminals / Analog Input AI1 User Terminals Analog Input AI2 Connect shield to control ground terminal 0 – 10 V 6.6 Change Frequency Unit from Hz to rpm Enter the number of motor poles in 16-03 to change the display units from Hz to rpm.
  • Page 396: Operation Method Configuration (Run / Stop)

    7. Operation Method Configuration (Run / Stop) The inverter offers users several choices to run and stop from different sources. The most commonly used methods are described in the next sections. Operation command is selected with parameter 00-02. 00-02: Run Command Selection This function sets the frequency command source.
  • Page 397: Run / Stop From External Switch / Contact Or Pushbutton

    7.2 Run/Stop from External Switch / Contact or Pushbutton (00-02=1) Use an external contact or switch to Run and Stop the inverter. Permanent Switch / Contact: Terminal representation for 230V: 1 ~ 2 HP, 460V: 1 ~ 3HP 24VG +10V Common/ 24VG Forward Command/FWD...
  • Page 398 Momentary Contacts (Push Buttons) Use push button / momentary switch to Run and Stop the inverter. Set parameter 13-08 to 3, 5 or 7 for 3-wire program initialization, multi-function input terminal S1 is set to run operation, S2 for stop operation and S7 for forward/reverse command. 00-01 Operation Method = 1 03-07 Terminal S7 Function = 26 Terminal representation for 230V: 1 ~ 2 HP, 460V: 1 ~ 3HP...
  • Page 399: Run / Stop From Serial Communication Rs485

    7.3 Run/Stop from Serial Communication RS485 (00-02=3) 8 7 6 5 4 3 2 1 Control board Cable Shield RS485 Port RS485 PLC / Computer Connection To control (Run/Stop) the inverter via serial communication parameter 00-02 has be set to either a “3” for communication control.
  • Page 400 Examples: Run Forward Command (Inverter Node Address: 01) Command String (hexadecimal): 01 06 25 01 00 01 12 C6 Run Reverse Command (Inverter Node Address: 01) Command String (hexadecimal): 01 06 25 01 00 03 93 07 Stop Command (Inverter Node Address: 01) Command String (hexadecimal): 01 06 25 01 00 00 D3 06 Note: The last 2 bytes of the command strings consist of a CRC16 checksum, please refer to section 4.5 of the instruction manual for additional information.
  • Page 401: Motor And Application Specific Settings

    8. Motor and Application Specific Settings It is essential that before running the motor, the motor nameplate data matches the motor data in the inverter. 8.1 Set Motor Nameplate Data (02-01, 02-05) 02-05 Rated power of motor 1 The nominal motor rated capacity is set at the factory. Please verify that the motor name plate data matches the motor rated capacity shown in parameter 02-05.
  • Page 402: Acceleration And Deceleration Time

    8.2 Acceleration and Deceleration Time (00-14, 00-15) Acceleration and Deceleration times directly control the system dynamic response. In general, the longer the acceleration and deceleration time, the slower the system response, and the shorter time, the faster the response. An excessive amount of time can result in sluggish system performance while too short of a time may result in system instability.
  • Page 403: Torque Compensation Gain

    8.3 Torque Compensation Gain (01-10) This parameter sets the relationship between output frequency and output voltage. Constant torque applications have the same torque requirements at low speed as well as at high speed. Initial Setup For Variable Torque / Normal Duty applications set parameter 01-10 to an initial value of 0.5. For Constant Torque / Heavy Duty applications set parameter 01-10 to an initial value of 1.0.
  • Page 404: Automatic Energy Savings Functions

    8.4 Automatic Energy Savings Function (11-19) In the V/F control mode the automatic energy saving (AES) function automatically adjusts the output voltage and reduces the output current of the inverter to optimize energy savings based on the load. The output power changes proportional to the motor load. Energy savings is minimal when the load exceeds 70% of the output power and savings become greater when the load decreases.
  • Page 405 11-22: Adjustment time of automatic energy saving Sets sample time constant for measuring output power. Reduce the value of 11-22 to increase response when the load changes. Note: If the value of 11-22 is too low and the load is reduced the motor may become unstable. 11-23: Detection level of automatic energy saving Sets the automatic energy saving output power detection level.
  • Page 406: Emergency Stop

    8.5 Emergency Stop The emergency stop time is used in combination with multi-function digital input function #14 (Emergency stop). When emergency stop input is activated the inverter will decelerate to a stop using the Emergency stop time (00-26) and display the [EM STOP] condition on the keypad. Note: To cancel the emergency stop condition the run command has to be removed and emergency stop input deactivated.
  • Page 407: Forward And Reverse Jog

    8.6 Forward and Reverse Jog The jog forward command is used in combination with multi-function digital input function #6 (Jog Forward) and the jog reverse command is used in combination with multi-function digital input function #7 (Jog Reverse). Example: Jog Forward input terminal S5 (03-04 = 06) and Jog Reverse input terminal S7 (03-06=7) Terminal representation for 230V: 1 ~ 2 HP, 460V: 1 ~ 3HP 24VG +10V...
  • Page 408: Direct / Unattended Startup

    8.7 Direct / Unattended Startup The unattended startup function prevents the inverter from starting automatically when a run command is present at time of power-up. To use USP command set one of the multi-function digital input functions to #50 (USP Startup).
  • Page 409: Analog Output Setup

    8.8 Analog Output Setup Signal: Use parameter 04-11 to select the analog output signal for AO1 and parameter 04-16 to select the analog output signal for AO2. Gain: Use parameter 04-12 to adjust the gain for AO1 and parameter 04-17 to adjust the gain for AO2. Adjust the gain so that the analog output (10V/20mA) matches 100% of the selected analog output signal (04-11 for AO1 and 04-16 for AO2).
  • Page 410 04-11 AO1 function Setting 0: Output frequency 15: ASR output 1: Frequency command 16: Reserved 2: Output voltage 17: q-axis voltage 3: DC voltage 18: d-axis voltage 4: Output current 19: Reserved 5: Output power 20: Reserved 6: Motor speed 21: PID input Range 7: Output power factor...
  • Page 411 04-12 AO1 gain value Range 0.0~1000.0% 04-13 AO1 bias-voltage value Range -100.0~100.0% 04-16 AO2 function Setting Range See parameter 04-11 04-17 AO2 gain value Range 0.0~1000.0% 04-18 AO2 bias-voltage value Range -100.0~100.0% Analog Output Signal 10V(or 20mA) × Gain (20mA) 10V Bias (4mA) 0V Monitor Signal...
  • Page 412: Using Pid Control For Constant Flow / Pressure Applications

    9. Using PID Control for Constant Flow / Pressure Applications 9.1 What is PID Control? The PID function in the inverter can be used to maintain a constant process variable such as pressure, flow, temperature by regulating the output frequency (motor speed). A feedback device (transducer) signal is used to compare the actual process variable to a specified setpoint.
  • Page 413 Example 1: Example 2: Gain = 1.0 Gain = 2.0 Set-Point = 80% Set-Point = 80% Feedback = 78% Feedback = 78% Error = Set-point - Feedback = 2% Error = Set-point - Feedback = 2% Control Error = Gain x Error = 2% Control Error = Gain x Error = 4% Please note that an excessive gain can make the system unstable and oscillation may occur.
  • Page 414: Connect Transducer Feedback Signal

    Commonly used PID control modes 0001b: Forward operation: PID operation enabled, motor speeds increases when feedback signal is smaller than set-point (most fan and pump applications) 0011b: Reverse operation: PID operation enabled, motor slows down when feedback signal is smaller than set-point (e.g.
  • Page 415 Terminal representation for 230V: 3 ~ 150 HP, 460V: 5 ~ 425HP, 575V:1~10HP, 690V:15~270HP S(+) S(-) +10V -10V 24VG Common/0V, GND Analog Control Terminals / Input AI2 User Terminals Connect shield to control ground terminal Set switch SW2 to ‘I’ (Factory Default) 4 –...
  • Page 416: Engineering Units

    Terminal representation for 230V: 3 ~ 150 HP, 460V: 5 ~ 425HP, 575V:1~10HP, 690V:15~270HP S(+) S(-) +10V -10V 24VG Common/0V, GND Analog Control Terminals / Input AI2 User Terminals Connect shield to control ground terminal Set switch SW2 to ‘V’ 0 –...
  • Page 417: Sleep / Wakeup Function

    9.4 Sleep / Wakeup Function The PID Sleep function can be used to prevent a system from running at low speeds and is frequently used in pumping application. The PID Sleep function is turned on by parameter 10-29 set to 1. The inverter output turns off when the PID output falls below the PID sleep level (10-17) for the time specified in the PID sleep delay time parameter (10-18).
  • Page 418: Troubleshooting And Fault Diagnostics

    10. Troubleshooting and Fault Diagnostics 10.1 General Inverter fault detection and early warning / self-diagnosis function. When the inverter detects a fault, a fault message is displayed on the keypad. The fault contact output energizes and the motor will coast to stop (The stop method can be selected for specific faults).
  • Page 419 LED display Description Cause Possible solutions  Deceleration time set too short,  Increase deceleration time DC bus voltage exceeds  Reduce input voltage to resulting in regenerative energy the OV detection level: Over voltage flowing back from motor to the comply with the input 410Vdc: 230V class inverter.
  • Page 420 LED display Description Cause Possible solutions  Check V/f curve. Inverter thermal overload Inverter  Voltage setting V/F mode too high,  Replace inverter with protection tripped. overload If an inverter overload resulting larger rating.  Check and reduce motor occurs 4 times in five in over-excitation of the motor.
  • Page 421 LED display Description Cause Possible solutions PG pulses are not received by the inverter for the time  PG cable disconnected.  Check PG wiring. Open circuit specified in 20-26 (PG  PG has no power.  Check PG power-supply. open circuit detection time).
  • Page 422 LED display Description Possible causes Corrective action External fault (Terminal S1) External fault Active when 03-00= 25, (S1) and Inverter external fault selection 08-24=0 or 1. External fault (Terminal S2) External fault Active when 03-01= 25, (S2) and Inverter external fault selection 08-24=0 or 1.
  • Page 423 LED display Description Possible causes Corrective action CF07  Perform rotational or Motor control stationary auto-tune  SLV mode is unable to run motor. fault Motor control fault  Increase minimum output frequency (01-08) DC bus fuse blown  Check IGBTs DC fuse (Models 200V fuse open ...
  • Page 424: Warning / Self-Diagnosis Detection Function

    10.3 Warning / Self-diagnosis Detection Function When the inverter detects a warning, the keypad displays a warning code (flash). Note: The fault contact output does not energize on a warning and the inverter continues operation. When the warning is no longer active the keypad will return to its original state. When the inverter detected a programming error (for example two parameters contradict each other of are set to an invalid setting), the keypad displays a self-diagnostics code.
  • Page 425 LED display Description Possible causes Corrective action warning 03-07 = 31).  Check over torque Inverter output torque is (flash) detection parameters higher than 08-15 (over over torque torque detection level) for (08-15 / 08-16).  Load too heavy. detection ...
  • Page 426 LED display Description Possible causes Corrective action (flash) External External base block baseblock (Terminal S5) (flash) External External base block baseblock (Terminal S6)  Multi-function input  Multifunction digital input function set incorrectly.  Check wiring external baseblock active. (flash) External External base block baseblock...
  • Page 427 LED display Description Possible causes Corrective action Motor speed exceeds level set in 20-20 (PG (flash) Over speed Level) for the Motor over  Check ASR parameters  Motor speed overshoot time set in 20-21 (PG speed group 21. over speed time). Active (ASR) ...
  • Page 428 LED display Description Possible causes Corrective action (flash)  Connection lost or wire No Modbus  Check connection communicati communication received broken.  Check host computer / on error  Host stopped for 2 sec. software. Active when 09-07=3. communicating. over current ...
  • Page 429 LED display Description Possible causes Corrective action EF1 ( flash ) External fault External fault (Terminal (S1) S1) Active when 03-00= 25, and Inverter external fault selection 08-24=2. EF2 ( flash ) External fault External fault (Terminal (S2) S2) Active when 03-01= 25, and Inverter external fault selection 08-24=2.
  • Page 430 LED display Description Possible causes Corrective action EF9 ( flash ) error of Forward run and reverse forward/revers run are active within 0.5  Forward run and reverse run  Check run command al rotation sec of each other. Stop active (see 2-wire control).
  • Page 431 LED display Description Possible causes Corrective action HPErr Inverter capacity setting Model  Inverter capacity setting does error:  Check inverter capacity selection Inverter capacity setting not match voltage class error setting 13-00. 13-00 does not match (13-00). the rated voltage. ...
  • Page 432  Check encoder wiring Encoder PG card is connected  17-07 PG pulse number Error encoder signal setting is not  Abnormal encoder signal error is detected when corresponding to the motor auto rotational encoder. tuning is running.  Replace the encoder. Wrong running direction...
  • Page 433: Auto-Tuning Error

    10.4 Auto-tuning Error When a fault occurs during auto-tuning of a standard AC motor, the display will show the “AtErr” fault and the motor stops. The fault information is displayed in parameter 17-11. Note: The fault contact output does not energize with an auto-tuning fault. Refer to Table 10.4.1, for fault information during tuning, cause and corrective action.
  • Page 434: Pm Motor Auto-Tuning Error

    10.5 PM Motor Auto-tuning Error When a fault occurs during auto-tuning of a PM motor, the display will show the “IPErr” fault and the motor stops. The fault information is displayed in parameter 22-18. Note: The fault contact output does not energize with an auto-tuning fault. Refer to Table 10.5.1, for fault information during tuning, cause and corrective action.
  • Page 435: Inverter Peripheral Devices And Option

    11. Inverter Peripheral devices and Options 11.1 Braking Resistors and Braking Units Inverters ratings 230V 1 ~ 25HP / 460V 1 ~ 40HP / 575V 1~10HP / 690V 15~40HP have a built-in braking transistor. For applications requiring a greater braking torque an external braking resistor can be connected to terminals B1 / P and B2;...
  • Page 436 Minimum Inverter Braking unit Braking resistor Braking Resistance torque Spec for one (Peak / Input Resistor Resistor and Continues) HP KW Model Part Number Req. (Ω) Voltage Req. specification dimensions Req. (set) 10%ED (pcs) (L*W*H) mm 1200W/27.2Ω 125 90 JNTBU-230 JNBR-4R8KW6R8 4800W/6.8Ω...
  • Page 437 Minimum Inverter Braking unit Braking resistor Braking Resistance torque Spec for one (Peak / Input Resistor Resistor and Continues) HP KW Model Part Number (Ω) Voltage Req. specification Req. dimensions 10%ED (L*W*H) mm 1500W/20Ω 125 90 JNTBU-430 JNBR-6KW20 6000W/20Ω 115% 19.2Ω...
  • Page 438: Ac Line Reactors

    3 phases Single-phase 100% of rated Horse Rated input Three-phase rated input Model output current power current fuse rating current HD/ND HD/ND HD/ND A510-2001-C-U 5.4/6.5 9.4/11.3 A510-2002-C-U 8/9.6 8.5/10.3 14.7/17.9 A510-2003-C-U 11/12 11.7/12.8 20.3/22.1 A510-2005-C3-U 17.5/22 18.7/22.3 A510-2008-C3-U 25/30 26.3/31.6 A510-2010-C3-U 12.6...
  • Page 439 460V class 100% of rated Horse Rated input current Model output current Fuse rating power HD/ND HD/ND A510-4001-C3(F)-U 3.4/4.1 3.7/4.5 A510-4002-C3(F)-U 4.2/5.4 5.3/5.9 A510-4003-C3(F)-U 5.5/6.9 6.0/7.5 A510-4005-C3(F)-U 9.2/12.1 9.6/11.6 A510-4008-C3(F)-U 11.3 14.8/17.5 15.5/18.2 A510-4010-C3(F)-U 13.7 18/23 18.7/24.0 A510-4015-C3(F)-U 18.3 24/31 25.0/32.3...
  • Page 440 600V class 100% of rated Horse Rated input current Model output current Fuse rating power HD/ND HD/ND 1.7/3.0 1.7/3.0 A510-5001-C3-U 3/4.2 3/4.2 A510-5002-C3-U 4.2/5.8 4.2/5.8 A510-5003-C3-U 6.6/8.8 6.6/8.8 A510-5005-C3-U 9.9/12.2 9.9/12.2 A510-5008-C3-U 11.4 11.4/14.5 11.4/14.5 A510-5010-C3-U 17.9 15/19 15/19 A510-6015-C3-U 22.7...
  • Page 441: Pg Speed Feedback Card

    11.5 PG Speed Feedback Card Refer to specified instruction manual for installation of each option card. JN5-PG-O 24~16 AWG Wiring Size JN5-PG-L (0.205~1.31mm JN5-PG-PM 0.22~0.25 N.M Torque JN5-PG-PMR 0.2 N.M Refer to the dedicated option card manual for installation instructions. A) JN5-PG-O speed feedback card: Open collector speed feedback card JN5-PG-O terminal specification: Terminal Name...
  • Page 442 B) JN5-PG-L speed feedback card: Line driver speed feedback card JN5-PG-L terminal specification Terminal Name Description Power supply for encoder. 12V or 5V ±5%, 200mA Maximum (12V or 5V input voltage selected by the Switch Jumper. Can’t GND (0V Common Terminal) use both 12V and 5V at the same time) Encoder input signal, A correct divider ratio output requires a A, /A, B, /B, Z, /Z...
  • Page 443 C) JN5-PG-PM speed feedback card: synchronous motor line driver speed feedback card JN5-PG-PM terminal specification Terminal Name Description Power supply for encoder. 5V ±5%, 200mA Maximum GND (0V Common Terminal) Encoder input signal, A correct divider ratio output requires a A, /A, B, /B, Z, /Z two-phase input.
  • Page 444 D) JN5-PG-PMR speed feedback card with TAMAGAWA Resolver Encoder JN5-PG-PMR terminal specification Terminal Name Description R+, R- Excitation signal to Resolver. 7Vrms, 10KHz. S1, S3 COS signals from Resolver. S2, S4 SIN signals from Resolver. A,B,Z pulse Monitor signal output, a+, a-, b+, b-, z+, z- Line driver output Type,RS-422 level.
  • Page 445: Other Options

    A. Analog Operator Besides the standard LED & LCD keypad in inverter A510, analog dial operator (JNEP-16-A) is also available. Refer to the following figure. This operator can be pulled out and movable. Refer to the following figure for wiring with inverter.
  • Page 446 When using a remote mount keypad a blank cover can be installed in place of the original keypad to prevent dust and debris from entering the inverter. Name Model Specification Blank cover JN5-OP-A03 Blank cover Name Model Specification JN5-CB-01M 1m (3.3ft) JN5-CB-02M 2m (6.6ft) LED digital...
  • Page 447 D. Protective cover A protective cover can be installed for both sides of the inverter to avoid objects from entering the inverter. Frame Model JN5-CR-A01 JN5-CR-A02 JN5-CR-A04 Appearance of Installation of Appearance of protective protective installed protective cover cover cover 11-13...
  • Page 448 Use a RS232 to RS485 converter to connect a PC / PLC with a built-in RS-232 interface. A maximum of 31 inverters can be connected to the network. Terminating resistors of 120 ohm must be installed at both end of the network. Refer to A510 RS-485 Modbus communication manual for more information. A1-1...
  • Page 449 A1.2 Profibus DP Network This section shows a Profibus DP network consisting of several inverters communicating using the Profibus DB option card. Inverter #1 Inverter #2 Inverter #n 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 3 2 1 3 2 1 3 2 1...
  • Page 450 Appendix B: UL Instructions Danger Electric Shock Hazard Do not connect or disconnect wiring while the power is on. Failure to comply will result in death or serious injury. Warning Electric Shock Hazard Do not operate equipment with covers removed. Failure to comply could result in death or serious injury.
  • Page 451 Warning Fire Hazard Tighten all terminal screws to the specified tightening torque. Loose electrical connections could result in death or serious injury by fire due to overheating of electrical connections. Do not use an improper voltage source. Failure to comply could result in death or serious injury by fire. Verify that the rated voltage of the inverter matches the voltage of the incoming power supply before applying power.
  • Page 452  UL Standards The UL/cUL mark applies to products in the United States and Canada and it means that UL has performed product testing and evaluation and determined that their stringent standards for product safety have been met. For a product to receive UL certification, all components inside that product must also receive UL certification.
  • Page 453  Main Circuit Terminal Wiring UL approval requires crimp terminals when wiring the inverter’s main circuit terminals. Use crimping tools as specified by the crimp terminal manufacturer. TECO recommends crimp terminals made by NICHIFU for the insulation cap. The table below matches inverter models with crimp terminals and insulation caps. Orders can be placed with a TECO representative or directly with the TECO sales department.
  • Page 454  Motor Over Temperature Protection Motor over temperature protection shall be provided in the end use application. ■ Field Wiring Terminals All input and output field wiring terminals not located within the motor circuit shall be marked to indicate the proper connections that are to be made to each terminal and indicate that copper conductors, rated 75°C are to be used.
  • Page 455 supply the current flow will not rise above value. Please see electrical ratings for maximum voltage and table below for current. • The MCCB and breaker protection and fuse ratings (refer to the preceding table) shall be equal to or greater than the short-circuit tolerance of the power supply being used.
  • Page 456 ■ 08-05 Motor Overload Protection Selection The inverter has an electronic overload protection function (OL1) based on time, output current, and output frequency, which protects the motor from overheating. The electronic thermal overload function is UL-recognized, so it does not require an external thermal overload relay for single motor operation. This parameter selects the motor overload curve used according to the type of motor applied.
  • Page 457 Low Speed High Speed (<60 Hz) (>60 Hz) Cold Start Hot Start Motor Load Current (%) (02-01 = 100%) 100% 150% 200% ■ 08-06 Motor Overload Operation Selection 08-06 Start-up mode of overload protection operation (OL1) 0: Stop output after overload protection Range 1: Continuous operation after overload protection.
  • Page 458 UL- Additional Data Closed-Loop Crimp Terminal Size  Type 1 During installation, all conduit hole plugs shall be removed, and all conduit holes shall be used Recommended Input Fuse Selection...
  • Page 459 I N V E R T E R A 5 1 0 D i s t r i b u t o r T e c o - We s t i n g h o u s e Mo t o r C o mp a n y 5 1 0 0 N .

Table of Contents

Save PDF