Vacon apfiff09 marine Applications Manual

Ac drives
Table of Contents

Advertisement

Quick Links

®
vacon
nx
ac drives
apfiff09 marine
application manual

Advertisement

Table of Contents
loading

Summary of Contents for Vacon apfiff09 marine

  • Page 1 ® vacon ac drives apfiff09 marine application manual...
  • Page 3: Table Of Contents

    VACON MARINE APPLICATION MANUAL INDEX Document code: DPD01667B Software code: APFIFF09V224 Date: 6.10.2020 APFIFF09 MARINE APPLICATION - INTRODUCTION ....................7 General ................................. 7 Basic Features ..............................8 Condition Based Monitoring ..........................9 1.3.1 Introduction to Condition-based Monitoring ....................9 1.3.2 Condition-based monitoring stages .......................
  • Page 4 VACON® • 3 apfiff09 marine 6.2.7 Adjust Reference ............................60 Ramp Control ..............................61 6.3.1 Basic Settings ..............................61 6.3.2 Quick Stop ..............................61 6.3.3 Ramp Control Options ........................... 61 Input Signals ............................... 62 6.4.1 Basic Settings ..............................62 6.4.2 Digital inputs ..............................
  • Page 5 4 • VACON® apfiff09 marine 6.12.9 Cooling protection ............................. 85 6.12.10 Fieldbus protection ............................ 86 6.12.11 External Fault ............................. 86 6.12.12 Encoder Fault ............................. 86 6.12.13 Options ..............................86 6.13 Fieldbus parameters ............................86 6.14 ID Control Functions ............................89 6.14.1...
  • Page 6 VACON® • 5 apfiff09 marine 7.6.4 Frequency limit handling ..........................177 7.6.5 DC Link handling ............................178 7.6.6 Limit options ..............................181 DC current and magnetization handling ......................182 7.7.1 Open loop settings ............................182 7.7.2 Closed loop settings ............................. 186 Motor Control ..............................
  • Page 7 6 • VACON® apfiff09 marine 7.19.6 Counters ..............................279 7.20 Keypad control parameters ..........................280 Data Logger Trigger Word ..........................281 Identification function for permanent magnet synchronous motor ..............282 Zero position identification with absolute encoder..................282 Start position with incremental encoder without Z-pulse input..............282 Identification with incremental encoder with Z-pulse input................
  • Page 8: Apfiff09 Marine Application - Introduction

    ® VACON NCDrive when commissioning. NCDrive through selecting “Variable Text” and pressing “F1”. ® Help is available in VACON ® Below is an example from the Identification parameter help text from the VACON NCDrive. Local contacts: http://drives.danfoss.com/danfoss-drives/local-contacts/ Classified as Public...
  • Page 9: Basic Features

    8 • VACON® apfiff09 marine Basic Features The Marine application provides a wide range of parameters for controlling induction motors and permanent magnet motors. It can be used for various kinds of different processes which require wide flexibility of I/O signals and only simple PI control logic is needed.
  • Page 10: Condition Based Monitoring

    VACON® • 9 apfiff09 marine Condition Based Monitoring NXP offers Condition Based Monitoring to identify motor faults at an early stage. Stator Winding, Vibration and Load Monitoring is supported in this application. The Condition Based Monitoring is license protected. Users need to buy a license key from a Danfoss supplier to make the Condition Based Monitoring effective.
  • Page 11 10 • VACON® apfiff09 marine Sensitivity of detection methods (qualitative) Fault severity Load monitoring Vibration level (RMS) monitoring Fault types To begin condition-based monitoring a baseline must be generated. During this activity, the system captures motor stator winding speed points for each baseline. The user can define the duration, minimum and maximum speed for baseline generation.
  • Page 12: Condition-Based Monitoring Stages

    VACON® • 11 apfiff09 marine 1.3.2 Condition-based monitoring stages Different stages of condition-based monitoring are as shown Baseline Threshold Monitoring Computation Calculation • • Warnings & Manual • Alarm/Fault Baseline Run Baseline Computation: During the initial stage, baselines for different types of condition- based monitoring are computed, based on the type of baseline mode selected by the user.
  • Page 13: Acronyms

    12 • VACON® apfiff09 marine Acronyms Altenating Current Analogue Input All-In-One Applications Asynchronous Motor ASIC Application Specific Integrated Circuit Closed Loop Direct Current Digital Input Digital Output DriveSynch Field Bus Function To Terminal Firmware Field Weakening Point FWPV Field Weakening Point Voltage...
  • Page 14: Apfiff09 Versions Compatibility Issues

    V215 Stop Torque Release Time ID changed from 1848 to 1858 ® Note 1: When updating application, it is not recommended to use VACON NCDrive parameter download function. Instead, upload the parameters from the unit and make comparison to the old parameter file. Application is constantly developed, this includes changing parameter default values.
  • Page 15: Control I/O

    Note: See User Manual, chapter Control Connections, for hardware specification and configuration. Note: See jumper selections below. Jumper block X3 : ® More information in VACON CMA and CMB grounding User Manual. CMB co nnected to G ND CMA co nnected to G ND...
  • Page 16: Terminal To Function" (Ttf) Programming Principle

    Defining an input/output for a certain function on keypad Connecting a certain input or output with a certain function (parameter) is done by giving the ® parameter an appropriate value. The value is formed of the Board slot on the VACON ® control board (see VACON NX User Manual) and the respective signal number, see below.
  • Page 17: Defining A Terminal For A Certain Function With Ncdrive Programming Tool

    Defining a terminal for a certain function with NCDrive programming tool ® If you use the VACON NCDrive Programming Tool for parametrizing you will have to establish the connection between the function and input/output in the same way as with the control panel.
  • Page 18: Defining Unused Inputs/Outputs

    VACON® • 17 apfiff09 marine Defining unused inputs/outputs All unused inputs and outputs must be given the board slot value 0 and the value 1 also for the terminal number. The value 0.1 is also the default value for most of the functions.
  • Page 19: Apfiff09 - Monitoring Values

    These signals are presented with [Letter]. e.g. [FW]MotorRegulatorStatus Normal monitoring signal Normal parameter in application. ® [FW] Firmware signal, Can be monitored with VACON NCDrive when signal type is selected Firmware ® Application signal, can be monitored with VACON NCDrive when signal type is selected Application.
  • Page 20: Monitoring Values

    VACON® • 19 apfiff09 marine Monitoring values The monitoring values are the actual values of parameters and signals as well as statuses and measurements. Note for DriveSynch Systems: In a DriveSynch system, only Master drive monitoring signals are reliable. Only directly measured values are reliable in follower units. Even the Output Frequency of DriveSynch follower is not directly observed and thus may not show actual output frequency that is controlled by DriveSynch Master Drive.
  • Page 21: Monitoring Values 2

    20 • VACON® apfiff09 marine 5.1.1 Monitoring values 2 Code Parameter Unit Form. Description V1.24.1 Current Varies 1113 Unfiltered motor current V1.24.2 Torque 1125 Unfiltered motor torque V1.24.3 DC Voltage Unfiltered DC link voltage Application Status V1.24.4 Word V1.24.5 Shaft Frequency...
  • Page 22: Fieldbus Monitoring Values

    VACON® • 21 apfiff09 marine 5.1.2 FieldBus Monitoring values Code Parameter Unit Form. Description V1.25.1 FB Control Word 1160 V1.25.2 FB Speed Reference V1.25.3 FB Status Word V1.25.4 FB Actual Speed V1.25.5 FB Torque Reference 1140 Default Control of FB PD 1 V1.25.6...
  • Page 23: Pi Control Monitoring Values

    22 • VACON® apfiff09 marine 5.1.4 PI Control Monitoring values Code Parameter Unit Form. Description V1.27.1 PI Reference Used PI Reference V1.27.2 PI Actual Value PI Actual value V1.27.3 PI Output PI Output before scaling Scaled PI Output V1.27.4 PI Output Scaled...
  • Page 24: Functional Safety Monitoring

    VACON® • 23 apfiff09 marine 5.1.8 Functional Safety Monitoring Code Signal Unit Description V1.31.1 Safety App Status 1653 V1.31.2 Integrity Level 1640 V1.31.3 Acknowledge Mode 1641 V1.31.4 Safety Encoder Speed 1642 V1.31.5 Ramp Selection 1643 V1.31.6 Function Reached 1644 V1.31.7...
  • Page 25 24 • VACON® apfiff09 marine Current Warning S2 V1.32.2.4 3612 High Current Alarm/Fault V.1.32.2.5 3613 High V1.32.2.6 Voltage Unbalance 3618 Voltage Threshold V1.32.2.7 3621 Value Voltage Warning S1 V1.32.2.8 3614 High Voltage Warning S2 V1.32.2.9 3615 High Voltage Alarm/Fault V.1.32.2.10...
  • Page 26: Monitoring Values Description

    VACON® • 25 apfiff09 marine Monitoring values description Note for DriveSynch Systems: In a DriveSynch system, only Master drive monitoring signals are reliable. Only directly measured values are reliable in follower units. Even the Output Frequency of DriveSynch follower is not directly observed and thus may not show actual output frequency that is controlled by DriveSynch Master Drive.
  • Page 27 26 • VACON® apfiff09 marine V1.5 Motor torque ID 4 In % of Motor nominal torque Open loop 1 s linear filtering Closed Loop 32 ms filtering Drive Synch Operation Follower drive This value is the torque of the drive’s own power calculated in open loop. Motor torque is valid only in Master drive.
  • Page 28 VACON® • 27 apfiff09 marine V1.15 Analogue Out 1 % ID 26 V1.16 Analogue Out 2 % ID 31 V1.17 Analogue Out 3 % ID 32 V1.18 Analogue Out 4 % ID 1526 Analogue Output value 0% = 0 mA / 0 V, 100% = 20 mA / 10 V V1.19...
  • Page 29: Monitoring Values 2

    V1.24.1 Current A ID 1113 ® Unfiltered motor current, recommended signal for VACON NCDrive monitoring. Drive Synch Operation Master drive This value is the total current of the system divided by number of drives in the system (SbLastID). SbLastId cannot be changed; it needs to be set according to how many drives are linked with system bus.
  • Page 30 VACON® • 29 apfiff09 marine Unfiltered electrical drive output power. �� = √ 3���� cos �� V1.24.6 Output Power ID 1508 Voltage Size Scale 208 – 240 Vac NX0001 – NX0004 100 – 0.01 208 – 240 Vac NX0007 – NX0300 10 –...
  • Page 31 30 • VACON® apfiff09 marine V1.24.18 Regulator Status ID 77 Regulator status ID77 Motoring Current Regulator Status Generator Current Regulator Status Motoring Torque Regulator Status For CL monitor B0 Generator Torque Regulator Status For CL monitor B1 Over Voltage Regulator Status...
  • Page 32 VACON® • 31 apfiff09 marine V1.24.21 Encoder 2 Frequency OPT-A7 board second input encoder frequency. V1.24.22 Operation Hours Running state hours. ID 89 “Status Word 2” V1.24.23 Application Status Word 2 Different statuses from the drive, useful for ID Control DO functions.
  • Page 33 32 • VACON® apfiff09 marine Drive Output Power subtracted by motor resistive losses. �� = √ 3���� cos �� − 3���� V1.24.26 MotorPower kW ID79 Voltage Size Scale 208 – 240 Vac NX0001 – NX0004 100 – 0.01 208 – 240 Vac NX0007 –...
  • Page 34 VACON® • 33 apfiff09 marine V1.24.29 ABS Position 32b ID1958 Absolute encoder position within one rotation 32bit value. See encoder manual for scaling. V1.24.30 Non Ready Cause ID 1608 Non Ready Cause ID1608 Signal Fault is Active PreventMCReady is set...
  • Page 35: Fieldbus Monitoring Values

    34 • VACON® apfiff09 marine 5.2.2 FieldBus Monitoring values V1.25.1 FB Control Word ID1160 Control word used in bypass mode. See P2.13.22 and option board ByPass. More details in Chapter 9 Status and Control Word in detail. Description Value = 0...
  • Page 36 VACON® • 35 apfiff09 marine V1.25.4 FB Speed Actual ID865 Actual speed value send to fieldbus. V1.25.3 FB Torque Reference ID 1140 Torque reference value from fieldbus Default Control of FB PD 1 V1.25.4 FB Limit Scaling % ID 46 Limit scaling input value from fieldbus.
  • Page 37 36 • VACON® apfiff09 marine Fault Word 2 ID1173 Fault(s) F11 Output phase F43 Encoder Fault F51 External fault F81 External fault F12 or W12 Brake Chopper F31 IGBT, F41 IGBT F58 Brake Fault F32 Fan Cooling, Warning and Fault.
  • Page 38 VACON® • 37 apfiff09 marine Aux Status Word ID1163 Fault Comment Reserved Reserved Window control active and speed outside of widow Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Drive in torque control mode...
  • Page 39 38 • VACON® apfiff09 marine DIN: A.1 DIN: C.5 DIN: A.2 DIN: C.6 DIN: A.3 DIN: D.1 DIN: A.4 DIN: D.2 DIN: A.5 DIN: D.3 DIN: A.6 DIN: D.4 DIN: B.1 DIN: D.5 DIN: B.2 DIN: D.6 DIN: B.3 DIN: E.1 DIN: B.4...
  • Page 40: Master / Follower

    VACON® • 39 apfiff09 marine V1.25.21 Fault Word 10 ID 1202 Fault Word 10 ID1202 Fault Comment Speed Error Over Load Fault Active No Motor Fault PT100 Fault F56 & F65 V1.25.22 Warning Word 10 ID 1269 Warning Word 10 ID1269...
  • Page 41 40 • VACON® apfiff09 marine Only directly measured values are reliable in follower units. Even the Output Frequency of DriveSynch follower is not directly observed and thus may not show actual output frequency that is controlled by DriveSynch Master Drive.
  • Page 42 VACON® • 41 apfiff09 marine V1.26. 3 Master CW ID93 Master Drive Control Word. Master Sending, Follower receiving. Master Control Word ID93 Master-Follower DriveSynch Master-Follower Ready Status Run Enable Final Run Request Fault Reset Fault Reset Running Running Fault Brake Control...
  • Page 43 42 • VACON® apfiff09 marine D1: D3 Status Word D2,D3 and D4: Not updated. V1.26.5.4 Status Word D4 ID 1604 D1: D4 Status Word D2,D3 and D4: Not updated. Follower Drive status word FALSE TRUE Flux not ready Flux ready (>90%)
  • Page 44: Pi Control Monitoring

    VACON® • 43 apfiff09 marine 5.2.4 PI Control monitoring This PI control uses ID numbers for input and output signal. See detail in PI Control chapter. V1.27.1 PI Reference ID20 Used PI Reference, reference is selected by ID number. V1.27.2...
  • Page 45: Frequency Chain

    44 • VACON® apfiff09 marine 5.2.5 Frequency Chain V1.28.1 Frequency Reference 1 1126 Frequency reference before speed share. Speed Share is used also for reference direction control. V1.28.2 Frequency Reference 2 1126 Frequency reference after speed share and reference adjust but before interpolator.
  • Page 46 VACON® • 45 apfiff09 marine V1.30.1 Motoring Torque Limit % ID1950 V1.30.2 Generator Torque Limit % ID1951 V1.30.3 Motoring Power Limit ID1952 V1.30.4 Generator Power Limit % ID1953 V1.30.5 Current Limit ID1954 V1.30.6 SPC Positive Limit ID1955 V1.30.7 SPC Negative Limit ID1956 Local contacts: http://drives.danfoss.com/danfoss-drives/local-contacts/...
  • Page 47: Functional Safety Monitoring

    46 • VACON® apfiff09 marine 5.2.8 Functional Safety Monitoring V1.31.1 Safety App Status ID1653 FALSE TRUE Advanced safety option board will accept Drive ack not accepted ack from drive Advanced safety option board will accept Drive reset not accepted reset from drive V1.31.2...
  • Page 48 VACON® • 47 apfiff09 marine V1.31.3 Acknowledge Mode ID1641 Bits indicate whether specific safety functions are acknowledged automatically by advanced safety option board or require acknowledge from outside. 0 = automatic, 1 = manual FALSE TRUE B0 = Start up (STO active) [ACK-...
  • Page 49 48 • VACON® apfiff09 marine V1.31.6 Function Reached ID1644 Advanced safety option board -> Control board safety function status word. For active functions, indicates if a safety function is reached FALSE TRUE SLS1 SLS2 SLS3 SDI+ SDI- V1.31.7 Request DIN ID1645 Advanced safety option board ->...
  • Page 50 VACON® • 49 apfiff09 marine Advanced safety option board -> Control board safety function request word. Indicates if a function is requested by safe PLC. FALSE TRUE SLS1 SLS2 SLS3 SDI+ SDI- V1.31.9 Function In Use ID1647 Indicates which safety functions have been enabled by configuration...
  • Page 51 50 • VACON® apfiff09 marine Advanced safety option board -> Control board safety function status word. Indicates if a safety function is active (being executed). 1 = active, 0 = not active FALSE TRUE SLS1 SLS2 SLS3 SDI+ SDI- V1.31.11...
  • Page 52 VACON® • 51 apfiff09 marine Safety Status ID1650 StoAtexBoardDetected StoLinesActivated StoFault StoConfigureError StoDiagnosticFault StoThermistorActivated StoThermistorFaultActive StoThermistorDiagnosticFault StoThermistorShortCircuitFault StoChannel1State StoChannel2State StartUpPreventActivated V1.31.13 Safety Zero Speed ID1651 Speed value the advanced safety option board uses for determining motor stoppage. V1.31.14 SBC Speed ID1652 Indicates the speed the brake is intended to be activated.
  • Page 53: Condition Based Monitoring

    52 • VACON® apfiff09 marine 5.2.9 Condition Based Monitoring V1.32.1.1 Baseline Status ID 3622 Baseline Status ID 3622 Not Started Running Running 10% Running 20% Running 30% Running 40% Running 50% Running 60% Running 70% Running 80% Running 90% Completed...
  • Page 54 VACON® • 53 apfiff09 marine The warning S1 high threshold value V1.32.2.4 Current Warning S2 High ID 3612 The warning S2 high threshold value V1.32.2.5 Current Alarm/Fault High ID 3613 The alarm/fault high threshold value V1.32.2.6 Voltage Unbalance ID 3618 Voltage unbalance value in the stator winding monitoring V1.32.2.7 Voltage Threshold Value...
  • Page 55 54 • VACON® apfiff09 marine V1.32.4.4 Load Warning S2 High ID 3630 The warning S2 high threshold value V1.32.4.5 Vibration Alarm/Fault High ID 3631 The alarm/fault high threshold value V1.32.4.6 Load Warning S1 Low ID 3632 The warning S1 low threshold value V1.32.4.7 Load Warning S2 Low...
  • Page 56: Counters

    VACON® • 55 apfiff09 marine 5.2.10 Counters Below counter values are not visible as a standard monitoring signal but are accessible with ID numbers from fieldbus. 5.2.10.1 Power On Time counter This timer is counting when control board is powered (i.e. counting when only 24 Vdc is given to control board).
  • Page 57 56 • VACON® apfiff09 marine USINT value. READ only access. 1 = kWh 2 = MWh 3 = GWh 4 = TWh 5.2.10.3 Energy Trip counter monitoring ID12 EnergytripCounter Energy trip counter, use ID1052 define format. UINT value. READ only access.
  • Page 58: Apfiff09 - Parameter List

    VACON® • 57 apfiff09 marine APFIFF09 – PARAMETER LIST Basic parameters Code Parameter Unit Default Cust Note P2.1.1 Minimum frequency 0.00 P2.1.2 0.00 NOTE: If f > than the motor synchronous speed, P2.1.2 Maximum frequency P2.1.1 320.00 50.00 check suitability for motor...
  • Page 59: Reference Handling

    58 • VACON® apfiff09 marine Reference Handling 6.2.1 Basic Settings Code Parameter Unit Default Cust Note 0=AI1 1=AI2 2=AI1+AI2 3=AI1-AI2 4=AI2-AI1 5=AI1xAI2 6=AI1 Joystick 7=AI2 Joystick P2.2.1 I/O Reference 8=Keypad 9=Fieldbus 10=Motor potentiometer 11=AI1, AI2 minimum 12=AI1, AI2 maximum 13=Max frequency...
  • Page 60: Torque Reference

    VACON® • 59 apfiff09 marine 1=AI1 2=AI2 3=AI3 4=AI4 5=FB Limit Scaling ID46 Maximum Power P2.2.8.2 300.0 120.0 1621 reference Power reference P2.2.8.3 10000 1622 Increase Rate Table 6-4. Power reference input signal selection, G2.2.8 6.2.4 Torque Reference Code Parameter...
  • Page 61: Prohibit Frequency Parameters

    60 • VACON® apfiff09 marine Open loop torque P2.2.9.11.3 controller 32000 I gain Table 6-6. Torque reference open loop settings, G2.2.9.12 6.2.5 Prohibit frequency parameters Code Parameter Unit Default Cust Note P2.2.10. Prohibit frequency 0=Not used -1.00 320.00 0.00 range 1 low limit P2.2.10.
  • Page 62: Ramp Control

    VACON® • 61 apfiff09 marine Ramp Control 6.3.1 Basic Settings Code Parameter Unit Default Cust Note 0=Ramp P2.3.1 Start function 1=Flying start 0=Coasting P2.3.2 Stop function 1=Ramp P2.3.3 Acceleration time 1 3270.0 0 Hz to Max frequency P2.3.4 Deceleration time 1 3270.0...
  • Page 63: Input Signals

    62 • VACON® apfiff09 marine Input Signals 6.4.1 Basic Settings Code Parameter Unit Default Cust Note Start signal Start signal (Default: (Default: DIN1) DIN2) Start fwd Start rvs Start/Stop Reverse P2.4.1.1 Start/Stop logic Start/Stop Run enable selection Start pulse Stop pulse Start Mot.Pot UP...
  • Page 64: Analogue Input 1

    VACON® • 63 apfiff09 marine Code Parameter Default Cust Note Inching reference 2 (Default P2.4.2.27 Inching 2 Reverse -2 Hz. See P2.4.17). This will start the drive. P2.4.2.28 Motoring Power limit 1 1500 Activates power limit 1 P2.4.2.29 Motoring Power limit 2...
  • Page 65: Analogue Input 3

    64 • VACON® apfiff09 marine 2= -10V…+10V* 3= Custom range* AI2 custom minimum Custom Range: P2.4.4.4 -160.00 160.00 0.00 setting Minimum input AI2 custom Custom Range: P2.4.4.5 -160.00 160.00 100.00 maximum setting Maximum input AI2 reference Selects the frequency P2.4.4.6 scaling, minimum 0.00...
  • Page 66: Options

    VACON® • 65 apfiff09 marine 1=Inverted Selects the value that AI3 reference scaling, P2.4.6.6 -32000 -32000 1039 corresponds to the min. minimum value reference signal Selects the value that AI3 reference scaling, P2.4.6.7 -32000 32000 1040 corresponds to the max.
  • Page 67: Output Signals

    66 • VACON® apfiff09 marine Output Signals 6.5.1 Digital output signals Code Parameter Default Cust Note P2.5.1.1 Ready Ready to Run P2.5.1.2 Running P2.5.1.3 Fault Drive in fault state P2.5.1.4 Inverted fault Drive not in fault state P2.5.1.5 Warning Warning active P2.5.1.6...
  • Page 68: Analogue Output 2

    VACON® • 67 apfiff09 marine 2=Freq. reference (0— 3=Motor speed (0—Motor nominal speed) 4=Motor current (0— nMotor 5=Motor torque (0— nMotor 6=Motor power (0— nMotor 7=Motor voltage (0-U nMotor 8=DC-link volt (0—1000V) 9=AI1 10=AI2 11=Output freq. (f 12=- 2xTorque…+2xTorqu 13=-2xPower…+2xPower...
  • Page 69: Analogue Output 3

    68 • VACON® apfiff09 marine Analogue output 2 P2.5.3.2 See P2.5.2.2 function Analogue output 2 P2.5.3.3 0.00 10.00 1.00 0=No filtering filter time Analogue output 2 0=Not inverted P2.5.3.4 inversion 1=Inverted Analogue output 2 0=0 mA (0%) P2.5.3.5 minimum 1=4 mA (20%) Analogue output 2 P2.5.3.6...
  • Page 70: Delayed Digital Output 2

    VACON® • 69 apfiff09 marine 0=Not used 1=Ready 2=Run 3=Fault 4=Fault inverted 5=FC overheat warning 6=Ext. fault or warning 7=Ref. fault or warning 8=Warning 9=Reverse 10=Jogging spd selected 11=At speed 12=Mot. regulator active 13=Freq. limit 1 superv. Digital output 1 14=Freq.
  • Page 71: Output Options

    70 • VACON® apfiff09 marine Supervised value 0=No limit Output frequency P2.5.8.3 1=Low limit supervision limit 2 supervision 2=High limit supervision Output frequency P2.5.8.4 limit 2; 0.00 320.00 0.00 Supervised value 0=Not used 1=Low limit supervision Torque limit P2.5.8.5 2=High limit supervision...
  • Page 72: Power Handling

    VACON® • 71 apfiff09 marine Reaching the limit will lower P2.6.1.1 Current limit 2 x I output frequency Scaling from 0 to ID107 0=Not used 1=AI1 Scaling of current P2.6.1.2 2=AI2 limit 3=AI3 4=AI4 5=FB Limit Scaling ID46 P2.6.1.3 Current Limit Kp...
  • Page 73: Torque Handling

    72 • VACON® apfiff09 marine 6.6.3 Torque Handling Code Parameter Unit Default Cust Note P2.6.3.1 Torque Limit 300.0 300.0 General maximum limit Motoring Torque P2.6.3.2 300.0 300.0 1287 Motoring side torque limit Limit Generator Torque P2.6.3.3 300.0 300.0 1288 Generator side torque limit...
  • Page 74: Dc-Link Handling

    VACON® • 73 apfiff09 marine 6.6.5 DC-Link Handling Code Parameter Unit Default Cust Note 0=Not used P2.6.5.1 Overvoltage controller 1=Used (no ramping) 2=Used (ramping) 0=High Voltage Over Voltage P2.6.5.2 1262 1=Normal Voltage Reference selector 2=BrakeChopperLevel 0=Disabled 1=Used when running 2=External brake chopper P2.6.5.3...
  • Page 75: Flux And Dc Current Handling Cl Settings

    74 • VACON® apfiff09 marine P2.7.1.1 DC braking current 0.00 0.00 DC braking time P2.7.1.2 0.00 600.00 0.00 0=DC brake is off at start at start DC braking time 0=DC brake is off at stop P2.7.1.3 0.00 600.00 0.00 at stop Frequency to start DC P2.7.1.4...
  • Page 76: Motor Control

    VACON® • 75 apfiff09 marine Motor Control 6.8.1 Motor Control Basic Settings Code Parameter Unit Default Cust Note 0=Frequency control 1=OL Speed control 2=Open Loop P2.8.1 Motor control mode 3=CL Speed Control 4=Closed Loop 5=Sensorless Motor control P2.8.2 See P2.8.1...
  • Page 77: Closed Loop Control Settings

    76 • VACON® apfiff09 marine 6.8.3 Closed Loop Control Settings Code Parameter Unit Default Cust Note Current control P2.8.5.1 0.00 100.00 40.00 P gain Current control P2.8.5.2 3200.0 I Time P2.8.5.3 Slip adjust Acceleration P2.8.5.4 0.00 300.00 0.00 compensation P2.8.5.5...
  • Page 78: Pmsm Control Settings

    VACON® • 77 apfiff09 marine 6.8.4 PMSM Control settings Code Parameter Unit Default Cust Note PMSM Shaft P2.8.6.1 65535 Position 0=Automatic 1=Forced Start Angle P2.8.6.2 1691 Identification mode 2=After Power Up 3=Disabled Start Angle P2.8.6.3 Identification DC 150.0 1756 Current Polarity Pulse P2.8.6.4...
  • Page 79: Stabilators

    78 • VACON® apfiff09 marine 6.8.5 Stabilators Code Parameter Unit Default Cust Note Torque Stabilator P2.8.7.1 1000 1412 Gain P2.8.7.2 Torque Stabilator 1000 1413 With PMSM use 980 Damping P2.8.7.3 Torque Stabilator 1000 1414 Gain in FWP P2.8.7.4 Torque Stabilator...
  • Page 80: Identification Parameters

    VACON® • 79 apfiff09 marine 6.8.7 Identification parameters Code Parameter Unit Default Cust Note P2.8.9.1 Flux 10 % 2500 P2.8.9.2 Flux 20 % 2500 P2.8.9.3 Flux 30 % 2500 P2.8.9.4 Flux 40 % 2500 P2.8.9.5 Flux 50 % 2500 P2.8.9.6...
  • Page 81: Fine Tuning Parameters

    80 • VACON® apfiff09 marine 6.8.8 Fine tuning parameters Code Parameter Unit Default Note P 2.8.10.1 DeadTHWCompDisab 1750 P 2.8.10.2 CurrMeasFCompTC 65535 1554 P 2.8.10.3 CurrLimOptions 65535 1702 P 2.8.10.4 AdConvStartShift 65535 1701 P 2.8.10.5 T: Identification 65535 3520 P 2.8.10.6...
  • Page 82: Drive Control

    VACON® • 81 apfiff09 marine 6.10 Drive Control Code Parameter Unit Default Cust Note P2.10.1 Switching frequency Varies P2.10.2 Modulator Type 1516 P2.10.3 Control Options 65535 1084 P2.10.4 Control Options 2 65535 1798 P2.10.5 Advanced Options 1 65535 1560 P2.10.6...
  • Page 83: Master Follower

    82 • VACON® apfiff09 marine 6.11 Master Follower Code Parameter Unit Default Cust Note 0=Not Used 1=Master Master Follower P2.11.1 1324 2=Follower Mode 3=Drive Synch Master 4=Drive Synch Follower 0=AI1 1=AI2 2=AI1+AI2 3=AI1-AI2 4=AI2-AI1 5=AI1xAI2 6=AI1 Joystick 7=AI2 Joystick 8=Keypad Follower Speed P2.11.2...
  • Page 84: Protections

    VACON® • 83 apfiff09 marine 6.11.1.1 Drive Synch specific parameters Code Parameter Unit Default Cust Note Drive Synch Follower 2.11.10.1 1531 fault 2.11.10.2 Follower phase shift 360.0 1518 DC Voltage Blance 2.11.10.3 1000 1519 Gain 2.11.10.4 SB Last ID 2nd 1799 Table 6-53.
  • Page 85: Stall Protection

    84 • VACON® apfiff09 marine Code Parameter Unit Default Cust Note –30.0 P2.12.2.8 Board 2 fault limit 200.0 Cº 130.0 P2.12.2.9.1 Channel 1B Warn -30.0 200.0 Cº P2.12.2.9.2 Channel 1B Fault -30.0 200.0 Cº P2.12.2.9.3 Channel 1C Warn -30.0 200.0 Cº...
  • Page 86: Living Zero Monitoring

    VACON® • 85 apfiff09 marine Code Parameter Unit Default Cust Note Over Load P2.12.5.10 10000 1840 maximum Step Over Load P2.12.5.11 300.0 105.0 1849 Minimum Input Software over current limit Over Current Trip P2.12.5.12 1000.0 1904 of motor nominal current,...
  • Page 87: Fieldbus Protection

    86 • VACON® apfiff09 marine 6.12.10 Fieldbus protection Code Parameter Unit Default Cust Note 0=No Action 1=Warning P2.12.10. 2= Fault FB Fault Slot D 3= Fault,stop by coasting 4=Warning; Prev Freq 5=Quick Stop P2.12.10. Delay to fault when FB FB Fault Delay 0.00...
  • Page 88 VACON® • 87 apfiff09 marine Code Parameter Unit Default Cust Note Def: Output Frequency Fieldbus process P2.13.4 10000 Def: Motor Speed data out 2 selection Fieldbus process P2.13.5 10000 Def: Motor Current to FB data out 3 selection Fieldbus process P2.13.6...
  • Page 89 88 • VACON® apfiff09 marine Code Parameter Unit Default Cust Note Fieldbus process Visible with correct P2.13.34 10000 data in 16 selection hardware and software General Status Word Choose monitoring data in P2.13.35 10000 General Status Word FB Actual Speed P2.13.36...
  • Page 90: Id Control Functions

    VACON® • 89 apfiff09 marine 6.14 ID Control Functions 6.14.1 Value Control Code Parameter Unit Default Cust Note Control Input Signal P2.14.1.1 10000 1580 Control Input Off P2.14.1.2 -32000 32000 1581 Limit Control Input On P2.14.1.3 -32000 32000 1582 Limit Control Output Off P2.14.1.4...
  • Page 91 90 • VACON® apfiff09 marine Table 6-71. DIN ID Control parameters, G2.14.4 Local contacts: http://drives.danfoss.com/danfoss-drives/local-contacts/...
  • Page 92: Id Controlled Digital Output 1

    VACON® • 91 apfiff09 marine 6.14.5 ID Controlled Digital Output 1 Code Parameter Unit Default Cust Note P2.14.5.1 ID.Bit Free DO 0.00 2000.15 ID.Bit 0.00 1216 P2.14.5.2 Free DO Sel E.10 1574 Table 6-72. ID Controlled Digital Output parameters, G2.14.5 6.14.6...
  • Page 93: Brake Control

    92 • VACON® apfiff09 marine 6.15 Brake Control Code Parameter Unit Default Cust Note Time that is required to P2.15.1 BrakeMechDelay 0.00 320.00 0.00 1544 open the brake Opening limit and Brake OFF FreqLim P2.15.2 0.00 320.00 1.50 1535 maximum reference limit Open Loop when brake is closed.
  • Page 94: Auto Reset Parameters

    VACON® • 93 apfiff09 marine 6.15.1.3 Functions Code Parameter Unit Default Cust Note P2.15.14. Stop Torque Release 1858 Time Table 6-79. Functions parameters, G2.14 6.16 Auto Reset parameters Code Parameter Unit Default Cust Note P2.16.1 Wait time 0.10 10.00 0.50 P2.16.2...
  • Page 95: Pi Control Parameters

    94 • VACON® apfiff09 marine 6.17 PI Control Parameters Code Parameter Unit Step Default Note P2.17.1 PI controller gain 1000.0 100.0 P2.17.2 PI controller I-time 0.00 320.00 1.00 P2.17.3 PI Reference -32000 32000 PI controller P2.17.4 reference signal 10000 Default P2.17.3 P2.17.5...
  • Page 96: Condition Based Monitoring

    VACON® • 95 apfiff09 marine 6.19 Condition Based Monitoring 6.19.1 Baseline Settings Code Parameter Unit Default Cust Note Condition Based 0=No response P2.19.1 Monitoring Fault 3540 1=Warnings Mode 2=Fault + Warnings Code Parameter Unit Default Cust Note 0=No Action P2.19.2.1...
  • Page 97: Stator Winding

    96 • VACON® apfiff09 marine 6.19.2 Stator Winding Code Parameter Unit Default Cust Note P2.19.3.1 Line Frequency 100,00 50,00 1913 Line Frequency P2.19.3.2 10,00 1,00 1914 Hysteresis 6.19.2.1 Current Unbalance Threshold Value Code Parameter Unit Default Cust Note P2.19.3.3.1 Mean Factor 3511 P2.19.3.3.2...
  • Page 98 VACON® • 97 apfiff09 marine 6.19.2.5 Voltage Unbalance Limits Code Parameter Unit Default Cust Note 0=Abs. value P2.19.3.7.1 Warning S1 Mode 3531 1=Baseline offset 2=Baseline factor P2.19.3.7.2 Warning S1 High 100,0 3532 P2.19.3.7.3 Warning S1 Delay 3600 3533 0=Abs. value P2.19.3.7.4...
  • Page 99: Vibration

    98 • VACON® apfiff09 marine 6.19.3 Vibration Code Parameter Unit Default Cust Note 0 = Not Used 1 = A1 P2.19.4.1 Vibration Input 3587 2 = A2 3 = A3 4 = A4 6.19.3.1 Vibration Threshold Value Code Parameter Unit...
  • Page 100: Load

    VACON® • 99 apfiff09 marine 6.19.4 Load 6.19.4.1 Load Threshold Value Code Parameter Unit Default Cust Note P2.19.5.1.1 Mean Factor 3567 P2.19.5.1.2 Min Factor 3568 P2.19.5.1.3 Max Factor 3569 P2.19.5.1.4 Std Factor 3570 0=Constant P2.19.5.1.5 Interpolation Type 3571 1=Linear 6.19.4.2 Load Limits...
  • Page 101: Keypad Control (Control Keypad: Menu M3)

    6.20 Keypad control (Control keypad: Menu M3) The parameters for the selection of control place and direction on the keypad are listed ® below. See the Keypad control menu in the VACON NX User Manual. Code Parameter Unit...
  • Page 102: Apfiff09 - Description Of Parameters

    VACON® • 101 apfiff09 marine APFIFF09 – DESCRIPTION OF PARAMETERS Basic Parameters ID101 “Min Frequency” P2.1.1 Minimum frequency Defines minimum frequency of any adjustable reference input (i.e. when reference is not a parameter). Minimum frequency is bypassed when jogging speed, preset speed or inching reference is used.
  • Page 103 If given before identification run, this is used as reference for U/f tuning when making identification without rotating the motor. DriveSynch Operation ® Motor Nominal magnetization current / Number of drives in parallel using VACON Drive Synch. Local contacts: http://drives.danfoss.com/danfoss-drives/local-contacts/...
  • Page 104 VACON® • 103 apfiff09 marine ID631 “Identification” P2.1.10 Identification Identification Run is a part of tuning the motor and the drive specific parameters. It is a tool for commissioning and service of the drive with the aim to find as good parameter values as possible for most drives.
  • Page 105 104 • VACON® apfiff09 marine 1 = “ID No Run” - Identification without rotating the motor Current is applied to the motor but shaft will not be rotated. U/f settings are identified. This identification is the minimum requirement if the motor is only to be used in open loop control.
  • Page 106 VACON® • 105 apfiff09 marine 2 = “ID With Run” - Identification with motor rotating The motor shaft needs to be able to rotate freely. This identification must be run without load on motor shaft. U/f settings and magnetization current are identified. This identification should be run regardless of the final operation mode (closed loop or open loop) to get the best performance from the motor.
  • Page 107 106 • VACON® apfiff09 marine 3 = “Enc. ID Run” - Encoder identification run The motor shaft needs to be able to rotate freely. PMSM: This selection is used for PMS motor if automatic angle identification is not suitable for used motor (angle is identified automatically in every start if PMSM Shaft Position parameter is zero).
  • Page 108 VACON® • 107 apfiff09 marine 4 = “Ident All” - Identified All The motor shaft needs to be able to rotate freely. All the above identification selections are made in sequence. Parameters updated during this identification P2.1.9 MagnCurrent P2.8.4.2 U/f Ratio Select P2.8.4.2 U/f Ratio Select...
  • Page 109 108 • VACON® apfiff09 marine 6 = “U/f + Magn.Curr” – U/f Curve and magnetization current Shaft is rotated during identification. This identification selection will not make a saturation curve identification and will open the brake when the start rotation begins.
  • Page 110 VACON® • 109 apfiff09 marine 7 = “DTC Ident” – Dead Time Compensation identification Current is applied to the motor but shaft will not be rotated. This identification mode is needed for Sensorless control, Ident All can be used instead of this.
  • Page 111: Reference Handling

    110 • VACON® apfiff09 marine Reference Handling Priority order of Marine application speed reference chain. Preset Speed Max Frequency 2 Max Frequency IN 0 4 mA fault Max Frequency 2 IN 1 IN 0 IN 1 IN 1 Control Place...
  • Page 112: Basic Parameters

    VACON® • 111 apfiff09 marine 7.2.1 Basic Parameters ID117 “I/O Reference” P2.2.1 I/O frequency reference selection 1 Defines which frequency reference source is used when control place is I/O terminal P3.1 Control Place 0=”AI1” - Analogue Input 1. Signal scaling in “G2.4.2: Input Signals \ Analogue Input 1”...
  • Page 113 112 • VACON® apfiff09 marine ID121 “Keypad Ref Sel” P2.2.2 Keypad frequency reference selection Defines which frequency reference source is used when control place is keypad P3.1 Control Place 0=”AI1” - Analogue Input 1. Signal scaling in “G2.4.3: Input Signals \ Analogue Input 1”...
  • Page 114 VACON® • 113 apfiff09 marine ID131 “I/O Reference 2” P2.2.4 I/O frequency reference selection 2 This parameter is used to select different reference input location with digital input P2.4.2.17 I/O Ref. 2. Selections for this are the same as for the I/O frequency reference selection 1.
  • Page 115: Constant Reference

    114 • VACON® apfiff09 marine 7.2.2 Constant Reference ID124 “Jog Speed Ref” P2.2.7.1 Jogging speed reference Defines the jogging speed reference when activated by a digital input. This reference will follow the reverse command if given. Jogging speed has a higher priority than preset speed references.
  • Page 116 P2.2.7.11 Speed step ID1252 ® ® VACON NCDrive parameter to help adjusting the speed controller (see VACON NCDrive Tools: Step Response). With this tool you can give step to speed reference after the ramp control. Local contacts: http://drives.danfoss.com/danfoss-drives/local-contacts/ Classified as Public...
  • Page 117: Power Reference

    116 • VACON® apfiff09 marine 7.2.3 Power Reference The Power reference mode allows the motor to operate at constant power while speed and torque are changing. This gives a steady load for the generators in changing conditions. This also gives a fast response for thrusters as torque is increased rapidly after increase of power reference thus making the thrusters to speed up fast to the new reference.
  • Page 118 VACON® • 117 apfiff09 marine “Power Ref. Sel” P2.2.8.1 Power Reference Selection ID1620 With this parameter the input source for Power Reference is selected. If this value is set to zero but Torque reference selection is “10= Power Ref”, the power reference value can be written directly to the Power Reference monitoring value from Fieldbus or with analogue ID writing function.
  • Page 119: Torque Reference

    118 • VACON® apfiff09 marine 7.2.4 Torque Reference Motor torque is controlled which allows the motor speed to change depending on the actual load on the motor shaft. Speed limit behaviour is controlled by P2.2.9.6 Torque Select parameter. For joystick inputs, the maximum negative reference is negated “Torq Ref Max”. The minimum is used only for the analogue input selections 1 to 4.
  • Page 120 VACON® • 119 apfiff09 marine ID642 “Torq Ref Max” P2.2.9.2 Torque reference scaling, maximum value Maximum allowed torque reference for positive and negative values. This is also used for joystick input for negative maximum limit. ID643 “Torq Ref Min” P2.2.9.3 Torque reference scaling, minimum value Minimum torque reference for analogue input reference selections 1-4.
  • Page 121 120 • VACON® apfiff09 marine “Torque Select” P2.2.9.6 Torque Select ID1278 This parameter defines the speed limiting mode in torque control mode. This parameter can be used as single motor control mode selection when no change is made between the open loop and closed loop controls.
  • Page 122 VACON® • 121 apfiff09 marine 3=”Min” – Minimum from speed reference and torque reference. The minimum of the speed controller output and the torque reference is selected as final torque reference. Speed [RPM] Pos Freq Limit Speed controller active speed controller active...
  • Page 123 Defines the speed controller positive off limit when speed controller brings speed back to the window. “Torque Step” P2.2.9.11 Torque step ID1253 ® ® VACON NCDrive parameter to help adjusting the torque controller (see VACON NCDrive Tools: Step Response). With this tool you can give step to torque reference. Local contacts: http://drives.danfoss.com/danfoss-drives/local-contacts/...
  • Page 124 VACON® • 123 apfiff09 marine 7.2.4.1 Torque reference OL settings ID636 “OL TC Min Freq” P2.2.9.11.1 Open loop torque control minimum frequency Defines the frequency limit below which the AC drive operates in frequency control mode. P2.2.9.11.2 Open loop torque controller P gain ID639 “OL TorqCtrl P”...
  • Page 125: Prohibited Frequencies

    124 • VACON® apfiff09 marine 7.2.5 Prohibited frequencies In some systems it may be necessary to avoid certain frequencies because of mechanical resonance problems. With these parameters, it is possible to set limits for the prohibited frequency region and ramp rate factor to use when frequency is going above this area. When the input reference is increased, the internal reference is kept at the low limit until the input reference is above the high limit.
  • Page 126: Motor Potentiometer

    VACON® • 125 apfiff09 marine 7.2.6 Motor potentiometer Motor potentiometer is used to control the reference with two digital inputs, one increasing the reference and the other decreasing the reference. The reference change rate can be set by parameter [Hz/s]. Motor potentiometer reference is available in I/O control only. It can be changed only when the drive is in running state.
  • Page 127 126 • VACON® apfiff09 marine P2.2.11.3 Motor potentiometer reference copy ID366 “MotPotRefCopy” This parameter defines how the reference is handled when the reference input is changed to motor potentiometer in I/O control. 0 “No copy” Reference is not copied. Depending on “MotPot Reset” function, the drive may start from minimum frequency or from reference that was last used when the drive was run with motor potentiometer.
  • Page 128: Adjust Reference

    VACON® • 127 apfiff09 marine 7.2.7 Adjust Reference Adjust reference function is used to fine tune the main reference. Adjust reference is added to main reference after “SpeedShare” function. FreqRef1 MULDIV Adjust Reference VALUE MULDIV Adjust Input MULTIP VALUE IN 1...
  • Page 129 128 • VACON® apfiff09 marine Adjustment 10 % 50 % 100 % Adjust Input [%] 66,66 20 % Local contacts: http://drives.danfoss.com/danfoss-drives/local-contacts/...
  • Page 130: Ramp Control

    VACON® • 129 apfiff09 marine Ramp control Inching Active Prohibited area IN 0 IN 1 Ramp time 1/2 IN 0 Inching Ramp IN 1 Ramp time 1 IN 0 IN 1 Ramp time 2 MULDIV VALUE Ramp Follower Prohibited Factor...
  • Page 131 130 • VACON® apfiff09 marine ID104 “Decel Time 1” P2.3.4 Deceleration time 1 This parameter defines the time required for the output frequency to decrease from the maximum frequency to zero frequency in the linear ramp When the ramp shape (ID 500) is used, the total ramp time is longer due to jerks in the beginning and end of acceleration.
  • Page 132 VACON® • 131 apfiff09 marine 10 % S 0 % S Figure 7-3. 10% S ramp with 3 s ramp time when reference set to zero at 25 Hz Linear ramp is stopped when 25 Hz is reached in the figure 7-3. However s-ramp is completed in this situation.
  • Page 133: Quick Stop

    132 • VACON® apfiff09 marine Ramp Time Factor 100 % 10 % Adjust Input [%] Figure 7-4. Reducing acceleration and deceleration times 7.3.1 Quick Stop “Quick Stop Mode” P2.3.11.1 Quick stop mode ID1276 Selects the mode of stopping the drive when quick stop is active.
  • Page 134: Ramp Options

    VACON® • 133 apfiff09 marine 7.3.2 Ramp Options P2.3.12.1 Ramp: Skip S2/S4 ID1900 This function is used to bypass the second corner S ramp (i.e. to avoid the unnecessary speed increase, the blue line in Figure 7-5), when the reference is changed before the final speed is reached.
  • Page 135 134 • VACON® apfiff09 marine “Ramp In Inter. TC” P2.3.12.3 Speed Reference Interpolator TC ID1184 Use this parameter to set the time during which the interval speed reference is updated. This function ramps the reference between updated values. Function is used when the PLC is updating the reference to, for example, 100 ms time level but the drive’s own ramp is set much shorter to have fast response.
  • Page 136: Input Signals

    VACON® • 135 apfiff09 marine Input signals 7.4.1 Basic Settings ID300 “Start/Stop Logic” P2.4.1.1 Start/Stop logic selection This parameter defines the start stop logic when using the I/O control. Some of these selections do not include the ’Reverse’ command. The Reverse command can be activated by a separate digital input “Reverse”.
  • Page 137 136 • VACON® apfiff09 marine 3 “StartP-StopP” – Start Pulse – Stop Pulse 3-wire connection (pulse control): DIN1: closed contact = start pulse DIN2: open contact = stop pulse, falling edge. Freq. Out Start 1 Start 2 Figure 7-8. Start pulse/ Stop pulse.
  • Page 138: Digital Inputs

    VACON® • 137 apfiff09 marine 7.4.2 Digital inputs ID403 “Start Signal 1” P2.4.2.1 Start signal 1 Signal selection 1 for the start/stop logic. This is for Start Place A, selected with P2.4.2.39 Default programming A.1.Default Forward start. ID404 “Start Signal 2”...
  • Page 139 138 • VACON® apfiff09 marine ID417 “Mot Pot Ref Down” P2.4.2.8 Motor potentiometer DOWN Contact closed: Motor potentiometer reference DECREASES until the contact is opened. See details in G2.2.11 Motor Pot. ID418 “Mot Pot Ref Up” P2.4.2.9 Motor potentiometer UP Contact closed: Motor potentiometer reference DECREASES until the contact is opened.
  • Page 140 Active Set shown in Status Word B9 Note: The parameter values are stored only when selecting parameter P6.3.1 Parameter ® sets Store Set 1 or Store Set 2 or from VACON NCDrive: Drive > Parameter Sets. Local contacts: http://drives.danfoss.com/danfoss-drives/local-contacts/ Classified as Public...
  • Page 141 140 • VACON® apfiff09 marine ID164 “Mot Ctrl Mode1/2” P2.4.2.22 Motor control mode 1/2 This digital input is used to change between two motor control mode selection parameters: P2.8.1 Motor Ctrl Mode ID600 P2.8.2 Motor Ctrl Mode2 ID521 Contact is open =...
  • Page 142 VACON® • 141 apfiff09 marine “Mot.PowerLimit 1” P2.4.2.28 Motoring Power limit Digital input 1 ID1500 “Mot.PowerLimit 2” P2.4.2.29 Motoring Power limit Digital input 2 ID1501 With this parameter you can select the desired digital input for controlling motoring power limit. “Mot.PowerLimit 1” and “Mot.PowerLimit 2” activates respective power limits defined in parameter group G2.6.2 Power Handling.
  • Page 143 142 • VACON® apfiff09 marine “Quick Stop” P2.4.2.35 Quick Stop ID1213 Digital input for Quick Stop function “Mot. Torq. Limit 1” P2.4.2.36 Motoring Torque Limit 1 ID1624 Digital input for activating motoring torque limit 1 “Gen. Torq. Limit 1” P2.4.2.37 Generator Torque Limit 1...
  • Page 144: Analogue Input 1 & 2

    VACON® • 143 apfiff09 marine 7.4.3 Analogue Input 1 & 2 AIx RefScale Max IN 1 IN 2 Max Frequency IN 0 IN 1 Signal Range 100 % IN 0 SCALING 100 % IN 1 IN 2 100 % AI1_Ref...
  • Page 145 144 • VACON® apfiff09 marine Analogue input signal 1 signal range ID320 “AI1 Signal Range” P2.4.3.3 Analogue input signal 2 signal range ID325 “AI2 Signal Range” P2.4.4.3 0 “0-20mA/10V Signal input ranges: 0...10 V and 0...20 mA. Input signal is used from 0% to 100%.
  • Page 146 VACON® • 145 apfiff09 marine 3 “Custom Range” With custom range, it is possible to freely adjust the input level that corresponds to the minimum and maximum frequencies. Reference [Hz] Max Freq Min Freq 40 % Analogue 80 % 100 %...
  • Page 147 146 • VACON® apfiff09 marine AI1 custom minimum setting ID321 “AI1 Custom Min” P2.4.3.4 AI1 custom maximum setting ID322 “AI1 Custom Max” P2.4.3.5 AI2 custom minimum setting ID326 “AI2 Custom Min” P2.4.4.4 AI2 custom maximum setting ID327 “AI2 Custom Max”...
  • Page 148 VACON® • 147 apfiff09 marine 7.4.3.1 Sleep function The drive can be stopped by sleep function when the analogue input falls below a certain value for a certain time and speed functions become active. Analogue input 100 % 20 %...
  • Page 149: Analogue Input 3 & 4

    148 • VACON® apfiff09 marine 7.4.4 Analogue input 3 & 4 Analogue Inputs 3 and 4 can be written form fieldbus. Use of analogue scaling for fieldbus signals can be useful, for example, when the PLC is not operational and the drive receives a zero, for example, to the power limit.
  • Page 150 VACON® • 149 apfiff09 marine AI3 custom setting minimum ID144 “AI3 Custom Min” P2.4.5.3 AI3 custom setting maximum ID145 “AI3 Custom Max” P2.4.5.4 AI4 custom setting minimum ID155 “AI4 Custom Min” P2.4.6.3 AI4 custom setting maximum ID156 “AI4 Custom Max”...
  • Page 151 150 • VACON® apfiff09 marine 7.4.4.1 Analogue input to any parameter This function allows control of any parameter by using an analogue input. The parameter selects the range of control area and the ID number for the parameter that is controlled.
  • Page 152: Inversion Control

    VACON® • 151 apfiff09 marine 7.4.5 Inversion control “INV Control” P2.4.7.1 Inversion Control ID1091 Inversion control allows you to select which input signal operation will be inverted. B00 = +1 = Invert external fault 1 B01 = +2 = Invert external fault 2...
  • Page 153: Output Signals

    152 • VACON® apfiff09 marine Output signals 7.5.1 Digital output signals In the Marine application, all output signals are disabled by default. ID432 “Ready” P2.5.1.1 Ready The AC drive is ready to operate. Missing ready signal can ne traced by using monitoring values Non Ready Couse (ID1608) and Prevent MC Ready (ID1609).
  • Page 154 VACON® • 153 apfiff09 marine P2.5.1.13 IO Control Place ID444 “IO Control Place” Active control place is I/O terminal defined by the parameter for Control place (P3.1) or forced with digital input function. Local contacts: http://drives.danfoss.com/danfoss-drives/local-contacts/ Classified as Public...
  • Page 155 154 • VACON® apfiff09 marine 7.5.1.1 Brake Control The mechanical brake control has two parts that need to be synchronically controlled. The first part is the mechanical brake release and the second is the speed reference release. Whole brake control logic is explained in chapter 6.15 Brake Control.
  • Page 156 VACON® • 155 apfiff09 marine P2.5.1.14 External brake control ID445 “Ext Brake Contrl” See detailed description about brake operation in G2.15 Brake Control. External brake ON/OFF control Example: OPTA2 board RO1 : Brake function ON: Terminals 22-23 are connected (Relay is energized).
  • Page 157 156 • VACON® apfiff09 marine P2.5.1.17 Output frequency limit 2 supervision ID448 “FreqOut SupvLim2” The output frequency goes outside the set supervision limits 2 defined in Supervision Lim parameter group. The function can be set to monitor either the high or the low limit. Limit and functions are selected in G2.5.8 Supervision Limits.
  • Page 158 VACON® • 157 apfiff09 marine 7.5.1.2 Fieldbus digital inputs connection ID455 “FB Dig Input 1” P2.5.1.24 Fieldbus input data 1 ID456 “FB Dig Input 2” P2.5.1.26 Fieldbus input data 2 ID457 “FB Dig Input 3” P2.5.1.28 Fieldbus input data 3 ID169 “FB Dig Input 4”...
  • Page 159: Analogue Outputs 1 & 2 & 3 & 4

    158 • VACON® apfiff09 marine 7.5.2 Analogue outputs 1 & 2 & 3 & 4 “Iout 1 Signal” P2.5.2.1 Analogue output 1 signal selection ID464 “Iout 2 Signal” P2.5.3.1 Analogue output 2 signal selection ID471 “Iout 3 Signal” P2.5.4.1 Analogue output 3, signal selection ID478 “Iout 4 Signal”...
  • Page 160 VACON® • 159 apfiff09 marine 12 “(-2Tn)-(2Tn)” Motor torque from negative two times motor nominal to positive two times motor nominal torque 13 “(-2Pn)-(2Pn)” Motor power from negative two times motor nominal to positive two times motor nominal power 14 “PT100 Temp.”...
  • Page 161 160 • VACON® apfiff09 marine “Iout Invert” P2.5.2.4 Analogue output inversion ID309 “Iout 2 Invert” P2.5.3.4 Analogue output 2 inversion ID474 “Iout 3 Invert” P2.5.4.4 Analogue output 3 inversion ID481 “Iout 4 Invert” P2.5.5.4 Analogue output 4 inversion ID1522 Inverts the analogue output signal:...
  • Page 162 VACON® • 161 apfiff09 marine 100 % Scaling Analogue 200 % Output 50 % Scaling 50 % 20 % 50 % Function 100 % Signal ID375 “Iout Offset” P2.5.2.7 Analogue output offset ID477 “Iout 2 Offset” P2.5.3.7 Analogue output 2 offset ID484 “Iout 3 Offset”...
  • Page 163: Delayed Digital Output 1 & 2

    162 • VACON® apfiff09 marine 7.5.3 Delayed Digital Output 1 & 2 ID486 “Dig.Out 1 Signal” P2.5.6.1 Digital output 1 signal selection ID489 “Dig.Out 2 Signal” P2.5.7.1 Digital output 2 signal selection Connect the delayed digital output signal to the digital output of your choice with this parameter.
  • Page 164 VACON® • 163 apfiff09 marine 17 = “ExtBrakeCont” External brake control External brake ON/OFF control with programmable delay 18 = “I/O ContAct” Control from I/O terminals IO control place is active. 19 = “TempLimSprv” Drive temperature limit supervision. Drive temperature goes beyond the set supervision limits (par. ID354) 20 = “WrongDirecti”...
  • Page 165 164 • VACON® apfiff09 marine ID487 “DO1 ON Delay” P2.5.6.3 Digital output 1 on-delay ID488 “DO1 OFF Delay” P2.5.6.4 Digital output 1 off-delay ID491 “DO2 ON Delay” P2.5.7.3 Digital output 2 on-delay ID492 “DO2 OFF Delay” P2.5.7.4 Digital output 2 off-delay With these parameters you can set on- and off-delays to digital outputs.
  • Page 166: Supervision Limits

    VACON® • 165 apfiff09 marine 7.5.4 Supervision limits Supervision function gives you the possibility to monitor certain values with the limit setting. When the actual value exceeds or goes below the set value a message through a digital output can be given.
  • Page 167 166 • VACON® apfiff09 marine ID402 “Torque Superv Scl” P2.5.8.7 Torque Supervision value scaling input This parameter is used to change the torque limit supervision level between zero and P2.5.8.6 Torque Supv Val. 0 = Not used 1 = AI1...
  • Page 168: Output Options

    VACON® • 167 apfiff09 marine 7.5.5 Output Options P2.5.9.1 Output Inversion ID1808 Invert selected digital output functions. B0 =+1= Inver Common Alarm Local contacts: http://drives.danfoss.com/danfoss-drives/local-contacts/ Classified as Public...
  • Page 169: Limit Settings

    168 • VACON® apfiff09 marine Limit settings 7.6.1 Current limit handling ID107 “Current Limit” P2.6.1.1 Current limit This parameter determines the maximum motor current from the AC drive. The parameter’s value range differs from size to size. When the current limit is active the drive output frequency is reduced until current is below the set limit.
  • Page 170: Power Limit Handling

    VACON® • 169 apfiff09 marine 7.6.2 Power limit handling Power limit function is used to limit the drive output power to the motor. You can do this by giving a limiting signal from a primary system that gives information about how much power is available for drive operations.
  • Page 171 170 • VACON® apfiff09 marine “Power Limit” P2.6.2.1 Power Limit ID1722 General power limit for both motoring and generator side. This value is the final limit for all scaling functions. This value should not be used for scaling but for the maximum safety limit because the ramp up rate function is ineffective when this parameter is changed.
  • Page 172 VACON® • 171 apfiff09 marine 7.6.2.1 Power follower function The power follower function will keep the internal power limit near the actual power so that when power demand increases the increase rate is controlled by the power limit increase rate parameter.
  • Page 173 172 • VACON® apfiff09 marine “GenPowerLimSclng” P2.6.2.12 Scaling of Generating power limit ID1088 The generator power limit is equal to the parameter Generator Power Limit if value 'Not Used' is selected. If any of the inputs is selected, the generator power limit is scaled between zero and parameter P2.6.2.2 Generator Power Lim.
  • Page 174: Torque Limit Handling

    VACON® • 173 apfiff09 marine 7.6.3 Torque limit handling 7.6.3.1 Motoring torque limit function MotTorqLimSclng MotorTorqueLimit IN 0 IN 1 OL Control Analogue Input 1 IN 2 IN 0 IN 3 IN 1 IN 4 IN 5 Analogue Input 2...
  • Page 175 174 • VACON® apfiff09 marine Positive torque limit Generator torque limit Motoring torque limit Q2 Generating Motoring ω Q4 Generating Motoring Motoring torque limit Generator torque limit Negative torque limit ID609 “Torque Limit” P2.6.3.1 Torque Limit The general torque limit for both motoring and generator sides. This value is the final limit for all scaling functions.
  • Page 176 VACON® • 175 apfiff09 marine 7.6.3.3 Torque follower function Torque follower function will keep the internal torque limit near the actual torque so that when the torque demand increases, the increase rate is controlled by the torque limit increase rate parameter.
  • Page 177 176 • VACON® apfiff09 marine Motoring Torque limit scaling ID485 “MotTorqLimSclng” P2.6.3.9 The motoring torque limit is equal to parameter Motoring Torque Limit if value ‘Not Used’ is selected. If any of the inputs is selected the motoring torque limit is scaled between zero and parameter Motoring Torque Limit.
  • Page 178: Frequency Limit Handling

    VACON® • 177 apfiff09 marine 7.6.4 Frequency limit handling Preset Speed Max Frequecy 2 Max Frequency IN 0 4 mA fault IN 1 Max Frequency 2 IN 0 IN 1 Control Place IN 0 IN 1 IN 2 IN 0...
  • Page 179: Dc Link Handling

    178 • VACON® apfiff09 marine 7.6.5 DC Link handling Overvoltage controller ID607 “Overvolt Contr” P2.6.5.1 The parameter selects the behaviour of the overvoltage controller in open loop control. It also activates the closed loop overvoltage controller but the operation is always of type ‘PI’...
  • Page 180 VACON® • 179 apfiff09 marine “Brake Chopper” P2.6.5.3 Brake chopper ID504 When the AC drive is decelerating the motor, the inertia of the motor and the load are fed into an external brake resistor. This enables the drive to decelerate the load with a torque equal to that of acceleration (provided that the correct brake resistor has been selected).
  • Page 181 180 • VACON® apfiff09 marine ID608 ”Undervolt Contr” P2.6.5.5 Undervoltage controller Undervoltage controller will decrease the output frequency in order to get energy from the motor when the DC voltage has dropped to a limit where the undervoltage controller activates trying to keep DC voltage at the minimum level.
  • Page 182: Limit Options

    VACON® • 181 apfiff09 marine P2.6.5.8.3 CL Under Voltage Reference Defines the under voltage reference level in Closed Loop control mode. Percentage value related to unit nominal voltage DC voltage. Default 65%. 690 Vac * 1.35 * 65% = 605 Vdc 500 Vac * 1.35 * 65% = 438 Vdc...
  • Page 183: Dc Current And Magnetization Handling

    182 • VACON® apfiff09 marine DC current and magnetization handling The DC brake can be used to hold the motor in place (nominal torque at nominal slip). It can be also used to keep the motor warm in places with high humidity and to speed up the generation of rotor flux.
  • Page 184 VACON® • 183 apfiff09 marine DC-braking time at stop ID508 “Stop D-BrakeTm” P2.7.1.3 Defines the time to use DC brake at stop. The operation is different depending on the selected stop mode (coasting or ramping). Stop function = 0 / Coasting: After the stop command, the motor coasts to a stop without control of the drive.
  • Page 185 184 • VACON® apfiff09 marine Output frequency Stop command DC-Brake time at Brake 50 % stop Freq. Figure 7-15. DC-braking time when Stop mode = Ramp DC braking frequency at stop ID515 “Stop D-BrakeFr” P2.7.1.4 The output frequency at which the DC braking is applied when making ramping stop.
  • Page 186 VACON® • 185 apfiff09 marine 7.7.1.1 Flux braking ID520 “Flux Brake” P2.7.1.7 Flux brake Instead of DC braking, flux braking is a useful way to raise the braking capacity in cases where additional brake resistors are not needed. When braking is needed, the frequency is reduced and the flux in the motor is increased.
  • Page 187: Closed Loop Settings

    186 • VACON® apfiff09 marine 7.7.2 Closed loop settings ID627 “Start Magn Curr” P2.7.2.1 Magnetizing current at start Defines the current that is applied to the motor when the start command is given in closed loop control. At start this parameter is used together with Magnetizing time at start to decrease the time when the motor is able to produce nominal torque.
  • Page 188 VACON® • 187 apfiff09 marine “Stop State Flux” P2.7.2.5 Stop State Flux ID1401 The amount of flux in percentage of the motor nominal flux maintained in the motor after the drive is stopped. The flux is maintained for the time set by parameter ID1402 Flux Off Delay.
  • Page 189: Motor Control

    188 • VACON® apfiff09 marine Motor Control Open Loop control Open loop control controls the motor without encoder feedback from the motor shaft. Control mode selections 0, 1 and 2 are open loop control modes. Slip Induction motor torque is based on slip. When the load increases, also slip will increase. Slip is the speed that the rotor is left behind the stator electrical frequency.
  • Page 190 VACON® • 189 apfiff09 marine Slip compensation in open loop control The drive uses motor torque and motor nominal rpm to compensate slip. If the motor nominal rpm is 1440 -> the nominal slip is 60 rpm. And when the motor torque is 50%, the slip is 30 rpm. To keep the reference speed, the drive must increase the output frequency by 1 Hz.
  • Page 191 190 • VACON® apfiff09 marine ID600 “Motor Ctrl Mode” P2.8.1 Motor control mode (2.6.1) “Freq Control” Open loop frequency control: Drive frequency reference is set to output frequency without slip compensation. Motor speed is defined by motor load. “OL SpeedCont”...
  • Page 192 VACON® • 191 apfiff09 marine “Torque Select” P2.8.3 Torque Select ID1278 (P2.2.9.6) This parameter defines the speed limiting mode in torque control mode. This parameter can be used as single motor control mode selection when no change is made between open loop and closed loop controls.
  • Page 193: U/F Settings

    Step 1: Run the motor using 2/3 of motor nominal frequency as the frequency reference. Read ® the motor current in the monitoring menu or use VACON NCDrive for monitoring. This current must be set as the motor magnetization current.
  • Page 194 VACON® • 193 apfiff09 marine Set then the midpoint voltage to 2 * Zero Point Voltage the midpoint frequency to (Zero Point Voltage/100%)*Nominal frequency of motor) Step 2 (If needed): Activate speed control or U/f optimization (Torque boost). Step 3 (If needed): Activate both speed control and U/f optimization.
  • Page 195 194 • VACON® apfiff09 marine ID603 “Voltage at FWP” P2.8.4.4 Voltage at field weakening point Above the frequency at the field weakening point, the output voltage remains at the set maximum value. Below the frequency at the field weakening point, the output voltage depends on the setting of the U/f curve parameters.
  • Page 196 VACON® • 195 apfiff09 marine 7.8.1.1 I/f Control I/f-control can be used to start the motor using a constant current control. This is useful especially, if the motor stator resistance is low, which makes the motor current sensitive for u/f-curve tuning at low speed area.
  • Page 197: Close Loop Settings

    196 • VACON® apfiff09 marine 7.8.2 Close Loop Settings Current control P gain ID617 “CurrentControlKp” P2.8.5.1 Sets the gain for the current controller. The controller generates the voltage vector reference to the modulator. The gain is also used in open loop flying start. When the Sine filter parameter (parameter P6.7.5 in the System menu) has been set to Connected the...
  • Page 198 VACON® • 197 apfiff09 marine Freq.Out SPC Out Accel. Compensation Acceleration compensation in use       AccelCompe nsationTC J = System inertia (kg*m = Motor nominal frequency (Hz) = Motor nominal torque = Motor nominal power (kW).
  • Page 199 198 • VACON® apfiff09 marine B1 +2 = External acceleration compensation The torque reference is added to the speed control output, allowing the external controller to give inertia compensation for the drive in speed control mode. This option is available in closed loop control mode only.
  • Page 200: Permanent Magnet Synchronous Motor Settings

    VACON® • 199 apfiff09 marine 7.8.3 Permanent magnet synchronous motor settings There are three ways to know the magnet positions when using the closed loop control. The first one will identify the motor magnet position during every start when using incremental encoder without Z- pulse.
  • Page 201 200 • VACON® apfiff09 marine “StartAngleIdCurr” P2.8.6.3 Start Angle Identification Current ID1759 This parameter defines the current level that is used in start angle identification. The correct level depends of the motor type used. In general, 50% of motor nominal current seems to sufficient, but depending for example on the motor saturation level, higher current might be needed.
  • Page 202 VACON® • 201 apfiff09 marine 7.8.3.1 I/f Control I/f-control can be used to start the motor using a constant current control. This is useful especially, if the motor stator resistance is low, which makes the motor current sensitive for u/f-curve tuning at low speed area.
  • Page 203 202 • VACON® apfiff09 marine 7.8.3.2 Flux current controller The flux current controller is used with a PMS motor when running in closed loop control in the field weakening area. This function controls negative Id current to PM motor in the field weakening area that motor terminal voltage do not increase above maximum level (set by field weakening point voltage, maximum drive output voltage) .
  • Page 204 VACON® • 203 apfiff09 marine 7.8.3.3 D and Q axis voltage drops If d-axis and q-axis reactances (voltage drops) are defined, drive calculates the optimal d-axis current reference based on the reactance values and the motor torque in order to account motor reluctance torque part.
  • Page 205 204 • VACON® apfiff09 marine P2.8.6.19 Current Control Kp d ID1761 Current controller gain for d-axis P2.8.6.20 Voltage Margin % ID1759 Voltage margin to prevent current controller form saturating. P2.8.6.21 Encoder ID Run Mode “EncIdRunMode” ID680 This parameter defines how the start angle identification is made for absolute encoder with the identification mode selections 3 / “Enc.
  • Page 206 VACON® • 205 apfiff09 marine P2.8.6.27 FlxSaturRatio q ID684 Ratio of q-axis inductance at nominal current vs. no load current = Lq(abs(iq)=100%) / Lq(iq=0), where Lq(abs(iq)=100%) = P 2.8.6.12 LsqVoltageDrop hence Lq(iq=0) = LsqVoltageDrop / FlxSaturRatio q Typically q-axis inductance will decrease with an increasing iq-current (pos or neg), which means that the FlxSaturRatio q gets <...
  • Page 207: Stabilization Settings

    206 • VACON® apfiff09 marine 7.8.4 Stabilization settings 7.8.4.1 Torque stabiliser output of the filter is a frequency correction term ���� added to the output frequency reference. The The torque stabiliser is basically the first order high-pass filter for the estimated torque [��]. The purpose of the torque stabiliser is to stabilise the possible oscillations in the estimated torque.
  • Page 208 VACON® • 207 apfiff09 marine “TorqStabGainFWP” P2.8.7.3 Torque stabiliser Gain in FWP area ID1414 Gain of the torque stabiliser at field weakening point in open loop motor control operation. See details from Torque Stabiliser Gain. “TorqStabLimit P2.8.7.4 Torque stabiliser Limit ID1720 This defines how much torque stabiliser can affect output frequency.
  • Page 209 208 • VACON® apfiff09 marine 7.8.4.4 Voltage stabiliser frequencies above 3 Hz. It is the first order high-pass filter for the measured DC-link voltage �� ���� The output of the filter is a frequency correction term ���� added to the output frequency reference.
  • Page 210: Tuning Settings

    VACON® • 209 apfiff09 marine 7.8.5 Tuning settings P2.8.7.1 Flying Start Options ID1610 B0 =+1= Disable movement to reverse direction B1 = +2=Disable AC Scanning B2 = +4=Reserved (No function). B3 = +8=Use encoder information for frequency estimate B4 = +16=Use frequency reference for initial guess B5 = +32=Disable DC scanning for step-up application P2.8.8.2...
  • Page 211 210 • VACON® apfiff09 marine P2.8.8.9 Over modulation limit ID1515 Output Voltage Limit for partial modulation in 1%. 100% means maximum sinusoidal modulation. 113% is full six step. If you have a sine filter in use set this to 96%.
  • Page 212: Identification Settings

    VACON® • 211 apfiff09 marine 7.8.6 Identification settings P2.8.9.1 to P2.8.9.15 Flux 10…150% ID1355 – ID1369 Motor voltage corresponding to 10%….150% of flux as a percentage of Nominal Flux voltage. Measured during identification. ID662 “RsVoltageDrop” P2.8.9.16 Measured Rs voltage drop The measured voltage drop at stator resistance between two phases with the nominal current of the motor.
  • Page 213: Fine Tuning Parameters

    212 • VACON® apfiff09 marine ID695 “ID Run Curr.Kp P2.8.9.28 ID Run Current Kp Current controller gain during identification fun. P2.8.9.29 Flux Saturation Ratio ID682 Relative nominal magnetizing current compared to non-saturated value P2.8.9.30 DeadTimeComp. ID1751 Dead Time Compensation in ns. Identified during 7 / DTC Identification run.
  • Page 214: Speed Control Settings

    VACON® • 213 apfiff09 marine Speed Control settings Load drooping ID620 “LoadDrooping” P2.9.1 The drooping function enables speed drop as a function of load. This parameter sets the value corresponding to the nominal torque of the motor. Speed [rpm] 10 %...
  • Page 215 214 • VACON® apfiff09 marine “LoadDroopRemoval” P2.9.3 Load Drooping Removal ID1534 This function defines how load drooping is removed with reference to speed. It is used in lifting situations when it is necessary to keep to load at the same position without closing the brake.
  • Page 216 VACON® • 215 apfiff09 marine 7.9.1.1 Open Loop Settings Speed controller P gain, Open Loop ID637 “OL Speed Reg P” P2.9.4.1 Defines the P gain for the speed controlled in Open Loop control mode. ID638 “OL Speed Reg I” P2.9.4.2 Speed controller I gain, Open Loop Defines the I gain for the speed controlled in Open Loop control mode.
  • Page 217 216 • VACON® apfiff09 marine ID615 “Start 0SpeedTime” P2.9.5.3 Zero speed time at start After giving the start command, the drive will remain at zero speed for the time defined by this parameter. The ramp will be released to follow the set frequency/speed reference after this time has elapsed counted from the instant when the command was given.
  • Page 218 VACON® • 217 apfiff09 marine 7.9.1.3 Speed controller tuning for different speed areas The speed controller can be tuned for different gains in different speed areas, for slow speed and above the parameter Field weakening point. Gains for different speed areas are percentages of the original Speed Controller Gain value.
  • Page 219 218 • VACON® apfiff09 marine 7.9.1.4 Speed controller gain with different loads The speed controller can also be tuned for different loads. Speed controller gain is first manipulated by the speed area gain function and this result is then further adjusted by torque related relative gain.
  • Page 220: Drive Control

    VACON® • 219 apfiff09 marine 7.10 Drive Control ID601 “Switching Freq” P2.10.1 Switching frequency Motor noise can be minimised using a high switching frequency. Note, however, that increasing the switching frequency increases losses of the AC drive. Lower frequencies are used when the motor cable is long and the motor is small.
  • Page 221 “Control Options” P2.10.3 Control Options ID1084 ® These parameter functions are dependent of VACON Marine application version. B00 = (Drive) Output Power shown with one decimal regardless of unit size. B01 = Disable open loop power limit function B06 = Activate Closed Loop type speed limit function in Open Loop...
  • Page 222 VACON® • 221 apfiff09 marine B08 = Current optimization for PMS motor. This function activates the current optimization for PMSM motor based on torque calculation and motor parameters. When activated, the optimization starts after 13% of the motor nominal speed and below this a normal U/f curve is used.
  • Page 223: Master Follower

    VACON NXP drives are in closed loop control mode. ® The external control signals are connected to the Master VACON NXP only. The Master controls the Follower(s) via a System bus. The Master station is typically speed-controlled and the other drives follow its torque or speed reference.
  • Page 224: Master Follower: Drivesynch System

    DriveSynch Master Drive. Note! ® The maximum switching frequency for the drives using VACON DriveSynch is 3.6 kHz. Minimum recommended switching frequency in Open Loop control is 1.7 kHz. Minimum recommended switching frequency in Closed Loop control is 2.5 kHz.
  • Page 225 DriveSynch functionality. The auxiliary power (+24V) must be continuously provided for all ® the control units including the non-functional drive units in VACON drive synch system. It is also a common practice to use (n+1) units, where n is the number of required units for full functionality of the system.
  • Page 226 VACON® • 225 apfiff09 marine Master Follower Follower Follower (D1) (D2) (D3) (D4) Parameter settings Motor Nominal Motor Nominal Motor Nominal Motor Nominal Motor Nominal Voltage voltage from the voltage from the voltage from the voltage from the motor name plate...
  • Page 227: Master Follower Configuration

    X5:2-3. This board also has a CAN communication option that is ® useful for multiple drive monitoring with VACON NCDrive PC software when commissioning Master Follower functions or line systems. Older boards has X6, leave this to ON (X6:1-2).
  • Page 228 VACON® • 227 apfiff09 marine Follower reference selection ID1081 “Follower Ref Sel” P2.11.2 Select where the follower drive receives its speed reference from. 0=”AI1” - Analogue Input 1. Signal scaling in “G: Input Signals \ Analogue Input 1” 1=”AI2” - Analogue Input 2.
  • Page 229 228 • VACON® apfiff09 marine Follower torque reference selection ID1083 “FollowerTorq Sel” P2.11.3 Select the source of torque reference for the follower drive. 0=”Not Used” 1=”AI1” - Analogue Input 1. Signal scaling in “G: Input Signals \ Analogue Input 1”...
  • Page 230 VACON® • 229 apfiff09 marine “MF Brake Logic” P2.11.5 Master Follower Brake Logic ID1326 This parameter defines the brake functionality when operating in Master-Follower mode. This parameter is not active when the follower is operating in Ramp Follower mode (i.e.
  • Page 231 230 • VACON® apfiff09 marine “SB Comm Fault” P2.11.7 SystemBus communication fault response ID1082 Defines the action when the System Bus heartbeat is missing. The master drive sends a heartbeat signal to all follower drives and this heartbeat is sent back to the master drive.
  • Page 232: Protections

    VACON® • 231 apfiff09 marine 7.12 Protections 7.12.1 General settings ID730 “Input Ph. Superv” P2.12.1.1 Input phase supervision Defines the response when the drive notices that one of the input phases is missing. 0 = No response 1 = Warning...
  • Page 233 232 • VACON® apfiff09 marine P2.12.1.6 FaultWarnIndicat ID1940 With this parameter its possible to select how warning and fault indication as handled to digital outputs and to fieldbus 0 = Static Static signal, as long as warning or fault is active. Warning will disappear after 10 second when warning situation has passed.
  • Page 234: Temperature Sensor Protections

    If you have two temperature sensor boards installed in your AC drive you can choose ® here the combination inputs in use in the second board. See also the VACON boards manual. 0 = Not used (ID Write, value of maximum temperature can be written from fieldbus) 1 = Sensor 1 in use 2 = Sensor 1 &...
  • Page 235 234 • VACON® apfiff09 marine P2.12.2.7 Board 2 warning limit ID745 “Board2 Warn. Lim” Set here the limit at which the second temperature sensor board warning will be activated. When individual warning and fault limits are activated this is second board first channel (2A).
  • Page 236: Stall Protection

    VACON® • 235 apfiff09 marine 7.12.3 Stall protection The motor stall protection protects the motor from short time overload situations such as one caused by a stalled shaft. The reaction time of the stall protection can be set shorter than that of the motor thermal protection.
  • Page 237 236 • VACON® apfiff09 marine ID711 “Stall Time Lim” P2.12.3.4 Stall time This is the maximum time allowed for a stall stage. The stall time is counted by an internal up/down counter. If the stall time counter value goes above this limit the protection will cause a trip.
  • Page 238: Speed Error

    VACON® • 237 apfiff09 marine 7.12.4 Speed Error The Speed error monitoring function compares the encoder frequency and the ramp generator output. The function is used with a PMS motor to detect if the motor synchronization is off or to disable the open loop function using the encoder speed for slip compensation.
  • Page 239: Motor Protection

    238 • VACON® apfiff09 marine 7.12.5 Motor Protection CAUTION! The calculated model does not protect the motor if the airflow to the motor is reduced by blocked air intake grill. The motor thermal protection is designed to protect the motor from overheating. The drive is capable of supplying higher than nominal current to the motor.
  • Page 240 VACON® • 239 apfiff09 marine Cooling Factor 100 % 70 % of Fn Zero cooling Factor Motor Nominal Freq. Freq. Out ID707 “MTP Motor T” P2.12.5.5 Motor thermal protection: Time constant This time can be set between 1 and 200 minutes.
  • Page 241 240 • VACON® apfiff09 marine P2.12.5.6 Response to thermistor fault ID732 “ThermistF.Resp” 0 = No response 1 = Warning 2 = Fault, stop mode after fault according to ID506 3 = Fault, stop mode after fault always by coasting Setting the parameter to 0 will deactivate the protection.
  • Page 242: Over Load Protection

    VACON® • 241 apfiff09 marine 7.12.6 Over Load Protection With this function it is possible to select if Current, Torque or Power is used for overload protection. Overload is based on internal counter that is increased when the input value is above 105% level and decreased when below 105% level.
  • Page 243 242 • VACON® apfiff09 marine “OverLoadMinIN” 2.12.5.11 Over Load Minimum Input ID1849 Input value level where overload counter is increased or decreased. “OverCurrTripLim” 2.12.5.12 Software over current trip limit ID1094 Fast software over current limit function, Set current limit related to motor nominal current in % value.
  • Page 244: 4Ma Protection

    VACON® • 243 apfiff09 marine 7.12.7 4mA Protection The 4 mA protection monitors the analogue input signal level from Analogue input 1 and Analogue input 2. The monitoring function is active when signal range 4 mA – 20 mA is selected. A fault or warning is generated when the signal falls below 3.5 mA for 5 seconds or below 0.5 mA for 0.5 seconds.
  • Page 245: Under Load Protection

    244 • VACON® apfiff09 marine 7.12.8 Under load protection The purpose of the motor under load protection is to ensure that there is load on the motor when the drive is running. If the motor loses its load there might be a problem in the process, for example, a broken belt or a dry pump.
  • Page 246 VACON® • 245 apfiff09 marine P2.12.7.4 Underload time ID716 “UP Time Limit” This time can be set between 2.0 and 600.0 s. This is the maximum time allowed for an underload state to exist. An internal up/down counter counts the accumulated underload time. If the underload counter value goes above this limit the protection will cause a trip according to parameter Underload Protection.
  • Page 247: Earth Fault

    246 • VACON® apfiff09 marine 7.12.9 Earth Fault The earth fault protection ensures that the sum of the motor phase currents is zero. The overcurrent protection is always working and protects the AC drive from earth faults with high currents.
  • Page 248: Fieldbus Communication

    VACON® • 247 apfiff09 marine 7.12.11 Fieldbus communication The drive will monitor at least three different indications for fieldbus fault when P2.13.22 State Machine “2 / ProfiDrive” is used: Internal monitoring form the fieldbus protocol. CW.B11 Watchdog pulse (If used) CW.B10 Fieldbus Control (Depending on used State Machine)
  • Page 249: External Fault Function

    248 • VACON® apfiff09 marine ID733 “FB Fault Slot E” P2.12.10.4 FieldBus Response Slot E Set here the response for a fieldbus fault if the active control place is fieldbus. For more information, see the respective Fieldbus Board Manual. 0 = No response...
  • Page 250: Encoder Fault Function

    VACON® • 249 apfiff09 marine 7.12.13 Encoder Fault function Encoder supervision gives fault in case there are no pulses from encoder. It is required that the reference is above 1 Hz and that the torque can reach 100% level. This torque level can be adjusted by Iq Fault limit parameter.
  • Page 251 250 • VACON® apfiff09 marine P2.12.13 Disable Stop Lock ID1086 Some parameters are locked during the Run state, with this parameter it’s possible to bypass this Run State parameter lock. Be careful what you change and how big change you make to those parameters.
  • Page 252: Fieldbus Settings

    VACON® • 251 apfiff09 marine 7.13 Fieldbus settings 7.13.1 General settings Fieldbus reference minimum scaling ID850 “FB Min Scale” P2.13.1 Fieldbus reference maximum scaling ID851 “FB Max Scale” P2.13.2 Use these two parameters to scale the fieldbus reference signal. If both parameters have the same value the minimum and maximum frequency limits are used for scaling.
  • Page 253 252 • VACON® apfiff09 marine P2.13.3 to Fieldbus data OUT selections 1 to 8 ID852-ID859 “FB Data OutX Sel” P2.13.10 With these parameters, you can monitor any monitoring or parameter value from the fieldbus. Enter the ID number of the item you wish to monitor for the value of these parameters.
  • Page 254 VACON® • 253 apfiff09 marine P2.13.27 to “FB Data InX Sel” P2.13.34 Fieldbus data IN selections 9 to 16 ID550-557 With these parameters, you can control any monitoring or parameter value from the fieldbus. Enter the ID number of the item you wish to control for the value of these parameters.
  • Page 255 254 • VACON® apfiff09 marine “ControlSlotSel.” P2.13.37 Control Slot selector ID1440 This parameter defines which slot is used as the main control place when two fieldbus boards have been installed in the drive. When values 6 or 7 are selected, the drive uses the Fast fieldbus profile.
  • Page 256: Id Functions

    VACON® • 255 apfiff09 marine 7.14 ID Functions Listed here are the functions that use the parameter ID number to control and monitor the signal. 7.14.1 Value Control The value control parameters are used to control an input signal parameter.
  • Page 257 256 • VACON® apfiff09 marine 1 = Scale ABS Absolute input value is scaled linearly between On and Off values. Control Value Control value Negative Positive value value value value 2 = Scale ABS Inverted Inverted absolute value is scaled linearly between On and Off values.
  • Page 258: Din Id Control

    VACON® • 257 apfiff09 marine 7.14.2 DIN ID Control This function is used to control any parameter between two different values with a digital input. Different values are given for DI ‘low’ and DI ‘high’. ID Control Digital Input DIN Controlled ID...
  • Page 259: Id-Controlled Do

    258 • VACON® apfiff09 marine 7.14.3 ID-controlled DO This function is used to control any Digital output by any status that can be presented as bit. The input signal is selected with the ID number and bit number. Example: Most of the faults and warnings are normally presented in the common digital output. With the ID-controlled DO function, it is possible to select a specific fault to be connected to the digital output.
  • Page 260: Free Din Delay

    VACON® • 259 apfiff09 marine 7.14.4 Free DIN Delay This function is used when certain DIN signal needs On or Off delay before actual command is given. For example, Reading from DIN Status Word: DIN1 status giving it a 1.00 s delay and then writing it by ID number to ID403 Start 1, thus giving 1 second delay to start on drive side.
  • Page 261: Brake Control

    260 • VACON® apfiff09 marine 7.15 Brake Control The mechanical brake control has two parts that need to be synchronically controlled. The first part is the mechanical brake release and the second is the speed reference release. Note: Disable P2.3.12.2 CLRmpFollEncFreq parameter if drive is used for hoisting.
  • Page 262 VACON® • 261 apfiff09 marine Speed Brake Off lim 1. Start command 2. Start magnetization is used to build rotor flux fast. The drive Zero speed time is used during this. 3. When the rotor flux is > 90% and the start zero time has expired the speed reference is released to BrakeOpenFreq limit.
  • Page 263 262 • VACON® apfiff09 marine “BrakeOFFFreqLimCL” P2.15.3 Brake Frequency limit Closed Loop ID1555 This parameter defines the frequency limit to release the brake. This value also applies as the maximum frequency reference limit while the brake is closed. In closed loop control it is recommended to use zero value so that the brake is released while the drive has zero speed at start.
  • Page 264: Runaway Load Protection

    VACON® • 263 apfiff09 marine 7.15.1 Runaway load protection Runaway load protection is used to increase the generator torque limit in case when the speed of the load is increasing above the defined frequency limit. Used in cases when upper system is controlling generator torque limit and its needed to drive itself control situation when speed increases too high.
  • Page 265: Brake Monitoring Function

    264 • VACON® apfiff09 marine 7.15.2 Brake monitoring function The brake monitoring function is activated when the function Brake acknowledge is used. The brake monitoring function compares the brake feedback to the control signal. In other words, a fault will be issued if the feedback is missing when drive is in Run state and the output frequency is above the opening limit and the fault delay has expired.
  • Page 266: Closed Loop Settings

    VACON® • 265 apfiff09 marine 7.15.3 Closed Loop settings 7.15.3.1 Start Up torque The start-up torque is used to generate torque against the brake so that when the brake is mechanically opened, there will be no position change because the drive is already generating the torque needed to keep the load in place.
  • Page 267: Roll Back Control For Closed Loop

    266 • VACON® apfiff09 marine 7.15.4 Roll Back Control for Closed Loop Roll Back controller will control the speed to zero when, after the start, the speed reference is zero and when, for example, the brake is opening. P2.15.13.1 Roll Back Kp ID1787 Gain for Roll Back controller.
  • Page 268: Auto Fault Reset

    VACON® • 267 apfiff09 marine 7.16 Auto Fault Reset The Auto reset function tries to reset the fault automatically during the trial time. An individual fault can be defined to be reset certain number of times before the actual fault indication is given. The function will operate as Automatic Restart function if the start command is received as a static signal.
  • Page 269 268 • VACON® apfiff09 marine ID720 “Undervolt. Tries” P2.16.4 Number of tries after undervoltage fault trip This parameter determines how many automatic fault resets can be made during the trial time after an under voltage trip. = No automatic reset >0...
  • Page 270 VACON® • 269 apfiff09 marine ID738 “Underload tries” P2.16.10 Number of tries after underload fault trip This parameter determines how many automatic fault resets can be made during the trial time after underload trip. = No automatic fault reset after Underload fault trip >0...
  • Page 271: Pi Control

    270 • VACON® apfiff09 marine 7.17 PI Control PI Control in system interface application uses ID number to make connection between reference, actual value and output. PIC function will be active when PIC Controller Output ID is higher than zero.
  • Page 272 VACON® • 271 apfiff09 marine “PID Scale” P2.17.7 PI Controller Scale ID340 This parameter allows you to invert the error value of the PID controller (and thus the operation of the PID controller). 1 No inversion -1 Inverted This value is a multiplier for P and I part of the control thus working as additional gain.
  • Page 273: Functional Safety

    272 • VACON® apfiff09 marine 7.18 Functional Safety P2.18.1 SQS Reaction ID545 0=No Action 1=Quick Stop Activates same function as Digital Input Quick Stop P2.4.2.25. P2.18.2 SS1 Reaction ID542 0=No Action 1=Stop 2=Quick Stop Makes a normal stop command. Uses currently active ramp times P2.18.3...
  • Page 274: Condition Based Monitoring

    VACON® • 273 apfiff09 marine 7.19 Condition Based Monitoring P2.19.1 Stator Winding Fault Mode ID3540 This parameter can be set which of stages to be activated. 0 = No response 1 = Warning, warning levels S1 and S2 are used 2 = Fault + Warnings, warning S1, warning S2 and alarm/fault levels are used 7.19.1...
  • Page 275 274 • VACON® apfiff09 marine Use this parameter to set the duration of the baseline run. P2.19.2.5 Modified Array ID3506 Before or after baseline run each measuring point can be modified by parameter. This parameter can be changed modified array.
  • Page 276: Stator Winding

    VACON® • 275 apfiff09 marine P2.19.2.9 Baseline Data Selector ID3509 This parameter can be chosen which array points can be monitored in the monitor group G1.32.1 Baseline data. 0 = Freq Points 1 = Current Max Steady 2 = Current Min Steady...
  • Page 277: Threshold Value

    276 • VACON® apfiff09 marine 7.19.4 Threshold Value The several statistical data points (mean, min, max and std) from the baseline data can be combined one threshold value. Threshold value = MeanFactor*mean + MinFactor*min + MaxFaxtor*max + StdFactor*stddev. P2.19.3.3.1 Current Unbalance Mean Factor ID3511 P2.19.3.6.1...
  • Page 278: Limits

    VACON® • 277 apfiff09 marine Threshold Value Value Value Type 0 = Constant Value Value Type 1 = Linear Frequency 7.19.5 Limits Each of the three detection levels (Warning S1, Warning S2, Alarm/Fault) have a configurable timer associated that delays the response. The timing principle is like an electrical fuse where the response time is long for low levels and it is short for high levels.
  • Page 279 278 • VACON® apfiff09 marine P2.19.3.4.5 Current Unbalance Warning S2 High Limit ID3720 P2.19.3.7.5 Voltage Unbalance Warning S2 High Limit ID3535 P2.19.4.3.5 Vibration Warning S2 High Limit ID3559 P2.19.5.2.7 Load Warning S2 High Limit ID3576 P2.19.3.4.8 Current Unbalance Alarm/fault High Limit ID3523 P2.19.3.7.8...
  • Page 280: Counters

    VACON® • 279 apfiff09 marine 7.19.6 Counters P2.19.3.5.1 Current Unbalance Warning S1 Counter ID3541 P2.19.3.8.1 Voltage Unbalance Warning S1 Counter ID3546 P2.19.4.4.1 Vibration Warning S1 Counter ID3564 P2.19.5.3.1 Load Warning S1 Counter ID3581 P2.19.3.5.2 Current Unbalance Warning S2 Counter ID3542 P2.19.3.8.2...
  • Page 281: Keypad Control Parameters

    280 • VACON® apfiff09 marine 7.20 Keypad control parameters Unlike the parameters listed above, these parameters are located in the M3 menu of the control keypad. The reference parameters do not have an ID number. ID125 “Control Place” P3.1 Control Place The active control place can be changed with this parameter.
  • Page 282: Data Logger Trigger Word

    There is a special trigger word in application level that can be used to trigger data logger. This word ® can be used for triggering when source is selected from Application and original VACON Marine application vcn is used. Variable is called “DataLoggerTrigWord”...
  • Page 283: Identification Function For Permanent Magnet Synchronous Motor

    282 • VACON® apfiff09 marine IDENTIFICATION FUNCTION FOR PERMANENT MAGNET SYNCHRONOUS MOTOR PM Motor has several zero positioning identification modes. This chapter explains what kind of identification mode is needed to select when using different kind of hardware configuration. This chapter is addition to P2.1.9 Identification parameter description and P2.8.5.2 Start Angle Identification mode description.
  • Page 284: Identification With Incremental Encoder With Z-Pulse Input

    VACON® • 283 apfiff09 marine Identification with incremental encoder with Z-pulse input. When using incremental encoder with Z-pulse, identification is made only once. A new identification is needed if encoder and rotor position changes related to each other. Motor needs to be able to rotate freely that magnet positions can be identified. Identification mode in this case is selected by “P2.1.9 Identification”...
  • Page 285: Status And Control Words In Detail

    284 • VACON® apfiff09 marine 10. STATUS AND CONTROL WORDS IN DETAIL 10.1 Fieldbus Combination P7.x.1.4 P2.13.22 Operate Mode State machine FB Control and FB Status Word are 1 / ProfiDrive 1 / Basic explained in fieldbus option board manual...
  • Page 286: Combination 1, Profidrive - Standard With Profibus Option Board

    VACON® • 285 apfiff09 marine Combination 1, ProfiDrive – Standard with Profibus option board 10.1.1 10.1.1.1 FB Control Word Combination 1, ProfiDrive – Basic with Profibus option board FB Control Word for Profibus in Combination 1 Comment FALSE TRUE STOP 1 (by ramp)
  • Page 287: Combination 2, Bypass - Profidrive; State Diagram

    286 • VACON® apfiff09 marine Combination 2, ByPass – ProfiDrive; State Diagram 10.1.2 Power supply on S1: Switching On Disabled SW.B6 = TRUE | B0, B1, B2 = FALSE CW.B0 = FALSE (OFF) CW.B1= FALSE (Coast Stop) Modulation CW.B1= TRUE (No Coast Stop) CW.B1 = FALSE (Coast Stop)
  • Page 288 VACON® • 287 apfiff09 marine 10.1.2.1 State Machine Costing Stop SW.B04 (Coast Stop Not Active) CW.B01 (Coasting Stop) IN 1 Coast Stop IN 2 Fault with Coast Stop IN 3 Internal Coast Stop Quick stop SW.B06 (Switch On Inhibited) SW.B05 (Quick Stop Not Active)
  • Page 289 288 • VACON® apfiff09 marine 10.1.2.2 FB Control Word FB Control Word ID1160 Signal Comment 0>1 will reset the Switch On Inhibit state and bring the drive to Ready Run. Should be reset after fault, Coast Stop (b1) and Emergency Stop (b2) .
  • Page 290 VACON® • 289 apfiff09 marine B04: FALSE = Reset Ramp Generator, TRUE = Enable Ramp Generator This bit has priority over B05 and B06 in Control Word. Reset Ramp Generator: Closed Loop: Ramp generator is forced to zero, and the drive will make a stop as fast as possible running against the set torque limits or, for example, overvoltage controller.
  • Page 291 290 • VACON® apfiff09 marine B08: FALSE = No Function, TRUE = Jogging 1 Inching 1: Drive follows reference set by Jogging Ref 1. Function needs to be separately activated by Aux Control Word or by digital input Enable Jogging when IO control used for Jogging.
  • Page 292 VACON® • 291 apfiff09 marine 10.1.2.4 FB Status Word FB Status Word ID65 Signal Comment 0=The drive NOT ready to switch ON Ready to switch On 1=The drive is ready to switch ON 0=The drive is NOT ready to run...
  • Page 293 292 • VACON® apfiff09 marine B04: FALSE = Coast Stop Activated, TRUE = Coast Stop Not Activated Coast Stop Activated: "Coast Stop (OFF 2)" command is present. Coast Stop Not Activated: Coast stop command is not active. B05: FALSE = Quick Stop Activated, TRUE = Quick Stop Not Activated Quick Stop Activated: "...
  • Page 294: Combination 3, Bypass - Basic

    VACON® • 293 apfiff09 marine Combination 3, ByPass – Basic 10.1.3 10.1.3.1 FB Control Word Combination 3, ByPass – Basic Main Control Word for Profibus in Combination 3 Comment FALSE TRUE STOP START Clockwise Counter clockwise No action FAULT RESET (0 -> 1)
  • Page 295: Problem Solving

    Datalogger. ® Before storing the parameter file, upload the parameters from the drive and save when VACON NCDrive is in the ON-LINE state. If it is possible, do this while the problem is active. It is also helpful to have single line diagram from the system where the problem occurs.
  • Page 296: Fault Codes

    VACON® • 295 apfiff09 marine 12. FAULT CODES Overcurrent fault There is too high a current (>4*IH) in the motor cable. S1 = Hardware trip: • Current above 4*Ih S3 = Current controller supervision. • Current limit too low or current peak value too high.
  • Page 297 296 • VACON® apfiff09 marine Charge switch Charge switch status is not correct when start command is given. S1 = Charge switch was open when START command was given. • Charge switch was open when the START command was given.
  • Page 298 VACON® • 297 apfiff09 marine System Fault A system fault indicates several different fault situations in drive operation. S1 = Reserved • Disturbance. ➢ Reset the unit and try again. • If there is star coupler in the unit. ➢ Check the fibre connections and phase order.
  • Page 299 298 • VACON® apfiff09 marine Under voltage fault DC-link voltage is below the fault voltage limit of the drive. S1 = DC-link too low during run S2 = No data from power unit S3 = Under voltage controller has been active and speed is ramped to zero with ramp time 2.
  • Page 300 VACON® • 299 apfiff09 marine Drive Over Temperature Fault Possible cause: 1. Heatsink temperature is over acceptable limits. See user manual for the temperature limit. Overtemperature warning is issued before actual trip limit is reached. Correcting measures • Check correct amount and flow of cooling air.
  • Page 301 300 • VACON® apfiff09 marine EEPROM checksum fault Possible cause: 1. Parameter save fault 2. Faulty operation 3. Component failure Correcting measures: • Should the fault re-occur, contact your local distributor. Counter fault Possible cause: 1. Values displayed on counters are incorrect Correcting measures: •...
  • Page 302 VACON® • 301 apfiff09 marine IGBT temperature Hardware IGBT Inverter Bridge over temperature protection has detected too high a short term overload current. Possible cause: 1. Too high load 2. Identification run has not been made which causes the motor to start under magnetized.
  • Page 303 302 • VACON® apfiff09 marine IGBT temperature Software IGBT inverter bridge over temperature protection has detected too high a short term overload current. • Check load. • Check motor size. • Make Identification run. Brake resistor overtemperature S1: Brake resistor high temperature Calculation for internal brake resistor has exceeded the tripping limit.
  • Page 304 Correcting measures: • Remove fault situation from external device. Keypad communication Possible cause: ® 1. The connection between the control keypad or VACON NCDrive and the AC drive is broken. Correcting measures: • Check keypad connection and possible keypad cable.
  • Page 305 304 • VACON® apfiff09 marine Temperature sensor board 1 fault Temperature protection function is used to measure temperature and give warning and/or fault when set limits are exceeded. Marine application supports two temperature sensor boards simultaneously. One can be used for the motor winding and the other for the motor bearings.
  • Page 306 VACON® • 305 apfiff09 marine Mechanical brake This fault is generated when the acknowledge signal from the brake is used. If the status of the signal is opposite from the control signal for a longer period of time than the delay defined with P2.15.11 Brake Fault Delay a fault is generated.
  • Page 307 • Check installation. • ® If installation is correct contact the nearest VACON distributor. Follower fault When using the normal master follower function, this fault code is given if one or more follower drives trip to fault. This fault is also visible when the fault is in the master drive. Check also possible other faults active in the master drive.
  • Page 308 VACON® • 307 apfiff09 marine Drive Synch follower When using the normal master follower function, this fault code is given if one or more follower drives trip to fault. This fault is also visible when the fault is in the master drive. Check also possible other faults active in the master drive.
  • Page 309 308 • VACON® apfiff09 marine Possible cause: Severe fault is detected in motor Correcting measures: 1. Check motor stator windings 2. Check vibration input 3. Check load Local contacts: http://drives.danfoss.com/danfoss-drives/local-contacts/...

Table of Contents