Download Print this page

Carf-Models Composite-ARF INTEGRAL Instruction Manual page 4

Advertisement

Composite-ARF INTEGRAL
techsupport@composite-arf.com
General information about
fully-composite aircraft structure and design
All the parts are produced in negative molds, manufactured using vacuum-bagged sandwich
construction technology. All parts are painted in the moulds, either single colour or designer
colour schemes. Our production method, called TAVS (Total Area Vacuum Sandwich), enables
us to present this aircraft with incredible built-in strength, while still being extremely lightweight,
and for a price that nobody could even consider some years ago. This production process has
huge advantages, but a few disadvantages as well. These facts need to be explained in advance
for your better understanding.
Description of Parts
The Wings:
Both wing halves are made in negative moulds, and fully vacuum bagged, using only 2 layers of
superlight 2 oz. cloth in combination with a hard 2 mm Herex foam sandwich form a hard and
durable outer skin. Each wing panel weighs between 380 and 410 grams, depending on the color
scheme.
The ailerons are hinged already for you - laminated in the
mould and attached to the wing with a special nylon hinge-
Centreline of hinge axis
cloth, sandwiched between the outer skin and the foam.
This nylon hinge is 100% safe and durable. You will never
have to worry about breaking it, or wearing it out. There is
no gap at all on the top wing surface, and there is a very
narrow slot in the bottom surface, where the aileron slides
Phenolic control horn
under the main wing skin during down throw. This means
that the hinge axis line is on the top surface of the wing, not
in the centre. This is NOT a disadvantage, if you program
in up to 10% NEGATIVE aileron differential in your transmitter. This means that the 'down' throw
could be up to 10% more than the up throw. Why? Because the axis of the hinge is not at the
centreline of the aileron, so it moves slightly in and out when operated, and the aileron gets a lit-
tle "bigger" in surface area when moving up, and "smaller" when moving down.
The bottom slot needs some explanation, too. The cut line is exactly in the correct position so
that the aileron slides under the wing skin smoothly. If the cut was a few mm forward or back, it
would not work properly. So, make sure that the lip is not damaged, and that the aileron slides
under this lip perfectly. It will NOT lock at any time, if lip is not damaged. If damage occurs to the
lip, you can cut off 2-3 mm, but you should NEVER need to cut off more than this.
The Fuselage:
The complete fuselage is laminated using a special lightweight cloth and 0.5mm super-light con-
test grade balsa sandwich, instead of the usual foam sandwich. The complete front of the fuse-
lage is reinforced with an additional layer of carbon cloth, from the LG supports forward to the
nose-ring.
A kevlar band is added to each side during the laminating process, which also runs the complete
length from the nose to the fin post. In the rear part of the fuselage a horizontal 6mm thick
foam/glassfibre sandwich board provides torsional stability, and this is factory-installed with car-
bon rovings on the perimeter of it. The whole assembly is vacuum-bagged, and when the fuse-
4

Advertisement

loading