GE t60 Instruction Manual page 173

Ur series transformer protection system
Hide thumbs Also See for t60:
Table of Contents

Advertisement

5 SETTINGS
PATH: SETTINGS
PRODUCT SETUP
 PRECISION TIME
 PROTOCOL (1588)
MESSAGE
MESSAGE
MESSAGE
PATH: SETTINGS
PRODUCT SETUP
MESSAGE
MESSAGE
MESSAGE
The UR supports the Precision Time Protocol (PTP) specified in IEEE Std 1588 2008 using the Power Profile (PP) specified
in IEEE Std C37.238 2011. This enables the relay to synchronize to the international time standard over an Ethernet net-
work that implements PP.
The relay can be configured to operate on some PTP networks that are not strictly PP. Time accuracy can be less than
specified for a PP network. Tolerated deviations from strict PP include 1) missing declaration of PP compliance in the mes-
sages, 2) connection to a network device that does not support the PTP peer delay mechanism, 3) jitter substantially
greater than 1 µs in received event messages, and 4) certain non-compliant announce and sync message update rates.
The relay implements PTP according to IEEE Std 1588 2008 and the equivalent IEC 61588:2009(E), sometimes
referred to as version 2 PTP. It does not support the previous version of the standard (version 1).
NOTE
PTP is a protocol that allows multiple clocks in a network to synchronize with one another. It permits synchronization accu-
racies better than 1 ns, but this requires each and every component in the network achieve very high levels of accuracy and
a very high baud rate, faster than normally used for relay communications. When operating over a generic Ethernet net-
work, time error may amount to 1 ms or more. PP is a profile of PTP which specifies a limited subset of PTP suitable for use
in power system protection, control, automation and data communication applications, and thereby facilitates interoperabil-
ity between different vendor's clocks and switches. PP specifies a worst-case delivered time error of less than 1 µs over a
16-hop network.
In a PTP system and in a PP system, the clocks automatically organize themselves into a master-slave synchronization
hierarchy with the "best" clock available making itself the "grandmaster" at the top of the hierarchy; all others make them-
selves "slaves" and track the grandmaster. Typically the grandmaster clock receives its time from GPS satellites or some
other link to the international time standard. If the grandmaster fails, the next "best" clock available in the domain assumes
the grandmaster role. Should a clock on starting up discover it is "better" that the present grandmaster, it assumes the
grandmaster role and the previous grandmaster reverts to slave.
Time messages issued by the grandmaster are delayed as they pass through the network both due to the finite speed of
the signal in the interconnecting fiber or wire. Each clock and switch implementing PP measures the propagation delay to
each of its PP neighbors, and compensates for these delays in the time received. Each network device implementing PP
measures the processing delay it introduces in each time message and compensates for this delay in the time it transmits.
As a result, the time delivered to end-devices such as the UR are virtually identical to the grandmaster time. Should one of
the network devices in the hierarchy not fully implement PP, the associated propagation delay and/or latency may not be
compensated for, and the time received at the end-device could be in error by more than 100 µs.
GE Multilin


REAL TIME CLOCK
PRECISION TIME PROTOCOL (1588)
STRICT POWER PROFILE:
Disabled
PTP DOMAIN NUMBER
0
PTP VLAN PRIORITY
4
PTP VLAN ID
0
 PTP PORT 1


REAL TIME CLOCK
PRECISION TIME PROTOCOL (1588)
PORT 1 PTP FUNCTION:
Disabled
PORT 1 PATH DELAY
ADDER:
00000 ns
PORT 1 PATH DELAY
ASYMMETRY:
0000 ns
T60 Transformer Protection System
5.2 PRODUCT SETUP
Range: Enabled, Disabled
Range: 0 to 255
Range: 0 to 7
Range: 0 to 4095

PTP PORT 1(3)
Range: Enabled, Disabled
Range: 0 to 60 000 ns in steps of 1
Range: –1 000 to +1 000 ns in steps of 1
5
5-49

Advertisement

Table of Contents
loading

Table of Contents