Requesting Low-Power Idle States; Core C-States; Core C0 State; P_Lvlx To Mwait Conversion - Intel BX80623I32100 Datasheet

Core i7, i5, and i3 desktop processor series, pentium processor g800 and g600 series, celeron processor g500 and g400 series
Table of Contents

Advertisement

4.2.3

Requesting Low-Power Idle States

The primary software interfaces for requesting low power idle states are through the
MWAIT instruction with sub-state hints and the HLT instruction (for C1 and C1E).
However, software may make C-state requests using the legacy method of I/O reads
from the ACPI-defined processor clock control registers, referred to as P_LVLx. This
method of requesting C-states provides legacy support for operating systems that
initiate C-state transitions using I/O reads.
For legacy operating systems, P_LVLx I/O reads are converted within the processor to
the equivalent MWAIT C-state request. Therefore, P_LVLx reads do not directly result in
I/O reads to the system. The feature, known as I/O MWAIT redirection, must be
enabled in the BIOS.
Note:
The P_LVLx I/O Monitor address needs to be set up before using the P_LVLx I/O read
interface. Each P-LVLx is mapped to the supported MWAIT(Cx) instruction as shown in
Table
4-9.
Table 4-9.

P_LVLx to MWAIT Conversion

P_LVLx
P_LVL2
P_LVL3
The BIOS can write to the C-state range field of the PMG_IO_CAPTURE MSR to restrict
the range of I/O addresses that are trapped and emulate MWAIT like functionality. Any
P_LVLx reads outside of this range does not cause an I/O redirection to MWAIT(Cx) like
request. They fall through like a normal I/O instruction.
Note:
When P_LVLx I/O instructions are used, MWAIT substates cannot be defined. The
MWAIT substate is always zero if I/O MWAIT redirection is used. By default, P_LVLx I/O
redirections enable the MWAIT 'break on EFLAGS.IF' feature that triggers a wakeup on
an interrupt, even if interrupts are masked by EFLAGS.IF.
4.2.4

Core C-states

The following are general rules for all core C-states, unless specified otherwise:
• A core C-State is determined by the lowest numerical thread state (such as Thread
0 requests C1E while Thread 1 requests C3, resulting in a core C1E state). See
Table
• A core transitions to C0 state when:
— An interrupt occurs
— There is an access to the monitored address if the state was entered using an
MWAIT instruction
• For core C1/C1E, core C3, and core C6, an interrupt directed toward a single thread
wakes only that thread. However, since both threads are no longer at the same
core C-state, the core resolves to C0.
• A system reset re-initializes all processor cores.
4.2.4.1

Core C0 State

The normal operating state of a core where code is being executed.
48
MWAIT(Cx)
MWAIT(C3)
MWAIT(C6)
C6. No sub-states allowed.
4-7.
Power Management
Notes
Datasheet, Volume 1

Hide quick links:

Advertisement

Table of Contents
loading

Table of Contents