Switch Serviceability; Virtual Lan; Spanning Tree - HP BladeSystem bc2000 - Blade PC Installation Manual

Bladesystem pc blade switch
Hide thumbs Also See for BladeSystem bc2000 - Blade PC:
Table of Contents

Advertisement

Switch Serviceability

The switch provides many additional serviceability and diagnostic features including:
Port mirroring with the ability to mirror desired type of frames (egress, ingress, or both).
Power-on self test (POST) at boot for hardware verification.
Monitoring screens using the user interfaces for port utilization, data packets received/transmitted,
error packets, packet size, trunk utilization, SNMP data, etc.
Details of system information using the user interfaces such as port parameters and link status,
switch asset information, configuration values, log entries, etc.
The ability to "ping" or "traceroute" to test the connectivity on the Ethernet network.
Local system log (syslog) with ability to view and clear messages that may be saved (uploaded)
as text file using TFTP.
MAC addresses view, clear, and delete from the forwarding database for identifying problems with
MAC address learning and packet forwarding.
The ability to switch to a backup firmware image in case of firmware corruption.
For more detailed information on the administration capabilities of the switch, see the PC Blade Switch
user guides.

Virtual LAN

Each switch supports up to 256 port-based IEEE 802.1Q VLANs with GVRP dynamic VLAN registration.
Members of a VLAN may be untagged or tagged ports according to IEEE 802.3ac VLAN Ethernet frame
extensions for 802.1Q tagging. Therefore, PC Blade Switch VLANs may span other switches that
support 802.1Q tagging located within the network infrastructure.

Spanning Tree

The switch meets the IEEE 802.1D spanning tree protocol (STP) to eliminate potential problems caused
by redundant networking paths. Users can configure STP switch parameters, including priority and cost,
on a per port basis. Each switch can automatically find the STP root bridge on the network. Otherwise,
the switch will act as the root bridge for the STP domain.
Spanning tree is a standard requirement for L2 switches (performing transparent bridging) and allows
bridges to automatically prevent and resolve L2 forwarding loops. The switches exchange configuration
messages using specially formatted frames called Bridge Protocol Data Units (BPDUs), and selectively
enable and disable forwarding on ports. The result is that a tree of active forwarding links is created,
ensuring there is an active path (series of L2 forwarding links) between any two devices in the network,
with no loops.
On a LAN interconnected by multiple bridges, Spanning Tree selects a controlling Root Bridge and Port
for the entire bridged LAN, and a Designated Bridge and Port for each individual LAN segment. When
traffic passes from one end station to another across the LAN, it is forwarded through the designated
Bridge/Port for the LAN segment, to the Root Bridge, which in turn forwards the traffic to the designated
Bridges/Ports on the opposite side. Bridges use BPDUs to communicate Spanning Tree information.
While "classic" spanning tree, as defined in IEEE 802.1D, is guaranteed to prevent L2 forwarding loops
in a general network topology, it can take up to 50 seconds for it to "converge" (that is, for each bridge/
switch in the network to separately decide for each of its ports if it should actively forward traffic or not).
ENWW
Switch Serviceability
7

Advertisement

Table of Contents
loading

Table of Contents