Magnetek IMPULSE G+ 4 Series Technical Manual

Magnetek IMPULSE G+ 4 Series Technical Manual

Adjustable frequency/vector crane controls
Hide thumbs Also See for IMPULSE G+ 4 Series:
Table of Contents

Advertisement

Quick Links

Adjustable Frequency/Vector Crane Controls
Technical Manual
VFD Firmware: 14707 & 14750
Part Number: 144-23910 R8
November 2022
© Copyright 2022 Magnetek

Advertisement

Table of Contents
loading
Need help?

Need help?

Do you have a question about the IMPULSE G+ 4 Series and is the answer not in the manual?

Questions and answers

Subscribe to Our Youtube Channel

Summary of Contents for Magnetek IMPULSE G+ 4 Series

  • Page 1 Adjustable Frequency/Vector Crane Controls Technical Manual VFD Firmware: 14707 & 14750 Part Number: 144-23910 R8 November 2022 © Copyright 2022 Magnetek...
  • Page 2 SERVICE INFORMATION For questions regarding service or technical information contact: 1.866.MAG.SERV (1.866.624.7378) International Service Outside the U.S. and Canada call +1.262.783.3500, press 3. Columbus McKinnon Corporation Locations Magnetek N49 W13650 Campbell Drive Menomonee Falls, WI 53051 Telephone: 800.288.8178 E-mail: field.service@magnetek.com...
  • Page 3 It is the responsibility of the owners, users and operators of the Magnetek Products to know, understand and follow all of these requirements. It is the responsibility of the employer to make its employees aware of all of the above listed requirements and to make certain that all operators are properly trained.
  • Page 4 DANGER, WARNING, CAUTION and NOTE Statements Read and understand this manual before installing, operating or servicing this product. Install the product according to this manual and local codes. The following conventions indicate safety messages in this manual. Failure to heed these messages could cause fatal injury or damage products and related equipment and systems.
  • Page 5: Table Of Contents

    Table of Contents Introduction ............................... 8 How to Use This Manual........................... 9 General Information ..........................10 1.2.1 Assessing the System Requirements....................10 1.2.2 Assessing the VFD Environment......................10 Specifications............................11 1.3.1 VFD Specifications ..........................11 1.3.2 AC Reactor Specifications........................14 1.3.3 Interface Board (S4IF) Specifications....................
  • Page 6 4.3.3 Initial Setup............................55 Auto-Tuning ............................63 4.4.1 Standard Auto-Tune (T01-01 = 0) ...................... 64 4.4.2 Non-Rotational 1 Auto-Tune (T01-01 = 1)..................64 4.4.3 Terminal Resistance Auto-Tune (T01-01 = 2) ..................65 4.4.4 Non-Rotational 2 Auto-Tune (T01-01 = 4)..................65 Programming Advanced Features........................
  • Page 7 5.3.8 Carrier Frequency ..........................123 5.3.9 Hunting Prevention........................... 124 Motor Parameters ..........................125 5.4.1 Voltage/Frequency (V/f) Pattern....................... 125 5.4.2 Motor Setup............................130 5.4.3 Test Mode Configuration ........................131 Option Card Parameters ........................132 5.5.1 Encoder Feedback (PG-X3) Option Card Setup ................132 5.5.2 Analog Input (AI-A3) Option Card Setup ..................
  • Page 8: Introduction

    1 Introduction WARNING Do not touch any circuitry components while the main AC power is on. In addition, wait until the red “CHARGE” LED is out before performing any service on that unit. It may take as long as 5 minutes for the charge on the main DC bus capacitors to drop to a safe level.
  • Page 9: How To Use This Manual

    Wiring Practices is included to provide assistance and reference. NOTE: If the IMPULSE•G+/VG+ Series 4 is part of a Magnetek motor control panel, reference the control drawings and this technical manual, as needed.
  • Page 10: General Information

    7. For severe-duty applications (long lifts, for example), ensure that the VFD control system (including dynamic braking resistors) is adequately cooled, even though the ambient temperature limit is not exceeded. For more information, contact Magnetek. IMPULSE•G+/VG+ Series 4 Technical Manual...
  • Page 11: Specifications

    1.3 Specifications 1.3.1 VFD Specifications Table 1-2: VFD Capacity - Heavy Duty 230 V 460 V 575 V Output Output Output Output Output Output Model Model Model Current Capacity Current Capacity Current Capacity (-G+/VG+ S4) (-G+/VG+ S4) (-G+/VG+ S4) (kVA) (kVA) (kVA) 2003...
  • Page 12 Table 1-3: VFD Specifications Specification Specification Value and Information for All Models Certification UL, cUL, CSA, CE, RoHS Crane Duty Classification Rated for CMAA Crane Duty Class A - F (or equivalent) 230 VAC class: 3-phase 200 to 240 VAC 50/60 Hz Rated input power supply 460 VAC class: 3-phase 380 to 480 VAC 50/60 Hz 575 VAC class: 3-phase 500 to 600 VAC 50/60 Hz...
  • Page 13 Specification Specification Value and Information for All Models Torque limit selection Limiting of Forward, Reverse, and Regen torques; selectable from 0–300% Stall prevention Functions for accel, decel, at-speed, and constant horsepower region VG+: Speed deviation, overspeed, mechanical brake failure, output phase loss, failed-oscillator, encoder disconnect, roll-back detection, micro controller watchdog, internal braking transistor failure, torque output limit, motor overcurrent, VFD Other protection features...
  • Page 14: Ac Reactor Specifications

    1.3.2 AC Reactor Specifications Reactors, both as input (line) and output (load) devices, protect variable frequency drives (VFD), motors, and other load devices against excessive voltage and current. The following guidelines are recommendations to help determine input and output reactor requirements: •...
  • Page 15 Table 1-5: 460 V Class VFD Model Number Reactor Part Number Reactor Fundamental Amps Motor HP (kW) 4001-G+/VG+S4 REA460-1 1 (0.75) 4003-G+/VG+S4 REA460-2 2 (1.5) 4004-G+/VG+S4 REA460-3 3 (2.2) 4005-G+/VG+S4 REA460-5 5 (3.7) 4007-G+/VG+S4 REA460-5 5 (3.7) 4009-G+/VG+S4 REA460-5 5 (3.7) 4014-G+/VG+S4 REA460-7.5 7.5 (5.6)
  • Page 16: Interface Board (S4If) Specifications

    1.3.3 Interface Board (S4IF) Specifications IMPULSE•G+/VG+ Series 4 is designed to interface with user input and output devices through the S4IF interface board. This eliminates the need for an additional interface relay or isolation circuitry. The S4IF comes in 24 VDC, 24 VAC (50/60 Hz), 42 to 48 VAC (50/60 Hz), and 120 VAC (50/60 Hz) options.
  • Page 17: Installation

    2 Installation WARNING • When preparing to mount the IMPULSE•G+/VG+ Series 4 VFD, lift it by its base. Never lift the VFD by the front cover, as doing so may cause damage or personal injury. • Mount the VFD on nonflammable material. •...
  • Page 18: System Components

    2.2 System Components 2.2.1 Standard Components • Interface Board (120 VAC, 42-48 VAC, 24 VAC, or 24 VDC) • PG-X3 Line Driver Encoder Option Card (VG+ only) 2.2.2 Optional Components • DI-A3 Digital DC Input Option Card • DO-A3 Digital Output Option Card •...
  • Page 19: Long-Term Storage And Capacitor Reforming

    Variable frequency drives (VFD) contain large bus capacitors that have the potential to be reformed. However, printed circuit boards also contain electrolytic capacitors that may not function after several years without power. Magnetek recommends replacing the PCBs should the VFD’s functionality not be restored after bus cap reforming. Contact Magnetek Field Service for assistance.
  • Page 20 Figure 2-1: Capacitor Reform Diagrams IMPULSE•G+/VG+ Series 4 Technical Manual November 2022 Page 20...
  • Page 21: Installation Orientation

    2.4 Installation Orientation Figure 2-2: Standard Installation Orientation 2.5 Recommended Installation Clearances The following two figures show the recommended minimum clearances when mounting the VFD in standard or side-by-side installations. If the recommended clearances can't be met, decreased airflow may reduce the life of the VFD.
  • Page 22: Optional Side-By-Side Installation

    2.6 Optional Side-by-Side Installation Models 2003 to 2075, 4001 to 4039, and 5001 to 5027 can take advantage of Side-by-Side installation. It is recommended to set parameter L08-35 = 1 when mounting VFDs in a side-by-side configuration. This provides a more conservative OL2 overload protection. Figure 2-4: Side-by-Side Installation IMPULSE•G+/VG+ Series 4 Technical Manual November 2022...
  • Page 23: Vfd Derating

    2.7 VFD Derating 2.7.1 Temperature Derating To ensure the maximum performance life, the VFD output current must be derated when it is installed in areas with high ambient temperature or if VFDs are mounted side-by-side in a cabinet. In order to ensure reliable VFD overload protection, set parameters L08-12 and L08-35 according to the installation conditions.
  • Page 24: Dimensions (Ip00/Open-Chassis)

    2.8 Dimensions (IP00/Open-Chassis) Figure 2-8 Figure 2-6 Figure 2-7 Figure 2-9 Figure 2-10 IMPULSE•G+/VG+ Series 4 Technical Manual November 2022 Page 24...
  • Page 25 Table 2-1: IP00/Open-Chassis Dimensions – 230 V Class Dimensions - inches (mm) Heat Model Number Weight Figure Loss (-G+/VG+ S4) lbs (kg) (W)* 2003 5.51 (140) 10.24 (260) 5.79 (147) 4.80 (122) 9.76 (248) 7.3 (3.3) 2005 5.51 (140) 10.24 (260) 5.79 (147) 4.80 (122) 9.76 (248)
  • Page 26 Table 2-2: IP00/Open-Chassis Dimensions – 460 V Class Dimensions - inches (mm) Heat Model Number Weight Figure Loss (-G+/VG+ S4) (lbs) (W)* 4001 5.51 (140) 10.24 (260) 5.79 (147) 4.80 (122) 9.76 (248) 7.5 (3.4) 4003 5.51 (140) 10.24 (260) 5.79 (147) 4.80 (122) 9.76 (248)
  • Page 27 Table 2-3: IP00/Open-Chassis Dimensions – 575 V Class Dimensions - inches (mm) Heat Model Number Weight Figure Loss (-G+/VG+ S4) (lbs) (W)* 5001 5.51 (140) 10.24 (260) 5.79 (147) 4.80 (122) 9.76 (248) 7.5 (3.4) 48.7 5003 5.51 (140) 10.24 (260) 5.79 (147) 4.80 (122) 9.76 (248)
  • Page 28: Wiring

    3 Wiring 3.1 Wiring Practices WARNING Before you wire the VFD, review the following practices to help ensure that your system is wired properly. • Recommended wire is to be rated for minimum 75°C, 600 VAC, vinyl sheathed. • Ensure that the encoder wiring is less than 300 feet unless fiber optic cables are used. •...
  • Page 29 • When using more than one transformer for the VFD's power, properly phase each transformer. • To reverse the direction of rotation, program B03-04 = 1 (exchange phases), or interchange any two motor leads (changing R/L1, S/L2, or T/L3 will not affect the shaft rotation direction) as well as encoder phasing (F01-02 = 1 or swap the A+ and A- wires).
  • Page 30 Figure 3-1: Typical Connection Diagram IMPULSE•G+/VG+ Series 4 Technical Manual November 2022 Page 30...
  • Page 31: Suggested Circuit Protection And Wire Size

    3.2 Suggested Circuit Protection and Wire Size In order to comply with most safety standards, circuit protective devices should be used between the incoming three-phase power supply and the VFD. These devices can be thermal, magnetic, or molded-case circuit breakers (MCCB);...
  • Page 32 Table 3-2: Wire Size and Circuit Protection for 460 V Class Maximum Circuit Protection Recommended Wire Size (AWG) Model Number Ground Ground Time Delay Time Delay Inverse Time Molded/ Continuous Control (-G+/VG+ S4) Copper Copper HD Input Input Fuse Input Fuse Case Circuit Breaker Power Circuit Wiring Wiring...
  • Page 33 Table 3-3: Wire Size and Circuit Protection for 575 V Class Maximum Circuit Protection Recommended Wire Size (AWG) Model Number Ground Ground Time Delay Time Delay Continuous Control (-G+/VG+ S4) Inverse Time Molded/Case Copper Copper HD Input Input Fuse Input Fuse Power Circuit Wiring Circuit Breaker (A) Wiring...
  • Page 34: Power Circuit Wiring

    3.3 Power Circuit Wiring To wire the power circuit for IMPULSE•G+/VG+ Series 4: 1. Run the power supply wires through an appropriate enclosure hole. 2. Connect the power supply wires to a circuit protection system. See Section 3.2 on page 31. 3.
  • Page 35: Power Circuit Connection Diagrams

    3.3.1 Power Circuit Connection Diagrams Figure 3-2: Power Circuit Connections (2003 to 2075, 4001 to 4039, 5001 to 5027) Figure 3-3: Power Circuit Connections (2085 and 2115, 4045 and 4060, 5032 and 5041) IMPULSE•G+/VG+ Series 4 Technical Manual November 2022 Page 35...
  • Page 36 Figure 3-4: Power Circuit Connections (2145 to 2180, 4075 to 4112, 5052 to 5077) Figure 3-5: Power Circuit Connections (2215 to 2415, 4150 to 4605, 5099 to 5200) IMPULSE•G+/VG+ Series 4 Technical Manual November 2022 Page 36...
  • Page 37 Figure 3-6: Power Circuit Connections (4810 and 41090) IMPULSE•G+/VG+ Series 4 Technical Manual November 2022 Page 37...
  • Page 38: Power Circuit Terminal Block Diagrams

    3.3.2 Power Circuit Terminal Block Diagrams Figure 3-7 and Figure 3-8 show the main circuit terminal arrangements for the various VFD models. Figure 3-7: Power Circuit Terminal Blocks IMPULSE•G+/VG+ Series 4 Technical Manual November 2022 Page 38...
  • Page 39 <1> Terminal block design differs slightly for models 2215 to 2415, 4180 to 4304, and 5099 to 5200. Figure 3-8: Power Circuit Terminal Blocks (continued) IMPULSE•G+/VG+ Series 4 Technical Manual November 2022 Page 39...
  • Page 40: Insulation Barrier

    3.3.3 Insulation Barrier Insulation barriers are packaged with VFD models 4370 through 41090 to provide added protection between terminals. Magnetek recommends using the provided insulation barriers to ensure proper wiring. See Figure 3-9 for instructions on placement of the insulation barriers.
  • Page 41: Grounding

    3.4 Grounding Connect the VFD's ground terminal to a common grounding point on the control panel. Use ground wiring as specified in Section 3.2 on page 31, and keep the length as short as possible. • Ground Resistance: • For 230V class: 100Ω or less •...
  • Page 42: Interface Board (S4If)

    3.5 Interface Board (S4IF) Table 3-5: Terminal and Wire Specifications Tightening Torque Wire Size Terminal Symbol Screw Size in.-lbs (N-m) AWG (mm All Terminals 4.4 to 5.3 Stranded: 24 to 17 (0.25 to 1.0) (0.5 to 0.6) Solid: 24 to 16 (0.25 to 1.5) 3.5.1 Terminal Block, DIP Switch, and Jumper Diagrams Figure 3-12: 120 VAC, 42–48 VAC, and 24 VAC Interface Board Figure 3-13: 24 VDC Interface Board...
  • Page 43: Dip Switch Functions

    3.5.2 DIP Switch Functions DIP Switches are described in this section, and the functions are shown in Table 3-6 Table 3-6: DIP Switches Name Function Setting Analog Input A2 Signal V: 0 to 10 VDC or -10 to 10 VDC (internal impedance: 20 kΩ) (default) Level I: 4–20mA (internal impedance: 250 Ω) RS-485/RS-422...
  • Page 44: Control Circuit Wiring

    3.6 Control Circuit Wiring The table below outlines the functions of the control circuit terminals. Terms: • Multi-Function Digital Input (MFDI) • Multi-Function Digital Output (MFDO) • Multi-Function Analog Input (MFAI) • Multi-Function Analog Output (MFAO) Table 3-8: Control Circuit Terminals Type Terminal Function...
  • Page 45: Control Circuit Terminal Block Diagrams

    Type Terminal Function Description Signal Level Digital Outputs Fault Relays MA-MC N/O; closed during fault Form C Relay: (cont.) Terminals MA-MC: N/O 250 VAC*, 1 A; 30 VDC, 1 A Terminals MB-MC: N/C MB-MC N/C; open during fault Analog MFAO 1 Multi-function analog output 1 -10 to +10V, 2 mA Outputs...
  • Page 46: Sinking/Sourcing For Digital Inputs (24 Vdc Only)

    3.6.2 Sinking/Sourcing for Digital Inputs (24 VDC Only) Use the wire jumper between terminals SC and SP or SC and SN to select Sink mode, Source mode, or to externally power the digital inputs. This function only applies to the 24 VDC interface board. Table 3-9: Safe Disable Input Sink/Source/External Power Supply Selection Mode VFD Internal Power Supply...
  • Page 47: Safe Disable And Safe Torque Off

    3.6.3 Safe Disable and Safe Torque Off The Safe Disable inputs provide a stop function in compliance with “Safe Torque Off” as defined in IEC/EN 61800- 5-2. Safe Disable inputs have been designed to meet the requirements of the ISO/EN 13849-1, Category 3 PLd, and IEC/EN 61508, SIL2.
  • Page 48: Encoder Circuit

    2. Connect the encoder to the PG-X3 Encoder Option Card. See Figure 3-17 on page 49. NOTE: Use twisted-pair, shielded cable 100 Ω impedance (Magnetek R-20/6, R-22/6, Belden 9730, or equivalent. Strip the encoder wires 0.25 in. (5.5 mm). Keep the wiring length less than 300 feet (for cable lengths greater than 300 feet, use fiber optic cable).
  • Page 49: Encoder Wiring Diagram

    3.7.2 Encoder Wiring Diagram Encoder 1: Install in option port CN5-C Encoder 2: Install in option port CN5-B Figure 3-17: PG-X3 Encoder Card Wiring Table 3-11: Encoder Wiring Encoder Signal Wire Color Example PG-X3 Terminal +5 or 12 VDC (select via CN3 jumper) Black Blue Gray...
  • Page 50: Getting Started

    Because of additional potential hazards when the VFD is operated locally, we advise you to avoid operating it this way. If the VFD is operated locally, be aware that the crane or hoist will move when the RUN button is pressed. Contact Magnetek with any questions. IMPULSE•G+/VG+ Series 4 Technical Manual...
  • Page 51: Keypad Led And Button Functions

    Enters parameter values and settings. • Selects a menu item to move between displays. • Displays the phone number for the Magnetek Service department. • Switches VFD control between the keypad (LOCAL) and an external source (REMOTE) for the Run command and frequency reference.
  • Page 52: Parameters

    While some of these parameters are associated with one setting, others are tied to a number of possible settings. Before shipping the VFD, Magnetek programmed initial settings so that most, if not all, of the crane system requirements are supported. However, if it is necessary to change the initial settings, Magnetek recommends that only qualified crane system technicians program the VFD.
  • Page 53: Menu Structure

    4.3.2 Menu Structure Figure 4-1: Menu Structure IMPULSE•G+/VG+ Series 4 Technical Manual November 2022 Page 53...
  • Page 54 Group Function Status Fault Trace Monitor Fault History Maintenance Control Initialization Parameters Initialize User Parameters Speed References Reference Limits Application Run/Reference Source Acceleration/Deceleration Jump Frequencies Field Forcing Quick Stop Reverse Plug Simulation Micro-Speed End of Travel Limits Phantom Stop Load Share (Torque Following) Klixon Hook Height Measurement Electronic Programmable Limit Switches (EPLS)
  • Page 55: Initial Setup

    4.3.3 Initial Setup 4.3.3.1 Parameter Access Level (A01-01) This parameter allows the “masking” of parameters according to user level. Table 4-1: Parameter Access Level Settings Setting Description Operation Only Access to only parameters A01-01, A01-06, and all U monitors. User Parameters Allows access to only the parameters programmed to A02-01 through A02-32. Advanced Level All parameters can be viewed and edited.
  • Page 56 4.3.3.3 X-Press Programming™ X-Press Programming™ automatically configures several commonly used parameters and features when Control Method (A01-02), Motion (A01-03), or Speed Reference (A01-04) are programmed. These parameters are also added to the Quick-Set menu for fast parameter modification. See Table 4-6 on page 58, Table 4-7 on page 59, and Table 4-8 on page 60 for X-Press Programming™...
  • Page 57 WARNING When changing A01-03 or A01-04, the MFDI, MFDO, and speed reference parameters will be overwritten by X-Press Programming™ (Table 4-6 on page 58, Table 4-7 on page 59, or Table 4-8 on page 60). All parameter settings must be verified for proper operation. Table 4-5: X-Press Programming I/O Quick Reference A01-04 = Terminal S1...
  • Page 58 4.3.3.6 Parameters Changed by X-Press Programming Table 4-6: Traverse (A01-03 = 0) A01-04 = Parameter Description 2-Speed 3-Speed 5-Speed 2-Step 3-Step RS485/ Uni-Polar Bi-Polar Industrial Multi- Multi- Multi- Infinitely Infinitely RDSI Analog Analog Coms Step Step Step Variable Variable Coms B01-01 Speed 1 20.00...
  • Page 59 Table 4-7: Standard Hoist (A01-03 = 1) A01-04 = Parameter Description 2-Speed 3-Speed 5-Speed 2-Step 3-Step RS485/ Uni-Polar Bi-Polar Industrial Multi- Multi- Multi- Infinitely Infinitely RDSI Analog Analog Coms Step Step Step Variable Variable Coms B01-01 Speed 1 20.00 15.00 6.00 6.00 6.00...
  • Page 60 Table 4-8: NLB Hoist (A01-03 = 2) A01-04 = Parameter Description 2-Speed 3-Speed 5-Speed 2-Step 3-Step RS485/ Uni-Polar Bi-Polar Industrial Multi- Multi- Multi- Infinitely Infinitely RDSI Analog Analog Coms Step Step Step Variable Variable Coms B01-01 Speed 1 20.00 15.00 6.00 6.00 6.00...
  • Page 61 4.3.3.7 Initialize Parameters (A01-05) Use this parameter to reset the VFD to its factory default settings or transfer parameters. Table 4-9: Initialize Settings Setting Description No Initialization (factory default) 1110 User Default (defaults) Resets parameters to the values saved by the user as User Settings. User Settings are stored when parameter O02-03 is set to “1: Set defaults”.
  • Page 62 4.3.3.9 User Parameters (A02-01 through 32) The user can select up to 32 parameters for quick-access programming. By setting the user access level (A01-01) to “User Program”, only the parameters selected in the A02 parameters can be accessed by the user. To assign a parameter as a user parameter, go to the A02 level in the initialize menu.
  • Page 63: Auto-Tuning

    Ideally, perform a standard Auto-Tune with the motor uncoupled from the load. When the motor cannot be decoupled, perform a static or non-rotating Auto-Tune. NOTE: Contact Magnetek’s service department if an auto-tune cannot be performed. Table 4-11: Auto-Tuning Parameter Settings...
  • Page 64: Standard Auto-Tune (T01-01 = 0)

    4.4.1 Standard Auto-Tune (T01-01 = 0) This is a rotational Auto-Tuning method for Open Loop Vector and Flux Vector only, which allows for Auto-Tuning a motor that is unloaded and ideally decoupled from the gearbox. The brake must also be disengaged. The instructions below will provide a step-by-step procedure to complete this Auto-Tune function: 1.
  • Page 65: Terminal Resistance Auto-Tune (T01-01 = 2)

    4.4.3 Terminal Resistance Auto-Tune (T01-01 = 2) This is a non-rotational Auto-Tuning method, which allows for Auto-Tuning without decoupling the motor. This method is recommended for motors configured with the V/f control method when the motor horsepower and motor rated current are known. The instructions below will provide a step-by-step procedure to complete this Auto-Tune function: 1.
  • Page 66: Programming Advanced Features

    5 Programming Advanced Features 5.1 Speed Parameters The speed parameters control the speed frequencies, acceleration and deceleration characteristics, and reference sources. Speed parameters included in this section are listed below: • B01 Speed References • B02 Reference Limits • B03 Run/Reference Source •...
  • Page 67 Table 5-2: Multi-Step Speed Processing by Multi-Function Digital Input (B01-01–B01-16) Forward/ Fwd/Rev Jog Multi-Step Multi-Step Multi-Step Multi-Step Speed Reverse Fwd/Rev Inch Speed 2 Speed 3 Speed 4 Speed 5 Reference Terminal S1 H01-01–08 = 15, 16, H01-01–08 = 0 H01-01–08 = 1 H01-01–08 = 2 H01-01–08 = 3 or S2...
  • Page 68: Reference Limits

    5.1.2 Reference Limits These parameters limit the frequency range as a percentage of maximum output frequency (E01-04). If the lower limit is below the DC Inj Start Freq (D01-01), then operation will continue according to B03-05. An alternate upper limit frequency can be used during operation when a Multi-Function Digital Input (MFDI) is set to 59 (Alt F-Ref Up Lmt) and the MFDI is on.
  • Page 69: Run/Reference Source

    5.1.3 Run/Reference Source B03-01 and B03-02 determine the source from where the frequency reference and RUN command are generated. Table 5-4: Run/Reference Source Parameter Settings Parameter Display Function Range Default B03-01 Ref Source 1 Source from where the frequency reference is generated.
  • Page 70: Stop Method

    5.1.4 Stop Method Selects the stopping method suitable for the application. Table 5-5: Stop Method Parameter Settings Parameter Display Function Range Default B03-03 Stopping Method Determines stop method. 0, 1, 4, 6 G+: 0* VG+: 6* Decel to Stop (Figure 5-2) Coast to Stop (Figure 5-3) Decel with timer...
  • Page 71 5.1.4.2 Coast to Stop (B03-03 = 1) Upon removal of the FWD or REV run command, the motor starts to coast and the electric brake sets. Figure 5-3: Coast to Stop 5.1.4.3 Decel w/Timer (B03-03 = 4) NOTE: This option is only available in traverse motion. Upon run command removal, the motor decelerates to stop.
  • Page 72: Motor Rotation Change

    5.1.5 Motor Rotation Change This parameter allows you to change the motor direction without changing the motor leads. Table 5-6: Motor Rotation Parameter Settings Parameter Display Function Range Default B03-04 Change Rotation Reverse motor direction 0, 1 Standard SwitchPhaseOrder Switch phase order (reverses the motor direction) NOTE: To reverse the direction of rotation, program B03-04 = 1, or interchange any two motor leads (changing R/ L1, S/L2, or T/L3 will not affect the shaft rotation direction) as well as encoder phasing (F01-02 = 1 or swap...
  • Page 73: Run Select

    5.1.8 Run Select If the run reference/speed reference is switched between serial mode and VFD terminal mode, B03-07 determines action after the switch. Table 5-9: Run Select Parameter Settings Parameter Display Function Range Default B03-07 LO/RE RUN Sel Determines action after switching Run/Speed 0, 1 reference source.
  • Page 74 Parameter Display Function Range Default B03-16 Run Source 2 Determines what the VFD will use for Run 0–3 Reference. Enabled by H01-0x = 1F. Operator Keypad Terminals Terminals • S4IF Interface Board Serial Com Serial communication • RS485/422 Serial Communications (R+, R-, S+, S-) Option PCB Communication Option card (Port CN5-A)
  • Page 75: Acceleration/Deceleration

    5.1.9 Acceleration/Deceleration Acceleration time sets the time necessary for the output frequency to accelerate from 0 Hz to maximum output frequency (E01-04). Deceleration time sets the time necessary for the output frequency to decelerate from the maximum output frequency (E01-04) to 0 Hz. Table 5-10: Acceleration/Deceleration Parameter Settings Parameter Display...
  • Page 76: Accel/Decel Time Switching Frequency

    5.1.10 Accel/Decel Time Switching Frequency Accel/Decel times can be changed automatically without using digital inputs. Alternatively, digital inputs can be used to enable additional accel and decel times. This has priority over automatic change of Accel/Decel. Table 5-11: Accel/Decel Time Switching Frequency Parameter Settings Parameter Display Function...
  • Page 77: Jump Frequencies

    5.1.11 Jump Frequencies Allows the “jumping” of critical frequencies so that the motor can operate without resonant vibrations caused by some machine systems. This is also used for deadband control. A setting of 0.0 Hz disables this function. Table 5-12: Jump Frequencies Parameter Settings Parameter Display Function...
  • Page 78: Special Functions

    5.2 Special Functions Table 5-14: Special Function Usage Access Level (A01-01) Advanced (2) Motion (A01-02) Traverse (0) Standard Hoist (1) Hoist (2) Function/Control Method (A01-03) V/f (0) OLV (2) FLV (3) V/f (0) OLV (2) FLV (3) C01: Quick Stop™ ...
  • Page 79: Quick Stop

    5.2.1 Quick Stop™ Quick Stop provides an automatic Alternate Deceleration at Stop. NOTE: The Quick Stop Deceleration time differs from the normal deceleration time and is applied only when the RUN command is removed. Table 5-15: Quick Stop Parameter Settings Parameter Display Function...
  • Page 80: Reverse Plug Simulation

    5.2.2 Reverse Plug Simulation™ Reverse Plug Simulation provides an automatic alternate deceleration time/acceleration time at a change direction command. The deceleration time and the acceleration time are set independently of the normal acceleration and deceleration times. NOTE: Reverse Plug Simulation is not available in Standard Hoist mode (A01-03 = 1). Table 5-16: Reverse Plug Simulation Parameter Settings Parameter Display...
  • Page 81: Micro-Speed

    5.2.3 Micro-Speed™ Micro-Speed provides a reduced speed range operation for precise positioning. Enabled by a Multi-Function Input, it multiplies the normal speed reference by the Micro-Speed Gain. Two Micro-Speed Gains are available: Gain 1 (C02-01) and Gain 2 (C02-02). They can be adjusted and enabled independently. Table 5-17: Micro-Speed Parameter Settings Parameter Display...
  • Page 82: End Of Travel Limits

    5.2.4 End of Travel Limits This function can automatically slow and stop a crane or hoist when it reaches the end of travel limits. Two types of limit inputs (slowdown and stop) are available in both travel directions. Travel limit inputs can be programmed through the H01 and C09 digital input parameters.
  • Page 83: Load Share (Torque Following)

    5.2.6 Load Share (Torque Following) Load Share allows one or more mechanically coupled motors to be connected in a Master/Follower fashion where the Follower VFD will follow the torque reference of the Master VFD. It can be configured in two ways, either as a dedicated Follower or as a Master/Follower that can be switched with a digital input.
  • Page 84: Hook Height Measurement

    5.2.8 Hook Height Measurement Hook Height Measurement is an IMPULSE•VG+ Series 4 feature that provides a monitor parameter (U01-50) and analog output proportional to the hook’s current position between a home position and a limit position. Hook height programming is used in conjunction with the Electronic Programmable Limit Switch parameters. See Figure 5-10 on page 85 for Hook Height configuration.
  • Page 85: Electronic Programmable Limit Switches (Epls)

    5.2.9 Electronic Programmable Limit Switches (EPLS) Using the motor revolutions (U01-51) from the Hook Height Measurement function, it is possible to program UL1, UL2, LL1, and LL2 positions without the use of rotary limit switches. Hook Height Measurement must be correctly set up before using EPLS.
  • Page 86: Upper/Lower Limit Bypass

    5.2.10 Upper/Lower Limit Bypass The Limit Bypass allows for the following without the use of jumpers or re-programming parameters: 1. Ease of testing the Weighted Upper Limit Switch (UL3) or re-homing the Hook Height. 2. To allow changing of the wire ropes, i.e. spooling all the rope off of the hoist drum. NOTE: A momentary key-switch is recommended to operate this function and should only be accessible to maintenance personnel, not the crane operator.
  • Page 87 Figure 5-11: Upper Limit 1 (UL1) Figure 5-12: Upper Limit 2 (UL2) Figure 5-13: Lower Limit 1 (LL1) Figure 5-14: Lower Limit 2 (LL2) IMPULSE•G+/VG+ Series 4 Technical Manual November 2022 Page 87...
  • Page 88: Load Float 2

    5.2.11 Load Float 2 When Load Float (C08-10) is enabled, it maintains the motor shaft at a stationary position with brake open. The Load Float 2 (MFDI=35) function triggers the VFD to go into Load Float for the time set in C04-01. During this time, the VFD will open the brake and hold the motor at a zero position.
  • Page 89 5.2.12.3 Load Check II Set Up (C05-01 = 9) The Load Check II set up procedure will quickly measure and calculate the current or torque required at each of the Load Check Zones starting with the rated load suspended. These values will automatically be stored in parameters C05-09 through C05-24 during the Load Check II set up process.
  • Page 90 Table 5-28: Load Check II Parameter Settings Parameter Display Function Range Default C05-01 Load Check Determines whether Load Check is enabled. 0, 1, 3, 9 Disabled Disables Load Check II Function Hold & Measure Checks per Holding and Testing Time Immediate Immediately faults when I/T level is exceeded LC Set Up...
  • Page 91: Swift-Lift™ & Ultra-Lift

    Parameter Display Function Range Default C05-26 LC Delay Time Load Check delay time for transitions 0.00–2.55 sec 0.25 C05-27 Min I->Fwd Tim Minimum delay when switching from REV to 0.0–25.5 sec FWD in LC. Used when the VFD cannot stop the load fast enough.
  • Page 92 Table 5-29: Swift-Lift/Ultra-Lift Parameter Settings Parameter Display Function Range Default C06-01 Swift-Lift (V/f and OLV) Determines if Swift/Ultra-Lift is enabled. 0–4 Ultra-Lift (FLV) Disabled Enabled Auto Enabled by MFDI Enabled Adaptive Flux Vector NLB only Adaptive by MFDI Flux Vector NLB only C06-02 SwiftLift FWDSpd Maximum Swift/Ultra-Lift Forward Speed...
  • Page 93 5.2.13.4 Swift-Lift & Ultra-Lift Setup For 2, 3, 5-Speed Multi-Step (A01-04 = 0, 1, or 2): 1. Set C06-01= 1–4 to enable the Swift-Lift & Ultra-Lift Function, 1 = Enable Automatic, 2 = Enable by Multi- Function Digital Input (MFDI), 3 = Enable Adaptive (Ultra-Lift Only), 4 = Adaptive by MFDI (Ultra-Lift Only). 2.
  • Page 94: Torque Limit

    5.2.14 Torque Limit IMPULSE•G+/VG+ Series 4 VFDs dynamically control the torque output of the motor while running. The Torque Limit function limits the amount of torque the motor is capable of producing in Open and Closed Loop Vector control. • Forward Motoring (I) •...
  • Page 95 Table 5-30: Torque Limit Parameter Settings Parameter Display Function Range Default C07-01 Trq Limit FWD FORWARD torque limit 0–300% C07-02 Trq Limit REV REVERSE torque limit 0–300% C07-03 Trq Lmt FWD Rgn Regenerative torque limit at FORWARD 0–300% C07-04 Trq Lmt REV Rgn Regenerative torque limit at REVERSE 0–300% C07-05...
  • Page 96: Anti-Shock

    5.2.15 Anti-Shock Anti-Shock is a hoist feature on the IMPULSE•VG+ Series 4 VFD. The torque output of the hoist is continuously monitored, and when it increases above a threshold (C07-15 and C07-16), the hoist automatically decelerates and waits for the torque to stabilize before smoothly re-accelerating (C07-17 and C07-18). Anti-Shock is designed to reduce crane structure fatigue.
  • Page 97 Table 5-31: Anti-Shock Parameter Settings Parameter Display Function Range Default C07-12 Anti-Shock Enables or disables the Anti-Shock function. 0–2 Disabled Anti-Shock is disabled. Enabled Anti-Shock is enabled always. Enbl, Not In MSpd Disables Anti-Shock if Micro-Speed is enabled. C07-13 Enabling Freq Anti-Shock is disabled until the output 0.0–60.0 Hz frequency is above this setting.
  • Page 98: Load Brake Hoist

    5.2.16 No-Load Brake Hoist The No-Load Brake Hoist mode is a VG+ feature that provides a start and stop sequence designed specifically for hoists without a mechanical load brake. This mode is enabled automatically when the Motion is set to NLB Hoist (A01-03 = 2).
  • Page 99 Dual Brake Feature The Dual Brake feature is designed for hoist systems with redundant holding brakes. One brake is controlled by an MFDO programmed to 00, and the second brake is controlled by an MFDO programmed to 0A. After a Load Float, during the BE6 (Brake Test) time, one brake is left Open, while the VFD tests that the Closed brake is capable of holding the load.
  • Page 100 Table 5-32: No-Load Brake Parameter Settings Parameter Display Function Range Default C08-01 Torque Comp Time Time for the Torque Comp value to reach 300%. 0.00–2.55 sec 1.00 C08-02 IFB OK Time Time to look for current feedback before posting a BE2 alarm. 0.00–2.55 sec 1.00 Setting this to 0.00 will disable torque proving and BE2...
  • Page 101 Parameter Display Function Range Default C08-19 Brk Slip Reset Determines if BE6 alarm is automatically reset. If enabled, 0, 1 VFD will always perform BE6 test after Load Float to Disabled determine if brake is operational and the fault can be cleared. Enabled If disabled the VFD will remain in BE6 alarm state until power is cycled.
  • Page 102: Emergency Lift

    E-Lift is designed to allow for temporary hoisting operations of motors normally equipped with an encoder in Flux Vector control. Always follow instructions given in the E-Lift setup guide, and use extreme caution when operating a hoist in E-Lift mode. Stop the hoist if any undesired motion occurs and contact Magnetek for additional assistance.
  • Page 103 If any undesired motions occur while E-Lift is active, immediately remove any RUN commands, turn off the E- Lift MFDI, and contact Magnetek. If steps 4.a through 4.e were successful, turn off the E-Lift MFDI and return the hoist to normal operations.
  • Page 104: Digital Input (Di-A3, S4I, Or S4Io) Option Card Setup

    5.2.18 Digital Input (DI-A3, S4I, or S4IO) Option Card Setup Selects the digital input controls for the DI-A3, S4I, or S4IO option cards. Additionally, these inputs can be used virtually via serial communications (C09-01 = 5) over Modbus RTU on the R+,R-,S+,S- interface board terminals or from the communication option cards.
  • Page 105: Weight Measurement

    5.2.19 Weight Measurement Weight Measurement is used in hosting applications and can calculate a load weight based on motor torque at a constant speed. The VFD must pause the acceleration, wait for the torque to stabilize, and then perform the weight calculation based on the system tare values.
  • Page 106 VFD with the use of the VFD’s RS-485 Memobus interface, similar to the architecture implemented with Magnetek’s RDSI systems. An analog interface can also be implemented, but it is important to understand the analog input and output resolution’s effect on feedback accuracy before implementation.
  • Page 107: Slack Cable Detection

    5.2.20 Slack Cable Detection Slack Cable Detection is a VG+ hoist function that monitors motor torque, while running at a steady speed, and detects when the torque suddenly dips below a set level (C11-03). When a Slack Cable condition occurs, the output action is defined by C11-02.
  • Page 108: Snap Shaft Detection

    5.2.21 Snap Shaft Detection Snap Shaft Detection is designed to detect a broken or loose coupling by monitoring for a speed deviation between rotating shafts on a drive train. Ideally, mount one encoder on the motor, which drives the gearbox and one encoder on the last rotating part of the drive train, usually near the drum if used for a hoist motion.
  • Page 109: Brake Delay Timers

    5.2.22 Brake Delay Timers The Brake Delay Timers are used in trolley and bridge applications to reduce the mechanical brake wear when the operator positions a load. This function is available only in traverse mode and B03-03 must be set to 4 (Decel With Timer).
  • Page 110: Maintenance Timer

    5.2.24 Maintenance Timer The Maintenance Timer function is based on the VFD run time and will alert an operator, for example, when the bearings need to be greased. It consists of a digital output (H02-0x = 37) that becomes active when the total running time has exceeded the amount of time (in hours) programmed in parameter C12-05 and the frequency reference will be multiplied by a gain (C12-06) to slow the motion down until the bearings have been greased.
  • Page 111: Inch Control

    5.2.26 Inch Control The Inch Control function can be enabled by programming H01-xx = 17, 18, or 19. The frequency reference used during inching is determined by B01-17 (Jog Reference). CAUTION A directional input is not needed to enable motion of the motor. Table 5-42: Inch Control Parameter Settings Parameter Display...
  • Page 112: Index Control

    5.2.27 Index Control Index Control is an IMPULSE•VG+ Series 4 feature that allows for precise movement of the motor each time a run command is applied and the Index function is enabled by a digital input (H01-xx = 60). The total distance (Pulses) the motor will index is determined by the following equation: Pulse Total distance (Pulses) = [F01-01( ) * C13-04(Revs)] + C13-05(Pulses)
  • Page 113 Table 5-43: Index Control Parameter Settings Parameter Display Function Range Default C13-03 Index Run Ref Index frequency reference (MFDI = 60) 0.01–60.00 Hz 0.10 C13-04 Index Revs Index motor revolutions 0–65535 rev (F01-01 PPR = 1 Rev.) C13-05 Index Count Index fractional motor revolution.
  • Page 114: Tuning

    5.3 Tuning • D01 DC Injection Braking • D02 Motor Slip Compensation • D03 Torque Compensation • D04 Automatic Speed Regulator (ASR) Tuning • D05 Torque Control • D08 Dwell • D09 S-Curve Acceleration/Deceleration • D10 Carrier Frequency • D11 Hunting Prevention 5.3.1 DC Injection Braking With decel to stop enabled (B03-03 = 0), upon removal of the run command, the motor will decelerate according to the Decel Time (B05-02), until output frequency reaches the DC Injection Braking Start Frequency (D01-01).
  • Page 115: Motor Slip Compensation

    5.3.2 Motor Slip Compensation As the load becomes larger, the motor speed is reduced and the motor slip increases. The slip compensation function keeps the motor speed constant under varying load conditions. D02-01 sets the slip compensation gain. When the gain is “1.0”, the output frequency is increased by 1% of the E01-06 setting at rated current. A setting of “0.0”...
  • Page 116: Automatic Speed Regulator (Asr) Tuning

    Table 5-46: Torque Compensation Parameter Settings Parameter Display Function Range Default D03-01 Torq Comp Gain Gain for the automatic torque (voltage) boost 0.00–2.50 1.0* function and helps to produce better starting torque. D03-02 Torq Comp Time Torque compensation delay time. 0–60000 ms V/f: 200 OLV: 20...
  • Page 117 5.3.4.1 Adjusting the ASR Parameters in FLV The VFD is preset to use ASR settings D04-01/D04-02 over the entire speed range in Flux Vector. If required by the application, a second set of ASR parameters (D04-03/D04-04) can be automatically activated depending on the motor speed or by using a digital input.
  • Page 118 Table 5-48: ASR Tuning Parameter Settings Parameter Display Function Range Default D04-01 ASR P Gain 1 Proportional gain of the speed control loop (ASR). 0.00–300.00 20.00 D04-02 ASR I Time 1 Integral time of the speed control loop (ASR). 0.000–10.000 sec 0.500 D04-03 ASR P Gain 2...
  • Page 119: Torque Control

    The switching frequency (D04-07) can also be controlled with a digital input programmed to “ASR gain switch” (H01-xx = 37). When the digital input is OFF, the VFD uses the ASR gain level set by the pattern in Figure 5-19. When the digital input is ON, D04-03 is used.
  • Page 120 5.3.5.1 Speed/Torque Control Switching Speed control or torque control is used in traverse applications and can be selected “on the fly” with the VG+ VFD by using the digital input speed/torque control selection (H01-xx = 34). Table 5-50: Speed/Torque Control Switch Parameters Terminal Parameter Setting...
  • Page 121: Dwell

    5.3.6 Dwell The Dwell function is used to temporarily hold the output frequency at a set reference for a set time. Enable by setting H01-xx = 65. Table 5-51: Dwell Function Parameter Settings Parameter Display Function Range Default D08-01 Dwell Ref @ Start Dwell frequency reference at start.
  • Page 122: S-Curve Acceleration/Deceleration

    5.3.7 S-Curve Acceleration/Deceleration An S-Curve pattern is used to reduce shock and provide smooth transitions during machine acceleration and deceleration. S-Curve characteristic time is the time from the output frequency to the set accel/decel time. Table 5-52: S-Curve Acceleration/Deceleration Parameter Settings Parameter Display Function...
  • Page 123: Carrier Frequency

    The Carrier Frequency group allows modification of the VFD’s output carrier frequency and overload level. CAUTION Consult Magnetek for VFD derating before modifying the D10 group parameters. Failure to do so may result in equipment damage. Table 5-53: Carrier Frequency Parameter Settings...
  • Page 124: Hunting Prevention

    5.3.9 Hunting Prevention Occasionally, resonance between the internal control system and the mechanical system causes instability. This is called hunting, and may cause a crane to vibrate at a lower speed (up to 30 Hz) and/or with a light load. The hunting prevention function monitors the motor flux and uses a special control circuit to “smooth out”...
  • Page 125: Motor Parameters

    5.4 Motor Parameters • E01 V/f Pattern • E02 Motor Setup • E03 Test Mode Configuration 5.4.1 Voltage/Frequency (V/f) Pattern WARNING VFD input voltage (not motor voltage) must be set in E01-01 for the protective features of the VFD to function properly.
  • Page 126 Table 5-56: DC Bus Regulation Overvoltage Level Braking Transistor VFD Voltage Stall Level Fault Reset Turn-On 410 VDC 400 VDC 394 VDC 380 VDC 820 VDC 800 VDC 788 VDC 760 VDC 1178 VDC 990 VDC 1132 VDC 960 VDC Parameter E01-01 performs the above mentioned function in all three control methods.
  • Page 127 Parameter Display Function Range Default E01-10 Min Voltage Minimum Output Voltage 230 V: 0.0–255.0 Determined by E01-03 460 V: 0.0–510.0 575 V: 0.0–733.1 E01-11 Mid Frequency B Midpoint Output Frequency B 0.0–150.0 Hz E01-12 Mid Voltage B Midpoint Output Voltage B 230 V: 0.0–255.0 460 V: 0.0–510.0 575 V: 0.0–733.1...
  • Page 128 Table 5-59: Voltage/Frequency (V/f) Pattern Options (460 V) E01-04 E01-05 E01-06 E01-07 E01-08 E01-09 E01-10 E01-11 E01-12 E01-13 E01-03 60.0 460.0 60.0 29.9 16.2 60.0 460.0 60.0 32.2 18.4 60.0 460.0 60.0 34.6 20.8 60.0 460.0 60.0 36.8 23.0 60.0 460.0 60.0 39.1...
  • Page 129 Table 5-60: Voltage/Frequency (V/f) Pattern Options (575 V) E01-04 E01-05 E01-06 E01-07 E01-08 E01-09 E01-10 E01-11 E01-12 E01-13 E01-03 60.0 575.0 60.0 37.5 20.3 60.0 575.0 60.0 40.3 23.0 60.0 575.0 60.0 43.3 26.0 60.0 575.0 60.0 46.0 28.8 60.0 575.0 60.0 49.0...
  • Page 130: Motor Setup

    5.4.2 Motor Setup The Motor Setup parameters define the motor characteristics. Normally, the default settings for E02 parameters are determined by kVA selection (O02-04). In flux vector and open loop vector, the E02 parameters will be set automatically during auto-tuning. At minimum, the motor rated current should be entered into E02-01. If rotational auto-tuning cannot be performed, E02-02 and E02-05 can be calculated using the motor’s nameplate information or by performing non-rotational auto-tuning.
  • Page 131: Test Mode Configuration

    5.4.3 Test Mode Configuration Test Mode is a troubleshooting aid that is intended for troubleshooting Flux Vector control method problems. This feature cannot be left on indefinitely, as it will generate a fault after being on for a total accumulated time of ten minutes.
  • Page 132: Option Card Parameters

    5.5 Option Card Parameters • F01 Encoder Feedback (PG-X3) Option Card Setup • F02 Analog Input (AI-A3) Option Card Setup • F04 Analog Output (AO-A3) Option Card Setup • F05 Digital Output (DO-A3 or S4IO) Option Card Setup • F06 Profibus-DP (SI-P3) Option Card Setup •...
  • Page 133 Parameter Display Function Range Default F01-21 PG Fdbk Loss Sel PGO-1-S or PGO-2-S fault stopping method. Traverse: 0–3 Decel to Stop Decelerate to stop using the decel time in B05-02. NLB: 1 Coast to Stop Fast Stop Decelerate to stop using the decel time in B05-08. Alarm Only F01-22 PGO-1-S Det Time...
  • Page 134: Analog Input (Ai-A3) Option Card Setup

    5.5.2 Analog Input (AI-A3) Option Card Setup Sets CH1 to CH3 input functions when AI-A3 option card is connected. NOTE: This option card does not provide additional analog inputs. Using this option card is not recommended. When the 3CH individual input is used, parameter B03-01 is automatically set to “1” (frequency reference from control circuit terminal).
  • Page 135 Table 5-66: Parameter Settings for F04-01 and F04-03 Display Display Not Used 165 PG Output Freq 101 Frequency Ref 184 NLB State* 102 Output Freq 185 NLB Rel Trq* 103 Output Current 408 Heatsink Temp 105 Motor Speed* 416 Motor OL1 Level 106 Output Voltage 417 Drive OL2 Level 107 DC Bus Voltage...
  • Page 136: Digital Output (Do-A3 Or S4Io) Option Card Setup

    5.5.4 Digital Output (DO-A3 or S4IO) Option Card Setup Selects the multi-function digital output settings for the DO-A3 and S4IO option cards. Table 5-67: DO-A3/S4IO Parameter Settings Terminal Designation Parameter Display Range Default DO-A3 S4IO F05-01* DO Ch1 Select P1-PC O1-O2 0–1FF F05-02*...
  • Page 137 Table 5-68: DO-A3 Output Mode Selection F05-09 Output Type Terminal Output Contents 8-Channel P1-PC Overcurrent (oC), Ground Fault (GF), Short Circuit (SC) Individual (Fixed P2-PC OverVoltage (OV) Data) P3-PC Drive Overload (OL2, OH, OH1) P4-PC Not Used P5-PC OverSpeed (OS-1, OS-2) P6-PC Motor Overload (OL1) M1-M2...
  • Page 138: Profibus-Dp (Si-P3) Option Card Setup

    5.5.5 Profibus-DP (SI-P3) Option Card Setup Settings for the Profibus-DP communication option card SI-P3. Table 5-69: SI-P3 Parameter Settings Parameter Display Function Range Default F06-01 Comm Bus Flt Sel Stopping method at communication error 0–4 Decel to Stop Coast to Stop Fast-Stop Use B3-03 Method Alarm Only...
  • Page 139 Parameter Display Function Range Default F06-32 PB Map Select Data format used for Profibus-DP comms 0–5 PPO Type Conventional PPO (bit0) PPO (Enter) Conv (Enter) PPO (bit0,Enter) F06-35 CO Node Address Node address for CANopen option card 0–126 F06-36 CO Baud Rate Baud rate for the CANopen option card 0–8 Auto Detect...
  • Page 140: Ethernet/Ip (Si-En3), Profinet (Si-Ep3), And Modbus Tcp/Ip (Si-Em3) Option Card Setup

    Parameter Display Function Range Default F06-62 DN Heart Beat Heartbeat interval for DeviceNet comms 0–10 A setting of 0 disables the heartbeat. F06-63 DN MAC ID MEM DeviceNet MacID (Read Only). 0–63 5.5.6 Ethernet/IP (SI-EN3), PROFINET (SI-EP3), and Modbus TCP/IP (SI- EM3) Option Card Setup Settings for Ethernet/IP (SI-EN3), PROFINET (SI-EP3), and Modbus TCP/IP (SI-EM3) option cards.
  • Page 141: Control I/O Parameters

    Parameter Display Function Range Default F07-23 to DOA116 (1 to 10) Dynamic parameters that contain the Modbus Modbus Address F07-32* addresses used for programmable registers in 0x- - - - the output assembly 116. Data residing in bites 20 to 39 of assembly 116 will be written to the respective Modbus registers identified by the addresses contained in these parameters.
  • Page 142 Table 5-72: Multi-Function Digital Inputs (MFDI) selectable for H01-0x and C09-0x Display Function Multi-Step Ref 2 Multi-Step Reference 2 Multi-Step Ref 3 Multi-Step Reference 3 Multi-Step Ref 4 Multi-Step Reference 4 Multi-Step Ref 5 Multi-Step Reference 5 Speed Hold 2 Speed Hold 2 (2nd Step of Three-Step Infinitely Variable) Accel Command Accel Command (2nd Step of Two-Step Inf.
  • Page 143 Display Function 3A MFAI Enable On: Terminals specified in H03-14 are enabled. Off: Disregards the input signal to the analog terminals. The terminals not set in H03-14 will always be enabled. 3F Fault Reset On: Resets VFD faults 41 SnapShaft Disabl On: Snap Shaft detection is disabled.
  • Page 144 5.6.1.1 Digital Inputs—External Fault It is sometimes desirable to have at least one external fault input to the VFD. The table below shows the possible selections for external faults that can be assigned to a digital input (H01-xx or C09-xx). Table 5-73: External Fault Selection Input Type Detection Method...
  • Page 145: F1 And F2 Keys Function Selection

    5.6.2 F1 and F2 Keys Function Selection The F1 and F2 keys on the keypad have the ability of being programmed with specific functions to imitate digital inputs. The table below displays the various settings that are valid for these buttons. •...
  • Page 146: Digital Outputs

    5.6.3 Digital Outputs The VFD has three built-in multi-function digital outputs for indicating various conditions. Digital output capabilities can be increased with the installation of an S4IO or DO-A3 option card. Table 5-76: Digital Outputs Parameter Settings Parameter Display Function Range Default H02-01...
  • Page 147 Table 5-77: Multi-Function Digital Outputs (MFDO) selectable for H02-0x and F05-0x Display Function 0 Brake Release* ON: VFD is commanding the brake to be Open OFF: VFD is commanding the brake to be Closed 1 Zero Speed* ON: Motor Speed < D01-01 or E01-09 2 Fref/Fout Agree1 ON: Output frequency (U01-02) is within frequency reference (U01-01) ±...
  • Page 148 Display Function 1A Forward Dir ON: During Forward/Up operation OFF: Running in Reverse/Down direction or baseblock 1B Reverse Dir ON: During Reverse/Down operation OFF: Running in Forward/Up direction or baseblock 1C Swift/Ultra-Lift Mode ON: VFD is operating in Swift-Lift/Ultra-Lift OFF: VFD is not operating in Swift-Lift/Ultra-Lift 1D Brk Trans Fault ON: VFD detects a brake transistor failure OFF: Normal operation...
  • Page 149 Display Function 2D Lower Limit 1 ON: LL1 is detected OFF: Normal operation 2E Lower Limit 2 ON: LL2 is detected OFF: Normal operation 30 Lower Limit ON: LL1 or LL2 is detected OFF: Normal operation 31 Up/Low Limit ON: UL1, UL2, UL3, LL1, or LL2 is detected OFF: Normal operation 32 Snap Shaft ON: VFD has detected a Snap Shaft...
  • Page 150 5.6.3.1 Digital Outputs—Alarm/Fault Annunciate (H02-01–03 = 40) Fault Annunciate enables you to assign a set of six fault/alarm outputs to Relay Outputs M0-M1, M2-M3, and M5-M6. M0-M1 is typically assigned to a brake output, but it can be used for fault annunciate. This function will also trigger the MA-MB-MC fault relay.
  • Page 151 Table 5-79: Fault Annunciate Worksheet First digit Second digit Set 1 Binary Number First digit Second digit Set 2 Binary Number First digit Second digit Set 3 Binary Number Table 5-80: Binary to Hexadecimal Conversion Binary Number Hexadecimal Value Binary Number Hexadecimal Value 0000 1000...
  • Page 152: Analog Inputs

    5.6.4 Analog Inputs The VFD has three built-in analog inputs for the external input of references and limits. Table 5-81: Analog Inputs Parameter Settings Parameter Display Function Range Default H03-01 Term A1 Signal Terminal A1 analog input signal 0, 1 0 to 10 V -10 to 10 V H03-02...
  • Page 153 Table 5-82: Selections for H03-02, H03-06, and H03-10 (Flux Vector) Display Function 0 Analog Freq Ref1 Analog Frequency reference 1 10V = E01-04 (Maximum output frequency) 1 Frequency Gain Analog frequency reference will be multiplied with the analog frequency reference gain. 2 Analog Freq Ref2 Analog Frequency reference 2 10V = E01-04 (Maximum output frequency)
  • Page 154 Table 5-83: Selections for H03-02, H03-06, and H03-10 (V/f) Display Function 0 Analog Freq Ref1 100% = Max output frequency (E01-04) Same value can be set using H03-02 and H03-10. 10V = E01-04 (Maximum output frequency) 1 Frequency Gain Analog frequency bias will be multiplied with the analog frequency reference gain. 2 Analog Freq Ref2 Max.
  • Page 155: Analog Outputs

    5.6.5 Analog Outputs The VFD has two built-in analog outputs for condition monitoring. Analog output capabilities can be increased with the installation of an AO-A3 option. Table 5-84: Analog Outputs Parameter Settings Parameter Display Function Range Default H04-01 Terminal FM Sel Function selection for analog output 000–630 Terminal FM.
  • Page 156 Parameter Display Function Range Default H04-01 606 Voltage Ref (Vd) 000–630 607 ACR(q) Output 608 ACR(d) Output 611 Iq Reference 612 Id Reference 618 PG1 CounterValue 619 PG2 CounterValue 622 Zero Servo Pulse 625 ASR Out w/o Fil 626 FF Cont Output 627 FF Estimate SPD H04-02 Terminal FM Gain...
  • Page 157: Serial Communication

    5.6.6 Serial Communication The VFD uses terminals R+/R-, S+/S- to communicate the MODBUS RTU (RS-485/422) protocol. Cycle power after changing any of these parameters. Table 5-85: Serial Communication Parameter Settings Parameter Display Function Range Default H05-01 Serial Comm Adr Serial communication address 00–FF H05-02 Serial Baud Rate...
  • Page 158 Parameter Display Function Range Default H05-12 Run CommandSel Sequence for a serial run command source 0, 1 FWD Run &REV Run Bit 0 will start and stop the VFD in the FWD direction. Bit 1 will start and stop the VFD in the REV direction.
  • Page 159: Pulse Train Input/Output

    5.6.7 Pulse Train Input/Output Pulse Input and Output provides speed control capabilities via the RP and MP terminals. Table 5-86: Pulse Input/Output Parameter Settings Parameter Display Function Range Default H06-01 Pulse Input Sel Terminal RP pulse input 0, 5–7 Frequency Ref Set B03-01 = 4 (pulse input) to enable RP.
  • Page 160: Protection Parameters

    5.7 Protection Parameters • L01 Motor Overload • L02 Power Loss Ride Thru • L03 Stall Prevention • L04 Speed Agree • L05 Test Mode • L06 Torque Detection • L08 Hardware Protection • L09 Automatic Fault Reset • L09 Fault Latch 5.7.1 Motor Overload The IMPULSE•G+/VG+ Series 4 VFD has an electronic overload protection function (OL1) for protecting the motor from overheating.
  • Page 161: Power Loss Ride Thru

    Parameter Display Function Range Default L01-03 Mtr OH Alarm Sel Operation when the motor temperature 0–3 analog input (H03-02, H03-06, or H03-10 = E) exceeds the OH3 alarm level. (1.17V) Decel to Stop Coast to Stop Fast Stop (Alarm) Decel by B05-08 Alarm Only OH3 Flashes L01-04...
  • Page 162: Stall Prevention

    5.7.3 Stall Prevention Table 5-89: Stall Prevention Parameter Settings Parameter Display Function Range Default L03-01 StallP Accel Sel Stall Prevention will function during acceleration. 0–2 (G+ only) Disabled General Purpose Acceleration is paused as long as the current is above the L03-02 setting.
  • Page 163: Speed Agree

    5.7.4 Speed Agree The IMPULSE•G+/VG+ Series 4 has three functions for detecting output frequency: Speed Agree 1 • When enabled using MFDO "H02-xx = 2", the contact closes when the output frequency (U01-02) is equal to the frequency reference (U01-01) plus or minus the speed agree detection width (L04-02). •...
  • Page 164 Table 5-90: Speed Agree Parameter Settings Parameter Display Function Range Default L04-01 Spd Agree Level Detection level for the desired speed agree 1 0.0–150.0 Hz and frequency detection functions. The detection level is effective during both FWD and REV operation. L04-02 Spd Agree Width Detection width for speed agree 1 and...
  • Page 165: Test Mode

    Test Mode is designed to allow for temporary hoisting operations of motors normally equipped with an encoder in Flux Vector control. Always follow the instructions listed below, and use extreme caution when operating a hoist in Test Mode. Stop the hoist if any undesired motion occurs and contact Magnetek for additional assistance.
  • Page 166 Table 5-94: Torque Detection Setting Descriptions Settings Description Torque detection is disabled (factory default). Overtorque detection is enabled whenever at speed agree (when VFD is not accelerating or decelerating). Continue running after detection (OT1 alarm). Overtorque detection is enabled always. Continue running after detection (OT1 alarm). Overtorque detection is enabled whenever at speed agree.
  • Page 167 Table 5-96: Torque Detection 2 Setting Descriptions Settings Description Overtorque/undertorque detection is disabled (factory default). Overtorque detection is enabled whenever at speed agree (when VFD is not accelerating or decelerating). Continue running after detection (OT2 alarm). Overtorque detection is enabled always. Continue running after detection (OT2 alarm). Overtorque detection is enabled whenever at speed agree.
  • Page 168 Table 5-98: Mechanical Fatigue Setting Descriptions Settings Description Mechanical Weakening Detection disabled (factory default). Continue running (alarm only). Detected when the speed (signed) is greater than L06-09. Continue running (alarm only). Detected when the speed (not signed) is greater than L06-09. Interrupt VFD output (fault).
  • Page 169: Hardware Protection

    5.7.7 Hardware Protection The IMPULSE•G+/VG+ Series 4 has several built-in functions designed to protect the VFD and its components from damage. Table 5-100: Hardware Protection Parameter Settings Parameter Display Function Range Default L08-02 OH Pre-Alarm Lvl Heatsink temperature level for protection against 50–150°C overheat (OH).
  • Page 170 Parameter Display Function Range Default L08-18 Soft CLA Sel Software current limit 0, 1 Disabled Enabled L08-19 Fc Red dur OHAlm Frequency reference reduction gain at overheat 0.1–0.9 Hz pre-alarm when L08-03 = 4. L08-32 MC,FAN Fault Sel MC, FAN configure the operation of power if it 0–4 detects a warning alarm Decel to Stop...
  • Page 171: Automatic Fault Reset

    5.7.8 Automatic Fault Reset When a fault occurs during operation, it can be automatically reset. Table 5-101: Automatic Fault Reset Parameter Settings Parameter Display Function Range Default L09-01 Reset Select Activates the fault auto-reset function. 0, 1 Disabled Enabled L09-02 Reset Attempts Number of reset attempts.
  • Page 172 Example: Enable auto-reset for UV1 and CE faults. Table 5-102: Auto-Reset Programming Digit 4 Digit 3 Digit 2 Digit 1 Binary L09-04 Binary L09-05 Table 5-103: Auto-Reset Programming Example L09-04 Binary L09-05 Binary Digit 4 0000 Digit 4 0000 Digit 3 0000 Digit 3 0000...
  • Page 173: Fault Latch

    5.7.9 Fault Latch The Fault Latch function allows specific faults to become “latched” after the automatic fault reset attempts (L09-02) has maxed out. The Reset key on the keypad will be blocked from clearing the fault, and the fault can only be cleared by the methods explained below.
  • Page 174: Keypad And Vfd Configuration

    5.8 Keypad and VFD Configuration • O01 Monitor Selection • O02 VFD and Keypad Selection • O03 Maintenance History • O04 Copy Function 5.8.1 Monitor Selection The home level of the keypad allows the viewing of four monitor variables. They are Fref, Fout, Iout, and User- Selected monitor.
  • Page 175 Parameter Display Function Range Default O01-01 150 Hook Height 151 Motor Revolution 152 MaintenanceTimer 153 Index Count 154 Term RP Inp Freq 160 PG CH1 Count 161 PG CH2 Count 321 RUN Cmd Counter 401 Drv Elapsed Time 403 Fan Elapsed Time 404 Fan Life Mon 405 Cap Life Mon 406 ChgCirc Life Mon...
  • Page 176 Parameter Display Function Range Default O01-02 Power-On Monitor Monitor to be displayed on the keypad 1–5 immediately after power up. Frequency Ref Frequency reference (U01-01) FWD/REV Forward/Reverse Output Freq Output frequency (U01-02) Output Current Output current (U01-03) User Monitor User-selected monitor (set by O01-01) O01-03 Display Scaling...
  • Page 177: Vfd And Keypad Selection

    Range Default O02-01 LO/RE Key Pressing the LO/RE Key once displays: “Call 0, 1 Magnetek at 1-866-624-7378”. Mode/Service Control Method (A01-02) Pressing the LO/RE Key a second time: Motion (A01-03) Speed Reference (A01-04) Pressing the LO/RE Key a third time:...
  • Page 178 Parameter Display Function Range Default O02-04 75 2_0250 2215-G+/VG+S4 00–FF 76 2_0312 2283-G+/VG+S4 77 2_0360 2346-G+/VG+S4 78 2_0415 2415-G+/VG+S4 92 4_0002 4001-G+/VG+S4 93 4_0004 4003-G+/VG+S4 94 4_0005 4004-G+/VG+S4 95 4_0007 4005-G+/VG+S4 96 4_0009 4007-G+/VG+S4 97 4_0011 4009-G+/VG+S4 99 4_0018 4014-G+/VG+S4 9A 4_0023 4018-G+/VG+S4 9C 4_0031...
  • Page 179 Parameter Display Function Range Default O02-04 D3 5_0077 5062-G+/VG+S4 00–FF D4 5_0099 5077-G+/VG+S4 D5 5_0125 5099-G+/VG+S4 D6 5_0145 5130-G+/VG+S4 D7 5_0192 5172-G+/VG+S4 D9 5_0242 5200-G+/VG+S4 O02-05 Operator M.O.P. ENTER key is used when the frequency 0, 1 reference is set by the keypad. The keypad can simulate a motor operated potentiometer (M.O.P.).
  • Page 180: Maintenance History

    5.8.3 Maintenance History Table 5-109: Maintenance History Parameter Settings Parameter Display Function Range Default O03-01 Elapsed Time Set Cumulative operation time of the VFD in units 0–9999 x 10 hr of 10 hours. Cumulative time can be viewed using monitor Cumulative Operation Time (U04-01).
  • Page 181: Copy Function

    5.8.4 Copy Function Table 5-110: Copy Function Parameter Settings Parameter Display Function Range Default O04-01 Copy Function Sel Copy parameters to/from keypad 0–3 COPY SELECT INV  OP READ VFD  Keypad OP  INV WRITE Keypad  VFD OP ↔ INV VERIFY Keypad ↔...
  • Page 182 A successful COPY of the parameter values will display: If an error is displayed, press any key to return to parameter O04-01. Error displays and their meanings are covered in Table 6-7 on page 215. It is possible to compare the parameter values stored in the keypad with the parameter values currently in the VFD by using the VERIFY function.
  • Page 183: Monitors

    5.9 Monitors • U01 Status • U02 Fault Trace • U03 Fault History • U04 Maintenance • U06 Control Table 5-111: Status Monitors Monitor Display Function Units U01-01 Frequency Ref Frequency Reference U01-02 Output Freq Output Frequency U01-03 Output Current Output Current U01-04 Control Method...
  • Page 184 Monitor Display Function Units U01-12 Int Ctl Sts 1 Operation Status U01-14 CPU 1 SW Number Firmware version U01-15 Term A1 Level External Terminal A1 Input level U01-16 Term A2 Level External Terminal A2 Input level U01-17 Term A3 Level External Terminal A3 Input level U01-20 SFS Output...
  • Page 185 Monitor Display Function Units U01-60 PG CH1 Count Raw PG Channel 1 pulse count Pulses 4 pulses = 1 ppr of F01-01 U01-61 PG CH2 Count Raw PG Channel 2 pulse count Pulses 4 pulses = 1 ppr of F01-01 U01-63 PG CH1 Freq Input frequency on PG Channel 1...
  • Page 186 Table 5-112: Fault Trace Monitors Monitor Display Function Units U02-01 Current Fault Most current fault detected before being reset U02-02 Last Fault Most recent fault after being reset U02-03 Frequency Ref Freq ref when the fault was detected U02-04 Output Freq Output freq when the fault was detected U02-05 Output Current...
  • Page 187 Table 5-113: Fault History Monitors Monitor Display Function Units U03-01 Last Fault First most recent fault U03-02 Fault Message 2 Second most recent fault U03-03 Fault Message 3 Third most recent faults U03-04 Fault Message 4 Fourth most recent fault U03-05 Fault Message 5 Fifth most recent fault...
  • Page 188 Table 5-114: Maintenance Monitors Monitor Display Function Units U04-01 Drv Elapsed Time Cumulative operation time of the VFD. The value for the cumulative operation time counter can be reset in parameter O03-01. Use parameter O03-02 to determine if the operation time should start as soon as the power is switched on or only while the Run command is present.
  • Page 189 Table 5-115: Control Monitors Monitor Display Function Units U06-01 Mot SEC Current Motor secondary current (Iq). Motor rated secondary current is 100%. U06-02 Mot EXC Current Motor excitation current (Id). Motor rated secondary current is 100%. U06-03 ASR Input Input value when using ASR control. U06-04 ASR Output Output value when using ASR control.
  • Page 190: Troubleshooting

    6 Troubleshooting 6.1 Troubleshooting the VFD In this troubleshooting section, “Check,” means investigating whether an item is functioning and in an acceptable physical condition, and then taking corrective action (adjusting, fixing, replacing, etc.) as necessary. In the “Corrective Action” column, you may not have to perform all of the steps to correct the problem. 6.1.1 Maintenance and Inspection This section describes basic maintenance and inspection procedures for the VFD.
  • Page 191 Table 6-2: Motor Related Issues Symptom Corrective Action Analog frequency reference is not stable. (drifting) 1. Stabilize the analog source. 2. Increase H03-13. 3. Increase B05-01 or B05-02. No motor rotation. 1. Verify that power is on (Charge LED). 2. Verify that the keypad display is not showing a fault. 3.
  • Page 192 Display Description Corrective Action Fault Alarm Torque Proving Fault. Before the brake is 1. Ensure the motor has been released, the VFD’s current/torque did not reach Auto-tuned successfully. No Current Initial Brake Release Torque level (C08-16) within 2. Confirm that the holding brake the IFB OK timer (C08-02).
  • Page 193 CPF01 2. If the problem continues, keypad is damaged. replace the control board or the entire VFD. Contact Magnetek for instructions on replacing the control board. 3. Replace the keypad if it is damaged. CPF02 A/D Conversion Error. An A/D conversion error 1.
  • Page 194 VFD. interference. 2. If the problem continues, replace the control board or the entire VFD. Contact Magnetek for instructions on replacing the control board. Noise Interference: 1. Check the various options available to minimize the effects of noise.
  • Page 195 Internal A/D Err 2. If the problem continues, replace the control board or the entire VFD. Contact Magnetek for instructions on replacing the control board. CPF23 Control Board Connection Error. Connection 1. Turn off the power and check error between the control board and the VFD. The...
  • Page 196 Display Description Corrective Action Fault Alarm External fault occurs on Terminal S2. 1. Check H01-02 for proper programming. External Fault 2 Alarm or fault defined by the External Fault 2. Check the conditions for input Selection table (Table 5-80 on page 152). terminal S2.
  • Page 197 Display Description Corrective Action Fault Alarm HBB or HBBf Hardware Base Block. The flashing Hardware 1. Check signal status at the Base Block signal is a result of either of the Safe input terminals H1 and H2. Hardware Base Disable inputs being open. The motor will begin Block 2.
  • Page 198 Display Description Corrective Action Fault Alarm Maintenance Required Alert. Running time has Reset timer by H01-0x = 5A or exceeded C12-05 depress Mode/Service key three Maintenance Reqd times and enter within 2 seconds. Over Current Detected. Output current exceeds 1. Check for a phase-to-phase 200% of VFD rated output current.
  • Page 199 Display Description Corrective Action Fault Alarm Overtorque Detection Level 2. Check for proper programming for L06-05 and L06-06. Overtorque Det 2 Defined by L06-05. Alarm or fault defined by L06- Overvoltage Fault. The main circuit direct 1. Extend the deceleration time. current voltage exceeded the overvoltage level.
  • Page 200 Display Description Corrective Action Fault Alarm Slack Cable Fault. A hoist slack cable condition 1. May not require corrective occurred. action. Slack Cable Detection 2. Check setting of Slack Cable Detection (C11-xx). SNAP Snapped Shaft Fault. A drive train discontinuity 1.
  • Page 201 Voltage drop in the gate driver board circuit. 2. If the problem continues, Exclusive to 4810 and 41090 models. replace the gate driver board or the entire VFD. Contact Magnetek for gate driver board replacement information. Output Voltage Detection Fault. Replace the VFD. Vout Det Error Problem detected with the voltage on the output side of the VFD.
  • Page 202 Table 6-4: Operation Error Table Display Description Corrective Action OPE01 kVA Setting Error. VFD kVA setting range is Check O02-04 for proper kVA. incorrect. kVA Selection OPE02 Setting Out of Range. Parameter setting is out of 1. With the fault displayed on the keypad, press range.
  • Page 203 Display Description Corrective Action OPE20 Electronic Programmable Limit Switch Setting 1. Check if C03-14 = 0, 2 or 4: Error. C03-19 > C03-18 > C03-17 > C03-16 EPLS Setting 2. Check if C03-14 = 1 or 3: C03-19 < C03-18 < C03-17 < C03-16 OPE21 Option Card PG-X3 is missing when C11-08 is Install second PG-X3 option card for Snap Shaft...
  • Page 204: Troubleshooting Encoder And Brake Faults And Alarms

    6.2 Troubleshooting Encoder and Brake Faults and Alarms The faults and alarms in this section may involve the encoder feedback or motor brake system. During system startup, these faults and alarms are often caused by parameters that need to be adjusted. However, if the system has been running for some time, this usually indicates a problem with the physical system and adjusting the parameters should only be done after the physical system has been inspected.
  • Page 205: Pgo-X-S/Pgo-X-H-Pulse Generator Signal Fault

    6.2.2 PGO-X-S/PGO-X-H–Pulse Generator Signal Fault Definition A Pulse Generator Signal fault indicates that the VFD has detected a problem with encoder feedback. This fault will typically occur if the VFD doesn’t receive any encoder feedback pulses while it is commanded to run or encoder wiring has a discontinuity.
  • Page 206: Be1-Rollback Fault

    6.2.3 BE1–Rollback Fault Definition A BE1 fault indicates that the VFD has released the brake, but has not started to accelerate the motor when it detects more than the expected encoder feedback. A BE1 fault will occur if the pulses received during the BE1 detection time (C08-04) are greater than the expected number of pulses (C08-05).
  • Page 207: Be3-Brake Release Fault

    6.2.5 BE3–Brake Release Fault Definition The BE3 fault indicates that the VFD has released the brake and commanded the VFD to run, but has not detected the expected encoder feedback. A BE3 fault will occur if the pulses received during the BE3 detection time (C08- 06) are less than the expected number of pulses (C08-07).
  • Page 208: Be6-Brake Proving Alarm

    6.2.6 BE6–Brake Proving Alarm Definition The BE6 alarm indicates that the VFD has commanded the brake to set but it has detected more encoder pulse feedback than expected. A BE6 alarm will occur if the number of pulses received during the BE6 detection time (C08-12) is greater than the expected number of pulses (C08-13).
  • Page 209: Be8-Brake Slipping Alarm

    6.2.7 BE8–Brake Slipping Alarm Definition A BE8 alarm indicates that the VFD has detected that the brake is slipping after the brake is set. A BE8 alarm will occur if the load is moving greater than the Brake Slip Detection Speed (C08-23) when the brake is set. When this occurs, the VFD will go into load float while the brake is set.
  • Page 210: Auto-Tuning Errors

    6.3 Auto-Tuning Errors The following are errors during auto-tuning and corrective actions. If any of the following errors are detected, the keypad will display the error text and the motor will coast to stop, if running. No fault or alarm output is triggered. Table 6-5: Error Display and Corrective Actions Display Description...
  • Page 211 Display Description Corrective Action End 2 Motor Iron Core Saturation Coefficient Fault • Check the T1 parameters. (Rotational tuning only). Since the motor iron • Check motor wiring. Iron Core Sat core saturation coefficient could not be auto-tuned • Disconnect the motor from the load. within the set time, tentative value is set in the iron core saturation coefficient.
  • Page 212: Option Card Faults

    6.4 Option Card Faults Check the following items first when an option card fault occurs on the VFD: • Communication cable connections. • Make sure the option card is properly installed to the VFD. • Did a momentary power loss interrupt communications? NOTE: The ports are checked in alphanumeric order.
  • Page 213 Table 6-6: Fault Codes for Option Cards Display Card Description Cause Possible Solution oFA00 Option Error (CN5-A). Option • The option card • Confirm that the VFD supports AI-A3 Card Connection Error at Port installed into port the option card. AO-A3 CN5-A.
  • Page 214 • If the problem continues, AO-A3 replace the option card, control oFA17 DI-A3 board or the entire VFD. DO-A3 Contact Magnetek for instructions on replacing the S4IO control board. oFA30 Communication Card Fault at • Option card or • Cycle power to the VFD.
  • Page 215: Copy Function Errors

    6.5 Copy Function Errors The table below lists the messages and errors that may appear when using the Copy function. When executing the tasks offered by the Copy function, the keypad will indicate the task being performed. When an error occurs, a code appears on the keypad to indicate the error. Note that errors related to the Copy function do not trigger the fault relay.
  • Page 216: Power Section Check

    6.6 Power Section Check WARNING Do NOT touch any circuit components while main power is on or immediately after main power is turned off. You must wait until the red “CHARGE” lamp is extinguished, which may take up to 10 minutes for the DC bus voltage to drop to a safe level.
  • Page 217: Interface Board (S4If) Replacement Procedure

    6.7 Interface Board (S4IF) Replacement Procedure WARNING Do NOT touch any circuit components while AC main power is on or immediately after the main AC power is disconnected from the VFD. You must wait until the red “CHARGE” lamp is extinguished. It may take as long as 10 minutes for the charge on the main DC bus capacitors to drop to a safe level.
  • Page 218 Full Replacement Process 1. Prior to installation, it is a good practice to record all modified parameters. 2. Set A01-05 = 7770 (this prepares all modified and user parameters for interface board removal). 3. Disconnect all electrical power to the VFD. 4.
  • Page 219: Appendix A: Parameter Listing

    Appendix A: Parameter Listing Parameter Parameter Name Default Range Units Reference A01-01 Access Level 0–2 Page 55 G+: 0 A01-02 Control Method 0, 2, 3 Page 55 VG+: 3 G+: 1 A01-03 Motion 0–2, 4 Page 56 VG+: 2 A01-04 Speed Reference 0–8 Page 56...
  • Page 220 Parameter Parameter Name Default Range Units Reference B03-15 Ref Source 2 0–4 Page 73 B03-16 Run Source 2 0–3 Page 73 B03-21 PG Start Sel 0, 1 Page 73 B05-01 Accel Time 1 5.0* 0.0–25.5**** Page 75 B05-02 Decel Time 1 3.0* 0.0–25.5**** Page 75...
  • Page 221 Parameter Parameter Name Default Range Units Reference C03-11 Load Share Limit 0, 1 Page 83 C03-12 Klixon Action 0, 1 Page 83 C03-13 Height Measure 0–65535 Page 84 C03-14 Hook Height Home 0–4 Page 84 C03-15 Hook Height Out 0, 1 Page 84 C03-16 UL2 Revolutions...
  • Page 222 Parameter Parameter Name Default Range Units Reference SwiftLift REVSpd (V/f and OLV) C06-03 60.0 0.1–150.0 Page 92 UltraLift REVSpd (FLV) SL FWD Current (V/f) C06-04 SL FWD Torque (OLV) 0–100 Page 92 UL FWD Torque (FLV) SL REV Current (V/f) C06-05 SL REV Torque (OLV) 0–100...
  • Page 223 Parameter Parameter Name Default Range Units Reference C08-02 IFB OK Time 1.00 0.00–2.55 Page 100 C08-03 Min Brk Rel Trq 0–300 Page 100 C08-04 Rollback Timer 0.30 0.00–2.55 Page 100 C08-05 Rollback Count 0–15000 pulses Page 100 C08-06 BE3/Alt Torq Tim 0.30 0.00–2.55 Page 100...
  • Page 224 Parameter Parameter Name Default Range Units Reference C09-07 DIO Terminal 6 0–FF Page 104 C09-08 DIO Terminal 7 0–FF Page 104 C09-09 DIO Terminal 8 0–FF Page 104 C09-10 DIO Terminal 9 0–FF Page 104 C09-11 DIO Terminal 10 0–FF Page 104 C09-12 DIO Terminal 11...
  • Page 225 Parameter Parameter Name Default Range Units Reference C13-03 Index Run Ref 0.10 0.01–60.00 Page 113 C13-04 Index Revs 0–65535 Page 113 C13-05 Index Count 0–65535 pulses Page 113 C13-06 Index Repeat Delay 0.00 0.00–60.00 Page 113 C13-07 Index Complete 0–32767 pulses Page 113 C13-08...
  • Page 226 Parameter Parameter Name Default Range Units Reference D05-02 Torque Ref Filter 0–1000 Page 119 D05-03 Speed Limit Select 1, 2 Page 119 D05-04 Speed Limit Value -120–120 Page 119 D05-05 Speed Limit Bias 0–120 Page 119 D05-06 Ref Hold Time 0–1000 Page 119 D05-08...
  • Page 227 Parameter Parameter Name Default Range Units Reference 230V: 0.0–255.0 E01-13 Base Voltage 460V: 0.0–510.0 Page 127 575V: 0.0–733.1 E02-01 Motor Rated FLA Page 130 E02-02 Motor Rated Slip 0.00–20.00 Page 130 E02-03*** No-Load Current 0–[(E02-01)-1] Page 130 E02-04 Number of Poles 2–48 Page 130 ...
  • Page 228 Parameter Parameter Name Default Range Units Reference F01-15 PG2 Output Ratio 1–132 Page 132 F01-16 PGO-2-H 0–100 Page 132 0–3 F01-21 PG Fdbk Loss Sel Page 132 NLB: 1 F01-22 PGO-1-S Det Time 0.0–10.0 Page 132 0–3 F01-23 PG Overspeed Sel Page 132 NLB: 1 F01-24...
  • Page 229 Parameter Parameter Name Default Range Units Reference F06-35 CO Node Address 0–126 Page 138 F06-36 CO Baud Rate 0–8 Page 138 F06-50 DN MAC Address 0–64 Page 138 F06-51 DN Baud Rate 0–4 Page 138 F06-52 DN PCA Selection 0–255 Page 138 F06-53 DN PPA Selection...
  • Page 230 Parameter Parameter Name Default Range Units Reference H01-01 Terminal S1 Select 80 (FWD) 0–81 Page 141 H01-02 Terminal S2 Select 81 (REV) 0–81 Page 141 H01-03 Terminal S3 Select 0–81 Page 141 H01-04 Terminal S4 Select 0–81 Page 141 H01-05 Terminal S5 Select 0–81 Page 141...
  • Page 231 Parameter Parameter Name Default Range Units Reference H05-03 Serial Com Sel 0–2 Page 157 H05-04 Serial Fault Sel 0–3 Page 157 H05-05 Serial Flt Dtct 0, 1 Page 157 H05-06 Transmit WaitTIM 5–65 Page 157 H05-07 RTS Control Sel 0, 1 Page 157 H05-09 CE Detect Time...
  • Page 232 Parameter Parameter Name Default Range Units Reference L03-21 Acc/Dec P Gain A01-02 0.10–10.00 Page 162 L03-23 CHP Stall P Sel 0, 1 Page 162 L03-24 Mtr Accel Time O02-04 0.001–10.000 Page 162 L04-01 Spd Agree Level 0.0–150.0 Page 164 L04-02 Spd Agree Width 0.0–20.0 Page 164...
  • Page 233 Parameter Parameter Name Default Range Units Reference L09-03 Reset Time 0.5–600.0 Page 171 L09-04 Reset Latch Sel 1 4001 0000–FFFF Page 171 L09-05 Reset Latch Sel 2 E000 0000–FFFF Page 171 L09-06 Flt Contact Sel 0, 1 Page 171 L09-07 Flt Latch Sel 1 0000 0000–FFFF...
  • Page 234 Parameter Parameter Name Default Range Units Reference T01-07 Rated Speed 1750 Page 63 T01-08 PG Pulses/Rev 1024 Page 63 T01-09 No-Load Current Page 63 T01-10 Motor Rated Slip Page 63 U01-01 Frequency Ref Page 183 U01-02 Output Freq Page 183 U01-03 Output Current Page 183...
  • Page 235 Parameter Parameter Name Default Range Units Reference U01-65 PG Output Freq Page 184 U01-66 BE6 Pulse Count Pulse Page 184 U01-68 LC Zone Page 184 U01-69 LC Margin Page 184 U01-84 NLB State Page 184 U01-85 NLB Rel Trq Page 184 U01-86 Brk Test Trq Page 184...
  • Page 236 Parameter Parameter Name Default Range Units Reference U03-16 Elapsed Time 6 Page 187 U03-17 Elapsed Time 7 Page 187 U03-18 Elapsed Time 8 Page 187 U03-19 Elapsed Time 9 Page 187 U03-20 Elapsed Time 10 Page 187 U03-21 RUN Cmd Counter count Page 187 U03-22...
  • Page 237 Parameter Parameter Name Default Range Units Reference U06-19 PG2 CounterValue Page 189 U06-22 Zero Servo Pulse Pulse Page 189 U06-26 FF Cont Output Page 189 * Initial value set by X-Press Programming (Table 4-6 on page 58, Table 4-7 on page 59 and Table 4-8 on page 60). ** Initial value dependent on VFD size, which is determined by O02-04 (kVA Selection).
  • Page 238: Appendix B: Standards Compliance

    Verify the following installation conditions to ensure that other devices and machinery used in combination with this VFD also comply with EMC guidelines. 1. Install an EMC noise filter to the input side specified by Magnetek for compliance with European standards. 2. Place the VFD and EMC noise filter in the same enclosure.
  • Page 239 Figure B-2: Installation Method 5. Make sure the protective earthing conductor complies with technical standards and local safety regulations. WARNING Electrical Shock Hazard. Because the leakage current exceeds 3.5 mA in models 4370 to 41090-G+/VG+ S4, IEC 61800-5-1 states that either the power supply must be automatically disconnected in case of discontinuity of the protective earthing conductor, or a protective earthing conductor with a cross-section of at least 10 mm (Cu) or 16 mm (Al) must be used.
  • Page 240 Figure B-4: EMC Filter and VFD Installation for CE Compliance IMPULSE•G+/VG+ Series 4 Technical Manual November 2022 Page 240...
  • Page 241 EMC Filters Install the VFD with the EMC filters listed in Table B-1 through Table B-4 to comply with the EN61800-3 requirements. Schaffner filters are supplied in North America, and Block filters are supplied in Europe. Table B-1: IEC/EN61800-3 Filters (Manufacturer: Schaffner) – 230 V Class Filter Data (Manufacturer: Schaffner) Mounting Rated...
  • Page 242 Table B-2: IEC/EN61800-3 Filters (Manufacturer: Schaffner) – 460 V Class Filter Data (Manufacturer: Schaffner) Mounting Rated Dimensions VFD Model Weight Dimensions Current Schaffner Type Figure W x D x H (in) Y x X (in) lb (kg) [W x D x H (mm)] [Y x X (mm)] 4001 4003...
  • Page 243 Figure B-6 Figure B-5 Figure B-7 IMPULSE•G+/VG+ Series 4 Technical Manual November 2022 Page 243...
  • Page 244 Table B-3: EN 61800-3 Filters (Manufacturer: Block) – 230 V Class Filter Data (Manufacturer: Block) Mounting Rated Dimensions VFD Model Weight Dimensions Current Block Type Figure W x D x H (in) Y x X (in) lb (kg) [W x D x H (mm)] [Y x X (mm)] 2003 5.5 x 2 x 11.9...
  • Page 245 Table B-4: EN 61800-3 Filters (Manufacturer: Block) – 460 V Class Filter Data (Manufacturer: Block) Mounting Rated Dimensions VFD Model Weight Dimensions Current Block Type Figure W x D x H (in) Y x X (in) lb (kg) [W x D x H (mm)] [Y x X (mm)] 4001 4003...
  • Page 246 Figure B-9 Figure B-8 Figure B-10 Figure B-11 IMPULSE•G+/VG+ Series 4 Technical Manual November 2022 Page 246...
  • Page 247 DC Link Chokes for EN 61000-3-2 Compliance Table B-5: DC Link Chokes for Harmonic Reduction DC Link Chokes VFD Model Rating 2003 5.4 A, 8 mH 2005 4001 3.2 A, 28 mH 4003 NOTE: DC link chokes are not required for other models to comply with EMC. IMPULSE•G+/VG+ Series 4 Technical Manual November 2022 Page 247...
  • Page 248 IMPULSE•G+/VG+ Series 4 Adjustable Frequency/Vector Crane Controls Technical Manual November 2022...

This manual is also suitable for:

Impulse vg+ 4 series

Table of Contents