TECO Westinghouse A510 Series Start-Up And Installation Manual

TECO Westinghouse A510 Series Start-Up And Installation Manual

Hide thumbs Also See for Westinghouse A510 Series:
Table of Contents

Advertisement

Advertisement

Table of Contents
loading
Need help?

Need help?

Do you have a question about the Westinghouse A510 Series and is the answer not in the manual?

Questions and answers

Summary of Contents for TECO Westinghouse A510 Series

  • Page 2: Table Of Contents

    ****STATEMENT**** Si Desea descargar el manual en espanol a este Link: www.tecowestinghouse.com Table of Contents Preface ................................0-1 Chapter 1 Safety Precautions ........................1-1 1.1 Before Supplying Power to the Inverter ....................1-1 1.2 Wiring ................................ 1-2 1.3 Before Operation ............................1-2 1.4 Parameters Setting ...........................
  • Page 3 3.11.1 Cooling Fan Supply Voltage Selection (400V class) ..............3-34 3.12 Inverter Wiring ............................3-36 3.13 Input Power and Motor Cable Length ....................3-37 3.14 Cable Length vs, Carrier Frequency..................... 3-37 3.15 Installing an AC Line Reactor ....................... 3-37 3.16 Power Input Wire Size, NFB and MCB Part Numbers ................. 3-38 3.17 Control Circuit Wiring ..........................
  • Page 4 7.2 Run / Stop from External Switch / Contact or Pushbutton ................ 7-2 7.3 Run / Stop from Serial Communication RS485 ..................7-4 Chapter 8 Motor and Application Specific Settings ................... 8-1 8.1 Set Motor Nameplate Data ........................8-1 8.2 Acceleration and Deceleration Time ......................8-2 8.3 Emergency Stop ............................
  • Page 5 11.1 Braking Resistors and Braking Units ....................11-1 11.2 AC Line Reactors ..........................11-6 11.3 Input Noise Filters ..........................11-6 11.4 Input Current and Fuse Specifications ....................11-7 11.5 PG Speed Feedback Card ......................... 11-10 11.6 Other Options ............................. 11-16 11.7 NEMA1 Kit ............................
  • Page 6: Preface

    Preface The A510 product is an inverter designed to control a three-phase induction motor. Please read this manual carefully to ensure correct operation, safety and to become familiar with the inverter functions. The A510 inverter is an electrical / electronic product and must be installed and handled by qualified service personnel.
  • Page 7: Chapter 1 Safety Precautions

    Chapter 1 Safety Precautions 1.1 Before Supplying Power to the Inverter Warning • The main circuit must be correctly wired. For single phase supply use input terminals (R/L1, T/L3) and for three phase supply use input terminals (R/L1, S/L2, T/L3). Terminals U/T1, V/T2, W/T3 must only be used to connect the motor.
  • Page 8: Before Operation

    Caution The line voltage applied must comply with the inverter’s specified input voltage. (See product • nameplate section 2.1) Connect braking resistor and braking unit to the designated terminals. (See power terminals • section 3.10) Do not connect a braking resistor directly to the DC terminals P (+) and N (-), otherwise fire may •...
  • Page 9: Maintenance, Inspection And Replacement

    If automatic restart after power recovery (parameter 07-00) is enabled, the inverter will start • automatically after power is restored. Make sure it is safe to operate the inverter and motor before performing a rotational auto-tune. • Do not touch inverter terminals when energized even if inverter has stopped, otherwise •...
  • Page 10: Chapter 2 Model Description

    Chapter 2 Model Description 2.1 Nameplate Data It is essential to verify the A510 inverter nameplate and make sure that the A510 inverter has the correct rating so it can be used in your application with the proper sized AC motor. Unpack the A510 inverter and check the following: (1) The A510 inverter and start-up and installation manual are contained in the package.
  • Page 11: Inverter Models - Motor Power Rating (Hd-Heavy Duty)

    2.2 Inverter Models – Motor Power Rating (HD – Heavy Duty) 230V Class Applied Applied Filter Voltage A510 Model Motor Motor with without (KW) (HP) 1ph/3ph, A510-2001-C-UE 0.75 ◎ 200~240V A510-2002-C-UE ◎ +10%/-15% A510-2003-C-UE ◎ 50/60Hz A510-2005-C3-UE ◎ A510-2008-C3-UE ◎ A510-2010-C3-UE ◎...
  • Page 12 460V Class Filter Applied Applied Voltage A510 Model Motor Motor with without (KW) (HP) A510-4001-C3-UE 0.75 ◎ A510-4002-C3-UE ◎ A510-4003-C3-UE ◎ A510-4005-C3-UE ◎ A510-4008-C3-UE ◎ A510-4010-C3-UE ◎ A510-4015-C3-UE ◎ A510-4020-C3-UE ◎ A510-4025-C3-UE 18.5 ◎ A510-4030-C3-UE ◎ 3ph, 380~480V A510-4040-C3-UE ◎ +10%/-15% A510-4050-C3-UE ◎...
  • Page 13 575/690V Class Applied Applied Filter Voltage A510 Model Motor Motor with without (HP) (KW) ◎ A510-5001-C3-UE 0.75 ◎ A510-5002-C3-UE 3ph, 500~600V ◎ A510-5003-C3-UE +10%/-15% ◎ A510-5005-C3-UE 50/60Hz ◎ A510-5008-C3-UE ◎ A510-5010-C3-UE ◎ A510-6015-C3-UE ◎ A510-6020-C3-UE ◎ A510-6025-C3-UE 18.5 ◎ A510-6030-C3-UE ◎...
  • Page 14: Chapter 3 Environment And Installation

    Chapter 3 Environment and Installation 3.1 Environment The environment will directly affect the proper operation and the life span of the inverter. To ensure that the inverter will give maximum service life, please comply with the following environmental conditions: Protection Protection Class IP20/IP21/NEMA 1 or IP00 IP20/IP21: -10°...
  • Page 15: Installation

    3.2 Installation When installing the inverter, ensure that inverter is installed in upright position (vertical direction) and there is adequate space around the unit to allow normal heat dissipation as per the following Fig. 3.2.1 Fig 3.2.1: A510s Installation space X = 1.18”...
  • Page 16: External View

    3.3 External View (a) 200V 1 ~ 7.5 HP / 400V 1 ~ 7.5 HP / 575V 1~ 3 HP Fan Cover Anti-dust Cover Mounting Hole Rings (4 rings) Front Cover Digital Operator Nameplate and Barcode Terminal Cover (Wall-mounted type, IEC IP20) (Wall-mounted type, IEC IP20, NEMA1) (b) 200V 10 ~ 25 HP / 400V 10 ~ 30 HP / 575V 5~10HP / 690V 15~40HP (Wall-mounted type, IEC IP20)
  • Page 17 (c) 200V 30 ~ 40 HP / 400V 40 ~ 75 HP / 690V 50~75HP Mounting Hole Front Cover Rings (4 rings) Digital Operator Nameplate and Barcode Terminal Cover (Wall-mounted type, IEC IP20, NEMA1) (d) 200V 50 ~ 100 HP / 400V 100 ~ 215 HP / 690V 100~270HP Anti-dust Cover Mounting Hole Mounting Hole...
  • Page 18: Warning Labels

    (e) 200V 125 ~ 150 HP / 400V 270 ~ 425 HP Anti-dust Cover Mounting Hole Mounting Hole Front Cover Rings (4 rings) Rings (4 rings) Front Cover Digital Operator Nameplate Nameplate Digital Operator Terminal Cover and Barcode and Barcode Terminal Cover Wiring Box (Wall-mounted type, IEC IP00)
  • Page 19: Removing The Front Cover And Keypad

    3.5 Removing the Front Cover and Keypad Caution Before making any wiring connections to the inverter the front cover needs to be • removed. It is not required to remove the digital operator before making any wiring connections. • 575V/690V 1 – 40 HP Models 200V, 1 –...
  • Page 20 Step 3: Make wire connections and place cover back Step 4: Fasten screw (b) 200V: 10 ~ 25 HP / 400V: 10 ~ 30 HP /575V: 5~10HP/690V 15~40HP Step 1: Unscrew cover Step 2: Remove cover...
  • Page 21 Step 3: Make wire connections and place cover back Step 4: Fasten screw (c) 200V: 30 ~ 40 HP / 400V: 40 ~ 75 HP /690V: 50~75HP (Chassis Type) Step 1: Unscrew cover Step 2: Remove cover...
  • Page 22 Step 3: Make wire connections and place cover back Step 4: Fasten screw (d) 200V: 50 ~ 100 HP / 400V: 100 ~ 215 HP /690V: 100~270HP (Chassis Type) Step 1: Unscrew cover Step 2: Remove cover...
  • Page 23 Step 3: Make wire connections and place cover back Step 4: Fasten screw (e) 200V: 125 ~ 150 HP / 400V: 270 ~ 425 HP (Chassis Type) Step 1: Unscrew cover Step 2: Remove cover 3-10...
  • Page 24 Step 3: Make wire connections and place cover back Step 4: Fasten screw 3-11...
  • Page 25: Built-In Filter Type (400V 1 ~60Hp)

    3.5.2 Built-in filter type (400V: 1 ~ 60 HP) Step 1: Unscrew cover Step 2: Remove cover Step 3: Unscrew filter section Step 4: Remove filter cover Step 5: Make connections and place filter cover back Step 6: Fasten screw ***Filter Type Not Standard in US Market*** 3-12...
  • Page 26: Wire Gauges And Tightening Torque

    To comply with UL standards, use UL approved copper wires (rated 75° C) and round crimp terminals (UL Listed products) as shown in table below when connecting to the main circuit terminals. TECO recommends using crimp terminals manufactured by NICHIFU Terminal Industry Co., Ltd and the terminal crimping tool recommended by the manufacturer for crimping terminals and the insulating sleeve.
  • Page 27: Wiring Peripheral Power Devices

    3.7 Wiring Peripheral Power Devices Caution After power is shut off to the inverter the capacitors will slowly discharge. Do NOT touch • the inverter circuit or replace any components until the “CHARGE” indicator is off. Do NOT wire or connect/disconnect internal connectors of the inverter when the inverter •...
  • Page 28 A filter must be installed when there are inductive loads affecting the inverter. The inverter meets EN55011 Class A, category C3 when the TECO special filter is used. See section 11.3 for peripheral devices. Inverter: Output terminals T1, T2, and T3 are connected to U, V, and W terminals of the motor.
  • Page 29: General Wiring Diagram

    3.8.1 General Wiring Diagram (For U Type) Notes: *1: Models 230V 1 ~ 25HP and 460V 1 ~ 40HP or lower ratings have a built-in braking transistor. To use this braking transistor a braking resistor can be connected between B1 and B2. *2: Use SW3 to select between Sink (NPN, with 24VG common) or Source (PNP, with +24V common) for multi-function digital input terminals S1~S8.
  • Page 30 3.8.2 General Wiring Diagram (For UE Type) ‧ Notes: *1: Models 230V 1 ~ 25HP and 460V 1 ~ 30HP or lower ratings have a built-in braking transistor. To use this braking transistor a braking resistor can be connected between B1 and B2. *2: Use SW6 to select between Sink (NPN, with 24VG common) or Source (PNP, with +24V common) for multi-function digital input terminals S1~S8.
  • Page 31 3.9.1 User (Control) Terminals (For U Type) 230V: 1 ~ 2 HP, 460V: 1 ~ 3HP 230V: 3 ~ 40 HP, 460V: 5 ~ 75HP, 575V:1~10HP, 690V: 15~75HP 230V: 50 ~ 150 HP, 460V: 100 ~ 425HP, 690V: 100~270HP 3-18...
  • Page 32 Description of User Terminals Type Terminal Terminal Function Signal Level / Information 2-wire forward/ stop (default) * 1 2-wire reversal/ stop (default) * 1 Multi-speed/ position setting command 1 Signal Level 24 VDC (default) * 1 (photo isolated) Digital Multi-speed/ position setting command 2 Maximum current: 8mA (default) * 1 input...
  • Page 33 Type Terminal Terminal Function Signal Level / Information L: from 0.0 to 0.5V H: from 4.0 to 13.2V Max. Frequency: 0 - 32KHz Pulse command input, Built-in pull-up resistance. Pulse input Bandwidth: 32KHz signal When open collector input is used, it is not required to connect resistance.
  • Page 34 3.9.2 User (Control) Terminals (For UE type) 230V: 1 ~ 2 HP, 460V: 1 ~ 3HP 230V: 3 ~ 40 HP, 460V: 5 ~ 75HP 230V: 50 ~ 150 HP, 460V: 100 ~ 425HP Description of User Terminals Type Terminal Terminal Function Signal Level / Information 2-wire forward/ stop (default)
  • Page 35 Type Terminal Terminal Function Signal Level / Information 4-20mA output) Analog signals ground terminal Pulse Max. Frequency: 32KHz Bandwidth: 32KHz Open Collector output output signal Analog signals ground terminal ---- L: from 0.0 to 0.5V H: from 4.0 to 13.2V Max.
  • Page 36: Power Terminals

    3.10.1 Power Terminals (For U type) 230V: 1 ~ 25HP 230V: 30 ~ 150HP 460V: 1 ~ 40HP Terminal 460V: 50 ~ 425HP 575V: 1 ~ 10HP 690V: 50 ~ 270HP 690V: 15 ~ 40HP R/L1 S/L2 Input Power Supply (For single phase use terminals R/L1 and S/L2) T/L3 /...
  • Page 37 575V: 5~10HP Terminal screw size 460V: 20HP (Frame 3) Terminal screw size B1/P B2 230V: 15~25HP, 460V: 20 ~ 30HP, 690V: 15~40HP Terminal screw size B1/P B2 460V: 40HP Terminal screw size B1/P B2 3-24...
  • Page 38 230V: 30 ~40HP, 460V: 50 ~ 75HP Terminal screw size 690V: 50~75HP Terminal screw size 230V: 50~60HP, 460V: 100HP Terminal screw size Power supply 230V 50-60HP/ 460V 100HP 3-25...
  • Page 39 690V: 100~150HP Power supply 690V 100~150HP 460V : 125HP Terminal screw size 3-26...
  • Page 40 230V: 75~100HP, 460V: 150~215HP, 690V: 175~270HP Terminal screw size 230V: 125~150HP, 460V: 270~425HP Terminal screw size Notes: For wire gauges and screw torques, please refer to the table in section 3.6. 3.10.2 Power Terminals (For UE type) 230V: 1 ~ 30HP 230V: 40 ~ 150HP Terminal 460V: 1 ~ 75HP...
  • Page 41 230V : 1 ~ 2HP , 460V : 1 ~ 3HP Terminal screw size 230V : 3 ~7.5HP , 460V : 5 ~ 7.5HP Terminal screw size 230V : 10HP , 460V : 10 ~ 20HP Terminal screw size 3-28...
  • Page 42 230V : 15~25HP , 460V : 25 ~ 30HP Terminal screw size 230V : 30 ~40HP , 460V : 40 ~ 75HP Terminal screw size 230V : 50~60HP, 460V : 100HP Terminal screw size 3-29...
  • Page 43 460V : 125HP Terminal screw size 230V : 75~100HP, 460V : 150~215HP Terminal screw size 230V : 125~150HP, 460V : 270~425HP Terminal screw size 3-30...
  • Page 44: Input / Output Power Section Block Diagram

    3.11 Input / Output Power Section Block Diagram The following diagrams 1 - 8 show the basic configuration of the power sections for the range of horsepower and input voltages. This is shown for reference only and is not a detailed depiction. 1: 230V: 1 HP / 460V: 1 ~ 2 HP 2: 230V: 2 ~ 25 HP / 460V: 3 ~ 40 HP (U Type) /460V: 3 ~ 30 HP (UE Type)
  • Page 45 3: 230V: 30 ~ 40 HP / 460V: 50 ~ 75 HP (U Type) /460V: 40 ~ 75 HP (UE Type) 4: 690V: 50~75HP 5: 230V: 50 ~ 60 HP / 460V: 100 ~ 215 HP 3-32...
  • Page 46 6: 690V: 100~150HP 7: 230V: 75, 100 HP, 125, 150 HP 8: 460V: 270HP, 300HP, 375HP, 425 HP / 690V: 175~270HP 3-33...
  • Page 47: Cooling Fan Supply Voltage Selection (400V Class)

    3.11.1 Cooling Fan Supply Voltage Selection (460V class) The inverter input voltage range of the A510 460V class models ranges from 380 to 480Vac. In these models the cooling fan is directly powered from the power supply. Inverter models A510-4215(F8)/ 4270/ 4300/ 4375/ 4425 requires the user to select the correct jumper position based on the inverter input voltage ("460V"...
  • Page 48 The inverter input voltage range of the A510 600V class models ranges from 575 to 690Vac. In these models the cooling fan is directly powered from the power supply. Inverter models A510-6175~6270 requires the user to select the correct jumper position based on the inverter input voltage ("690V"...
  • Page 49: Inverter Wiring

    3.12 Inverter Wiring Wiring Precautions Do NOT remove any protective covers or attempt any wiring while input power is • applied. Connect all wiring before applying input power. When making wiring changes after power up, remove input power and wait a minimum of five minutes after power has been turned off before starting.
  • Page 50: Input Power And Motor Cable Length

    3.13 Input Power and Motor Cable Length The length of the cables between the input power source and /or the motor and inverter can cause a significant phase to phase voltage reduction due to the voltage drop across the cables. The wire size shown in Tables 3.16.1 is based on a maximum voltage drop of 2%.
  • Page 51: Power Input Wire Size, Nfb And Mcb Part Numbers

    3.16 Power Input Wire Size, NFB and MCB Part Numbers The following table shows the recommended wire size, molded case circuit breakers and magnetic contactors for each of the A510 models. It depends on the application whether or not to install a circuit breaker.
  • Page 52 *3: Control line is the terminal wire on the control board. *4: The NFB and MCB listed in the table are of TECO product numbers, products with same rated specification of other brands may be used. To reduce electrical noise interference, ensure that a RC surge absorber (R: 10 / 5W, C: 0.1µf/1000VDC) is added to both sides of MCB coil.
  • Page 53: Control Circuit Wiring

    3.17 Control Circuit Wiring (1) Separate the wiring for control circuit terminals from main circuit wiring for terminals (R/L1, S/L2, T/L3, U/T1, V/T2, W/T3) . (2) Separate the wiring for control circuit terminals R1A-R1B-R1C (or R2A, R2C) (Relay outputs) from wiring for terminals , A01, A02, GND, DO1, DO2, DOG, +10V, (-10V), AI1, AI2 and GND wiring.
  • Page 54 In Section 3.8 the control boards referenced have a jumper SW3 that can select the digital input to terminals to be set for SINK or SOURCE. The following Fig. 3.17.3 (a.) – (d.) shows examples for the various SINK / Source interfaces. Sink Configuration +24V Source...
  • Page 55: Inverter Specifications

    3.18 Inverter Specifications Basic Specifications 230V class Inverter capacity (HP) Rated output Capacity (KVA) 12.6 17.9 22.9 27.8 Rated output current (A) Heavy Duty type 17.5 H.D. Maximum applicable motor (150%/1min) (KW) (0.75) (1.5) (2.2) (3.7) (5.5) (7.5) (11) (15) (18.5) 13.5 20.1...
  • Page 56 Basic Specifications 460V class Inverter capacity (HP) Rated output Capacity (KVA) 11.3 13.7 18.3 23.6 29.7 34.3 Heavy Duty type Rated output current (A) 14.8 H.D. Maximum applicable motor (150%/1min) (KW) (0.75) (1.5) (2.2) (3.7) (5.5) (7.5) (11) (15) (18.5) (22) 10.1 12.6...
  • Page 57 Inverter capacity (HP) Rated Output capacity (KVA) Heavy Duty type Rated output current (A) H.D. Maximum applicable motor (150%/1min) (KW) (200) (220) (280) (315) Motor rated current (A) Rated Output capacity (KVA) Normal Duty type Rated output current (A) N.D. Maximum applicable motor (120%/1min) (KW)
  • Page 58 Allowable frequency fluctuation ±5% *1: Take TECO standard 4-pole induction motor as the base. *2: A510 model is designed to use in heavy duty conditions, the factory setting is the HD (Heavy Duty type) mode. *3: The overload capacity of A510 model HD (Heavy Duty) is 150% / 1min, 200% / 2sec. See the table below for the carrier frequency default setting and range.
  • Page 59 The following table shows maximum output frequency for each control mode. Duty Cycle Control mode Other settings Maximum output frequency maximum frequency set to V/F + PG 599Hz 599Hz SLV2 230V 1~10HP, 460V 1~15HP 150Hz 230V 15~25HP, 460V 20HP 110Hz 460V 25~30HP 100Hz 230V 30~100HP,...
  • Page 60 General Specifications LCD keypad with parameter copy function (Optional Seven-segment display * 5 + Operation mode LED keypad) Control mode V/F, V/F+PG, SLV, SV, PMSV, PMSLV, SLV2* with space vector PWM mode Frequency control range 0.1Hz ~ 5 99.0Hz Output frequency accuracy Digital references: ±0.01 %...
  • Page 61 Location Indoor (protected from corrosive gases and dust). -10~+40° C (14° F~104° F) (IP20/IP21), -10~+50° C (14° F~122° F) (IP00 or top Ambient temperature anti-dust cover removed); with de-rating, its maximum operation temperature is 60° C (140° F) (UE type frame 5 is 50° C without de-rating Storage temperature -20~+70°...
  • Page 62: Inverter Derating Based On Carrier Frequency

    3.19 Inverter Derating Based on Carrier Frequency 230V Models 1 - 20 HP 25 HP 30 – 40 HP 50 - 100 HP 125 – 150 HP 3-49...
  • Page 63 460V Models 1 - 30 HP 40 - 50 HP 60 – 100 HP & 150~175HP 125 HP Iout 70% of HD 0 2kHz 4kHz 10kHz 215 HP 3-50...
  • Page 64 215HP - 375 HP 425 HP (Note) Note: The spec. please refer to Chapter 3.18, the rated current is 330/370A. 575/690V Models 575V 1 - 10 HP 575/690V 15 - 30 HP 8kHz 575/690V 40 - 60 HP 575/690V 75HP 4kHz 8kHz 3-51...
  • Page 65: Inverter Derating Based On Temperature

    575/690V 100 - 150 HP 575/690V 175 - 270 HP 6kHz 4kHz 1.5kHz 2kHz 3.20 Inverter Derating Based on Temperature IP20 IP20 Iout 80% of ND 80% of HD IP00 Temperature 60° C 50° C 3-52...
  • Page 66: Capacitor Guide After Long Storage

    Capacitor reforming Guide after long storage ◆ ◆ ◆ ◆ For correct performance of this product after long storage before use it is important that Inverter Capacitors are reformed according to the guide below: Storage Procedure to re-apply voltage time Apply rated voltage(*1) of inverter in the normal way ≦1year Between...
  • Page 67: Inverter Dimensions

    3.21 Inverter Dimensions (a) 230V: 1 – 7.5HP / 460V: 1 - 7.5HP/ 575V:1-3HP (IP20/NEMA1) Dimensions in mm (inch) Net Weight in kg Inverter Model (lbs) A510-2001-C-UE (5.12) (8.46) (5.91) (4.65) (7.99) (0.20) (4.9) A510-2002-C-UE (5.12) (8.46) (5.91) (4.65) (7.99) (0.20) (4.9) A510-2003-C-UE...
  • Page 68 (b) 230V: 10 - 25HP / 460V: 10 - 30HP / 575V: 5~10HP / 690V: 15~40HP (IP20/NEMA1) Dimensions in mm (inch) Net Weight in kg Inverter Model (lbs) A510-2010-C3-UE (8.27) (11.81) (8.46) (7.56) (11.26) (0.06) (13.67) A510-2015-C3-UE (10.43) (14.17) (8.86) (9.65) (13.39) (0.06)
  • Page 69 Dimensions in mm (inch) Net Weight in kg Inverter Model (lbs) A510-6020-C3-UE (10.43) (14.17) (8.86) (9.65) (13.39) (0.06) (22.05) A510-6025-C3-UE (10.43) (14.17) (8.86) (9.65) (13.39) (0.06) (22.05) A510-6030-C3-UE (10.43) (14.17) (8.86) (9.65) (13.39) (0.06) (22.05) A510-6040-C3-UE (10.43) (14.17) (8.86) (9.65) (13.39) (0.06) (22.05)
  • Page 70 (c) 230V: 30 - 40HP / 460V: 40 - 75HP / 690V 50~75HP (IP20/NEMA1) Dimensions in mm (inch) Net Weight in kg Inverter Model (lbs) 286.5 A510-2030-C3-UE (11.28) (20.67) (8.66) (19.88) (0.13) (52.91) 286.5 A510-2040-C3-UE (11.28) (20.67) (8.66) (19.88) (0.13) (52.91) 286.5 A510-4040-C3-UE...
  • Page 71 230V: 50 - 100HP / 460V: 100 - 215HP / 690V: 100~270HP (IP00) Dimensions in mm (inch) Net Weight in kg Inverter Model (lbs) A510-2050-C3-UE (13.54) (22.83) (11.81) (9.84) (22.05) (0.06) (88.18) A510-2060-C3-UE (13.54) (22.83) (11.81) (9.84) (22.05) (0.06) (88.18) 324.5 A510-2075-C3-UE (163.14)
  • Page 72 A510-6150-C3-UE (13.54) (22.83) (11.81) (9.84) (22.05) (0.06) (88.18) 324.5 A510-6175-C3-UE (163.14) (18.07) (31.10) (12.78) (12.60) (29.92) (0.06) 324.5 A510-6215-C3-UE (163.14) (18.07) (31.10) (12.78) (12.60) (29.92) (0.06) 324.5 A510-6250-C3-UE (163.14) (18.07) (31.10) (12.78) (12.60) (29.92) (0.06) 324.5 A510-6270-C3-UE (163.14) (18.07) (31.10) (12.78) (12.60) (29.92)
  • Page 73 Dimensions in mm (inch) Net Weight in kg Inverter Model (lbs) 348.5 A510-2050-C3-UE (97.00) (13.72) (29.13) (11.81) (9.84) (22.05) (0.06) 348.5 A510-2060-C3-UE (97.00) (13.72) (29.13) (11.81) (9.84) (22.05) (0.06) 463.5 1105 324.5 A510-2075-C3-UE (178.57) (18.25) (43.50) (12.78) (12.60) (29.92) (0.06) 463.5 1105 324.5...
  • Page 74 (e) 230V: 125 - 150HP / 460V: 215HP - 425HP (IP00) Dimensions in mm (inch) Net Weight in kg Inverter Model (lbs) 1000 A510-2125-C3-UE (27.17) (39.37) (16.14) (20.87) (10.43) (37.80) (0.06) (405.65) 1000 A510-2150-C3-UE (27.17) (39.37) (16.14) (20.87) (10.43) (37.80) (0.06) (405.65) 1000...
  • Page 75 (f) 230V: 125 - 150HP / 460V: 215HP - 425HP (IP20/NEMA1) Dimensions in mm (inch) Net Weight in kg Inverter Model (lbs) 1313 A510-2125-C3-UE (427.70) (27.24) (51.69) (16.14) (20.87) (10.43) (37.80) (0.06) 1313 A510-2150-C3-UE (427.70) (27.24) (51.69) (16.14) (20.87) (10.43) (37.80) (0.06) 1313...
  • Page 76: Chapter 4 Keypad And Programming Functions

    Chapter 4 Keypad and Programming Functions 4.1 LCD Keypad 4.1.1 Keypad Display and Keys Reverse Direction External Sequence Forward Direction Status Indicator Indicator Status Indicator External Reference Fault Status Indicator Indicator LCD Display Monitor Fref Ref 12-16=005.00Hz 12-17=000.00Hz 12-18=0000.0A 8 button Run Status Membrane Keypad Indicator...
  • Page 77 KEYS (8) Description RUN Inverter in Local Mode STOP STOP Inverter ▲ Parameter navigation Up, Increase parameter or reference value ▼ Parameter navigation down, decrease parameter or reference value FWD/REV Used to switch between Forward and Reverse direction (U Type) Used to switch between Local Mode and Remote Mode REMOTE Mode: Set by parameters, controlled by control circuit terminals, communication or other ways.
  • Page 78: Keypad Menu Structure

    4.1.2 Keypad Menu Structure Main Menu The A510 inverter main menu consists of two main groups (modes). The DSP/FUN key is used to switch between the monitor mode and the parameter group mode. Mode Description Monitor Mode View inverter status, signals and fault data. Parameter Group Mode Access to available parameter groups.
  • Page 79 Monitor Mode In monitor mode inverter signals can be monitored such as output frequency, output current and output voltage, etc…) as well as fault information and fault trace. See Fig 4.2.2.2 for keypad navigation. Fig 4.1.2.2 Monitor Mode Note: - To scroll through the available monitor parameter list, press and hold the ▲ (up) or ▼ (down) key.
  • Page 80 Programming Mode In programming mode inverter parameters can be read or changed. See Fig 4.1.2.3 for keypad navigation. Power ON Monitor Freq Ref 12-16=005.00Hz 12-17=000.00Hz 12-18=0000.0A Parameter Parameter Parameter Group Edit Mode Group Mode Selection Mode READ READ ENTER Edit 00-00 ENTER Group...
  • Page 81 Auto-tuning Mode In the auto-tuning mode motor parameters can be calculated and set automatically based on the selected control mode. See Fig 4.1.2.4 for keypad navigation. Group 17 Auto-tuning 18 Slip Compen 19 Traverse Func. READ E NT ER Press key to change the value.
  • Page 82 4.1.2 Notes: 1. Use the up and down keys to scroll though the auto-tuning parameter list. Depending on the selected control mode in parameter 00-00, part of auto-tuning parameters will not be accessible. (Refer to the Auto-tuning Group 17 parameters). 2.
  • Page 83 4.2 LED Keypad 4.2.1 Keypad Display and Keys Reverse Direction Local/ Remote Forward Direction Status Indicator Indicator Status Indicator External Reference Fault Status Indicator Indicator External Sequence Indicator 5 Digit, 7 Segment LED Display 8 button Membrane Keypad Run Status Indicator Stop Status Indicator...
  • Page 84 KEYS (8) Description RUN Inverter in Local Mode STOP STOP Inverter Parameter navigation Up, Increase parameter or reference value ▲ Parameter navigation down, decrease parameter or reference value ▼ FWD/REV Used to switch between Forward and Reverse direction (U Type) Used to switch between Local Mode and Remote Mode REMOTE Mode: Set by parameters, controlled by control circuit terminals, communication or other ways.
  • Page 85: Lcd Keypad

    4.3 Parameters Parameter group Group Name Group 00 Basic Parameters Group 01 V/F Control Parameters Group 02 IM Motor Parameters Group 03 External Digital Input and Output Parameters Group 04 External Analog Input and Output Parameters Group 05 Multi-Speed Parameters Group 06 Automatic Program Operation Parameters Group 07...
  • Page 86 Group 00: Basic Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 0: V/F 1: V/F+PG 2: SLV Control Mode 00-00 3: SV Selection 4: PMSV 5: PMSLV 6: SLV2 0: Forward Motor’s Rotation 00-01 Direction 1: Reverse 0: Keypad...
  • Page 87 Group 00: Basic Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 4: Pulse Input 5: Reserved 6: Reserved 7: AI2 Auxiliary Frequency Main and 0: Main Frequency Alternative 00-07 Frequency 1: Main frequency + Command Modes Alternative Frequency Communication...
  • Page 88: Parameters

    Group 00: Basic Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Deceleration time 00-22 0.1~6000.0 Acceleration time 00-23 0.1~6000.0 Deceleration time 00-24 0.1~6000.0 Switch-Over Frequency of 0.00~599.00 00-25 Acc/Dec Time 1 and Time 4 Emergency Stop 0.1~6000.0 00-26...
  • Page 89 Group 00: Basic Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 00-34 Reserved 00-40 00-41 User parameter 0 00-41 00-42 User parameter 1 00-42 00-43 User parameter 2 00-43 00-44 User parameter 3 00-44 00-45 User parameter 4 00-45 00-46 User parameter 5...
  • Page 90 Group 01: V/F Control Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 V/F Curve 01-00 0~FF Selection 01-01 Reserved Maximum Output 50.0/ Frequency of 01-02 4.8~599.0 60.0 Motor 1 230V: 0.1~255.0 Maximum Output 460V: 0.2~510.0 Voltage of Motor 01-03 575V: 0.1~670.0...
  • Page 91 Group 01: V/F Control Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Selection of 0: Torque Compensation Mode 0 Torque 01-11 Compensation 1: Torque Compensation Mode Mode 1 Base Frequency 50.0/ 01-12 4.8~599.0 of Motor 1 60.0 230V: 0.0~255.0 Base Output...
  • Page 92 Group 01: V/F Control Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 of Motor 2 60.0 200V: 0.0~255.0 Base Output 400V: 0.0~510.0 Voltage of 01-25 575V: 0.0~670.0 Motor 2 690V: 0.0~804.0 V/F Curve 01-26 Selection of 0~FF Motor 2...
  • Page 93 Group 02: IM Motor Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Coefficient 2 of Motor 1 Core Saturation 02-12 Coefficient 3 80~300 of Motor 1 Core loss of 02-13 0.0~15.0 Motor 1 02-14 Reserved Resistance 02-15...
  • Page 94 Group 02: IM Motor Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 02-35 Reserved 02-36 Motor Mechanical 02-37 0.0~10.0 Loss Group 03: External Digital Input and Output Parameters Control mode Code Parameter Name Setting Range Default Unit Attribut SLV SV...
  • Page 95 Group 03: External Digital Input and Output Parameters Control mode Code Parameter Name Setting Range Default Unit Attribut SLV SV SLV2 15: External Baseblock Function Command (rotation Setting-S3 freely to stop) 16: PID Control Disable 17: Fault Reset (RESET) 18: Reserved 19: Speed Search 1 (from the maximum frequency)
  • Page 96 Group 03: External Digital Input and Output Parameters Control mode Code Parameter Name Setting Range Default Unit Attribut SLV SV SLV2 Terminal between Speed and Torque Function 45: Negative Torque Setting-S7 Command 46: Zero-Servo Command 47: Fire mode(Forced Operation mode) 48: KEB Acceleration 49: Parameters Writing Allowable...
  • Page 97 Group 03: External Digital Input and Output Parameters Control mode Code Parameter Name Setting Range Default Unit Attribut SLV SV SLV2 1xxxb: S8 B Contact 0: During Running 1: Fault Contact Output 2: Frequency Agree 3: Setting Frequency Agree 4: Frequency Detection 1 0 3-13+03-14) ≧...
  • Page 98 Group 03: External Digital Input and Output Parameters Control mode Code Parameter Name Setting Range Default Unit Attribut SLV SV SLV2 38: Brake Release 39: Frequency Detection 1 (dedicated for Crane) 40: Frequency Output 41: Position Agree (Position Mode) 42~44: Reserved 45: PID sleep 46~49: Reserved 50: Frequency Detection...
  • Page 99 Group 03: External Digital Input and Output Parameters Control mode Code Parameter Name Setting Range Default Unit Attribut SLV SV SLV2 03-11, 03-12 Photo-coupler Range and definition are 03-21 Output Selection the same as those of (DO2-DOG) 03-11, 03-12 03-22 Reserved 03-23 Reserved...
  • Page 100 Group 03: External Digital Input and Output Parameters Control mode Code Parameter Name Setting Range Default Unit SLV SV SLV2 Attribute 1: Frequency Command 2: Output Frequency 3: Output Frequency after Soft-Start Function Setting of 4: Motor Speed 03-35 Pulse Output 5: PID Feedback 6: PID Input 7: PG Output (with PG...
  • Page 101 Group 03: External Digital Input and Output Parameters Control mode Code Parameter Name Setting Range Default Unit SLV SV SLV2 Attribute Detection Level 6 Current Agree 03-53 0.0~999.9 Note4 Level 2 * 2-wire operation mode: 29; 3-wire operation mode: 26. * *If the maximum output frequency of motor is over 300HZ, the frequency resolution is changed to 0.1Hz Note: For frame 1, the DO2 function is setting by 03-12.
  • Page 102 Group 04: External Analog Input and Output Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 8: Frequency Lower Limit 9: Jump Frequency 4 10: Added to AI1 11: Positive torque limit 12: Negative torque limit 13: Regenerative Torque Limit 14: Positive / Negative...
  • Page 103 Group 04: External Analog Input and Output Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV2 AI2 Signal Scanning and 04-06 0.00~2.00 0.03 Filtering Time 04-07 AI2 Gain 0.0~1000.0 100.0 04-08 AI2 Bias -100.0~100.0 0: AI3:0~10V AI Input Signal 04-09 1: AI3:-10~10V Type of I/O card...
  • Page 104 Group 04: External Analog Input and Output Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV2 04-14 Reserved 04-15 Reserved Range and definition are AO2 Function 04-16 the same as those of Setting 04-11. 04-17 AO2 Gain 0.0~1000.0 100.0 04-18 AO2 Bias...
  • Page 105 Group 05: Multi-Speed Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 *Frequency Setting 05-06 0.00~599.00 40.00 of Speed-Stage 5 *Frequency Setting 05-07 0.00~599.00 50.00 of Speed-Stage 6 *Frequency Setting 05-08 0.00~599.00 50.00 of Speed-Stage 7 *Frequency Setting 05-09 0.00~599.00...
  • Page 106 Group 05: Multi-Speed Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Acceleration Time Setting of Multi 05-27 0.1~6000.0 10.0 Speed 5 Deceleration Time Setting of Multi 05-28 0.1~6000.0 10.0 Speed 5 Acceleration Time Setting of Multi 05-29 0.1~6000.0 10.0...
  • Page 107 Group 05: Multi-Speed Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Deceleration Time Setting of Multi 05-44 0.1~6000.0 10.0 Speed 13 Acceleration Time Setting of Multi 05-45 0.1~6000.0 10.0 Speed 14 Deceleration Time Setting of Multi 05-46 0.1~6000.0 10.0...
  • Page 108 Group 06: Automatic Program Operation Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV 0: Disable 1: Execute a single cycle operation mode. Restart speed is based on the previous stopped speed. 2: Execute continuous cycle operation mode. Restart speed is based on the previous stopped speed.
  • Page 109 Group 06: Automatic Program Operation Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV of Operation-Stage *Frequency Setting 06-05 of Operation-Stage 0.00~599.00 40.00 *Frequency Setting 06-06 of Operation-Stage 0.00~599.00 50.00 *Frequency Setting 06-07 of Operation-Stage 0.00~599.00 50.00 *Frequency Setting 06-08...
  • Page 110 Group 06: Automatic Program Operation Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV Setting of Speed-Stage 3 Operation Time Setting of 06-20 0.0~6000.0 Speed-Stage 4 Operation Time Setting of 06-21 0.0~6000.0 Speed-Stage 5 Operation Time Setting of 06-22 0.0~6000.0...
  • Page 111 Group 06: Automatic Program Operation Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV Direction Selection 2: Reverse of Speed-Stage 4 Operation 0: Stop 1: Forward Direction Selection 06-37 2: Reverse of Speed-Stage 5 Operation 0: Stop 1: Forward Direction Selection 06-38 2: Reverse...
  • Page 112 Group 07: Start /Stop Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Momentary Power 0: Disable Loss/Fault Restart 07-00 1: Enable Selection Fault Auto-Restart 07-01 0~7200 Time Number of Fault Auto-Restart 07-02 0~10 Attempts 07-03 Reserved 0: When the external run...
  • Page 113 Group 07: Start /Stop Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Operating Current Speed Search 0~100 07-20 Operating Current Integral Time of 0.1~10.0 07-21 Speed Searching Delay Time of 0.0~20.0 07-22 Speed Searching Voltage Recovery 0.1~5.0 07-23...
  • Page 114 Group 07: Start /Stop Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 limited 07-37 Reserved 07-41 07-42 Voltage Limit Gain 0.0~50.0 Note2 Short-circuit 07-43 Braking Time of 0.00~100.00 0.00 Note3 PM Speed Search DC Braking Time 07-44 of PM Speed 0.00~100.00...
  • Page 115 Group 08: Protection Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 1xxxb: Stall prevention in operation is based on deceleration time of speed-stage 2. Stall Prevention HD:150 Level in 08-01 20~200 ND:120 Acceleration 230V: 330V~410V 385V Stall Prevention 460V: 660V~820V...
  • Page 116 Group 08: Protection Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Phase Loss 1: Enable Protection Selection of Output 0: Disable Phase Loss 08-10 1: Enable Protection 08-11 Reserved 08-12 0: Over-Torque Detection is Disabled. 1: Start to Detect when Selection of Reaching the Set...
  • Page 117 Group 08: Protection Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Detection Time of Low-Torque 08-20 0.0~10.0 Detection Limit of Stall Prevention in Acc 08-21 1~100 over Base Speed Stall Prevention Detection Time in 08-22 2~100 Operation...
  • Page 118 Group 08: Protection Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Acceleration Stall ND:120 Prevention Level Motor2 08-41 Acceleration Stall 1~100 Prevention Limit PTC Protection 08-42 0.1~10.0V Level 08-43 PTC Restart Level 0.1~10.0V PTC Warning 08-44 0.1~10.0V Level...
  • Page 119 Group 08: Protection Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Mode AI2 Signal Loss : K eep Running Selection of Fire F ire Mode Speed : 08-58 Mode AI2 Signal (08-52) Note4 M aximum Output :...
  • Page 120 Group 09: Communication Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Occurs. 2: Deceleration to Stop Based on Deceleration Time 2 when Communication Fault Occurs. 3: Keep Operating when Communication Fault Occurs. Comm. Fault 1~20 09-08 Tolerance Count...
  • Page 121 Group 10: PID Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Differential Time 0.00~10.00 10-07 0.00 AI1 Frequency 0.00~599.00 10-08 Note2 Limit 10-09 PID Bias -100.0~100.0 PID Output Delay 0.00~10.00 10-10 0.00 Time 0: Disable PID Feedback Loss Detection 1: Warning...
  • Page 122 Group 10: PID Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 PID Feedback PID Decimal 10-34 0 ~ 4 Width 0: % 1: FPM 2: CFM 3: SPI 4: GPH 5: GPM 6: IN 7: FT 8: /s 9: /m...
  • Page 123 Group 10: PID Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 10-46 Proportional Gain 10-47 0.00~10.00 1.00 Note4 3(P) 10-48 Integral Time 3(I) 0.00~100.00 1.00 Note4 Differential Time 10-49 0.00~10.00 0.00 Note4 3(D) * If the maximum output frequency of motor is over 300HZ, the frequency resolution is changed to 0.1Hz 4-48...
  • Page 124 Group 11: Auxiliary Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 0: Allow Forward and Reverse Rotation 1: Only Allow Forward Direction Lock 11-00 Selection Rotation 2: Only Allow Reverse Rotation 0: Carrier Output 11-01 Carrier frequency Frequency Tuning 1~16: 1~16KHz...
  • Page 125 Group 11: Auxiliary Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Saving Tuning Adjustment Time of Automatic 0~5000 11-22 Energy Saving Detection Level of Automatic Energy 0~100 11-23 Saving Coefficient of Automatic Energy 0.00~655.34 (Note4) 11-24 Saving...
  • Page 126 Group 11: Auxiliary Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 0: Decelerate to Stop when Reference Selection of Frequency Disappears Reference 1: Operation is set by Frequency 11-41 Disappearance Parameter 11-42 Detection when Reference Frequency Disappears Disappearance Level of...
  • Page 127 Group 11: Auxiliary Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 0: When UP/DOWN in Keypad is Disabled, it will be Enabled if Pressing ENTER after Frequency UP/DOWN 11-56 Modification. Selection 1: When UP/DOWN in Keypad is Enabled, it will be Enabled upon Frequency...
  • Page 128 Group 11: Auxiliary Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Preventing Oscillation 3 Time Parameter of 11-71 Preventing 0~30000 Note1 Oscillation 3 Gain of Preventing 11-72 Oscillation for 0.01~300.00 30.00 Note1 switch frequency 1 Gain of Preventing 11-73 Oscillation for...
  • Page 129 Group 12: Monitoring Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 00000~77777 From the leftmost bit, it displays the screen when press DSP key in order. 0:no display Display Screen 1: Output Current 00321 12-00 Selection (LED) 2: Output Voltage...
  • Page 130 Group 12: Monitoring Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 LED display is shown as below no input correspondences to input and output Status Display of Digital Input & 12-05 Output Terminal (LED / LCD) LCD display is shown as below 12-06...
  • Page 131 Group 12: Monitoring Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Display the current DC 12-20 DC Voltage (Vdc) voltage Display the current output 12-21 Output Power (kw) power Display motor’s current rotation speed in VF/SLV mode Motor’s rotation speed = output frequency...
  • Page 132 Group 12: Monitoring Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 12-31 Reserved Display output value of speed controller 12-32 ASR Output (100% corresponds to the maximum frequency set by 01-02) Display feedback’s speed value of speed controller 12-33 PG Feedback (100% corresponds to the...
  • Page 133 Group 12: Monitoring Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 1: CRC Error 1: Data length Error RS-485 Error 1: Data Function Error 12-42 1: Parity Error Code 1: Overrun Error 1: Framing Error 1: Time out Error Reserved 1 : I n v e r t e r r e a d y...
  • Page 134 Group 12: Monitoring Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Display DI/DO status of DIO Status of previous fault 12-59 Previous Fault Description is similar to 12-05 Display inverter status of Inverter Status of previous fault 12-60 Previous Fault...
  • Page 135 Group 13: Maintenance Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Inverter Capacity 13-00 ---- Selection 13-01 Software Version 0.00-9.99 0: Disable to Clear Cumulative Operation Clear Cumulative 13-02 Hours Operation Hours 1: Clear Cumulative Operation Hours Cumulative 0~23...
  • Page 136 Group 13: Maintenance Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 (60Hz)(230/400V) 12: 3 wire Initialization (60Hz)(230/400V) 13: 2 wire Initialization (50Hz)(230/400V) 14: 3 wire Initialization (50Hz)(230/400V) 15: 2 wire Initialization (50Hz)(220/380V) (Note4) 16: 3 wire Initialization (50Hz)(220/380V) (Note4) 0: No Clearing Fault...
  • Page 137 Group 13: Maintenance Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Previous night Exhibit Previous night 13-29 Note1 Fault History Fault History Previous ten Fault Exhibit Previous ten 13-30 Note1 History Fault History Previous eleven Exhibit Previous eleven 13-31 Note1...
  • Page 138 Group 13: Maintenance Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 Previous thirty Exhibit Previous thirty 13-50 Note1 Fault History Fault History Note: Main frequency setting is 12-16 in LCD. It’s equal to Frequency Setting of Speed-Stage 0 (05-01) 4-63...
  • Page 139 Group 14: PLC Setting Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 14-00 T1 Set Value 1 0~9999 Note6 T1 Set Value 2 14-01 0~9999 Note6 (Mode 7) 14-02 T2 Set Value 1 0~9999 Note6 T2 Set Value 2 14-03...
  • Page 140 Group 14: PLC Setting Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 14-37 MD1 Set Value 2 0~65534 Note6 (Note4) 14-38 MD1 Set Value 3 0~65534 Note6 (Note4) 14-39 MD2 Set Value 1 0~65534 Note6 (Note4) 14-40 MD2 Set Value 2...
  • Page 141 Group 15: PLC Monitoring Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute SLV SV SLV2 15-19 C4 Current Value 0~65534 (Note4) 15-20 C5 Current Value 0~65534 (Note4) 15-21 C6 Current Value 0~65534 (Note4) 15-22 C7 Current Value 0~65534 (Note4) 15-23 C8 Current Value...
  • Page 142 Group 16: LCD Function Parameters Control mode Attribute Code Parameter Name Setting Range Default Unit V/F+P SLV SV SLV2 way and unit of frequency command 0: Frequency display unit is 0.01Hz 1: Frequency display unit is 0.01% 2: Frequency display unit is rpm.
  • Page 143 Group 16: LCD Function Parameters Control mode Attribute Code Parameter Name Setting Range Default Unit V/F+P SLV SV SLV2 18: KW 19: m 20: °C 21: RPM 22: Bar 23: Pa 24: KPa 16-05 LCD Backlight 16-06 Reserved 0: Do not copy parameters 1: Read inverter parameters and save...
  • Page 144 Group 16: LCD Function Parameters Control mode Attribute Code Parameter Name Setting Range Default Unit V/F+P SLV SV SLV2 4:Thu,:5:Fri,:6:Sat, 7:Sun 16-17 P1 Stop Date 00:00 ~ 23:59 16-18 P2 Start Time 08:00 00:00 ~ 23:59 16-19 P2 Stop Time 18:00 16-20 P2 Start Date 1:Mon, 2:Tue, 3:Wed,...
  • Page 145 Group 16: LCD Function Parameters Control mode Attribute Code Parameter Name Setting Range Default Unit V/F+P SLV SV SLV2 30:Off+P2+P3+P4 31:Off+P1+P2+P3+P4 0: Off 1: By Timer 1 Selection of RTC 2: By Timer 2 16-36 Speed 3: By Timer 3 4: By Timer 4 5: By Timer 1+2 xxx0b: RTC Run1...
  • Page 146 Group 17: Automatic Tuning Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute V/F+ SLV SV SLV2 0: Rotation Auto-tuning 1: Static Auto-tuning 2: Stator Resistance VF:2 Measurement VF+PG 3: Reserved Mode Selection of 4: Loop Tuning 17-00 Automatic Tuning* 5: Rotation Auto-tuning SLV:6...
  • Page 147 Group 17: Automatic Tuning Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute V/F+ SLV SV SLV2 Proportion of 17-12 Motor Leakage 0.1~15.0 Inductance Motor Slip 17-13 0.10~20.00 1.00 Frequency Selection of 0:VF Rotation Auto-tuning 17-14 Rotation 1: Vector Rotation Auto-tuning Auto-tuning KVA: The default value of this parameter will be changed by different capacities of inverter.
  • Page 148 Group 18: Slip Compensation Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute V/F+ SLV SV SLV2 Slip VF:0.0 Compensation 18-00 0.00~2.50 Gain at Low SLV* Speed. Slip Compensation 18-01 -1.00~1.00 Gain at High Speed. Slip Compensation 18-02 0~250 Limit Slip...
  • Page 149 Group 20: Speed Control Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute V/F+P SLV SV SLV2 20-00 ASR Gain 1 0.00~250.00 ASR Integral Time 0.001~10.000 20-01 20-02 ASR Gain 2 0.00~250.00 ASR Integral Time 0.001~10.000 20-03 ASR Integral Time 0~300 20-04 Limit...
  • Page 150 Group 20: Speed Control Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute V/F+P SLV SV SLV2 0: Deceleration to stop Over Speed (OS) 1: Coast to stop 20-19 Selection 2: Continue to operate Over Speed (OS) 0~120 20-20 Detection Level Over Speed (OS)
  • Page 151 Group 21: Torque And Position Control Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute V/F+P SLV SV SLV2 0: Speed Control Torque Control 21-00 Selection 1: Torque Control Filter Time of 0~1000 21-01 Torque Reference 0: According to AI Input 1: According to the Set Value of 21-03 Speed Limit...
  • Page 152 Group 21: Torque And Position Control Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute V/F+P SLV SV SLV2 The Command of the Pulse Number 21-17 -9999 ~ 9999 of Section 3 The Command of Rotation Cycle 21-18 -9999 ~ 9999 Number of Section The Command of...
  • Page 153 Group 21: Torque And Position Control Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute V/F+P SLV SV SLV2 of Section 10 The Command of Rotation Cycle 21-32 -9999 ~ 9999 Number of Section The Command of the Pulse Number 21-33 -9999 ~ 9999 of Section 11...
  • Page 154 Group 22: PM Motor Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute V/F+P SLV SV SLV2 PM Motor Rated 22-00 0.00~600.00 Power PM Motor Rated 230V: 50.0~240.0 220.0 22-01 Note7 Voltage 460V: 100.0~480.0 440.0 PM Motor Rated 25%~200% inverter’s 22-02 Current...
  • Page 155 Group 22: PM Motor Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute V/F+P SLV SV SLV2 Offset Angle of the 22-20 Magnetic Pole and 0~360 PG Origin 0: PM Motor Tuning is not Active. 1: Parameter Auto-tune (for PMSLV Tuning) 2: Magnetic Pole 22-21 PM Motor Tuning...
  • Page 156 Group 22: PM Motor Parameters Control mode Code Parameter Name Setting Range Default Unit Attribute V/F+P SLV SV SLV2 enabled) Mode 2 Flux-weakening 80~110 (Note 7) (related to parameter 22-29 Voltage Command 22-18) Restriction SPM Speed 1~100 22-30 Estimation Gain Note4 (Note7) SPM Speed...
  • Page 157: Description Common Of Parameters

    4.4 Description Common of Parameters 00-00 Control mode selection 0: V/F 1: V/F+PG 2: SLV Range 3: SV 4: PMSV 5: PMSLV 6: SLV2 The inverter offers the following control modes: Value Mode Info Application General Purpose Applications which do V/F Control without PG not require high precision speed control - Auto-tuning is not required.
  • Page 158 00-00=2: Sensorless Vector Control Verify the inverter rating matches the motor rating. Perform rotational auto-tune to measure and store motor parameters for higher performance operation. Perform non-rotational auto-tune if it’s not possible to rotate the motor during auto-tune. Refer to parameter group 17 for details on auto-tuning. 00-00=3: Closed Loop Vector Control Verify the inverter rating matches the motor rating.
  • Page 159 00-02=1: External terminal control External terminals are used to start and stop the inverter and select motor direction. 00- 03 Alternative RUN Command Selection 0: Keypad control 1: External terminal control Range 2: Communication control 3: PLC 00-03=0: Keypad Control Use the keypad to start and stop the inverter and set direction with the forward / reverse key).
  • Page 160 Operation (normally open Momentary switch) Run Command (On:Run) Stop (Normally closed Momentary Stop Command switch) (Off: Stop) S7 Forward/Reverse selection 24VG Figure 4.4.2 wiring example of 3-wire Figure 4.4.3 3-wire operation ■ 2-wire operation with hold function To enable 2-wire operation with hold function, set any of parameters 03-02 to 03-07 (terminal S3 ~ S8) to 53. When this mode is enabled set terminal S1 (03-00=0) to forward and S2 (03-01=1) to reverse run command.
  • Page 161 Forward Run Command (On: Run Forward) Reverse Run Command Momentary switches (On: Run Reverse) (Push buttons) S5 Stop (On: Stop) 24VG Note: Terminal S1, S2 and S5 must be closed for a minimum of 50ms to activate operation. Note: The inverter will display SE2 error when input terminals S1-S8 is set to 53 and 26 simultaneously. 00-02=2: Communication control The inverter is controlled by the RS-485 port.
  • Page 162 00-05 Main Frequency Command Source Selection 00-06 Alternative Frequency Source Selection 0: Keypad 1: External control (analog) 2: Terminal UP / DOWN 3: Communication control Range 4: Pulse input 5: Reserved 6: Reserved 7: AI2 Auxiliary Frequency 8: Manual Pulse Generator (MPG) (only in parameter 00-05) 00-05/00-06= 0: Keypad Use the digital operator to enter frequency reference or to set parameter 05-01 (frequency reference 1) as...
  • Page 163 +10V Main Speed Frequency Reference Ω Command (Voltage Input) Main Speed Frequency Reference Command (Current Input) SW 2 -10V Figure 4.4.4 Analog input as main frequency reference command (For U type) 00-05/00-06= 2: Terminal UP / DOWN The inverter accelerates with the UP command closed and decelerates with the DOWN command closed. Please refer to parameter 03-00 ~ 03-07 for additional information.
  • Page 164 Figure 4.4.5 Frequency reference from pulse input 00-05/00-06= 7: AI2 Auxiliary Frequency When 04-05 is set to 0 (auxiliary frequency), frequency command is provided by multi-function analog input AI2 and the maximum output frequency (01-02, Fmax) = 100%. When 04-05 is not set to 0, the frequency is 0. Refer to the parameters of 03-00~03-07 for multi-speed descriptions.
  • Page 165 Upper Limit Frequency 00-12 Range 0.1~109.0 % Set the maximum frequency reference as a percentage of the maximum output frequency. Maximum output frequency depends on motor selection. Motor 1: Maximum frequency parameter 01-02. Motor 2: Maximum frequency parameter 01-16. 00-13 Lower Limit Frequency Range 0.0~109.0 %...
  • Page 166 00-14 Acceleration time 1 Range 0.1~6000.0 Sec 00-15 Deceleration time 1 Range 0.1~6000.0 Sec Acceleration time is the time required to accelerate from 0 to 100% of maximum output frequency. Deceleration time is the time required to decelerate from 100 to 0% of maximum output frequency. Motor 1: Maximum frequency is set by parameter 01-02 and Motor 2 Maximum frequency is set by parameter 01-16.
  • Page 167 01-V/F Control Parameters 01-00 V/F curve selection Range 0~FF The V/F curve selection is enabled for V/F mode with or without PG or SLV2 mode. Make sure to set the inverter input voltage parameter 01-14. There are three ways to set V/F curve: (1) 01-00 = 0 to E: choose any of the 15 predefined curves (0 to E).
  • Page 168 1 - 2HP V/F curve selection (460V) Type Specification 01-00 V/F curve Type Specification 01-00 V/F curve Starting Torque 50Hz 50Hz High ( 50Hz Starting Default Torque setting) 60Hz Saturati Starting ( 60Hz Torque Default 60Hz 60Hz setting ) 50Hz Saturati Starting Torque...
  • Page 169 3 - 30HP V/F curve selection (460V) Type Specification 01-00 V/F curve Type Specification 01-00 V/F curve Starting Torque 50Hz 50Hz High ( 50Hz Starting Default Torque setting ) 60Hz Saturati Starting ( 60Hz Torque Default setting ) 60Hz 60Hz 50Hz Saturati Starting...
  • Page 170 40HP and above V/F curve selection (460V) Type Specification 01-00 V/F curve Type Specification 01-00 V/F curve Starting Torque 50Hz 50Hz High ( 50Hz Starting Default Torque setting ) 60Hz Saturati Starting ( 60Hz Torque Default setting ) 60Hz 60Hz 50Hz Saturati Starting...
  • Page 171 01-02 Maximum output frequency of motor 1 Range 4.8~599.0 Hz 01-03 Maximum output voltage of motor 1 200V: 0.1~255.0 V 400V: 0.2~510.0 V Range 575V: 0.1~670.0 V 690V: 0.1~804.0 V 01-04 Middle output frequency 2 of motor 1 Range 0.0~599.0 Hz 01-05 Middle output voltage 2 of motor 1 200V: 0.0~255.0 V...
  • Page 172 V/F curve setting (01-02~01-09 and 01-12~01-13) Select any of the predefined V/F curves setting ‘0’ to ‘E’ that best matches your application and the load characteristic of your motor, choose a custom curve setting ‘F’ or ‘FF’ to set a custom curve. Important: Improper V/F curve selection can result in low motor torque or increased current due to excitation.
  • Page 173 When setting the frequency related parameters for a custom V/F curve values make sure that: ≥ > >F > base mid2 mid1 (01-02) (01-12) (01-04) (01-06) (01-08) The ‘SE03’ V/F curve tuning error is displayed when the frequency values are set incorrectly. When 01-04 and 01-05 (or 01-18 and 01-19) are set to 0, the inverter ignores the set values of Fmid2 and Vmid2.
  • Page 174 02 - IM Motor Parameters 02- 00 No-load current of motor 1 Range 0.01~600.00 A 02- 01 Rated current of motor 1 V/F and V/F+PG modes are 10%~200% of inverter’s rated current. SLV, SV modes are Range 25%~200% of inverter’s rated current. 02-03 Rated rotation speed of motor1 Range...
  • Page 175 03- External Digital Input and Output Parameters 03-00 Multi-function terminal function setting – S1 03-01 Multi-function terminal function setting – S2 03-02 Multi-function terminal function setting – S3 03-03 Multi-function terminal function setting – S4 03-04 Multi-function terminal function setting – S5 03-05 Multi-function terminal function setting –...
  • Page 176 40: Switching between motor 1/motor 2 41: PID Sleep 42: PG disable 43: PG integral reset 44: Mode switching between speed and torque 45: Negative torque command 46: Zero-Servo Command 47: Fire Mode (Forced Operation mode) 48: KEB acceleration 49: Parameter writing allowable 50: Unattended Start Protection (USP) 51: Mode switching between speed and position 52: Multi Position Reference Enable...
  • Page 177 Figure 4.4.16 Multi-function digital input and related parameters 4-102...
  • Page 178 Table 4.4.27 Multi-function digital input setting (03-00 to 03-07) (“O”: Enable, “X”: Disable) Function Control mode Value Description V/F V/F+ Name LCD Display SLV SV 2-wire type 2-Wire 2- wire (ON : Forward operation (Forward (FWD-RUN) command). operation) 2-wire type 2-Wire 2- wire (ON : Reverse operation (Reverse...
  • Page 179 Function Control mode Value Description V/F+ Name LCD Display SLV SV ON: Manual energy saving Manual energy Energy saving control is based on the saving function settings of 11-12 and 11-18. PID integral reset PID I-Reset ON: PID integral value reset Reserved Reserved Reserved...
  • Page 180 Function Control mode Value Description V/F+ Name LCD Display SLV SV ON: Frequency wobbling Traversing Wobble Run operation operation Upper Deviation of ON: Upper offset off frequency traverse operation Upper Dev Run wobbling ON: Lower offset off frequency Lower Deviation of Lower Dev Run traverse operation wobbling...
  • Page 181 Function Control mode Value Description V/F+ Name LCD Display SLV SV Reserved Reserved Reserved Reserved Reserved Reserved Safety Function Safety Function ON: Stop by the setting of 08-30 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved EPS function EPS Input ON:EPS input Reserved Reserved...
  • Page 182 Table 4.4.28 Multi-speed operation selection Multi-function digital input (S1 to S8) Speed Frequency selection Multi-speed Multi-speed Multi-speed Multi-speed frequency frequency 4 frequency 3 frequency 2 frequency 1 reference Frequency command 0( 05-01) or main speed frequency Auxiliary speed frequency (04-05 = 0) or frequency reference 1 ( 05-02) Frequency command 2 ( 05-03) Frequency command 3 ( 05-04)
  • Page 183 Wiring Example: Figure 4.4.17 and 4.4.18 show an example of a 9-speed operation selection. Figure 4.4.17 Control Terminal Wiring Example Figure 4.4.18: 9-speed timing diagram *1. When 00-05=1, multi-speed frequency reference is set by analog input AI1 or AI2. When 00-05=0, multi-speed frequency reference is set by 05-01.
  • Page 184 multi-speed frequency reference is set by 05-02. 03-0X =06: Forward jog run command, uses jog frequency parameter 00-18. Note: Jog command has a higher priority than other frequency reference commands. • Jog command uses stop mode set in parameter 07-09 when Jog command is active > 500ms. •...
  • Page 185 Figure 4.4.22 External base block operation 03-09 Multi-function terminal S1-S4 type selection xxx0b: S1 A contact xxx1b: S1 B contact xx0xb: S2 A contact xx1xb: S2 B contact Range x0xxb: S3 A contact x1xxb: S3 B contact 0xxxb: S4 A contact 1xxxb: S4 B contact 03-10 Multi-function terminal S5-S8 type selection...
  • Page 186 Relay (R1A-R1C) output 03-11 03-12 Relay (R2A-R2C) output 0: During Running 1: Fault contact output 2: Frequency Agree 3: Setting Frequency Agree (03-13 ± 03-14) 4: Frequency detection 1 (> 03-13, hysteresis range is the setting value of 03-14) 5: Frequency detection 2 (< 03-13, hysteresis range is the setting value of 03-14) 6: Automatic restart 7~8: Reserved 9: Baseblock...
  • Page 187 58: Frequency Deceleration Detection 59: Over-Temperature Detection Note: For frame 1, the DO2 function is setting by 03-12. Default function Related parameter Fault signal 03-11 During 03-12 Running *use DO2/DOG on Frame 1. Figure 4.4.25 Multi-function digital output and related parameters The following table is the parameter setting in the control board and optical coupler.
  • Page 188 Function Control mode Setting Contents Name LCD display SLV SV Reserved Reserved Reserved Baseblock Baseblock ON: During baseblock Reserved Reserved Reserved Reserved Reserved Reserved Over-Torque Over Torque ON: Over torque detection is ON Detection Current Agree Current Agree ON: when output current > 03-15 is ON Mechanical Braking ON: Mechanical braking release frequency...
  • Page 189 Function Control mode Setting Contents Name LCD display SLV SV Zero Speed Servo Status Zero Servo ON: Zero servo function is active (Position Mode) Communicatio Control From ON: Communication control contacts n control Communication (location:2507H). contacts Reserved Reserved Reserved Reserved Reserved Reserved Reserved...
  • Page 190 Function Control mode Setting Contents Name LCD display SLV SV Over-Tempera ON: Heat Sink Temperature >08-46, OH Detect hysteresis Zone 08-47 ture Detection 04-External Analog Input / Output Parameter 04-00 AI input signal type 0: AI1: 0~10V AI2: 0~10V 1: AI1: 0~10V AI2: 4~20mA 2: AI1: -10~10V AI2: 0~10V...
  • Page 191 d relate Figure 4.4.35 Analog inputs an d parameters (for Standard U type) Gain setting: Sets the level in % that corresponds to a 10V, -10V or 20mA signal at the analog input. (Set the maximum output frequency 01-02 to 100 %) Bias setting: Sets the level in % that corresponds to a 0V or 4mA signal at the analog input.
  • Page 192 AI negative characteristics 04-04 ( Through the following figure negative characteristics diagram find out the AI Input 10V, -10V, or 20mA input relative frequency reference to be used for the ratio of maximum output frequency (set the maximum output frequency 01-02 to 100%), the ratio will be presented in reverse. 1 0 0 % - 1 0 V 0 % 0 V...
  • Page 193 28: Communication control 04-12 AO1 gain Range 0.0~1000.0% 04-13 AO1 bias Range -100.0~100.0% 04-16 AO2 function setting Range See parameter 04-11 04-17 AO2 gain Range 0.0~1000.0% 04-18 AO2 bias Range -100.0~100.0% For the analog output and related parameters, refer to figure 4.4.50. Figure 4.4.50 Analog outputs and related parameters Analog output AO1 and AO2 adjustment (04-12, 04-13 and 04-17, 04-18) Signal: Use parameter 04-11 to select the analog output signal for AO1 and parameter 04-16 to select the analog...
  • Page 194 Figure 4.4.51 Analog output level adjustment 04-19 AO output signal type : AO1 0~10V; AO2 0~10V 【 【 【 【 】 】 】 】 【 【 【 【 】 】 】 】 : AO1 0~10V; AO2 4~20mA Range 【 【 【 【 】...
  • Page 195 07-01> 07-18: Automatic restart time interval is set by fault reset time (07-01). Note: Automatic restart time interval is time of 07-18 plus 07-01 and delay time of peed search (07-22). Refer to Figure 4.4.55 for automatic restart interval. Figure 4.4.55 Automatic restart interval 07-02 Number of restart attempts Range...
  • Page 196 Figure 4.4.56 Auto-restart operation. The automatic restart function is active for the following faults. Please note that when the fault is not listed in the table the inverter will not attempt an automatic restart. Parameter Numbers of Faults Name Restart 07-00 UV (under voltage) Unlimited...
  • Page 197 07- 04 Direct Start at Power on : When the external run command is enabled, direct start at power up 【 【 【 【 】 】 】 】 Range : When the external run command is enabled, unable to direct start at power-up. 【...
  • Page 198 Note: S curve setting will add to the overall stop time Figure 4.4.59 Deceleration to stop 07-09=1: Coast to stop When a stop command is issued, the motor will coast to a stop. Stop time depends on motor load and friction of the system.
  • Page 199 When a stop command is issued, the inverter will turn off the output (Baseblock) and after the minimum Baseblock time (07-18) has expired activate DC braking (07-07). Refer to Figure 4.4.61. The DC braking time (t ) of Figure 4.4.61 is determined by the value of 07-08 (DC Braking start time) and the DCDB output frequency at the time the stop command was issued.
  • Page 200 Figure 4.4.62 Coast to stop with timer 4-125...
  • Page 201 13-08 Restore factory setting / Initialize 0 : No initialization 2 : 2 wire initialization (60Hz) (230V/460V/690V) 3 : 3 wire initialization (60Hz) (230V/460V/690V) 4 : 2 wire initialization (50Hz) (230V/415V) 5 : 3 wire initialization (50Hz) (230V/415V) 6 : 2 wire initialization (50Hz) (200V/380V/575V) Range 7 : 3 wire initialization (50HZ)
  • Page 202: Chapter 5 Check Motor Rotation And Direction

    Chapter 5 Check Motor Rotation and Direction This test is to be performed solely from the inverter keypad. Apply power to the inverter after all the electrical connections have been made and protective covers have been re-attached. Important: Motor rotation and direction only applies to standard AC motors with a base frequency of 60Hz.
  • Page 203: Chapter 6 Speed Reference Command Configuration

    Chapter 6 Speed Reference Command Configuration The inverter offers users several choices to set the speed reference source. The most commonly used methods are described in the next sections. Frequency reference command is selected with parameter 00-05. 00-05: Main Frequency Command (Frequency Source) This function sets the frequency command source.
  • Page 204: Reference From External Analog Signal (0-10V / 4-20Ma)

    6.2 Reference from External Analog Signal (0-10V / 4-20mA) Analog Reference: 0 – 10 V (Setting 00-05 = 1) Analog Reference: Potentiometer / Speed Pot (Setting 00-05 = 1)
  • Page 205 Analog Reference: 4 – 20mA (Setting 00-05 = 1)
  • Page 206: Reference From Serial Communication Rs485

    6.3 Reference from Serial Communication RS485 (00-05=3) 8 7 6 5 4 3 2 1 To set the speed reference for the inverter via serial communication parameter 00-05 has be set to “3” for frequency command via serial communication. Default Communication Setting is: Address “1”, 9600 Bits/sec, 1 Start Bit, 1 Stop Bit, and No Parity The serial communication link function uses RS485 Modbus RTU protocol and allows for: 1) Monitoring (data monitoring, function data check).
  • Page 207 Examples: Frequency Reference Command: 10.00 Hz (Inverter Node Address: 01) Command String (hexadecimal): 01 06 25 02 03 E8 23 B8 To set the frequency reference to 10.00, a value of ‘1000’ (03E8h) has to be send to the inverter. Frequency Reference Command: 30.00 Hz (Inverter Node Address: 01) Command String (hexadecimal): 01 06 25 02 0B B8 24 44 To set the frequency reference to 30.00, a value of ‘3000’...
  • Page 208: Reference From Pulse Input

    6.4 Reference from Pulse Input (00-05=4) Serial pulse input (Internal resistence : 3.89 K) Specification Low Input Level: 0.0 to 0.5 V High Input Level: 4.0 to 13.5 V Duty cycle: (ON / OFF) 30 % to 70% Pulse Input frequency range: 50 to 32 KHz Set Pulse Input Setup as Frequency Reference Set parameter 00-05 to 4 and 03-30 to 0 to use the pulse input terminal PI as the frequency reference source.
  • Page 209: Reference From Two Analog Inputs

    6.5 Reference from two Analog Inputs Analog input AI1 is used as master frequency reference and analog input AI2 is used as auxiliary frequency reference. Analog Reference AI1: 0 – 10 V (Setting 00-05 = 1) Analog Reference AI2: 0 – 10 V (Setting 00-06 = 1, 04-05 = 1) Dipswitch SW2 04-00 Setting AI1 –...
  • Page 210: Chapter 7 Operation Method Configuration (Run / Stop)

    Chapter 7 Operation Method Configuration (Run / Stop) The inverter offers users several choices to run and stop from different sources. The most commonly used methods are described in the next sections. Operation command is selected with parameter 00-02. 00-02: Run Command Selection This function sets the frequency command source.
  • Page 211 7.2 Run/Stop from External Switch / Contact or Pushbutton (00-02=1) Use an external contact or switch to Run and Stop the inverter. Example: NPN wiring Permanent Switch / Contact...
  • Page 212 Momentary Contacts (Push Buttons) Use push button / momentary switch to Run and Stop the inverter. Set parameter 13-08 to 3, 5 or 7 for 3-wire program initialization, multi-function input terminal S1 is set to run operation, S2 for stop operation and S7 for forward/reverse command. 00-01 Operation Method = 1 03-07 Terminal S7 Function = 26 Note: Stop mode selection can be set with parameter 07-09, default is deceleration to stop.
  • Page 213 7.3 Run/Stop from Serial Communication RS485 (00-02=3) 8 7 6 5 4 3 2 1 To control (Run/Stop) the inverter via serial communication parameter 00-02 has be set to either a “2” for communication control. Default Communication Setting is: Address “1”, 19200 Bits/sec, 1 Start Bit, 1 Stop Bit, and No Parity The serial communication link function uses RS485 Modbus RTU protocol and allows for: 1) Monitoring (data monitoring, function data check).
  • Page 214 Examples: Run Forward Command (Inverter Node Address: 01) Command String (hexadecimal): 01 06 25 01 00 01 12 C6 Run Reverse Command (Inverter Node Address: 01) Command String (hexadecimal): 01 06 25 01 00 03 93 07 Stop Command (Inverter Node Address: 01) Command String (hexadecimal): 01 06 25 01 00 00 D3 06 Note: The last 2 bytes of the command strings consist of a CRC16 checksum, please refer to section 4.5 of the instruction manual for additional information.
  • Page 215 Chapter 8 Motor and Application Specific Settings It is essential that before running the motor, the motor nameplate data matches the motor data in the inverter. 8.1 Set Motor Nameplate Data (02-01, 02-05) 02-05 Rated power of motor 1 The nominal motor rated capacity is set at the factory. Please verify that the motor name plate data matches the motor rated capacity shown in parameter 02-05.
  • Page 216 8.2 Acceleration and Deceleration Time (00-14, 00-15) Acceleration and Deceleration times directly control the system dynamic response. In general, the longer the acceleration and deceleration time, the slower the system response, and the shorter time, the faster the response. An excessive amount of time can result in sluggish system performance while too short of a time may result in system instability.
  • Page 217 8.3 Emergency Stop The emergency stop time is used in combination with multi-function digital input function #14 (Emergency stop). When emergency stop input is activated the inverter will decelerate to a stop using the Emergency stop time (00-26) and display the [EM STOP] condition on the keypad. Note: To cancel the emergency stop condition the run command has to be removed and emergency stop input deactivated.
  • Page 218 8.4 Forward and Reverse Jog The jog forward command is used in combination with multi-function digital input function #6 (Jog Forward) and the jog reverse command is used in combination with multi-function digital input function #7 (Jog Reverse). Example: Jog Forward input terminal S5 (03-04 = 06) and Jog Reverse input terminal S7 (03-06=7) with NPN wiring.
  • Page 219 Chapter 9 Using PID Control for Constant Flow / Pressure Applications 9.1 What is PID Control? The PID function in the inverter can be used to maintain a constant process variable such as pressure, flow, temperature by regulating the output frequency (motor speed). A feedback device (transducer) signal is used to compare the actual process variable to a specified setpoint.
  • Page 220 Example 1: Example 2: Gain = 1.0 Gain = 2.0 Set-Point = 80% Set-Point = 80% Feedback = 78% Feedback = 78% Error = Set-point - Feedback = 2% Error = Set-point - Feedback = 2% Control Error = Gain x Error = 2% Control Error = Gain x Error = 4% Please note that an excessive gain can make the system unstable and oscillation may occur.
  • Page 221 Commonly used PID control modes 0001b: Forward operation: PID operation enabled, motor speeds increases when feedback signal is smaller than set-point (most fan and pump applications) 0011b: Reverse operation: PID operation enabled, motor slows down when feedback signal is smaller than set-point (e.g.
  • Page 222 Feedback Signal from AI1 (10-01 = 1), and set the input voltage to 0 – 10V / SW2 = V 9.3 Engineering Units (only for LCD) The PID setpoint scaling can be selected with parameter 16-03 and 16-04. Example: 0 – 200.0 PSI Setpoint, set 16-03 to 12000 (1 decimal, range 0 – 200) and 16-04 to 2 (PSI).
  • Page 223 9.4 Sleep / Wakeup Function The PID Sleep function can be used to prevent a system from running at low speeds and is frequently used in pumping application. The PID Sleep function is turned on by parameter 10-29 set to 1. The inverter output turns off when the PID output falls below the PID sleep level (10-17) for the time specified in the PID sleep delay time parameter (10-18).
  • Page 224 Chapter 10 Troubleshooting and Fault Diagnostics 10.1 General Inverter fault detection and early warning / self-diagnosis function. When the inverter detects a fault, a fault message is displayed on the keypad. The fault contact output energizes and the motor will coast to stop (The stop method can be selected for specific faults).
  • Page 225 LED display Description Cause Possible solutions The inverter output current over current • Set the longer acceleration exceeds the overcurrent • Deceleration time is too short time level in deceleration time short circuit • Short circuit or ground fault (08-23 = •...
  • Page 226 LED display Description Cause Possible solutions OPL output • Wiring loose in inverter output • Check output wiring / Phase loss at the output phase loss terminal. faster screws. side of the inverter, active • Motor rated current is less than 10% •...
  • Page 227 LED display Description Cause Possible solutions PG pulses are not received by the inverter for the time • PG cable disconnected. • Check PG wiring. specified in 20-26 (PG Open circuit • PG has no power. • Check PG power-supply. open circuit detection time).
  • Page 228 LED display Description Possible causes Corrective action External fault (Terminal S1) External fault Active when 03-00= 25 or (S1) 68, and Inverter external fault selection 08-24=0 or 1. External fault (Terminal S2) External fault Active when 03-01= 25 or (S2) 68, and Inverter external fault selection 08-24=0 or 1.
  • Page 229 LED display Description Possible causes Corrective action CF07 • Perform rotational or Motor control stationary auto-tune fault Motor control fault • SLV mode is unable to run motor. • Increase minimum output frequency (01-08) CF08 • Increase the value of 22-10 properly.
  • Page 230 10.3 Warning / Self-diagnosis Detection Function When the inverter detects a warning, the keypad displays a warning code (flash). Note: The fault contact output does not energize on a warning and the inverter continues operation. When the warning is no longer active the keypad will return to its original state. When the inverter detected a programming error (for example two parameters contradict each other of are set to an invalid setting), the keypad displays a self-diagnostics code.
  • Page 231 LED display Description Possible causes Corrective action The temperature of the Heatsink heat sink is too high. • Ambient temperature too • Install fan or AC to cool overheat Note: when OH1 fault high. surroundings. occurs three times within • cooling fan failed •...
  • Page 232 LED display Description Possible causes Corrective action (flash) External External base block baseblock (Terminal S4) (flash) External External base block baseblock (Terminal S5) (flash) External External base block baseblock (Terminal S6) • Multi-function input • Multifunction digital input function set incorrectly. external baseblock active.
  • Page 233 LED display Description Possible causes Corrective action Motor speed exceeds level set in 20-20 (PG (flash) Over speed Level) for the Motor over • Check ASR parameters time set in 20-21 (PG • Motor speed overshoot speed group 21. over speed time). Active (ASR) when 20-19 (= 0 or 1).
  • Page 234 LED display Description Possible causes Corrective action (flash) No Modbus • Connection lost or wire communicati • Check connection communication received broken. on error • Check host computer / for 2 sec. • Host stopped software. Active when 09-07=3. communicating. over current protection Inverter current reaches...
  • Page 235 LED display Description Possible causes Corrective action EF1 ( flash ) External fault (Terminal External fault S1) Active when 03-00= (S1) 25 or 68, and Inverter external fault selection 08-24=2. EF2 ( flash ) External fault (Terminal External fault S2) Active when 03-01= (S2) 25 or 68, and Inverter external fault selection...
  • Page 236 LED display Description Possible causes Corrective action EF9 ( flash ) error of Forward run and reverse forward/revers run are active within 0.5 • Forward run and reverse run • Check run command al rotation sec of each other. Stop active (see 2-wire control).
  • Page 237 LED display Description Possible causes Corrective action HPErr Inverter capacity setting Model error: • Inverter capacity setting does selection • Check inverter capacity Inverter capacity setting not match voltage class error setting 13-00. 13-00 does not match (13-00). the rated voltage. SE07 •...
  • Page 238 LED display Description Possible causes Corrective action source selection stop command from keypad. terminal Terminal (00-02=1) and run Stop Error command executes but executes stop command from keypad. • Check encoder wiring PG card is connected • 17-07 PG pulse number Encoder Error but encoder signal error setting is not...
  • Page 239 LED display Description Possible causes Corrective action power on and power on again. Save error • If warning again, replace control board. bdErr Control board error Firmware can’t meet • Firmware can’t meet Control • Replace the control Control board. board.
  • Page 240 10.4 Auto-tuning Error When a fault occurs during auto-tuning of a standard AC motor, the display will show the “AtErr” fault and the motor stops. The fault information is displayed in parameter 17-11. Note: The fault contact output does not energize with an auto-tuning fault. Refer to Table 10.4.1, for fault information during tuning, cause and corrective action.
  • Page 241 10.5 PM Motor Auto-tuning Error When a fault occurs during auto-tuning of a PM motor, the display will show the “IPErr” fault and the motor stops. The fault information is displayed in parameter 22-18. Note: The fault contact output does not energize with an auto-tuning fault. Refer to Table 10.5.1, for fault information during tuning, cause and corrective action.
  • Page 242 10.6 General troubleshooting Status Checking point Remedy Is the wiring for the output terminals Wiring must match U, V, and W terminals of the motor. Motor runs in correct? wrong Is the wiring for forward and reverse direction Check for correct wiring. signals correct? Is the wiring for the analog frequency Check for correct wiring.
  • Page 243 10.7 Troubleshooting of the Inverter 10.7.1 Quick troubleshooting of the Inverter INV Fault Is fault known? Symptoms other than burn Any Symptoms of burn Check burnt and out, damage, or fuse out and damage? damaged parts meltdown in the inverter? Is the main circuit DM Fault signal? Consult with the supplier...
  • Page 244 From previous page Check Inverter parameters Perform parameter initializations Specify operation control mode Does the FWD or REV Replace the control LED light flash? board Set up frequency command Is the frequency value Replace the control displayed on the display? board Are there voltage outputs at Replace the control...
  • Page 245 10.7.2 Troubleshooting for OC, OL error displays The inverter displays OC, OL errors Is the main circuit I.G.B.T Replace I.G.B.T working Replace faulty circuit Any visual abnormalities? board Apply power Is the current detector Replace the current Any abnormal indications? controller Input operation command Replace control board...
  • Page 246 10.7.3 Troubleshooting for OV, LV error The inverter displays OV, LV Is the main circuit fuse intact? Consult with the supplier Any visual abnormalities? Consult with the supplier Apply power Any abnormal indications? Consult with the supplier Input operation command Is FWD LED still illuminated after flash Consult with the supplier Input frequency commands...
  • Page 247 10.7.4 The motor can not run The motor can not run Is MCCB On? Can MCCB be turned On? Short circuited wiring Are voltages between power 1.The power is abnormal 2.Incorrect wiring terminals correct? Is LED lit? INVfault The operation switch is set to Is the operation switch in “RUN’...
  • Page 248 10.7.5 Motor Overheating M o to r O v e rh e a tin g M o to r O v e rh e a tin g M o to r O v e rh e a tin g M o to r O v e rh e a tin g Is lo a d o r c u rre n t e x c e e d in g C o n s id e r re d u c in g th e lo a d a n d in c re a s in g Y E S...
  • Page 249 10.7.6 Motor runs unbalanced Motor runs unevenly Motor runs unevenly Motor runs unevenly Motor runs unevenly Does it happen Is the acceleration Increase the Acc/ Dec time during eceleration? time correct? Reduce the load.Increase capacities of INV and the motor. Are the output voltages between U-V,V-W,W-U INV faults...
  • Page 250 10.8 Routine and periodic inspection To ensure stable and safe operations, check and maintain the inverter at regular intervals. Use the checklist below to carry out inspection. Disconnect power after approximately 5 minutes to make sure no voltage is present on the output terminals before any inspection or maintenance.
  • Page 251 10.9 Maintenance To ensure long-term reliability, follow the instructions below to perform regular inspection. Turn the power off and wait for a minimum of 5 minutes before inspection to avoid potential shock hazard from the charge stored in high-capacity capacitors. 1.
  • Page 252 Chapter 11 Inverter Peripheral devices and Options 11.1 Braking Resistors and Braking Units Inverters ratings 200V 1 ~ 25HP / 400V 1 ~ 40HP / 575V 1~10HP/600V 15~40HP have a built-in braking transistor. For applications requiring a greater braking torque an external braking resistor can be connected to terminals B1 / P and B2;...
  • Page 253 Inverter Braking unit Braking resistor Braking Minimum Spec for one torque Resistance Input Resistor Resistor and (Peak / Model Part Number Req. Req. Voltage Req. specification dimensions Continues) (Ω) (set) (pcs) 10%ED (L*W*H) mm 1200W/32Ω JNTBU-260 JNBR-4R8KW8 4800W/8Ω 3.8Ω 4500W (535*60*110) para 1200W/27.2Ω...
  • Page 254 Inverter Braking unit Braking resistor Braking Minimum Spec for one torque Resistance (Peak / Input Resistor Resistor and Model Part Number Req. Req. Voltage Req. specification dimensions Continues) (Ω) (set) (pcs) 10%ED (L*W*H) mm 1500W/20Ω JNBR-6KW20 6000W/20Ω 119% 11Ω 6000W (615*60*110) 1200W/32Ω...
  • Page 255 Inverter Braking unit Braking resistor Braking Minimum Spec for one torque Resistance Input Resistor Resistor and (Peak / Model Part Number Req. Req. Voltage Req. specification dimensions Continues) (Ω) (set) (pcs) 10%ED (L*W*H) mm 1500W/20Ω 19.2Ω 3600W JNTBU-430 JNBR-6KW20 6000W/20Ω (615*60*110) 300 220 2 In...
  • Page 256 Minimum Inverter Braking unit Braking resistor Braking Resistance torque Spec for one (Peak / Input Resistor Resistor and HP KW Model Part Number Req. Continues) (Ω) Voltage Req. specification dimensions Req. (set) 10%ED (pcs) (L*W*H) mm 0.75 150W/1400Ω 120% 1600W Ω...
  • Page 257 11.2 AC Line Reactors Contact TECO Westinghouse Motor Company for AC Line Reactor Information 11.3 Input Noise Filters Contact TECO Westinghouse Motor Company for Input and Output Filter Information. 11-6...
  • Page 258 11.4 Input Current and Fuse Specifications 200V class 3 phases Single-phase 100% of rated Horse Rated input Three-phase rated input Model output current power current fuse rating current HD/ND HD/ND HD/ND A510-2001-C-UE 5.4/6.5 9.4/11.3 A510-2002- C-UE 8/9.6 8.5/10.3 14.7/17.9 A510-2003- C-UE 11/12 11.7/12.8 20.3/22.1...
  • Page 259 400V class 100% of rated Horse Rated input current Model output current Fuse rating power HD/ND HD/ND A510-4001-C3-UE 3.4/4.1 3.7/4.5 A510-4002-C3-UE 4.2/5.4 5.3/5.9 A510-4003-C3-UE 5.5/6.9 6.0/7.5 A510-4005-C3-UE 9.2/12.1 9.6/11.6 A510-4008-C3-UE 11.3 14.8/17.5 15.5/18.2 A510-4010-C3-UE 13.7 18/23 18.7/24.0 A510-4015-C3-UE 18.3 24/31 25.0/32.3 A510-4020-C3-UE 23.6...
  • Page 260 600V class 100% of rated Horse Rated input current Model output current Fuse rating power HD/ND HD/ND 1.7/3.0 1.7/3.0 A510-5001-C3-UE 3/4.2 3/4.2 A510-5002-C3-UE 4.2/5.8 4.2/5.8 A510-5003-C3-UE 6.6/8.8 6.6/8.8 A510-5005-C3-UE 9.9/12.2 9.9/12.2 A510-5008-C3-UE 11.4 11.4/14.5 11.4/14.5 A510-5010-C3-UE 17.9 15/19 15/19 A510-6015-C3-UE 22.7 19/22 19/22...
  • Page 261 11.5 PG Speed Feedback Card Drive Installation ITEM Encoder/Resolver Input Type Output Type SIZE 1 >=SIZE 2 JN5-PG-O Open collector feedback card Open collector JN5-PG-L Line driver speed feedback card Line Driver JN5-PG-L-24 Line driver speed feedback card Open collector JN5-PG-PM Synchronous motor line driver speed feedback card Line Driver...
  • Page 262 JN5-PG-O block diagram: 11-11...
  • Page 263 B) JN5-PG-L / JN5-PG-L-24 speed feedback card: Line driver speed feedback card JN5-PG-L / JN5-PG-L-24 terminal specification Terminal Name Description Power supply for encoder. 12V or 5V ±5%, 200mA Maximum (12V or 5V input voltage selected by the Switch Jumper. Can’t GND (0V Common Terminal) use both 12V and 5V at the same time) Encoder input signal, A correct divider ratio output requires a...
  • Page 264 C) JN5-PG-PM speed feedback card: synchronous motor line driver speed feedback card JN5-PG-PM terminal specification Terminal Name Description Power supply for encoder. 5V ±5%, 200mA Maximum GND (0V Common Terminal) Encoder input signal, A correct divider ratio output requires a A, /A, B, /B, Z, /Z two-phase input.
  • Page 265 D) JN5-PG-PMR speed feedback card with TAMAGAWA Resolver Encoder JN5-PG-PMR terminal specification Terminal Name Description R+, R- Excitation signal to Resolver. 7Vrms, 10KHz. S1, S3 COS signals from Resolver. S2, S4 SIN signals from Resolver. A,B,Z pulse Monitor signal output, a+, a-, b+, b-, z+, z- Line driver output Type,RS-422 level.
  • Page 266 F. JN5-PG-PMC/JN5-PG-PMC-24 speed feedback card with Heidenhain ECN 1313 Encoder JN5-PG-PMC / JN5-PG-PMC-24 terminal specification Terminal Name Description Power supply for encoder. 5V±5%, 200mA 0V Common Terminal DATA+/- Bi-direct data for the encoder, RS485 driver. CLOCK+/- output clock to the encoder, line driver RS422 output A+, A- input A pulse from the encoder, Vp-p= 0.6~1.2V, fmax=20KHz B+, B-...
  • Page 267 11.6 Other Options A. Blank cover and keypad extension cable When used for remote control purposes, the keypad can be removed and remotely connected with an extension cable. Extension cables are available in the following lengths: 1m (3.3ft), 2m (6.6ft), 3m (10ft), and 5m (16.4ft).
  • Page 268 LED/LCD keypad dimensions B. Copy Unit (JN5-CU) *NOTE STANDARD LCD KEYPAD IS ALSO A COPY UNIT* The copy unit is used to copy an inverter parameter setup to another inverter. The copy unit saves time in applications with multiple inverters requiring the same parameter setup. 1 4 .
  • Page 269 Option cover part numbers: Frame Model JN5-CR-A01 JN5-CR-A02 JN5-CR-A04 Protective Cover Installation of Protective Cover Inverter with Protective Cover 11.7 NEMA1 Kit If NEMA1 or IP20 protective level is necessary to upgrade, it is recommended to purchase the NEMA1 kit positioned on top and bottom sides of the inverter. The drawings installed in the inverter, please refer to chapter 3.7.
  • Page 270 Appendix A: Communication Networks A1.1 RS485 –Network (Modbus) This section shows a RS485 network consisting of several inverters communicating using the built-in Modbus RTU protocol. Inverter #1 Inverter #2 Inverter #n Resistor 120 Ohm RS232/ RS485 Resistor 120 Ohm RX TX PC / PLC PC / PLC RS485...
  • Page 271 Appendix B: UL Instructions Danger Electric Shock Hazard Do not connect or disconnect wiring while the power is on. Failure to comply will result in death or serious injury. Warning Electric Shock Hazard Do not operate equipment with covers removed. Failure to comply could result in death or serious injury.
  • Page 272 Do not modify the inverter circuitry. Failure to comply could result in damage to the inverter and will void warranty.Teco is not responsible for any modification of the product made by the user. This product must not be modified.
  • Page 273 UL Standards The UL/cUL mark applies to products in the United States and Canada and it means that UL has performed product testing and evaluation and determined that their stringent standards for product safety have been met. For a product to receive UL certification, all components inside that product must also receive UL certification.
  • Page 274 Main Circuit Terminal Wiring UL approval requires crimp terminals when wiring the inverter’s main circuit terminals. Use crimping tools as specified by the crimp terminal manufacturer. Teco recommends crimp terminals made by NICHIFU for the insulation cap. The table below matches inverter models with crimp terminals and insulation caps. Orders can be placed with a Teco representative or directly with the Teco sales department.
  • Page 275 Type 1 During installation, all conduit hole plugs shall be removed, and all conduit holes shall be used. 6 9 0 V 8 0 A Motor Overtemperature Protection Motor overtemperature protection shall be provided in the end use application. ■ Field Wiring Terminals All input and output field wiring terminals not located within the motor circuit shall be marked to indicate the proper connections that are to be made to each terminal and indicate that copper conductors, rated 75°...
  • Page 276 Inverter Short-Circuit Rating ■ This inverter has undergone the UL short-circuit test, which certifies that during a short circuit in the power supply the current flow will not rise above value. Please see electrical ratings for maximum voltage and table below for current. •...
  • Page 277 08-05 Motor Overload Protection Selection ■ The inverter has an electronic overload protection function (OL1) based on time, output current, and output frequency, which protects the motor from overheating. The electronic thermal overload function is UL-recognized, so it does not require an external thermal overload relay for single motor operation. This parameter selects the motor overload curve used according to the type of motor applied.
  • Page 278 08-06 Motor Overload Operation Selection ■ 08-06 Start-up mode of overload protection operation (OL1) 0: Stop output after overload protection Range 1: Continuous operation after overload protection. 08-06=0: When the inverter detects a motor overload the inverter output is turned off and the OL1 fault message will flash on the keypad.

This manual is also suitable for:

Westinghouse a510-2001-c-ueWestinghouse a510-2002-c-ueWestinghouse a510-2003-c-ueWestinghouse a510-2005-c3-ueWestinghouse a510-2008-c3-ueWestinghouse a510-4001-c3-ue ... Show all

Table of Contents