Page 2
Essential or useful accessories Information on environmentally sound usage Text designations: Activities that may be carried out in any order 1. Activities that should be carried out in the order stated – General lists Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 12
EMCA-EC-67-...-CO/-EP Instructions on this documentation This documentation describes the device profile Festo Handling and Positioning Profile (FHPP) for the integrated drive EMCA with the following fieldbus interface: Fieldbus Electrical interface CANopen [X2] CAN bus input (CAN IN) (EMCA-...-CO) [X3] CAN bus output (CAN OUT)
Page 13
EMCA-EC-67-...-CO/-EP Service Please consult your regional Festo contact if you have any technical problems. Product identification For additional information on the rating plate and production date è Description for “Integrated drive with bus interface”, GDCE-EMCA-EC-SY-... Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 14
Laboratories Inc. (UL) Tab. 3 Documentation for the EMCA Further information about the product is available in the Festo Support Portal (è www.festo.com/sp). – Brief documentation (Quick guide) for initial commissioning and diagnostics – Operating instructions for configurable electromechanical drives from Festo –...
(Festo Handling and Positioning Profile) FHPP overview Tailored to the target applications for handling and positioning tasks, Festo has developed an optim ised device profile, the “Festo Handling and Positioning Profile (FHPP)”. The FHPP permits a uniform control and parameterisation for the various motor controllers or integ...
FHPP device profile (Festo Handling and Positioning Profile) Fieldbus interfaces 1.2.1 CANopen interfaces Control and parameterisation of the EMCA through the FHPP device profile is supported by the follow ing fieldbus interface: Fieldbus Interface Page CAN bus CAN bus input (CAN IN) [X2] (EMCA-...-CO)
For additional information on the user organisation “CAN in Automation (CiA)” è www.can-cia.org CANopen implementation: CANopen implementation of the EMCA is based on the following standard: CiA Draft Standard Version Version number CANopen application layer and communication profile 4.2.0 2007-12-07 Tab. 2.1 CANopen implementation Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
The status of the CAN bus is displayed via the “CANopen Status” LED. Description The following CANopen statuses are displayed: – CANopen communication CANopen status – Missing bus parameters – Warnings/malfunctions For additional information è page 281 Tab. 2.2 LED display Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
This can have the following results: – The EMCA switches off due to a function error. – The entire CAN bus communication breaks down and the system's subfunction no longer works. Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
(e.g. motor cables). In addition, supply cables with screening must be earthed cor rectly. – To construct an interference-free CAN bus cabling, observe the information and notes in the Control ler Area Network protocol specification, version 2.0, issue 1991, of Robert Bosch GmbH. Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Festo Configuration Tool (FCT) should be carried out first without connection to the CAN bus network (ports [X2/X3] open). For notes on commissioning with the Festo Configuration Tool (FCT) è FCT Help for the EMCA plug-in.
In the FCT, a component is added and the drive system is configured è FCT Help for the EMCA plug-in. 1. Configure CAN bus: The following CANopen parameters can be configured/parameterised in the Festo Configuration Tool (FCT) “Fieldbus” page “Node number (Node ID)” parameter “Operating parameters”...
Page 24
Each node number can only be assigned once in a CANopen network. If several CANopen participants are parameterised with the same node number, this can result in CANopen communication errors that are difficult to localise. Configure device profile Select FHPP device profile. Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 25
) should be converted into the specified interface units, dependent on the application è page 64. “Fieldbus” page “Factor Group” tab Current exponents: position, speed, acceleration, deceleration, jerk Fig. 2.5 Factor group in the FCT Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
CANopen 2.3.2 Commission EMCA with the Festo Configuration Tool (FCT) Initial commissioning of the EMCA is performed with the Festo Configuration Tool (FCT) è FCT Help for the EMCA plug-in. Note With activation of FCT in the device control, the Festo Configuration Tool (FCT) takes over master control via the EMCA.
1) For additional information on wiring the input channels STO1/STO2 è Description GDCE-E MCA-EC-S1-... 2) Only required with use of reference or limit switch è Description GDCE-E MCA-EC-SY-... 3) Reference potential for the controller Fig. 2.6 Digital inputs/outputs for operation Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
THE CIP NETWORKS LIBRARY: Volume 2 – EtherNet/IP Adaptation of CIP These documents discuss the general fundamentals and embedding of EtherNet/IP into the Common Industrial Protocols (CIP). User organisation: For additional information on the user organisation “ODVA (Open DeviceNet Vendor Association)” è http://www.odva.org Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
The status of EtherNet/IP is displayed over the following four LEDs. Description The following EtherNet/IP statuses are displayed: ACT/LNK, Port1 – EtherNet/IP communication – Warnings/malfunctions For additional information è page 284 ACT/LNK, Port 2 Tab. 3.1 LED indicator Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
EtherNet/IP copper cabling EtherNet/IP cables are 4-wire, screened copper cables. The maximum permissible segment length for copper cabling is 100 m. Use only EtherNet/IP-specific cabling for the industrial environment corresponding to è EN 61784-5-3:2013-09 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
– Carry out a reset or restart of the motor unit. 3.3.2 Commissioning with the Festo Configuration Tool (FCT) Notes on commissioning with the Festo Configuration Tool can be found in the Help for the device-specific FCT plug-in. 3.3.3 Setting the IP address A unique IP address must be assigned to each device in the network.
EtherNet/IP with FHPP Static addressing with Festo Configuration Tool (FCT) With the Festo Configuration Tool (FCT), the values for IP address, subnetwork mask and gateway ad dress can be assigned on the “Fieldbus” page in the “Operating Parameters” tab. Dynamic addressing The dynamic addressing parameterised in the FCT is only used if: –...
– FHPP+ data è page 153 for transmission of additional FHPP parameters The Festo Parameter Channel (FPC) and the FHPP+ data are an extension of the FHPP standard data and can optionally be used. With CANopen, FHPP reference parameters (PNUs) can optionally be accessed via the service data objectsSDO (Service data objects) è...
Structure of the FHPP message The structure of the FHPP message is dependent on activation of the parameter channel (FPC) in the FHPP+ Editor of the Festo Configuration Tool (FCT). For CANopen, the parameter channel (FPC) is always active. FHPP message with parameter channel (FPC) (byte 1 ... 32)
To establish the ready status, the following input signals are required: – Controller enable [X9.4] – STO channel (STO1/STO2) [X6.4/X6.5] For additional information è Description for “Integrated drive with bus interface, GDCE-EMCA-EC-SY-...” Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 39
2) The status transition T7 (malfunction detected) always has the highest priority. 3) Note: The status transition T10 permits acknowledgement of malfunctions without having to switch off the controller. Tab. 5.1 “Establish ready status” status transitions Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Status data Status byte (I data) SCON SPOS SDIR Actual value 1 Actual value 2 è page 48 è page 54 è page 55 è page 56 è page 58 è page 59 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 45
The byte sequence of words (16 bit) and double words (32 bit) is dependent on the bus used: Byte format Example: Direct mode – Control data – Setpoint value2 (Control byte 5 … 8) CANopen Little endian Low byte High byte (LSB) (MSB) Tab. 5.5 Byte order Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
– Force/torque ative activated – Speed Control byte 4 è page 53 Record selection mode Reserved Direct operation Setpoint Setpoint value 1 (bit 0 … 7), supplemental parameter of the operating mode value 1 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 47
Direct operation Setpoint Byte 5 Byte 6 Byte 7 Byte 8 value 2 Setpoint value 2 (bit 0 … 31), target value of the operating mode Tab. 5.6 Overview, assignment of the control bytes Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Direct operation SDIR FUNC XLIM VLIM COM2 COM1 Function – Stroke Speed – Control mode feed Abso limit limit is ex back lute/rel reached reached ecuted – Position ative – Force/torque – Speed Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 49
Position actual value (bit 0 … 31) tion Direct operation Actual Byte 5 Byte 6 Byte 7 Byte 8 value 2 Actual value 2 (bit 0 … 31) Tab. 5.7 Overview, assignment of the status bytes Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
EMCA è page 72. LOCK cess cess = 1: The Festo Configuration Tool (FCT) cannot take over the device control. FCT may only observe the EMCA. = 0: The Festo Configuration Tool (FCT) can assume control of the device to change parameters or control inputs.
Page 51
Delete remaining path and end current position ing order. After that, the EMCA changes into the FHPP status “Ready (SA1)” è page 37. – – = 0: Reserved Tab. 5.9 Control byte 2 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 52
= 1: Stroke monitoring is not active. = 0: Stroke monitoring is active. – – = 0: Reserved Function Function = 0: Reserved FUNC Tab. 5.11 Control byte 3 – Direct mode Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 53
Speed [SINC/s] è page 64 Geschwindigk Velocity Force/torque mode (CDIR.COM1/2) Drehmoment Torque Torque [0 … 100 % of the “force base value (PNU 555)”] è page 212 Tab. 5.13 Control bytes 5 … 8 – direct mode Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Operating Display Oper Feedback on FHPP operating mode OPM1 ating Mode mode acknow Bit 7 Bit 6 Operating mode ledgement Record selection mode OPM2 Direct mode Reserved Reserved Tab. 5.14 Status byte 1 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 55
Axis is not in the tolerance window after MC. Drive refer Axis = 1: Reference point is present. Homing does not have enced Referenced to be performed. = 0: Homing must be performed. Tab. 5.15 Status byte 2 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 56
Stroke limit is reached. = 0: Stroke limit is not reached. – – = 0: Reserved Function feed Function Feed = 0: Reserved FUNC back back Tab. 5.17 Status byte 3 – direct mode Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 57
Stroke limit is reached. = 0: Stroke limit is not reached. – – = 0: Reserved Function feed Function Feed = 0: Reserved FUNC back back Tab. 5.18 Status byte 4 – record selection mode Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 58
è page 210 Drehmoment Torque Force secondary actual value (PNU 523.7 = 1)(factory setting): Torque [… % of the “Force base value (PNU 555)”] è page Tab. 5.19 Status byte 4 – direct mode Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 59
Position [SINC] è page 64 Drehmoment Torque Force main actual value (PNU 523.8 = 1): Torque [… % of the “Force base value (PNU 555)”] è page Tab. 5.21 Status bytes 5 … 8 – direct mode Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
“reversal of direction” (PNU 1000). The adjustment of the used axis type (e.g. spindle drive), for example, can be dependent application-specifically on the attachment position of the EMCA to the linear axis and on the gear unit used. Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Usable work range of the drive (working stroke) 1) If an axis is configured with an unlimited work range, no software end positions can be parameterised. Tab. 6.1 Dimension system for linear drives Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Usable work range of the drive (positioning range) 1) If an axis is configured with an unlimited work range, no software end positions can be parameterised. Tab. 6.2 Measuring system for rotative drives Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Parameterisation of the following messages can influence beha viour if the software end positions are violated: 11 , 12 , 13 , 14 , 29 , 2A For additional information on determining the behaviour è FCT error management. Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
The exponents for position, speed, acceleration (and deceleration) and jerk are application-specific and are determined for the drive configuration of the EMCA in Festo Configuration Tool (FCT). The displayed units of the project have the value of an interface unit [SINC…].
Page 65
Power of 10 exponent (PNU 600) = -7 Basic unit (PNU 601, value = 0x01) = metre Calculation: – 1 SINC: 1 * 10 m = 0.1 μm – 10,000 SINC: 10,000 * 10 m = 1 mm Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Tab. 6.5 FHPP parameters: conversion factors The gear ration and feed constant are determined automatically in the Festo Configura tion Tool (FCT) in drive configuration. The reversal of direction can be configured in the Festo Configuration Tool (FCT) in the application data.
Control via FHPP Control via FHPP The device profile “Festo Handling and Positioning Profile (FHPP)” makes the following operating modes available for operation of the EMCA. Operating mode Description Page Homing mode – Performance of homing to determine the reference point...
1) If Safe torque off (STO) is parameterised as an error, the input channels STO1/STO2 must be set before Power ON (= 24 V), or the error “FCT: 34 ” will be triggered. The error can be acknowledged after error elimination. Fig. 7.2 Diagram: Establish ready status Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
2) Requirement: controller enable [X9.4] and input channels STO1/STO2 [X6.4/X6.5] = 24 V 3) The brake is automatically triggered when the drive is enabled. 4) Requirement: Drive is referenced. Tab. 7.2 Create ready status Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
– 6. Enable operation è Tab. 7.2 1) P = rising edge (positive), N = trailing edge (negative), x = any Tab. 7.4 Cancel homing, jog, record selection or direct mode with “Stop” Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
EMCA. In this status, the controller has no control over the EMCA. 7.3.1 Master control over the EMCA Diagram: Master control over the EMCA The diagram shows the transfer of master control between the controller and the Festo Configuration Tool (FCT). Power ON EMCA FCT drive control (SCON.FCT/MMI, B5)
For additional information è Description for “Integrated drive with bus interface, GDCE-EMCA-EC-SY-...”. Software end positions The software end positions are deactivated with the start of homing and reactivated after a valid homing. Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
1) P = rising edge (positive), N = trailing edge (negative), x = any 2) The control bit “Start homing” CPOS.HOM, B2 may only be reset when the status bit “Start acknowledgment” SPOSACK, B1 is set. Tab. 7.6 Control homing Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
After that, the stop position must be abandoned through travel to the axis zero point. If the drive system does not have a stop (axis of rotation), homing will never be completed. The drive then travels continuously at the parameterised search speed. Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 79
1) Limit switches are ignored during travel to the stop. 2) In this homing method, the option “Travel to axis zero point” is always active. Tab. 7.9 Homing method – homing to stop Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 80
3. Optional: Travel to the axis zero point Direction: positive (method 12 ; 18) Direction: negative (method 11 ; 17) Negative limit switch Positive limit switch Tab. 7.10 Homing method – homing to limit switch without index Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 81
3. Optional: Travel to the axis zero point Direction: positive (method 02 ; 02) Direction: negative (method 01 ; 01) Negative limit switch Positive limit switch Index Index Tab. 7.11 Homing method – homing to limit switch with index Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 82
3. Optional: Travel to the axis zero point Direction: positive (method 17 ; 23) Direction: negative (method 1B ; 27) Reference switch Homing Switch Tab. 7.12 Homing method – homing to reference switch without index Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 83
3. Optional: Travel to the axis zero point Direction: positive (method 07 ; 7) Direction: negative (method 0B ; 11) Reference switch Reference switch Index Index Tab. 7.13 Homing method – homing to reference switch with index Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Tab. 7.15 Control jogging (example, travel in a positive direction) Note If both jog signals “Jog positive” (CPOS.JOGP) or “Jog negative” (CPOS.JOGN) are active simultaneously, the signal that was set first is always executed. Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
(SPOS.ACK, B1) Motion complete (SPOS.MC, B2) Axis is moving (SPOS.MOV, B4) 1) For additional information on the following error è page 129 Fig. 7.6 Diagram: jog operation (“Jog positive” shown as an example) Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Position comparator, max. (upper limit value) PNU 431 1) The desired record number of the record must be parameterised in the parameter “target record number” (PNU 400.1). Tab. 7.17 Overview of teach targets Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
= 0xNx.xxxx = 0000.010x 8.3 Save value Save data PNU 127.2 B = 1 1) P = rising edge (positive), N = trailing edge (negative), x = any Tab. 7.18 Control teach mode Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Handshake during teaching Note – Taught values, like all written parameters, must be permanently stored by writing PNU 127:2 with the value 1 so they will be secure in case of power failure. Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Feedback on operating mode (FHPP) (SCON.OPM1/2) (Status byte 1) Record number (actual) FHPP-Standard (Status byte 3) Status data (SCON/SPOS/RSB/actual position) (Status byte 1/2/4/5 … 8) Fig. 7.8 Overview: Data exchange in the record selection mode Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Start delay Start delay P/V/F 96, 199 Start condition Start condition P/V/F Torque feed forward Factor torque pilot control P/V/F 1) P = positioning mode; V = speed (velocity) mode; F = force/torque mode Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 92
Force comparator damping time P/V/F Time comparator, min. P/V/F Time comparator, max. P/V/F 1) P = positioning mode; V = speed (velocity) mode; F = force/torque mode Tab. 7.19 FHPP parameters for the record selection mode Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
– 10.1 Cancel positioning task with “Stop” è page 71 1) P = rising edge (positive), N = trailing edge (negative), x = any, B = dependent on operating mode, R = specification of record number 2) Current actual value. Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
= 00x0.00P1 = 0000.0011 Next step: – 8.3 Positioning task active è Tab. 7.20 1) P = rising edge (positive), N = trailing edge (negative), x = any Tab. 7.21 Control intermediate stop Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
“Stop”. The drive is stopped with the quick ing task” can be set to 0. stop deceleration (PNU 1029). The EMCA reacts to this with a trailing edge at “Start acknowledgment”. Fig. 7.9 Diagram: Start and stop record Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 97
With the rising edge of “Start positioning “Halt” = 0 (delay (PNU 408)). In this status, task”, the record “N” is continued. “Motion complete” = 0. Fig. 7.10 Diagram: Interrupt and continue positioning record Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Actual record number N + 1 (Status byte 3) Interrupt positioning record with Halt Start new record “N + 1” Delete remaining path Destination reached Fig. 7.11 Diagram: Interrupt positioning record and delete remaining path Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
3) For additional information on the following error è page 129 4) Feedback: Status byte “speed limit reached” (RSB.VLIM, B4). 5) For additional information on “motion complete” è page 127 Fig. 7.12 Diagram: point-to-point positioning Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
1) For additional information on stroke monitoring è page 107 2) For additional information on the following error è page 129 3) For additional information on “motion complete” è page 127 Fig. 7.13 Diagram: speed mode Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
1) For additional information on stroke monitoring è page 107 2) Feedback: Status byte “speed limit reached” (RSB.VLIM, B4). 3) For additional information on “motion complete” è page 127 Fig. 7.14 Diagram: force/torque mode Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
436 … 438 Force comparator P/V/F 439 … 440 Time comparator P/V/F 1) P = positioning mode; V = speed (velocity) mode; F = force/torque mode Tab. 7.24 FHPP parameters for the record selection mode Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 103
Bit 7 – – Record sequencing is active – – Record sequencing is blocked 1) May only be used for test purposes with FCT. Tab. 7.25 Step enabling conditions for automatic record chaining Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Next step: 8. Control operation è page 70 1) P = rising edge (positive), N = trailing edge (negative), x = any, B = dependent on operating mode Tab. 7.26 Control record chaining Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
N + 3 (Status byte 3) 1) Depending on the parameter “MC with record sequencing (PNU 425)”: bit = 1: MC visible, bit = 0: MC not visible Fig. 7.15 Diagram: record chaining Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
For stroke monitoring, the following FHPP parameters are available. Name Page 300.1 Current position 310.1 Current speed Record control byte 1 – Bit 5: stroke monitoring Stroke limit 1029 Quick stop deceleration Tab. 7.27 FHPP parameters for stroke monitoring Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Feedback on operating mode (FHPP) (SCON.OPM1/2) (Status byte 1) Actual value 1/actual value 2 FHPP-Standard (Status byte 4/5 … 8) Status data (SCON/SPOS/SDIR) (Status byte 1 … 3) Fig. 7.18 Overview: data exchange in direct operation Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
1) P = positioning mode; V = speed (velocity) mode; F = force/torque mode 2) The controller transfers a percentage value in the control bytes, which is multiplied by the base value to get the setpoint value. Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 111
1) P = positioning mode; V = speed (velocity) mode; F = force/torque mode 2) The controller transfers a percentage value in the control bytes, which is multiplied by the base value to get the setpoint value. Tab. 7.28 FHPP parameters for direct operation Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Actual value 2 byte 5 ... 8 1) P = rising edge (positive), N = trailing edge (negative), x = any, B = dependent on operating mode, R = setpoint specification 2) Current actual value. Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 113
1) P = rising edge (positive), N = trailing edge (negative), x = any, B = dependent on operating mode, R = setpoint specification 2) Current actual value. Tab. 7.29 Control direct operation Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
“Stop”. The drive is stopped hereby with the positioning task” can be set to 0. quick stop deceleration (PNU 1029). The EMCA reacts to this with a trailing edge at “Start acknowledgment”. Fig. 7.19 Diagram: Start and stop positioning task Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
3) For additional information on the following error è page 129 4) Feedback: speed limit reached (SDIR.VLIM, B4). 5) For additional information on “motion complete” è page 127 Fig. 7.22 Diagram: point-to-point positioning Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
1) For additional information on stroke monitoring è page 123 2) For additional information on the following error è page 129 3) For additional information on “motion complete” è page 127 Fig. 7.23 Diagram: speed mode Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
The higher-order controller (PLC/IPC) can read out the position value via the PNU 350.1/351.1. Parameters for position sampling (flying measurement) Page Position value [SINC] with rising edge 350.1 Position value [SINC] with trailing edge 351.1 Sample operating mode 352.1 Tab. 7.34 Parameters for flying measurement Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
– after halt Comparator Monitors the activated tolerance window during an order, e.g. for (Comparator) control of record sequences or for control of any other actions through the higher-order controller Tab. 8.1 Messages Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Following error delay time D, R Jog mode 300.3 Current following error Following Error Window Following error delay time 1) D = direct operation, R = record selection mode Tab. 8.3 FHPP parameters for following error Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 130
(PNU 300.1) Current setpoint position (PNU 300.2) start (CPOS.START, B2) Following error delay time (PNU 1045) Following error Message 2Fh Fig. 8.2 Diagram: following error – example, positioning mode in record selection mode Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
FHPP parameters: standstill monitoring For standstill monitoring, the following FHPP parameters are available. Name Page 1040 Setpoint position 1041 Current position 1042 Standstill message window 1043 Standstill delay time Tab. 8.4 FHPP parameters for standstill monitoring Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 132
(PNU 1040) Current position (PNU 1041) Target damping time reached (PNU 1023) Motion complete (SPOS.MC, B2) Standstill delay time (PNU 1043) Standstill monitoring (SPOS.STILL, B6) Fig. 8.3 Diagram: standstill monitoring – example positioning mode Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
The limits are specified between -1000 to +1000 ‰ related to the force basic value (PNU 555). The message is active if the actual value for the parameterised time lies within the window. Tab. 8.5 Comparators Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 134
Position comparator, damping time Speed comparator, min. Speed comparator, max. Speed comparator, damping time Force comparator, min. Force comparator, max. Force comparator, damping time Time comparator, min. Time comparator, max. Tab. 8.6 Parameters for the comparators Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
For applications that do not require a braking resistor, this dia gnostic message can be classified as information (è Tab. E.2.). The diagnostic message then has no external effect. Tab. 8.7 Protective functions Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
The I2t monitoring brings additional protection to the temperature sensor if, for ex ample, very high 1-phase currents flow at standstill or if, during homing to a stop, the stop is not detected. Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 137
Message “CAN: 2312h/FCT: 0Eh” Error acknowledgment: 95% Störung quittieren (CCON.RESET, B3) 1) Resetting of the warning always takes place at 5 % below the I2T warning threshold value. Fig. 8.4 Diagram: I2t monitoring Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
A.1.1 Function The Festo Parameter Channel (FPC) is an expansion of the FHPP standard data and is used for cyclical transmission of parameters (PNU) or parameter files. Depending on the control interface, the FHPP message for the Festo Parameter Channel (FPC) has an additional 8 bytes of “Control and status data”...
Festo Parameter Channel (FPC) Enhanced Festo Parameter Channel (EFPC) The EFPC extended Festo parameter channel permits automated transmission of parameters and larger datasets in the form of a parameter file. Modules with which transmission can be easily implemented are available for some selec...
Transmitting parameters (array, double word). 0111 Task cannot be carried out with error number (transmis sion of parameter or parameter file is currently not pos sible). Tab. A.6 Task identifier (Req-ID) and response identifier (Res-ID) Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Faulty sub-index 0x0B No supervising access 0x11 Job cannot be carried out in the operating status. 0x65 Festo: ReqID is not supported. 0x66 Festo: Parameter is write-only. Tab. A.7 Error codes in parameter transmission Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Parameter file transmission is active. 0111 (7) Task cannot be carried out with error number (transmission of parameter or parameter file is currently not possible). Tab. A.9 Task identifier (Req-ID) and response identifier (Res-ID) Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Stop data transmission No data xxxxx Faults No data or error code 1) The sequence number starts at 0 and is increased by 1 with every transmission. Tab. A.10 Control or status bits Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Byte 4 Byte 3 Byte 8 Byte 7 Byte 6 Byte 5 Tab. A.11 Rotation of the user data The size of the transmitted parameter file is in byte 3 and byte 4. Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
A stop, sending of “No job” or an error message can be written at any time in the control bits and inter rupts the upload or download. A check of the sequence number then does not take place. Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Request package 33 FPCC = 0100 0100 Package ID = 000 00001 No data Sending complete FPCS = 0100 0011 Package ID = 010 00001 No data Fig. A.3 Sequence of parameter file upload Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 147
Sending complete FPCC = 0100 0101 Package ID = 010 00001 No data Parameters saved FPCS = 0100 0011 Package ID = 010 00001 No data Fig. A.4 Sequence of parameter file download Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 148
Package 2 faulty FPCC = 0100 0100 Package ID = 011 00011 Data = error code Confirm error FPCS = 0100 0011 Package ID = 011 00011 No data Fig. A.5 Error in parameter upload Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 149
Data = error code 0x65 Festo: ReqID is not supported Fig. A.7 Error FPCC is not supported The value in FPCC cannot be evaluated. The request ID included in the FPCC is not supported. Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 150
Fig. A.8 Error EFPC is blocked Certain functions are blocked during active parameter transmission, e.g. switching to download is not allowed during an upload, and vice versa, before transmission is stopped by the controller. Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Timeout in accessing the parameter file, e.g. error is still present and must be acknowledged Tab. A.13 Error codes in the parameter file transmission – error type 2 The errors differ regarding the effect on transmission è Tab. A.14: Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 152
(0x11) Job cannot be carried out download can be continued. in the operating status To cancel the transmission, a stop com 101 (0x65) Festo: ReqID is not sup mand must be sent. ported Error type 1: is reported in package ID...
(Festo order number) (207C HMI parameters Master control uint8 (Controllogic) (207D Data memory control 1 … 4 uint32 (Data memory control) (207F 1) Can only be used with CANopen Tab. C.3 Device data Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
(End velocity) (21A7 Max. deviation 1 … 64 int32 (Max. control deviation) (21A8 MC with record sequencing 1 … 64 uint8 (MC visible during record sequence) (21A9 1) Can only be used with CANopen Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 160
Speed setpoint value 1 … 64 int32 (Setpoint value velocity) (21B9 Force setpoint value 1 … 64 int16 (Setpoint value force) (21BA 1) Can only be used with CANopen Tab. C.6 Record list Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Time period phase 1 uint16 (Time phase 1) (2216 Following error message window int32 (Following error window) (221A Following error delay time uint16 (Following error timeout) (221B 1) Can only be used with CANopen Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 162
(2230 Speed message window reached int32 (Velocity target window) (2231 Stroke limit int32 (Stroke limit) (2236 Speed deviation message window int32 (Velocity difference error window) (2238 1) Can only be used with CANopen Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 163
(Force comparator window time) (2251 Time comparator, min. uint32 (Time comparator minimum) (2252 Time comparator, max. uint32 (Time comparator maximum) (2253 1) Can only be used with CANopen Tab. C.7 Project data Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
(Velocities) (23F4 Acceleration/deceleration 1013 int32 (Acceleration/Deceleration) (23F5 Max. torque 1015 int16 (Max. torque) (23F7 Speed limit, stop detection 1016 int32 (Velocity threshold block detection) (23F8 1) Can only be used with CANopen Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 165
(2406 Max. current 1034 int32 (Max. current) (240A Nominal motor current 1035 int32 (Motor rated current) (240B Nominal motor torque 1036 int32 (Motor rated torque) (240C 1) Can only be used with CANopen Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 166
(Min./max. temperature CPU) (2429 Current temperature output stage 1066 int8 (Actual temperature output stage) (242A Min./max. temperature output stage 1068 1, 2 int8 (Min./max. Temperature output stage) (242C 1) Can only be used with CANopen Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 167
1 … 3 int32 (Actual phase current) (2433 Torque Feed Forward control 1080 uint16 (Torque feed forward control) (2438 1) Can only be used with CANopen Tab. C.9 Axis parameters: electric drives 1 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 171
Entry cannot be modified in the current status (e.g. during ongoing cyclic communication). 16/32-bit entry starts with an uneven address. 30 … 31 0 reserved Note If the transmitted telegram is correct, all bits = 0. Tab. C.13 PNU 43 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Reading of the FHPP version. The FHPP version number of the device consists of 4 numerals (e.g. “xxyy”). Format (16 bit, BCD) Numerals Significance Main version number Secondary version number Tab. C.16 PNU 102 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Data type: uint16 Access: ro Reading of the FCT version, which is required for operation of the firmware. The min. version number of the Festo Configuration Tool (FCT) consists of 4 numerals (e.g. “xxyy”). Format (16 bit, BCD) Numerals Significance...
Page 174
Brake of the motor Value Significance 0x01 (1) Without brake 0x02 (2) With brake Subindex 7 Control panel (Control panel) Control panel Value Significance 0x01 (1) Without control panel Tab. C.19 PNU 115 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 175
Drive manufacturer (Drive manufacturer) Subindex 1 … 30 Class: Array Data type: char Access: ro Reading of the drive manufacturer’s name (ASCII, 7-bit). Fixed: “Festo AG & Co. KG” Unused characters are filled with zero (00h=’\0’). Tab. C.22 PNU 122 PNU 123 HTTP address of manufacturer (HTTP drive catalog address) Subindex 1 …...
– Controller enable [X9.4] = 24 V – Input channels (STO1/STO2) [X6.4/5] = 24 V Value Significance SCON.FCT/MMI 0x00 (0) Master control with Festo Configuration Tool (FCT) 0x01 (1) Fieldbus has master control Presetting after each Power ON or Controller restart (FCT). Tab. C.25 PNU 125...
Page 177
Load parameter file (Load parameter data) Through writing of the object, parameter values are loaded from the parameter file. Value Significance 0x10 (16) Load parameter values from parameter file Tab. C.26 PNU 127 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Device fault (Device fault) Subindex 1 Class: Var Data type: uint16 Mappable Access: ro Read the active fault with the highest priority. If no fault is present, 0xFFFF (65535) is returned. Tab. C.32 PNU 205 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 183
0x01 (1) The fault is still active; the fault can be cleared only after fault clearance. 0x02 (2) The fault can be acknowledged immediately. 0xFF (255) There is no fault. Tab. C.36 PNU 230 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Error response for the malfunction number 1. Subindex 3 … 255 Fault number 2 … 254 (Malfunction number 2 … 254) Error responses for the malfunction numbers 2 … 254. Tab. C.37 PNU 234 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 185
Error response for the malfunction number 1. Subindex 3 … 255 Fault number 2 … 254 (Malfunction number 2 … 254) Error responses for the malfunction numbers 2 … 254. Tab. C.39 PNU 242 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 186
STO channels (STO1/STO2) [X6.4/5] = 24 V 1 … 7 reserved Note Only when Bit1 = 1 can the status be switched to “Ready (SA1)” of the FHPP finite state machine. Tab. C.41 PNU 280 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Subindex 2 Current setpoint value (Actual setpoint value) Current setpoint value of the force regulator. Subindex 3 Current deviation (Actual control deviation) Current setpoint value deviation of the force regulator. Tab. C.43 PNU 301 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 188
Subindex 2 Current setpoint speed (Actual nominal velocity) Current setpoint value of the speed regulator Subindex 3 Current deviation (Actual control deviation) Current setpoint value deviation of the speed regulator. Tab. C.46 PNU 310 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 189
– Bit/comparator output = 1: Actual value is inside the comparator range after expiry of the damping time. Significance Position comparator Speed comparator Force comparator Time comparator 4 … 7 reserved Tab. C.47 PNU 312 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Control information on byte 1 … 4 (e.g. CCON, CPOS, ...) Subindex 2 FHPP control byte 5 … 8 (FHPP control byte 5… 8) Data type: int32 Control information on byte 5 … 8 (setpoint value 2) Tab. C.49 PNU 321 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
0x02 (2) The position is saved at each triggering of the sample input; old positions are overwritten. Tab. C.52 PNU 352 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Time comparator, max. uint32 1 … 64 Speed setpoint value int32 1 … 64 Force setpoint value int16 1 … 64 Tab. C.53 Structure of the record list – record data for FHPP Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 193
It is also valid if the drive is not in the record selection mode (Teach!). In record selection mode, this parameter is transmitted in the FHPP standard data, control byte 3. Tab. C.54 PNU 400 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 194
Stroke monitoring not active FAST – Not supported/reserved – reserved Subindex 1 … 64 Record 1 … 64 (Record 1 … 64) Record control byte 1 of the record 1 … 64. Tab. C.55 PNU 401 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
– Speed record: max deviation from the setpoint speed [SINC/s] – Force record: no function Subindex 1 … 64 Record 1 … 64 (Record 1 … 64) End speed of the record 1 … 64. Tab. C.68 PNU 424 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Stroke monitoring is activated or deactivated via the parameter “Activation of the (PNU 401.B5)”. Subindex 1 … 64 Record 1 … 64 (Record 1 … 64) Stroke limit of the record 1 … 64. Tab. C.71 PNU 427 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
The torque pilot control is added to the current controller setpoint value. The value is calculated from the acceleration è PNU 1080. Subindex 1 … 64 Record 1 … 64 (Record 1 … 64) Factor torque pilot control of the record 1 … 64. Tab. C.72 PNU 428 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Reading or parameterisation of the damping times [ms] of the position comparator. Subindex 1 … 64 Record 1 … 64 (Record 1 … 64) Position comparator damping time of the record 1 … 64. Tab. C.75 PNU 432 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Reading or parameterisation of the damping times [ms] of the speed comparator. Subindex 1 … 64 Record 1 … 64 (Record 1 … 64) Speed comparator, damping time of the record 1 … 64. Tab. C.78 PNU 435 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Reading or parameterisation of the damping times [ms] of the force comparator. Subindex 1 … 64 Record 1 … 64 (Record 1 … 64) Force comparator damping time of the record 1 … 64. Tab. C.81 PNU 438 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
The sign of the value determines the direction in which the force is to be built up. Subindex 1 … 64 Record 1 … 64 (Record 1 … 64) Target force of the record 1 … 64. Tab. C.85 PNU 442 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Position comparator lower limit è PNU 430 0x06 (6) Position comparator upper limit è PNU 431 0x07 (7) 1) The desired record number must be parameterised via PNU 400.1 “target record number”. Tab. C.92 PNU 520 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Speed [0 … 100 % of the “Speed base value (PNU 540)”] Subindex 6 Force main setpoint value (Force main setpoint value) Value Significance 0x00 (0) Setpoint force [0 … 100 % of “Force basic value (PNU 555)”] 0x01 (1) reserved Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 208
Reading or parameterisation of the characterististics for the FHPP direct operation. Value Significance Binary Relative positioning type Setpoint value is relative to the last setpoint position. Setpoint value is relative to the actual position. 1…7 – reserved Tab. C.94 PNU 524 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Following error delay time (Following error timeout) Subindex 1 Class: Var Data type: uint16 Mappable Access: rw2 Reading or parameterisation of the damping time [ms] of the following error monitoring. Tab. C.100 PNU 539 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Access: rw2 Reading or parameterisation of the load that is moved in addition to the basic load during position ing. – Linear axis: [g] – Rotative axis: [kgm * 10 Tab. C.105 PNU 544 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 211
Following error message window (Following error window) Subindex 1 Class: Var Data type: int32 Mappable Access: rw1 Reading or parameterisation of the permitted following error [SINC] in positioning mode. Tab. C.108 PNU 549 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Value Significance 0x00 (0) Ignore: Ignore start command 0x01 (1) Interrupt: Switch immediately to the new job 0x02 (2) Wait: Start of the new job after Motion Complete (MC) Tab. C.117 PNU 583 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 215
Speed comparator damping time (Velocity comparator window time) Subindex 1 Class: Var Data type: uint16 Mappable Access: rw1 Reading or parameterisation of the damping time [ms] of the speed comparator. Tab. C.123 PNU 590 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 216
Time comparator, max. (Time comparator maximum) Subindex 1 Class: Var Data type: uint32 Mappable Access: rw1 Reading or parameterisation of the upper limit value [ms] of the time comparator. Tab. C.128 PNU 595 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Reading or parameterisation of the system of measurement in relation to the basic unit. Value Significance 0x00 (0) Undefined/user-specific 0x01 (1) Metre (SI unit) 0x41 (65) Degree 0xF0 (240) Inch 0xF6 (246) Revolutions Tab. C.130 PNU 601 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
PNU 1010 Offset axis zero point (Offset axis zero point) Subindex 1 Class: Var Data type: int32 Mappable Access: rw2 Reading or parameterisation of the offset axis zero point [SINC]. Tab. C.136 PNU 1010 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 221
Drive velocity (Drive velocity) Speed when moving to the axis zero point (AZ). Subindex 3 Creep speed (Crawling velocity) Speed when determining the reference point (REF) or zero pulse Tab. C.138 PNU 1012 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 222
Damping time stop detection (Block detection window time) Subindex 1 Class: Var Data type: uint16 Mappable Access: rw2 Reading or parameterisation of the damping time [ms] for stop detection in homing (homing method: stop). Tab. C.142 PNU 1017 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
The damping time begins when the target position window is reached. If the actual position has been in the target position window after the damping time has expired, the status bit “SPOS.MC, B.2” is set. Tab. C.144 PNU 1023 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 224
(Time constant velocity filter) Time constant for filtering the motor rotational speed. Subindex 7 Max. correction speed (Max. correction velocity) Data type: int32 Max. speed contribution for correction of the following error. Tab. C.145 PNU 1024 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 225
Tab. C.148 PNU 1027 PNU 1029 Quick stop deceleration (Quick stop deceleration) Subindex 1 Class: Var Data type: int32 Mappable Access: rw2 Reading or parameterisation of the deceleration with Quick Stop [SINC/s2]. Tab. C.149 PNU 1029 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Mappable Access: rw2 Reading or parameterisation of the standstill monitoring time [ms]. Time during which the drive must be outside the standstill position window before standstill monitor ing responds. Tab. C.157 PNU 1043 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Tab. C.159 PNU 1050 PNU 1059 Current motor current (Actual motor current ) Subindex 1 Class: Var Data type: int32 Mappable Access: ro Reading of the current motor current [mA]. Tab. C.160 PNU 1059 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Min. temperature output stage (Min. temperature output stage) Min. temperature of the output stage. Subindex 2 Max. temperature of the output stage (Max. temperature output stage) Max. temperature of the output stage. Tab. C.164 PNU 1068 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Current string current 2 (Actual phase current 2) Latest current of the 2nd motor string. Subindex 3 Current string current 3 (Actual phase current 3) Latest current of the 3rd motor string. Tab. C.168 PNU 1075 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 231
FHPP parameters (PNU) The factors are calculated from the parameters (motor, gear unit, feed constant, ...) of the Festo Configuration Tool (FCT) and written to PNU 1080 and should not be changed. PNU 1080 Torque feed forward (Torque feed forward control)
With CANopen, the 16-bit values (word) and the 32-bit values (double word) are presen ted in the “Little endian” byte format (least significant bit (LSB) first). Byte format Byte Little endian Low byte High byte (LSB) (MSB) Tab. D.2 Byte format Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
CAN ID (Node-ID): 7 bit/function code (4 bit) Number of data bytes (example: 8 bytes) Data bytes 0 … 7 Fig. D.4 Structure: CANopen messages For the above communication objects (COB), the following CAN-ID are determined è page 238. Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
CAN identifier (CAN-ID), priority and internal cycle times All NMT messages are received in a shared CAN Message buffer. Due to the internal pro cessing time, an NMT message with the CAN-ID 000h may only be sent every 5 ms. Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
When a certain event occurs in asynchronous mode (Transmit) (value change), the EMCA sends a TPDO to the master. In synchronous mode, the TPDO are sent within the cycle time after receipt of the SYNC message. Tab. D.5 PDO types Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 240
(Status data: byte 17 … 24) TPDO4 FHPP+ data (Status data: byte 25 … 32) 1) Can optionally be parameterised through the Festo Configuration Tool (FCT) [page “Fieldbus”] [tab “FHPP+ Editor”] Tab. D.6 Overview of supported PDOs Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
FHPP standard data (status data: byte 1 … 8) è page 48 Record selection mode SCON SPOS Record no. RSB Actual position Direct operation SDIR Actual Actual value2 value1 Tab. D.8 PDO1 data (FHPP) Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Dependent on the data size, transmission of the data takes place either as expedited transfer (data size: 1 … 4 bytes) or as a segmented transfer in a 7-byte fragment (data size: 5 … 90 bytes). Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Response identifier (A-ID) CAN-Identifier (581h … 5FFh) Note The response of the EMCA must always be waited for! Only when the EMCA has answered the read command may additional SDO commands be sent. Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Response identifier (A-ID) CAN-Identifier (581h … 5FFh) Note The acknowledgment of the EMCA must always be waited for! Only when the EMCA has acknowledged the write command may additional SDO com mands be sent. Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Protocol error: Length of the service parameter is too small. 06 09 00 11 The addressed subindex does not exist. 1) Returned in accordance with CiA 301 in case of incorrect access to store parameters/restore parameters Tab. D.16 SDO error codes Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
CANopen device does not generate any SYNC messages. Not supported Value for 11-bit CAN-ID Not supported 11 … 28 00000 Value for 11-bit CAN-ID 0 … 10 CAN-ID for the communication object SYNC Tab. D.18 Design COB-ID SYNC Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
1001 Error register (Error register) 1003 Predefined error field (Pre-defined error field) 1014 COB-ID emergency message (COB-ID emergency message) 1015 EMCY inhibit time (Inhibit time EMCY) Tab. D.19 Objects for the EMCY operation Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 251
All causes of error have been eliminated and an error acknowledg ment has been carried out è page 50. The EMCY message is sent successful with the error code 0000h (Error reset/No error). Tab. D.20 Error status transitions Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Limit switch positive 0x07 (Limit switch positive) 1) These error messages cannot be sent, as the CAN-bus is not operational. But FCT generates a corresponding FCT-Code. 2) This error message does not generate an FCT-Code. Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 254
(Recovered from bus off ) 1) These error messages cannot be sent, as the CAN-bus is not operational. But FCT generates a corresponding FCT-Code. 2) This error message does not generate an FCT-Code. Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 255
(Offset determination for current measurement) 1) These error messages cannot be sent, as the CAN-bus is not operational. But FCT generates a corresponding FCT-Code. 2) This error message does not generate an FCT-Code. Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 256
(Safe Torque Off (STO)) 1) These error messages cannot be sent, as the CAN-bus is not operational. But FCT generates a corresponding FCT-Code. 2) This error message does not generate an FCT-Code. Tab. D.21 Error messages Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Standard error field 4 UINT32 – Standard error field 5 UINT32 – Standard error field 6 UINT32 – Standard error field 7 UINT32 – Standard error field 8 UINT32 – Tab. D.24 Objekt 1003 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
1015 Inhibit time EMCY UINT16 Tab. D.27 0 Tab. D.26 Objekt 1015 Value Description EMCY inhibit time deactivated … FFFF Time value [x * 100 μs] Tab. D.27 Value range: Inhibit time EMCY Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Name (Name) Page (hex) (dec) Start remote node Stop remote node Enter pre-operational Reset node Reset communication … 77F Boot-up message (Boot-up message) Node monitoring (Node guarding) Tab. D.28 Messages for the NMT operation Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 261
The following objects are available for the Node guarding operation: Index Name (Name) Page 100C Monitoring time (Guard time) 100D Monitoring time factor (Life time factor) Tab. D.29 Objects for the Node guarding operation Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 262
(CS: 82 (Node guarding: 05 1) The final target status is pre-operational (7Fh), since the transitions 15, 16 and 2 are automatically performed by the EMCA. Fig. D.10 Diagram: NMT finite state machine Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 263
The duration for initialisation can be in the area of one second. After initialisation, a new boot-up message is sent by the EMCA and only then is the EMCA ready to receive new commands again. Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
NMT participant. After processing, the new sub-NMT status is “Reset communication” è Fig. D.10. CAN-ID: 000h Command code (CS) Node ID Data length 0h (0) = all CAN-bus participants 1h … 7Fh (1 … 127) = one CAN-bus participant Fig. D.16 Structure: Reset communication Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
NMT status of the EMCA è chapter D.8. In the remote frame, the RTR bit is also not set in the message (= 0). CAN-ID: 700h + node ID (example: node ID = 1) 1st data byte: toggle bit/NMT status Data length Fig. D.18 Structure: Node guarding with toggle bit Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
100C Guard time UINT16 Tab. D.33 0 Tab. D.32 Object 100C Value Description Monitoring time (100Ch) deactivated … FFFF Time value [ms] Tab. D.33 Value range: Guard time Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
100D Life time factor UINT8 Tab. D.35 0 Tab. D.34 Object 100D Value Description Monitoring time (100Ch) deactivated … FF Monitoring time factor 1 … 255 Tab. D.35 Value range: Life time factor Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Identity of the device (Identity object) 2072 Serial number of the controller (Controller serial number) 207B HTTP address of manufacturer (http drive catalogue address) 2406 Motor type (Motor type) Tab. D.36 Objects for the device data Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
The device name of the manufacturer is output via the object. Index Name Object Data Ac Value Default value code type cess map range ping 1008 Manufacturer device name VSTRING const no – 1) The value is product-dependent. Tab. D.39 Objekt 1008 Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
D.9.5 Object 1018h: Identity of the device (Identity object) The following characteristics of the EMCA are output via the object: – Festo registration code for CANopen (Vendor-ID) – Festo part number (Product code) – CAN revision number (Revision number) – Festo Serial number...
Reset node Store parameters (1010 Fig. D.19 Function: parameter sets Additional information on loading or saving parameter sets via the Festo Configuration Tool (FCT) è Description “Integrated drive with bus interface”, GDCE-EMCA-EC-SY-... Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 274
Current parameter set (temporary): The current parameter set is located in the random access memory (RAM) of the EMCA. The current parameter set can be written or read as desired via the Festo Configuration Tool (FCT). Note Loss of the current parameter set If the power supply [X4] or a Reset node is interrupted, all changes to the current para...
The internal storage cycle for saving the data can take some seconds. During this time, no additional SDOs can be processed. Until the internal saving cycle is ended, sent SDOs are answered with Generic error. Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
The internal storage cycle for saving the data can take some seconds. During this time, no additional SDOs can be processed. Until the internal saving cycle is ended, sent SDOs are answered with Generic error. Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
CANopen communication D.12 Objects Table column FCT: The specification “FCT” in this column means that the object is also available as a para meter in the Festo Configuration Tool (FCT). D.12.1 Communication profile area (Object 1000 … 1FFF Index/ Name/Discription...
A) Bus parameter not parameterised LED indicator for non-configured bus parameters (FCT: node number (Node-ID), device profile and bit rate) Status: bus OFF Red ON t [ms] Fig. E.2 LED indicator for “bus parameter not parameterised” Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 282
Status: pre-operational Red ON Green ON t [ms] Status: operational Red ON 1000 Green ON t [ms] Status: stopped Red ON Green ON t [ms] Fig. E.4 LED indicator with “Warning Limit reached” Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 283
Status: pre-operational Red ON Green ON t [ms] Status: operational Red ON 1000 Green ON t [ms] Status: stopped Red ON Green ON 1000 t [ms] Fig. E.5 LED indicator with “Node guarding error” Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
No supply voltage ACT/ No IP address Illuminated green Connection present Port 2 Flashes green No connection Illuminated red Duplicate IP address Flashes red Connection timeout Flashes red/green Self test Tab. E.1 LED indicator Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
LED “ERROR” è description “Integrated drive with bus interface”, GDCE-EMCA-EC-SY-..Information Information messages have no influence on the behaviour of (Information) the drive and do not need to be acknowledged. Tab. E.2 Reactions to messages Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Depending on the error, the following output stage options can be configured in the FCT: Output stage on Description Page Activated After deceleration to standstill, the output stage remains switched on. Deactivated After deceleration to standstill, the output stage is switched off. Tab. E.4 Output stage options Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
(CCON.RESET, B3) Fig. E.7 Diagram: Acknowledge acknowledgeable error The error can also be acknowledged via the following interfaces: – Festo Configuration Tool (FCT): interface “Acknowledge error” – Web server: function “Reset error” E.2.7 Reset non-acknowledgeable error For non-acknowledgeable errors, the ready status can be restored only after elimination of the cause of the error through a restart.
– SS = seconds – nnn = milliseconds The time base is the respective switch-on time of the EMCA. Additional information Additional information for Festo Service in case of (Additional complex malfunctions information) 1) Only available in the FCT or web server Tab.
– SPOS.FOLERR – following error – SPOS.STILL – standstill monitoring. Additionally, all diagnostics information available as PNU can be read (e.g. the diagnostic memory) through the Enhanced Festo Parameter Channel (EFPC) è page 138. Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Deceleration record – deceleration ramp of the current positioning task switched on End record – execute the positioning task to the end until Motion complete (MC) Tab. E.8 Possible error responses (can be parameterised) Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 291
An error has occurred during evaluation of the encoder. The current position values may be incor rect. Conduct a software reset and homing procedure. – Resettable: Cannot be reset, software reset is necessary. Definable error response(s): A Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 292
Enter a valid parameter set in the device. If the error is still present, the hardware may be defect ive. – Resettable: Error can be reset immediately. Definable error response(s): A Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 293
Check the mechanics for sluggishness. Reduce load/dynamic response, longer time delays. – Resettable: Error can only be reset after the cause of the error has been eliminated. Definable error response(s): B, C Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 294
This error can be reset immediately. Afterwards start a corresponding positioning record or move the drive by using the jogging function. Movements in a positive direction are blocked. – Resettable: Error can be reset immediately. Definable error response(s): A, B, C, E, F Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 295
If the error is still present after a reset has been conducted, it means there is an internal defect and the device has to be replaced. – Resettable: Error can only be reset after the cause of the error has been eliminated. Definable error response(s): A, B Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 296
– If parameterised as an error: The error can only be reset after the cause is eliminated. Definable error response(s): A – For parameterisation as a warning: The warning disappears if the load voltage is back within the permissible range. Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 297
Check cabling: cable specifications complied with? Broken cable? Maximum cable length ex ceeded? Cable screening earthed? All wires connected? Check communication readiness of the higher-order controller (master). – Resettable: Error can be reset immediately. Definable error response(s): E Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 298
Error during homing: no zero pulse found. Defective encoder. Restart device. If the error occurs again, the device needs to be replaced. – Resettable: Cannot be reset, software reset is necessary. Parameterisable error response(s): B, C, E, F Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 299
– If parameterised as an error: Error can be reset immediately. Definable error response(s): B, C, D, E, F, G – For parameterisation as a warning: The warning disappears if the homing run has been completed successfully. Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 300
Determine the version of the hardware. You can ascertain the compatible firmware designs and download the appropriate firmware from the Festo website. – If parameterised as an error: Error can be reset immediately. Definable error response(s): A –...
Page 301
Connection to the FCT has been interrupted. Check the connection and perform a reset, if necessary. – Resettable: Error can be reset immediately. Definable error response(s): B, C, D, E, F, G Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 302
The CAN master has stopped bus communication. The CAN bus does not currently have master con trol over the device. Check master. – If parameterised as a warning: The warning disappears when communication works again. Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 303
The started record is invalid. The record data is implausible or the record type is invalid. Check parameters of the record. – Resettable: Error can be reset immediately. Definable error response(s): B, C, D, E, F, G Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 304
Data may have been lost. Extend cycle time of the master. – Resettable: Error can only be reset after the cause of the error has been eliminated. Parameterisable error response(s): B, C, E, F Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 305
A short circuit or overload has occurred to an external 24-V supply voltage of the device. Check wiring of the STO interface, reference switch and digital inputs and outputs. – Acknowledgement option: Error can only be acknowledged after eliminating the cause. Definable error response(s): A, B Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Uniform fieldbus data profile for position controllers from Festo ing Profile (FHPP) FHPP standard data Defines the sequence control in accordance with the “Festo Hand ling and Positioning Profile” (I/O messaging 8 bytes I/O) Force/torque mode Operating mode for execution of a direct positioning task with force...
Page 307
Software end position Programmable stroke limit (point of reference = axis zero point) – Software end position, positive/negative: max. limit position of the stroke in positive/negative direction; must not be exceeded during positioning. Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 308
Teaching mode Operating mode for setting positions by approaching the target (Teach mode) position, e.g. when creating positioning records. Tab. F.1 Index of terms and abbreviations Festo – GDCE-EMCA-EC-C-HP-EN – 1611b – English...
Page 316
Copyright: Festo AG & Co. KG Postfach 73726 Esslingen Germany Phone: +49 711 347-0 Fax: +49 711 347-2144 E-mail: service_international@festo.com Reproduction, distribution or sale of this document or communica tion of its contents to others without express authorization is Internet: prohibited.
Need help?
Do you have a question about the EMCA-EC-67 Series and is the answer not in the manual?
Questions and answers