Carel IR32M Manual page 18

Table of Contents

Advertisement

/C: Calibration offset
This parameter allows the temperature shown on the display to be corrected. The value assigned to this
parameter is added to (if positive) or subtracted from (if negative) the temperature transmitted by the sensor.
For example, if it is wished to reduce the temperature displayed by 2.3 degrees, /C should be set to = -2.3.
The calibration offset can be varied from -20 to +20 with a precision to a tenth of a degree, from -19.9 to
+19.9. Default is 0.0, i.e. no offset is applied to the sensor's reading.
This parameter can be accessed directly from the remote control.
/2: Stability of measurement
This parameter is employed to control the stability with which the temperature is measured. Low values
assigned to this parameter produce a prompt response by the sensor to variations in temperature; however,
the display becomes correspondingly sensitive to changes. High values slow down the response, causing
less fluctuation and a more stable reading. Default value is 4. Available on all models.
/3: Sensor reading speed
This parameter stabilises the maximum temperature variation within a period equal to 200ms (equipment
cycle period). Small values of this parameter restrict the variation in temperature within the short period, and
thus reduce the equipment's susceptibility to erratic impulses.
Note: If it is wished to alter both this parameter and the previous one, it is recommended to operate in a
consistent manner: if /2 is increased, it is correct to leave /3 unchanged or to reduce it. Vice versa if /2 is
decreased. Default value is 8. Available on all models.
/4: Virtual sensor
In equipment with two sensors (IR32M, IR32Y, IR32C, IDRDC and IR32P), this parameter allows a choice as
to whether temperature is regulated by reference to one sensor alone (P1 on the IR32M) or by reference to a
weighted average of the two sensors. This parameter is useful in special applications. For example, it is
possible to place the ambient sensor in the suction and the defrost sensor in series. Control can be effected
via the weighted average of the two values read. The formula used by the microprocessor is:
virtual sensor = ambient - (ambient - defrost) x (value of /4)
100
When /4=0, control is effected using the ambient sensor. This is the typical situation.
When /4=100, control is effected by reference to the values read by the defrost sensor (sensor P2 on
IR32M).
When /4=50, control is effected by reference to a "virtual" sensor, which is given by the average between
the ambient sensor (or P1) and the defrost sensor (or sensor P2). With values above 50 the defrost sensor
exerts greater influence; with lesser values the ambient sensor does. If the defrost sensor suffers a failure,
the equipment is controlled by the ambient sensor. On the IR32M version, the parameter must remain at
zero (0), as this control system has no second sensor. Default: 0, control by ambient sensor (P1 on the
IR32M).
Available on IR32M, IR32Y, IR32P, IR32C and IRDRC).
/5: Selection of ° ° F or ° ° C
Defines the unit of measurement.
0 = for working in degrees Celsius,
1 = for working in degrees Fahrenheit.
In passing from one to the other there is automatic conversion of set and differential into the new unit.
Default = 0, working in degrees Celsius. Available on all models.
/6: Decimal point
Allows the display of temperature with or without tenths of degrees ranging from -19.9 to +19.9.
0= data displayed with tenths of degrees;
1= data displayed without tenths of degrees.
Default: 0, decimal place shown. Available on all models.
17
Cod. +030220151 - Rel. 2.1 - 04/09/98

Hide quick links:

Advertisement

Table of Contents
loading

This manual is also suitable for:

Irdrs0Ir32sIr32pIr32yIrdrseIrdrc ... Show all

Table of Contents