Mitsubishi Electric PSSxxMC1Fx Manual
Mitsubishi Electric PSSxxMC1Fx Manual

Mitsubishi Electric PSSxxMC1Fx Manual

Dual-in-line package intelligent power module
Table of Contents

Advertisement

Quick Links

DIPIPM+ Series APPLICATION NOTE
PSSxxMC1Fx, PSSxxNC1Fx
CHAPTER 1 : INTRODUCTION ............................................................................................................................... 2
1.1 Feature of DIPIPM+ ..................................................................................................................................................................................... 2
1.2 Functions ..................................................................................................................................................................................................... 3
1.3 Applications ................................................................................................................................................................................................. 3
1.4 Line-up ........................................................................................................................................................................................................ 4
CHAPTER 2 : SPECIFICATIONS and CHARACTERISTICS ................................................................................. 5
2.1 Specification of DIPIPM+ ............................................................................................................................................................................. 5
2.1.1 Maximum ratings ........................................................................................................................................................................................................................... 5
2.1.2 Thermal Resistance ...................................................................................................................................................................................................................... 8
2.1.3 Electric Characteristics and Recommended Conditions ............................................................................................................................................................... 9
2.1.4 Mechanical characteristics and specifications ............................................................................................................................................................................13
2.2 Protection functions and operating sequence ............................................................................................................................................ 14
2.2.1 Short circuit protection.................................................................................................................................................................................................................14
2.2.2 Control Supply UV Protection .....................................................................................................................................................................................................16
2.3 Package outline of DIPIPM+ ...................................................................................................................................................................... 21
2.3.1 Package outline ...........................................................................................................................................................................................................................21
2.3.2 Marking ........................................................................................................................................................................................................................................22
2.3.3 Terminal Description ...................................................................................................................................................................................................................23
2.4 Mounting Method ....................................................................................................................................................................................... 26
2.4.1 Electric Spacing of DIPIPM+ .......................................................................................................................................................................................................26
2.4.2 Mounting Method and Precautions .............................................................................................................................................................................................26
2.4.3 Soldering Conditions ...................................................................................................................................................................................................................28
CHAPTER 3 : SYSTEM APPLICATION GUIDANCE ............................................................................................ 29
3.1 Application guidance ................................................................................................................................................................................. 29
3.1.1 System connection ......................................................................................................................................................................................................................29
3.1.2 Interface Circuit (Direct Coupling Interface example for using one shunt resistor) ....................................................................................................................30
3.1.3 Interface circuit (example of opto-coupler isolated interface) .....................................................................................................................................................32
3.1.4 External SC protection circuit with using three shunt resistors...................................................................................................................................................33
3.1.5 Circuits of Signal Input Terminals and Fo Terminal ....................................................................................................................................................................33
3.1.6 Snubber circuit ............................................................................................................................................................................................................................35
3.1.7 Recommended wiring method around shunt resistor .................................................................................................................................................................36
3.1.8 SOA of DIPIPM+ at switching state ............................................................................................................................................................................................38
3.1.9 SCSOA ........................................................................................................................................................................................................................................39
3.1.10 Power Life Cycles ......................................................................................................................................................................................................................40
3.2 Power loss and thermal dissipation calculation .......................................................................................................................................... 41
3.2.1 Power loss calculation .................................................................................................................................................................................................................41
3.2.2 DIPIPM+ performance according to carreir frequency ...............................................................................................................................................................43
3.3 Noise and ESD withstand capability........................................................................................................................................................... 45
3.3.1 Evaluation circuit of noise withstand capability ...........................................................................................................................................................................45
3.3.2 Countermeasures and precautions .............................................................................................................................................................................................46
3.3.3 Static electricity withstand capability ...........................................................................................................................................................................................47
CHAPTER 4 : Bootstrap Circuit Operation ......................................................................................................... 48
4.1 Bootstrap Circuit Operation ........................................................................................................................................................................ 48
4.2 Bootstrap supply circuit current at switching state ...................................................................................................................................... 49
4.3 Note for designing the bootstrap circuit ...................................................................................................................................................... 51
4.4 Initial charging in bootstrap circuit .............................................................................................................................................................. 52
CHAPTER 5 : PACKAGE HANDLING .................................................................................................................. 53
5.1 Packaging Specification ............................................................................................................................................................................. 53
5.2 Handling Precautions................................................................................................................................................................................. 54

Table of contents

................................................................................................................................................................................................19
OT
1

Advertisement

Table of Contents
loading

Summary of Contents for Mitsubishi Electric PSSxxMC1Fx

  • Page 1: Table Of Contents

    <Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series APPLICATION NOTE PSSxxMC1Fx, PSSxxNC1Fx Table of contents CHAPTER 1 : INTRODUCTION ..........................2 1.1 Feature of DIPIPM+ ..................................... 2 1.2 Functions ........................................3 1.3 Applications ......................................... 3 1.4 Line-up ........................................4 CHAPTER 2 : SPECIFICATIONS and CHARACTERISTICS ................. 5 2.1 Specification of DIPIPM+ .....................................
  • Page 2: Dual-In-Line Package Intelligent Power Module

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note CHAPTER 1 : INTRODUCTION 1.1 Feature of DIPIPM+ DIPIPM+ series is our latest transfer molding CIB type IPM(CIB: Converter Inverter Brake, IPM: Intelligent Power Module). It integrates the inverter, converter and brake parts to make up a compact inverter systems for commercial and industrial inverter application like commercial air conditioner, servo and general purpose inverter.
  • Page 3: Functions

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note 1.2 Functions Inverter block ●For P-side IGBT - Drive circuit - High voltage level shift circuit - Control supply under voltage (UV) lockout circuit (without fault signal output) - Built-in bootstrap diode (BSD) with current limiting resistor ●For N-side IGBTs: - Drive circuit;...
  • Page 4: Line-Up

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note 1.4 Line-up Line-ups are described as following table 1-1. and 1-2. Table 1-1. DIPIPM+ with Brake circuit (note1) Type name Rated current Rated voltage Motor ratings Brake Isolation voltage PSS05MC1FT 0.75kW/440V PSS10MC1FT...
  • Page 5: Chapter 2 : Specifications And Characteristics

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note CHAPTER 2 : SPECIFICATIONS and CHARACTERISTICS 2.1 Specification of DIPIPM+ It is representatively described as follows with PSS25MC1FT (25A/1200V,CIB type). For the other products, please refer each data sheets in details. 2.1.1 Maximum ratings Maximum ratings are described as following table 2-1-1.
  • Page 6 < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note TOTAL SYSTEM Symbol Parameter Condition Ratings Unit Self protection supply voltage limit = 13.5~16.5V, Inverter Part CC(PROT) (Short circuit protection capability) = 125°C, non-repetitive, less than 2μs Module case operation temperature -30~+110 °C (Note 2)
  • Page 7 < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note Power chips layout Fig.2-1-1 indicates the position of the each power chips. (This figure is the view from laser marked side.) In case of PSSxxNC1Fx, Br-IGBT and Br-Di are not built-in. INV-IGBT x 6 CONV-Di x 3 Br-IGBT...
  • Page 8: Thermal Resistance

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note 2.1.2 Thermal Resistance Table 2-1-2 shows the thermal resistance between its chip junction and case. Table 2-1-2. Thermal resistance of PSS25MC1FT (25A/1200V, CIB type) Limits Symbol Parameter Condition Unit Min.
  • Page 9: Electric Characteristics And Recommended Conditions

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note 2.1.3 Electric Characteristics and Recommended Conditions Table 2-1-3 shows the typical static characteristics and switching characteristics. (T = 25°C, unless otherwise noted) Table 2-1-3 Static characteristics and switching characteristics of PSS25MC1FT(25A/1200V, CIB type) ELECTRICAL CHARACTERISTICS = 25°C, unless otherwise noted) INVERTER PART...
  • Page 10 < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note Definition of switching time and performance test topology are shown in Fig.2-1-3 and 2-1-4. Switching characteristics are measured by half bridge circuit with inductance load. P-side SW L load Input signal N-side U,V,W...
  • Page 11 < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note Table 2-1-4 shows the typical control part characteristics. (T = 25°C, unless otherwise noted) Table 2-1-4. Typical control part characteristics of PSS25MC1FT(25A/1200V, CIB type) CONTROL (PROTECTION) PART Limits Symbol Parameter Condition Unit...
  • Page 12 < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note Table 2-1-5 shows recommended operation conditions. Please apply and use under the recommended conditions to operate DIPIPM+ series safely. (T = 25°C, unless otherwise noted) Table 2-1-5. Recommended operation conditions of PSS25MC1FT (25A/1200V, CIB type) RECOMMENDED OPERATION CONDITIONS Limits Symbol...
  • Page 13: Mechanical Characteristics And Specifications

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note 2.1.4 Mechanical characteristics and specifications Table 2-1-6 shows mechanical characteristics and specifications. Please also refer section 2.4 for mounting instruction of DIPIPM+. Table 2-1-6. Mechanical characteristics and specifications of PSS25MC1FT (25A/1200V, CIB type) MECHANICAL CHARACTERISTICS AND RATINGS Limits Parameter...
  • Page 14: Protection Functions And Operating Sequence

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note 2.2 Protection functions and operating sequence DIPIPM+ has two protection functions of short circuit (SC) and under voltage of control supply (UV). And it has also temperature output function of LVIC (VOT). The operating principle and sequence are described as follows. 2.2.1 Short circuit protection (1) Outline DIPIPM+ uses external shunt resistor for the current detection as shown in Fig.2-2-1.
  • Page 15 < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note (3) Calculation of shunt resistance The value of current sensing shunt resistance for current sensing is calculated by the following formulation: where V is the SC trip voltage. Shunt SC(ref) SC(ref) The maximum SC trip level SC(max) should be set less than the IGBT minimum saturation current which is 1.7...
  • Page 16: Control Supply Uv Protection

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note 2.2.2 Control Supply UV Protection The UV protection is designed to prevent unexpected operating behavior as described in Table 2-2-4. Both P-side, N-side of inverter part and Brake part have UV protecting function. However fault signal(Fo) output only corresponds to N-side UV protection.
  • Page 17 < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note (1) N-side UV Protection Sequence exceeds under voltage reset level (UV ), but IGBT turns ON by next a1. Control supply voltage V ON signal (LH). (IGBT of each phase can return to normal state by inputting ON signal to each phase.) a2.
  • Page 18 < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note (3) Brake UV Protection Sequence ( with Brake product only : PSSxxMC1Fx) rises. After the voltage reaches under voltage reset level UV a1. Control supply voltage V IGBT turns on by next ON signal (LH).
  • Page 19: Temperature Output Function

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note 2.2.3 Temperature output function V (1) Usage of this function This function measures the temperature of control LVIC by built in temperature sensor on LVIC. The heat generated at IGBT and FWDi transfers to LVIC through molding resin of package and outer heat sink. So LVIC temperature cannot respond to rapid temperature rise of those power chips effectively.
  • Page 20 < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note 3.14 3.02 2.89 ←Output range without 5.1kΩ pull down resistor (Output might saturated under this level) ←Output range with 5.1kΩ pull down resistor Max. Typ. Min. (Output might saturated under this level) LVIC temperature [degC] Fig.2-2-11 V output vs.
  • Page 21: Package Outline Of Dipipm

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note 2.3 Package outline of DIPIPM+ 2.3.1 Package outline Fig. 2-3-1 Package outline drawing (Dimension in mm) Publication Date: September 2016...
  • Page 22: Marking

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note 2.3.2 Marking The laser marking specifications of DIPIPM+ are described in Fig.2-3-2. Company name, Country of origin, Type name, Lot number, and 2D code are marked on the surface of module. Country of origin Fig.2-3-2 Laser marking view PSSxxxC1Fx (Dimension in mm) The Lot number indicates production year, month, running number and country of origin.
  • Page 23: Terminal Description

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note 2.3.3 Terminal Description Table 2-3-1 Terminal Description PSSxxMC1Fx PSSxxNC1Fx Description With Brake Without Brake  Output terminal for converter (+)  Output terminal for converter (-) N(B) (NC) IGBT emitter terminal for brake ...
  • Page 24 < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note Table 2-3-2 Detailed description of input and output terminals Item Symbol Description P-side drive Drive supply terminals for P-side IGBTs. • supply By mounting bootstrap capacitor, individual isolated power supplies are not •...
  • Page 25 < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note (Continue) Item Symbol Description Inverter DC-link NU, NV, NW Emitter terminal of each N-side IGBT • Usually, these terminals are connected to the power GND through individual negative terminal •...
  • Page 26: Mounting Method

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note 2.4 Mounting Method This section are described the electric spacing and mounting precautions of DIPIPM+. 2.4.1 Electric Spacing of DIPIPM+ The electric spacing specification of DIPIPM+ is shown in Table 2-4-1. Table 2-4-1 Minimum insulation distance(minimum value) Clearance(mm) Creepage(mm)
  • Page 27 < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note Table 2-4-2 Mounting torque and heat sink flatness specifications Item Condition Min. Typ. Max. Unit - Mounting torque Screw : M4 0.98 1.47 N・m μm - Flatness of outer heat sink Refer Fig.2-4-2 +100 (note): Recommend to use plain washer (ISO7089-7094) in fastening the screws.
  • Page 28: Soldering Conditions

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note 2.4.3 Soldering Conditions The recommended soldering condition is mentioned as below. (Note: The reflow soldering cannot be recommended for DIPIPM.) (1) Flow (wave) Soldering DIPIPM is tested on the condition described in Table 2-4-3 about the soldering thermostability, so the recommended conditions for flow (wave) soldering are soldering temperature is up to 265°C and the immersion time is within 11s.
  • Page 29: Chapter 3 : System Application Guidance

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note CHAPTER 3 : SYSTEM APPLICATION GUIDANCE 3.1 Application guidance This chapter states the DIPIPM+ application method and interface circuit design hints. 3.1.1 System connection C1: Electrolytic type with good temperature and frequency characteristics P-side input (note) The capacitance also depends on the PWM control strategy of the application system...
  • Page 30: Interface Circuit (Direct Coupling Interface Example For Using One Shunt Resistor)

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note 3.1.2 Interface Circuit (Direct Coupling Interface example for using one shunt resistor) Fig.3-1-2 shows a typical application circuit of interface schematic, in which control signals are transferred directly input from a controller (e.g. MCU). Prevention circuit for inrush current P1(1)
  • Page 31 < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note Note for the previous application circuit: If control GND is connected with power GND by common broad pattern, it may cause malfunction by power GND fluctuation. It is recommended to connect control GND and power GND at only a point N1 (near the terminal of shunt resistor). It is recommended to insert a Zener diode D1(24V/1W) between each pair of control supply terminals to prevent surge destruction.
  • Page 32: Interface Circuit (Example Of Opto-Coupler Isolated Interface)

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note 3.1.3 Interface circuit (example of opto-coupler isolated interface) Prevention circuit for inrush current P1(1) AC input R (36) S (35) T (34) N1 (2) N(B) (3) LVIC AIN (5) B (33) Brake Resistor...
  • Page 33: External Sc Protection Circuit With Using Three Shunt Resistors

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note 3.1.4 External SC protection circuit with using three shunt resistors When using three shunt resistor, protection circuit is described as following Fig.3-1-4. DIPIPM Drive circuit P-side IGBT External protection circuit N-side IGBT Comparators (Open collector output type)
  • Page 34 < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note 5V line 10kΩ DIPIPM ,AIN MCU/DSP 3.3kΩ (min) (Logic) Fig.3-1-6 Control input connection (note) (1) The RC coupling (parts shown as broken line) at each input depends on user’s PWM control strategy and the wiring impedance of the printed circuit board.
  • Page 35: Snubber Circuit

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note (2) Internal circuit of Fo terminal Fo terminal is an open drain type. When Fo output is input into MCU(controller) directly, it is necessary to note the dependency of V on I =max0.95V @I =1mA, 25°C) and set pull up resistance so that Fo...
  • Page 36: Recommended Wiring Method Around Shunt Resistor

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note 3.1.7 Recommended wiring method around shunt resistor External shunt resistor is necessary to detect short-circuit accident. If applied a longer patterning between the shunt resistor and DIPIPM, it causes so much large surge that might damage built-in IC. To decrease the pattern inductance, the wiring between the shunt resistor and DIPIPM should be connected as short as possible and using low inductance resistor such as SMD (Surface Mounted Device) resistor instead of long-lead resistor.
  • Page 37 < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note Influence of pattern wiring around the shunt resistor is shown below. DIPIPM Drive circuit P-side IGBTs External protection circuit Current path N-side IGBTs Drive circuit Shunt resistor SC protection Fig.3-1-12 External protection circuit (1) Influence of the part-A wiring The ground of N-side IGBT gate is V...
  • Page 38: Soa Of Dipipm+ At Switching State

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note 3.1.8 SOA of DIPIPM+ at switching state The SOA (Safety Operating Area) of DIPIPM+ series are described as follows; : Maximum rating of IGBT collector-emitter voltage : DC-link voltage applied on P-N terminals : Voltage between P and N terminals including surge voltage which will be generated due to wiring CC(surge) inductance between DIPIPM and DC-link capacitor at switching state.
  • Page 39: Scsoa

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note 3.1.9 SCSOA Fig.3-1-14~19 show the typical SCSOA performance curves of each products. The measurement condition is described as follows; ≤1000V(surge included), non-repetitive,2m load. (1) for 1200V series, V =800V, Tj=125°C at initial state, V CC(surge) ≤500V(surge included), non-repetitive,2m load.
  • Page 40: Power Life Cycles

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note 3.1.10 Power Life Cycles When DIPIPM is in operation, repetitive temperature variation will happen on the IGBT junctions (ΔTj). The amplitude and the times of the junction temperature variation affect the device lifetime. Fig.3-1-20 shows the IGBT power cycle curve as a function of average junction temperature variation (ΔTj).
  • Page 41: Power Loss And Thermal Dissipation Calculation

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note 3.2 Power loss and thermal dissipation calculation 3.2.1 Power loss calculation Simple expressions for calculating average power loss are given as follows; ● Scope The power loss calculation intends to provide users a way of selecting a matched power device for their VVVF inverter application.
  • Page 42 < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note FWDi recovery characteristics can be approximated by the ideal curve shown in Fig.3-2-1, and its dynamic loss can be calculated by the following expression: Fig.3-2-1 Ideal FWDi recovery characteristics curve ×...
  • Page 43: Dipipm+ Performance According To Carreir Frequency

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note 3.2.2 DIPIPM+ performance according to carreir frequency Fig.3-2-2 shows the typical characteristics of allowable effective current vs. carrier frequency under the following inverter operating conditions based on power loss simulation results for DIPIPM+ 1200V series. And Fig.3-2-3 shows for PSS50xC1F6.
  • Page 44 < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note The inverter loss can be calculated by the free power loss simulation software which is uploaded on the web site. URL: http://www.MitsubishiElectric.com/semiconductors/ Fig.3-2-4 Loss simulator screen image Publication Date: September 2016...
  • Page 45: Noise And Esd Withstand Capability

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note 3.3 Noise and ESD withstand capability 3.3.1 Evaluation circuit of noise withstand capability DIPIPM+ series have been confirmed to be with over +/-2.0kV noise withstand capability by the noise evaluation under the conditions shown in Fig.3-3-1.
  • Page 46: Countermeasures And Precautions

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note 3.3.2 Countermeasures and precautions DIPIPM+ series are improved of noise withstand capabilities by means of reducing parts quantity, lowering internal wiring parasitic inductance, and reducing leakage current. But when the noise affects on the control terminals of DIPIPM (due to wiring pattern on PCB), the short circuit or malfunction of SC protection may occur.
  • Page 47: Static Electricity Withstand Capability

    Unit P1-N1 4.0 or more 4.0 or more R, S, T-N1 4.0 or more 4.0 or more Table 3-3-2 PSSxxMC1Fx Typical ESD capability (MM) [Control part for Brake] Evaluated terminals + Polarity - Polarity Unit AIN-V [Power part for Brake]...
  • Page 48: Chapter 4 : Bootstrap Circuit Operation

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note CHAPTER 4 : Bootstrap Circuit Operation 4.1 Bootstrap Circuit Operation For three phase inverter circuit driving, it requires four isolated control supplies for driving three P-side ICs and one N-side IC. But using floating control supply with bootstrap circuit can reduce the number of isolated control supplies from four to one, it requires N-side control supply only.
  • Page 49: Bootstrap Supply Circuit Current At Switching State

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note 4.2 Bootstrap supply circuit current at switching state Bootstrap supply circuit current I at steady state is 0.55mA maximum. At switching state, the circuit current exceeds 0.55mA and increases proportional to carrier frequency, because gate charge and discharge are repeated at each switching state.
  • Page 50 < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note 3.00 2.50 2.00 1.50 1.00 0.50 0.00 Carrier frequency (kHz) Fig. 4-2-4. I vs. Carrier frequency for PSS25M(N)C1FT 3.50 3.00 2.50 2.00 1.50 1.00 0.50 0.00 Carrier frequency (kHz) Fig.
  • Page 51: Note For Designing The Bootstrap Circuit

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note 4.3 Note for designing the bootstrap circuit When each device for bootstrap circuit is designed, it is necessary to consider various conditions such as temperature characteristics, change by lifetime, variation and so on. Note for designing these devices are listed as below.
  • Page 52: Initial Charging In Bootstrap Circuit

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note Table 4-3-2 Electric characteristics of built-in bootstrap diode Item Symbol Condition Min. Typ. Max. Unit =10mA including voltage drop - Bootstrap Di forward voltage by limiting resistor Ω Built-in limiting resistance Included in bootstrap Di 4.4 Initial charging in bootstrap circuit In case of applying bootstrap circuit, it is necessary to charge to the BSC initially because voltage of BSC is 0V...
  • Page 53: Chapter 5 : Package Handling

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note CHAPTER 5 : PACKAGE HANDLING 5.1 Packaging Specification (55) Quantity: (19) 5 pieces / 1 tube Plastic tube DIPIPM+ (520) 4columns Total amount in one box (max): Tube Quantity: 4 × 8=32pcs IPM Quantity(max.): 5 ×...
  • Page 54: Handling Precautions

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note 5.2 Handling Precautions Cautions ! Transportation · Put package boxes in the correct direction. Putting them upside down, leaning them or giving them uneven stress might cause electrode terminals to be deformed or resin case to be damaged.
  • Page 55: Publication Date: September

    < Dual-In-Line Package Intelligent Power Module > DIPIPM+ Series Application note Revision Record Rev. Date Points 01/09/2016 © 2016 MITSUBISHI ELECTRIC CORPORATION. ALL RIGHTS RESERVED. DIPIPM,DIPIPM+ and CSTBT are trademarks of MITSUBISHI ELECTRIC CORPORATION Publication Date: September 2016...

This manual is also suitable for:

Pssxxnc1fx

Table of Contents