Do you have a question about the 561167 and is the answer not in the manual?
Questions and answers
Simeão Quinquino
February 24, 2025
I reset the switch but now it doesn't accept the factory credentials (user:admin and pass:serialnumber), what do I do?
1 comments:
Mr. Anderson
February 24, 2025
If the Intellinet switch 561167 does not accept the factory credentials after a reset, you can restore the factory default settings by pressing the reset button on the front of the switch for 20 seconds. After the reset, try logging in again using the default credentials: - Username: admin - Password: The serial number found on the bottom of the switch.
If login still fails, verify the serial number and ensure the reset process was completed correctly.
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports RODUCT NTRODUCTION Congratulations on your purchase of the Intellinet 8‐Port Web‐Managed Gigabit Ethernet Switch. Before you install and use this product, read this manual carefully to understand its functions. 2.1 P RODUCT VERVIEW The Intellinet 8‐Port Gigabit Ethernet PoE+ Web‐Managed Switch with 2 SFP Ports provides seamless network connections. It integrates 1000 Mbps Gigabit Ethernet, 100Mbps Fast Ethernet and 10Mbps Ethernet network capabilities in a highly flexible package. Each of the 8 10/100/1000 Mbps Auto‐Negotiation RJ45 ports supports Auto MDI/MDIX function. The switch is a high‐performance upgrade from your old network to a 1000 Mbps Gigabit network. It solves network bottlenecks that frequently develop as more advanced computer users and newer applications demand greater network resources. For efficient management, the switch is equipped with a remote Web interface. Users can program the switch for advanced management functions such as Port Management, Link Aggregation, VLAN, Spanning Tree, Multicast, QoS, Security, Access Control, MAC Address Table, Diagnostics, RMON and more. 2.2 F EATURES Eight 10/100/1000 Mbps auto‐sensing ports automatically detect optimal network speeds Two small form‐factor pluggable GBIC module slots (SFP) For use on desktop or mounted in standard 19" rack IEEE 802.3at/af‐compliant RJ45 PoE/PoE+ output ports Supports IEEE 802.3at and IEEE 802.3af‐compliant PoE devices (wireless access points, VoIP phones, IP cameras) ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 2.4 E XTERNAL OMPONENT ESCRIPTION 2.4.1 Front Panel The front panel of the switch consists of 8 10/100/1000 Mbps RJ‐45 ports, two SFP ports, one console port, one Reset button and a series of LED indicators as shown below. 10/100/1000 Mbps RJ‐45 ports (1~8): Connect to a device with a bandwidth of 10Mbps, 100Mbps or 1000 Mbps; each has a corresponding 10/100/1000 Mbps LED. SFP ports (SFP1, SFP2): Install SFP modules and connect to the device with a bandwidth of 1000 Mbps; all ports have a corresponding 1000 Mbps LED. Console port (Console): Connects with the serial port of a computer or terminal to monitor and configure the switch. Reset button (Reset): Restores the system to factory default settings; hold the reset button for five seconds while the device powers itself on. LED indicators: Enable the administrator to monitor, diagnose and troubleshoot any potential problem with the switch, its connection or attached devices. ...
Page 7
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports The following chart provides an explanation of each LED indicator on the switch. LED COLOR STATUS STATUS DESCRIPTION On Power On PWR Green Off Power Off On A device is connected to the port. 10/100M: Orange Link/Act Off No device is connected to the port. (1-8) 1000M: Green Flashing ...
2.4.2 Rear Panel AC Power Connector: Power is supplied through an external AC power adapter; it supports AC 100‐240V, 50/60Hz. Grounding Terminal: Grounds the switch through the PE cable on the AC cord or with a separate ground wire. 2.5 P ACKAGE ONTENTS Before installing the switch, make sure that the following items are enclosed. If any part is missing or damaged, contact your Intellinet agent immediately. 8‐Port Gigabit Ethernet PoE+ Web‐Managed Switch with 2 SFP Ports Four rubber feet, two mounting ears and eights screws One AC power cord One Quick Installation Guide Installation CD with User Manual 8 ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports NSTALLING AND ONNECTING THE WITCH This chapter describes how to install your Web‐Managed Gigabit Ethernet Switch and make connections to it. The following steps will help prevent damage to the device and maintain proper security: Place the switch on a stable surface or desktop to minimize the chances of it falling. Make sure the switch works in the proper AC input range and matches the voltage labeled on the switch. To prevent electrocution, do not open the switch’s chassis, even if it fails to receive power. Make sure that there is proper heat dissipation from and adequate ventilation around the switch. Make sure the surface on which the switch is placed can support the weight of the switch and its accessories. 3.1 D ESKTOP NSTALLATION When installing the switch on a desktop (if not in a rack), attach the enclosed rubber feet to the bottom corners of it to minimize vibration. Allow adequate space for ventilation between the device and the objects around it. 3.2 R ‐...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports Use the screws provided with the equipment rack to mount the switch on the rack and tighten it. Figure 6 ‐ Rack Installation 3.3 P OWER ON THE WITCH Connect the switch to an outlet using the AC 100‐240V 50/60Hz internal high‐performance power supply. AC Electrical Outlet: Intellinet recommends the use of a single‐phase, three‐wire receptacle with a neutral outlet or multifunctional professional receptacle. Be sure to connect the metal ground connector to the grounding source on the outlet. AC Power Cord Connection: Connect the AC power connector on the back panel of the switch to an external receptacle with the included power cord. Then check that the power indicator is ON. When it is ON, the corresponding LED is illuminated. 10 ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports ONNECTION TO THE WITCH 4.1 C ONNECTING OMPUTER Use standard Cat5/5e Ethernet cables (UTP/STP) to connect the switch to end nodes as described below. Switch ports will automatically adjust to the characteristics (MDI/MDI‐X, speed, duplex) of the device to which they are connected. Figure 7 ‐ PC Connect The LNK/ACT/Speed LEDs for each port are illuminated when the link is available. 4.2 H OW TO OG IN TO THE WITCH As the switch provides Web‐based management login, configure your computer’s IP address manually to log on to the switch. The default settings of the switch are shown below. Parameter Default Value Default IP address 192.168.2.1 Default Username admin Default Password 1234 Log on to the configuration window of the switch through following steps: 1.
Page 12
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports Open the browser, and go to the URL http://192.168.2.1. The switch login window appears, as shown below. Enter the Username and Password (the factory default Username is admin and the Password is 1234), and then click “LOGIN” to log in to the switch configuration window as below. 12 ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports AVING THE ONFIGURATION The Intellinet 8‐Port Gigabit Ethernet PoE+ Web‐Managed Switch provides a myriad of configuration options, many of which are designed for experienced network administrators and aren’t easy to configure. It would be a real shame if all the configuration data was lost after a power failure or after the switch was restarted. In order to make the configuration permanent, it needs to be saved. Here is how: If you do not perform this function, you risk losing all the settings after the switch restarts. 13 ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports WITCH ONFIGURATION This chapter describes how to use the web‐based management interface (Web UI) for this switch. 6.1 H 6.1.1 Port Information A green square indicates the port link is up at Gigabit speeds. An amber square indicates a link speed of 100 Mbps. A gray squares indicate the port link is down, and a PoE connection is indicated by the color red. 6.1.2 Port Information, Equipment Configuration and Port Statistics This section provides real‐time information about the ports, basic settings and traffic statistics. 14 ...
Page 15
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports Item Description Port Information Displays the port number. The nomenclature is as follows: Gi = Gigabit Ethernet 0/ = Switch 0 (which means this device) 1‐10 = Port number. Ports 9 and 10 are SFP module slots. Description Optional description for the port, as entered in the basic port configuration. Input Flow (bps) Inbound traffic rate, measured in "bits per second.” Output Flow (bps) Outbound traffic rate, measured in "bits per second.” Open State ON = Port is activated in the basic port configuration and will accept connections from networking devices. OFF = Port is deactivated in basic port configuration. Status Connect: A networking device is connected to the port and has an active link. Disconnect: No device is connected to the port. VLAN If the port belongs to a VLAN, its ID is displayed here. ID 1 = default. Trunk Port Yes = The port is part of an LACP trunking group. No = The port is not part of an LACP trunking group. This tab displays information about various functions and provides a short‐cut that allows direct configuration of that part of the switch settings. This tab displays real‐time information about the data packets for each port. 15 ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.2 Q UICK ETUP The Intellinet 8‐Port Gigabit Ethernet PoE+ Web‐Managed Switch provides a setting that offers direct access to some of the core functions of the device, namely VLAN, trunking, device IP address and admin password. Even though the function is called “Quickly Set,” there is no need to rush. Take as much time as you like with the configuration. Refer to subsequent sections in this user guide for additional information about the individual functions. 16 ...
6.3 P ORT ETTINGS 6.3.1 Basic Config Access the parameters related to each of the 10 ports. The screen is divided into two sections. The upper section displays an image of the 10 ports of the Intellinet switch. In order to make changes to a port, simply click to select it. Create a selection of multiple ports at once: ...
Page 18
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports Item Description Duplex Mode This parameter controls the duplex mode. In a full‐duplex system, both parties can communicate to the other simultaneously. An example of a full‐duplex device is a telephone; the parties at both ends of a call can speak and be heard by the other party simultaneously. In networking terms, full duplex allows users to receive and transmit data at the same time, whereas half duplex does not. If the telephone is an example for full duplex, then a push‐to‐talk CB radio or "walkie‐talkie" represents half duplex. The switch can either receive or send data, but it can never happen simultaneously. Unless you have a specific reason not to do so, this should be left in “Auto” mode. Cable Type Auto MDI‐X automatically detects the required cable‐connection type and configures Detection the connection appropriately, removing the need for crossover cables to interconnect switches or for connecting PCs peer‐to‐peer. As long as it is enabled on either end of a link, either type of cable can be used. For auto MDI‐X to operate correctly, the data rate on the interface and duplex setting must be set to "auto." When two auto MDI‐X ports are connected together, which is normal for modern products, the algorithm resolution time is typically < 500 ms. However, a ~1.4 second asynchronous timer is used to resolve the extremely rare case (with a probability of less than 1 in 5×10 ) of a loop where each end keeps switching. If you don’t understand any of this, simply leave this value on “Auto.” The screen also shows a table that lists all 10 ports along with their parameters. The “mega frame” value refers to jumbo frames, which are Ethernet frames with more than 1500 bytes of payload. Define the size of the jumbo frames in the section SYSTEM ‐> SYSTEM CONFIG. Clicking the pencil allows the administrator to edit the port settings, exactly the same way as directly selecting the port(s) as shown on the previous page. 18 ...
6.3.2 Port Aggregation Port aggregation is a method of using multiple Ethernet ports in parallel to increase throughput beyond what a single connection could sustain and to provide redundancy in case one of the links should fail. As this is essentially a grouping of ports into one logical unit, we call them Link Aggregation Groups, or “LAG” for short. This page is used to set up LAGs. Create up to eight different LAGs; each can have up to eight member ports. Each LAG can be given a custom name, and you must select the ports for the LAG. The example below shows a LAG group set up with four member ports. Item Description Aggregate port number This is the link aggregation group (LAG) number Please select the port to join the aggregate port Select the member ports that belong to this LAG ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.3.3 Port Mirroring Port mirroring is the ability of a network switch to send a copy of network packets seen on a switch port or ports to a network‐ monitoring device connected to another switch port (i.e., a computer equipped with a packet sniffer utility). The Intellinet 8‐ Port Gigabit Ethernet PoE+ Web‐ Managed Switch provides up to four groups for port‐mirroring settings. The example below shows the set up of one mirror group where all traffic occurring on port 1 is mirrored to port 6. 2 ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.3.4 Port speed limit This feature allows the user to limit the data rates for a particular port on the Intellinet 8‐Port Gigabit Ethernet PoE+ Web‐Managed Switch. When the data rate exceeds user‐configured values, the Intellinet switch drops packets immediately. Rate limiting is configured for two types of transmissions, which are ingress and egress. Ingress traffic is received on any given port (incoming, inbound, download or input speed), whereas egress traffic is sent out (outgoing, outbound, upload or output speed) to another network client. The Intellinet switch allows the user to control the available bandwidth for each port individually. The speed is measured in kbps, which stands for kilobits per second. The default is 1 million, which is the equivalent of 1 Gigabit per second. Values entered must be multiples of “16” (e.g., 16, 32, 48, …, 512, …., 1024, etc.). Item Description Port number 1 ‐ 10 Select individual ports or a range of ports. Input speed limit (multiple of 16) Provide the ingress rate in kbps. Output speed limit (multiple of 16) Provide the egress rate in kbps. 3 ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.3.5 Broadcast storm Storm control prevents a broadcast storm from disrupting LAN interfaces. A broadcast storm occurs when broadcast packets flood the subnet, creating excessive traffic and degrading network performance. Errors in the protocol‐stack implementation or in the network configuration can cause a broadcast storm. The Intellinet switch allows the user to configure the maximum allowed packets‐per‐second (pps) rates for three different types of packets. It's possible to set all 10 ports to the same value or provide individual values. Item Description Port number 1 ‐ 52 Select individual ports or a range of ports. Broadcast limit Enter the maximum pps for broadcast packets. Multicast limit Enter the maximum pps for multicast packets. Unicast limit Enter the maximum pps for unicast packets. Multicast Type Define whether to apply the storm filter only to multicast packets with unknown destination MAC addresses or to both known and unknown destinations. Unicast Type Define whether to apply the storm filter only to unicast packets with unknown destination MAC addresses or to both known and unknown destinations. 4 ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.3.6 Port isolation The port isolation function allows an administrator to configure the Intellinet switch in a way that prevents PCs on different ports from communicating with each other but without configuring a VLAN. Item Description Source Port Select the port you wish to isolate. Isolation Port Select the port(s) to which packets from the source port can be forwarded. More than one port can be selected here. 5 ...
Page 24
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.3.6.1 Configuration Example ***: 1. Three PCs, one NAS, and one router are connected to the Intellinet switch. 2. PC1 is connected to Port 1. 3. PC2 is connected to Port 2. 4. PC3 is connected to Port 3. 5. The NAS is connected to Port 4. 6. The router is connected to Port 5. 7. PC1 can access the NAS and the router. 8. PC2 and PC3 can only access the router. PC1 on port 1: PC2 on port 2: PC3 on port 3: 6 ...
Page 25
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports NAS on Port 4: Router on Port 5: When completed, the configuration will look like this. To better understand what is happening, it helps to consider the isolated ports as the ports with which the source ports can communicate. *** Screenshots taken from 16‐Port Gigabit Ethernet PoE+ Web‐Managed Switch with 2 SFP Ports, model 561341. The setup of the 8‐port version is identical. 7 ...
VLAN technology provides the following advantages: 1. Broadcast traffic does not cross into different VLANs, which reduces bandwidth utilization and improves network performance. 2. Security in your LAN can be improved, since packets in different VLANs cannot communicate with each other directly. 3. With VLAN, clients can be allocated to different working groups, and users from the same group do not have to be within the same physical area, which makes network maintenance much easier and more flexible. VLAN technology knows three types of ports—access, trunk and hybrid ports. 1. Access Ports (untagged) Access ports are designed to tag any incoming packet with the VLAN ID the port has been assigned to. b. The switch drops tagged VLAN packets that arrive at the access port. As far as the Intellinet switch is concerned, any port that isn’t defined as a trunk or hybrid port is considered an access port. 2. Trunk Ports (tagged) Trunk ports are designed to filter out packets that have either no VLAN tag or VLAN tags that are not on the allowed VLAN ID list. b. Trunk ports do not remove any existing VLAN tags from incoming packets. Trunk ports do not add a VLAN tag to any incoming untagged packet. d. Trunk ports are ideal for switch‐to‐switch connections or for devices that have the ability to tag packets by themselves such as VoIP phones. 3. Hybrid Ports These are a combination of access and trunk ports. b. Hybrid ports will tag any incoming packet that has no VLAN ID with the VLAN ID the port has ...
Page 27
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports New VLAN: Item Description VLAN ID Type in the ID for the new VLAN. This value cannot be “1” nor any ID already setup on the switch. VLAN Name Provide a descriptive name for the VLAN (e.g., “VOICE”). Choose to join the VLAN port Select all the ports you wish to be a part of this VLAN. Note that these ports will act as access ports. They will add the VLAN ID to any untagged packet and reject any incoming packets that have a VLAN tag. Note: VLAN ID 1 is the default VLAN, which cannot be removed. However, access ports that are assigned to another VLAN will be automatically removed from VLAN 1. The screen shot below shows what the setup looks like after the above VLAN has been added: 9 ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.4.1 Trunk Port Settings A trunk port transmits tagged packets and is used to connect different switches with one another. New Trunk‐Port: Item Description Native VLAN ID The native VLAN ID is the untagged VLAN on an IEEE 802.1q trunked port. The native VLAN and management VLAN (see SYSTEM‐>SYSTEM CONFIG) can be the same, but in terms of security, it is better that they aren't. If a switch receives an untagged frame on a trunk port, it is assumed to be part of the Native VLAN that is designated on the switch trunk port. Allowing VLAN Enter the IDs of all VLANs that you wish the trunk port to forward. All other tagged packets will be dropped. Note that any value you enter here must first be defined as a VLAN in the previous VLAN settings page. 10 ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.4.2 Hybrid Port Settings A Hybrid port is a combination of a trunk and an access port. Item Description Native VLAN ID See previous trunk port section. VLAN TAG VLAN ID that is added to any untagged packet arriving at the port. Note: You cannot enter multiple IDs or ranges of IDs. While the web interface may show this, it is incorrect. Allowed VLAN IDS Enter the IDs of all VLANs that you wish the hybrid port to forward. All other tagged packets will be dropped. Port Description The name of the port as defined in section 6.3.1. Add TAG VLAN VLAN ID that is added to untagged VLAN packets. Allowed TAG VLAN Tagged VLAN packets that are allowed to pass through; all other tagged packets will be dropped. 11 ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.4.3 Setup Example *** This section provides a real‐life example and the corresponding setup of the Intellinet switch, or in this case, switches. There are three VLANs in the network VLAN ID 100 – Internal data network with access to Internet VLAN ID 200 –VoIP network VLAN ID 300 – Guest network provides Internet access, but nothing else LAN Switch #1: Port 2: VoIP phone using VLAN ID 200, PC connected to back of phone Port 6: VoIP phone using VLAN ID 200 Port 8: PC Port 10: Wireless access point for internal network and access to Internet Port 12: Guest wireless access point provides Internet access only Port 16: Connection to LAN switch #2 LAN Switch #2: Port 1: Connection to LAN switch #1 Port 2: Mail Server Port 3: File Server Port 4: VoIP Gateway / PBX Port 8: Internet gateway, firewall, modem 12 ...
Page 31
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.4.3.1 Set up LAN Switch #1: *** Screenshots taken from 16‐Port Gigabit Ethernet PoE+ Web‐Managed Switch with 2 SFP Ports, model 561341. The setup of the 8‐port version is identical. Trunk port settings: Port 6: VoIP phone. This phone tags all packets by itself. The switch does not need to tag the packets. Port 16: Connection to LAN switch #2. This port passes on all traffic for VLAN IDs 100, 200 and 300. All other traffic will be dropped. Hybrid port settings: Port 2 is a special case because two networking devices are connected‐‐the VoIP phone and a PC, which is connected to the back of the phone. The VoIP phone tags the packets itself, and the switch must let them go through, just like a normal trunk port would. However, the PC connected to it cannot tag the packets by itself and therefore must rely on the Intellinet switch to do so. The Intellinet switch adds the VLAN ID 100 to all packets that are not tagged as VLAN ID 200. Port 2 acts as an untagged port (VLAN ID 100) and tagged port (VLAN ID 200) at the same time, hence the name hybrid. 13 ...
Page 32
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.4.3.2 Set up LAN Switch #2: VLAN ID 1 (default VLAN) only contains ports that are not otherwise assigned. *** Screenshots taken from 16‐Port Gigabit Ethernet PoE+ Web‐Managed Switch with 2 SFP Ports, model 561341. The setup of the 8‐port version is identical. 14 ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.5 F AULT AFETY 6.5.1 Anti Attack 6.5.1.1 DHCP Snooping DHCP snooping is a security technology built into the operating system of a capable network switch that drops DHCP traffic determined to be unacceptable. The fundamental use for DHCP snooping is to prevent unauthorized (rogue) DHCP servers from offering IP addresses to DHCP clients. Command Usage Network traffic may be disrupted when malicious DHCP messages are received from an outside source. DHCP snooping is used to filter DHCP messages received on a non‐secure interface from outside the network or firewall. When DHCP snooping is enabled globally on a VLAN interface, DHCP messages will be dropped if they are received from a device that is not listed in the DHCP snooping table or that uses an untrusted interface. Table entries are only learned for trusted interfaces. An entry is added or removed dynamically to the DHCP snooping table when a client receives or releases an IP address from a DHCP server. Each entry includes a MAC address, IP address, lease time, VLAN identifier and port identifier. When DHCP snooping is enabled, DHCP messages entering an untrusted interface are filtered based upon dynamic entries learned via DHCP snooping. 15 ...
Page 34
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports Item Description Native Protection Status Closed: All DHCP related traffic will pass through the Intellinet switch without any interference. Open: Activates DHCP snooping; DHCP traffic is now subject to certain rules. DHCP Trusted Port These are trusted ports on your network, which are under your direct administrative control. Switches, routers and servers in the network are typically connected to these ports. DHCP traffic from trusted ports is considered safe. Prohibit DHCP For Address Any port beyond the firewall or outside the network is untrusted. DHCP traffic from trusted ports is considered unsafe. DHCP response packets on these ports will be dropped, thus preventing a possible man‐in‐the‐middle attack. Item Description Source MAC Verify DHCP snooping MAC address Verify ensures that the Intellinet switch verifies that the source MAC address and the client hardware address match in DHCP packets that are received on untrusted ports. Source MAC Verify Enable Check to activate MAC address verification. MAC Address Type in the MAC address (format xx:xx:xx:xx:xx:xx). Verify / No Verify Verify: Adds MAC address to the configuration. ...
Page 35
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports Enable Option82 support. Client Option82 enabled trust mode. Option82 Agent Circuit ID (suboption 1) Item Description Circuit Name Circuit ID, an ASCII string that identifies the interface on which the client DHCP packet is received. VLAN ID Specify the Option82 for a specific VLAN ID (use 1 for default VLAN). Option82 Agent Remote ID (suboption 2) Item Description Remote Name Remote ID, an ASCII string assigned by the DHCP relay agent that securely identifies the client. VLAN ID Specify the Option82 for a specific VLAN ID (use 1 for default VLAN). 17 ...
Page 36
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports When DHCP snooping is enabled, the lease information from the switching device is used to create the DHCP snooping database, also known as the DHCP snooping binding table. The table shows the IP‐MAC binding, as well as the lease time for the IP address, type of binding, VLAN name and interface for each host. The information in this table is gathered during run‐time as clients join the network and request IP addresses via DHCP. When the switch reboots, the information is lost, except for static bindings. Item Description MAC Address MAC address for static entry. VLAN ID Specify the VLAN ID for the static entry. Port Number Select the port (1 – 10) for the static entry. DHCP Snooping Contains run‐time information of connected DHCP clients, including their MAC Binding Table address, the port number to which they are connected, the IP address they have been given, etc. Item Description DHCP Snooping VLAN VLAN to which you want to apply DHCP snooping. Server IP Address DHCP server IP address. 18 ...
Page 37
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.5.1.2 DoS A denial‐of‐service (DoS) attack is an attempt to make a machine or network resource unavailable to its intended users such as temporarily or indefinitely interrupting or suspending services of a host connected to the Internet. The Intellinet switch has integrated mechanisms to counter possible DoS attacks like land attacks or illegal TCP/IP packets. There are configuration options. You simply activate or deactivate this feature. 6.5.1.3 IP Source Guard IP Source Guard is a security feature that restricts IP traffic on untrusted Layer 2 ports by filtering traffic based on the DHCP snooping binding table (see section 6.5.1.1) or manually configured IP source bindings. Equipped with this feature, the Intellinet switch helps to prevent IP spoofing attacks. An IP spoofing attack is when a host tries to spoof (fake) and use the IP address of another host in order to intercept traffic bound for that host. If you enable IP Source Guard for a port initially, all IP traffic on the protected port is blocked except for DHCP packets. After a client receives an IP address from the DHCP server, all traffic with that IP source address is permitted from that client. Instead of a DHCP server, it's possible to provide static IP source binding, which is called “new security port” on the Intellinet switch web admin UI. Item Description Please select the IP source to Select the port (or ports) that you wish to protect by IP Source Guard. The protect the port: example above shows that IP Source Guard is enabled for port 4. Note that IP Source Guard isn’t supported on Trunk or aggregated ports. 19 ...
Page 38
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports Item Description VLAN ID Specify the VLAN ID for the static entry. Leave 1 for the default VLAN. Source IP Address Specify the IP address of the client for the static entry. Source MAC Address Specify the MAC address of the client for the static entry. Ports Select the port to which the client is connected (port 14 in the example above). You can only select one port. 20 ...
Page 39
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.5.1.4 IP MAC Port Binding The Intellinet 8‐Port Gigabit Ethernet PoE+ Web‐Managed Switch features IP MAC Port Binding. This powerful authentication function ensures correctness of hardware (MAC address), software/user (IP address) and location (Connected port) for devices connected to the network. This feature ensures they all are legal sources to prevent the data leakage from hackers faking the legal network devices. (screen shots taken from 16‐port version) Item Description Binding Enable Check to activate IP Mac port binding. Scanning Click to scan for connected network clients. Binding Select the clients you wish to add to the IP Mac port binding table, then click on “Binding.” Application List All current, static IP‐MAC‐port binding entries are listed here. Note that this information will be lost after the switch is restarted. 21 ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.5.2 Channel Detection The Intellinet switch is equipped with a set of network tools that can aid the network administrator in troubleshooting problems. 6.5.2.1 Ping Item Description Destination IP address IP address you wish to ping. Timeout Period Define the maximum allowed response time(s) before the response is considered to have timed‐out. Repeat number Define how many ping requests you want the Intellinet switch to send to the destination IP address. 6.5.2.2 Tracert Item Description Destination IP address IP address you wish to run a tracert for. Timeout Period Define the maximum allowed response time(s) before the response is considered to have timed‐out. 22 ...
Page 41
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.5.2.3 Cable Test The cable test utility allows an administrator to perform a quick check of the connected cables. Item Description Select Port Select one of the 10 ports, and then click on “Start test.” Test Results Displays the results of the cable test. Note that if you test a port to which no cable is connected, the test returns the value “circuit breaker,” because why not? 23 ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.5.3 ACL Access Control List ACE is an acronym for Access Control Entry. It describes access permission associated with a particular ACE ID. There are three ACE frame types–Ethernet Type, ARP and IPv4–and two ACE actions–permit and deny. The ACE also contains many detailed, different‐parameter options that are available for individual application. ACL is an acronym for Access Control List, a table of ACEs that contain access control entries, which specify individual users or groups who are permitted or denied access to specific traffic objects such as a process or a program. Each accessible traffic object contains an identifier to its ACL. The privileges determine whether there are specific traffic object access rights. ACL implementations can be quite complex (e.g., when the ACEs are prioritized for various situations). In networking, the ACL refers to a list of service ports or network services that are available on a host or server, each with a list of hosts or servers who are permitted or denied access to the service. ACL can generally be configured to control inbound traffic, and in this context, they are similar to firewalls. 6.5.3.1 Timetables This section allows you to set up a time frame. This time frame can be applied to ACL rules to either allow or deny access. The timetable does not directly specify whether access is denied or allowed. Rather, it is simply a way to create an easily accessible time frame that can be applied to ACL rules. The example below shows the setup of a timetable called “WorkingHours.” Note that the Intellinet switch must be set up with a proper system time (see section System Config). Item Description New Timetable Name Provide a descriptive name for the timetable. Time Interval Specify the days of the week and start and end time. Click on the to add additional time frames. Click “Save” to save the timetable. Timetables list Drop‐down list contains all timetables previously set up. Time week Selected weekdays for the selected timetable. Time Interval Time interval for selected timetable. ...
Page 43
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.5.3.2 ACL This section describes how to set up the actual access control list (ACL). The ACL connects IP address and port information with a timetable (see section 6.5.3.1) and an action to either allow or deny access to the network through the switch. The example below creates an ACL, which allows access to the network for any computer Item Description ACL Number Each ACL rule gets a number. Select the one from the drop‐down list for which you want to create this ACE (Access Control Entry). Action Define whether this rule grants access (“allow”) to the network, or prohibits it (“deny”). SRC/DEST IP Address Specify the source and destination IP address for this ACE. You can provide a single IP address (e.g., 192.168.2.100) or a specific network (e.g., 255.255.255.0). SRC/DEST Port This option is only visible if the ACE is created for TCP or UDP. It will not show for IP ACLs (see next parameter). You can provide a single port or a range of ports. Protocol Matching IP: The ACE is applied to packets based on their source and/or destination IP address. TCP/UDP: The ACE is applied to packets based on their source and/or destination IP address and the port number for the selected protocol. Time If you want to limit the ACE to a specific timetable (see section 6.5.3.1), select it from the drop‐down list. Example 1 – Disallow access to the network for any computer outside of the working hours. 25 ...
Page 44
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports Example 2 – Disallow access to the network for an individual IP address during the working hours. 6.5.3.3 Apply ACL This function allows an administrator to link an ACL to one or more of the 10 available switch ports. Select the ports and ACL list, and click “Save” in order to activate. 26 ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.6 P E The Intellinet 8‐Port Gigabit Ethernet PoE+ Web‐Managed Switch with 2 SFP Ports is equipped with sophisticated PoE‐monitoring and configuration options. 6.6.1 PoE Config 6.6.1.1 Management Item Description Working status Displays the value “On‐line,” indicating that the PoE function is working properly. Rated total power This number represents the maximum available PoE power for all connected PoE devices. Power Output This value represents the total power draw of all connected PoE devices. Alarm Power The Intellinet switch can alert the network administrator via SNMP messages if a certain PoE power draw value has been reached. This threshold can be configured under the alarm‐notice. Voltage Level Displays the current output voltage. Alarm‐Notification Define the alarm notice value, which, when exceeded, causes the switch to send out SNMP trap messages. Alarm‐Notification Enable to receive SNMP traps if the threshold level has been exceeded. ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.6.1.2 Temperature Distribution This function monitors the temperature of the two PoE chips in the Intellinet switch and sends out SNMP trap messages if a threshold you set will be exceeded. Click in order to edit the temperature threshold of the PoE chip. Note that in order for the Intellinet PoE switch to send our SNMP traps, SNMP must be activated and configured. 6.6.2 PoE Port Config This section describes how to edit the parameters of individual PoE ports. Upon opening the configuration screen, an overview of the PoE ports and their statuses appears. Click on in order to modify individual ports. Click on in order to modify the parameters for all ports on the current page (1‐8) at the same time. 28 ...
Page 47
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports Item Description Port ID Displays the ID of the port you are editing or “CurPage All ports” if you are editing all ports on the current page. Port Mode Activate or deactivate PoE support. Port Priority You can choose from three values: low, mid and high. The priority can be used to define which port won’t be receiving power in the event that the maximum PoE power has been exceeded. Example: It's possible to set the value to "high" for ports with security cameras connected to them. This ensures that these cameras will always be supplied with power, even if the total power draw on the Intellinet switch exceeds the maximum available PoE power. Ports that are set to low or mid will be disconnected first – in that order. Detection Mode Some good advice is to leave this AT&AF. You can enable AF‐only mode, if your older IEEE802.3af PoE devices are not able to communicate with the Intellinet PoE switch. Maximum Power Define the maximum output power available for the port(s) in range from 1 to 36 watts. 29 ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.6.3 PoE Delay Config This function allows an administrator to program a startup sequence for your PoE‐compliant devices and eliminate potential problems caused by the increased power draw at startup. The sequential power‐up guarantees a smooth startup procedure for all connected networking devices (i.e., your PoE‐enabled network cameras). Item Description Port This function is not directly linked to the port delay time, but in very special circumstances, it Restart can be useful. If enabled, you can instruct the PoE switch to cut power to the port(s) after a Time given time has passed. Example 1 – Restart the PoE device once per week: Example 2 – Restart the PoE device once every 2.5 days: Attention: you cannot set the exact time at which the restart occurs. It is controlled by when the feature was activated or when the switch has performed a restart. Be careful using this feature. Port Delay Define how long the switch will have to wait before it activates the port(s) after a system Time restart. Enter the delay value in seconds. 30 ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.7 S (STP) PANNING REE ROTOCOL The Spanning Tree Protocol can be used to detect and disable network loops and to provide backup links between switches, bridges or routers. This allows the switch to interact with other bridging devices in your network to ensure that only one route exists between any two stations on the network. It also provides backup links, which automatically take over when a primary link goes down. The spanning tree algorithms supported by this switch include these versions: STP – Spanning Tree Protocol (IEEE 802.1D) RSTP – Rapid Spanning Tree Protocol (IEEE 802.1w) MSTP – Multiple Spanning Tree Protocol (IEEE 802.1s) The IEEE 802.1D Spanning Tree Protocol and IEEE 802.1w Rapid Spanning Tree Protocol allow for the blocking of links between switches that form loops within the network. When multiple links between switches are detected, a primary link is established. Duplicated links are blocked from use and become standby links. The protocol allows the duplicate links to be used in the event of a failure of the primary link. Once the Spanning Tree Protocol is configured and enabled, primary links are established, and duplicated links are blocked automatically. The reactivation of the blocked links (at the time of a primary link failure) is also accomplished automatically without operator intervention. This automatic network reconfiguration provides maximum uptime to network users. However, the concepts of the Spanning Tree Algorithm and protocol are a complicated and complex subject and must be fully researched and understood. It is possible to cause serious degradation to network performance if the Spanning Tree is incorrectly configured. Please read the following before making any changes from the default values. The Switch STP performs the following functions: Creates a single spanning tree from any combination of switching or bridging elements. Creates multiple spanning trees – from any combination of ports contained within a single switch in user specified groups. ...
Page 50
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports STP communicates between switches on the network using Bridge Protocol Data Units (BPDUs). Each BPDU contains the following information: The unique identifier of the switch that the transmitting switch currently believes is the root switch The path cost to the root from the transmitting port The port identifier of the transmitting port The switch sends BPDUs to communicate and construct the spanning‐tree topology. All switches connected to the LAN on which the packet is transmitted will receive the BPDU. The switch does not directly forward BPDUs, but the receiving switch uses the information in the frame to calculate a BPDU, and, if the topology changes, initiates a BPDU transmission. The communication between switches via BPDUs results in the following: One switch is elected as the root switch The shortest distance to the root switch is calculated for each switch A designated switch is selected. This is the switch closest to the root switch through which packets will be forwarded to the root. A port for each switch is selected. This is the port providing the best path from the switch to the root switch. Ports included in the STP are selected. Creating a Stable STP Topology If all switches have STP enabled with default settings, the switch with the lowest MAC address in the network will become the root switch. By increasing the priority (lowering the priority number) of the best switch, STP can be forced to select the best switch as the root switch. When STP is enabled using the default parameters, the path between source and destination stations in a switched network might not be ideal. For instance, connecting higher‐speed links to a port that has a higher number than the current root port can cause a root‐ port change. STP Port States BPDUs take some time to pass through a network. This propagation delay can result in topology changes where a port that transitioned directly from a Blocking state to a Forwarding state could create temporary data loops. Ports must wait for new network topology information to propagate throughout the network ...
Page 51
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports Each port on a switch using STP exists is in one of the following five states: Blocking – the port is blocked from forwarding or receiving packets Listening – the port is waiting to receive BPDU packets that may tell the port to go back to the blocking state Learning – the port is adding addresses to its forwarding database, but not yet forwarding packets Forwarding – the port is forwarding packets Disabled – the port only responds to network management messages and must return to the blocking state first A port transitions from one state to another as follows: From initialization (switch boot) to blocking From blocking to listening or to disabled From listening to learning or to disabled From learning to forwarding or to disabled From forwarding to disabled From disabled to blocking It's possible to modify each port state by using management software. When you enable STP, every port on every switch in the network goes through the blocking state and then transitions through the states of listening and learning at power up. If properly configured, each port stabilizes to the forwarding or blocking state. No packets (except BPDUs) are forwarded from or received by STP enabled ports, until the forwarding state is enabled for that port. The Switch allows for two levels of operation: the switch level and the port level. The switch level forms a spanning tree consisting of links between one or more switches. The port level constructs a spanning tree consisting of groups of one or more ports. The STP operates in much the same way for both levels. 33 ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.7.1 MSTP Region Item Description MSTP Region Configuration Each switch running MST in the network has a single MST configuration that consists of these two attributes: 1. Region name An alphanumeric configuration name 2. Revision Level Instance Mapping A table that associates each of the potential 4096 VLAN IDs to a given instance. 34 ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.7.2 MSTP Bridge Item Description Instance Priority Priority can be configured for a specified instance. Instance ID Select the instance ID for which you want to define a priority. Priority Select the priority level for the instance ID. Enable Enable / disable STP. Mode STP – Spanning Tree Protocol (IEEE 802.1D) RSTP – Rapid Spanning Tree Protocol (IEEE 802.1w) MSTP – Multiple Spanning Tree Protocol (IEEE 802.1s) Hello‐Time The hello timer is the time interval between each Bridge Protocol Data Unit (BPDU) that is sent on a port. The default hello timer is 2 seconds. Adjust the Spanning Tree Protocol (STP) hello timer to any value between 1 and 10 seconds. Forward Delay The forward delay timer is the time interval that is spent in the listening and learning state. The default forward delay timer is 10 seconds. Set the Spanning Tree Protocol (STP) forward delay timer to any value between 4 and 30 seconds. MAX Age The max age timer controls the maximum length of time interval that an STP switch port saves its configuration Bridge Protocol Data Unit (BPDU) information. The default max age timer is 10 seconds. Adjust the max age timer to any value between 6 and 40 seconds. MAX Hops For Multiple Spanning Tree Protocol (MSTP), configure the maximum number of hops a BPDU can be forwarded in the MSTP region. The default value is 10. Possible values ...
Page 54
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports Item Description Instance Select the instance ID. Port Fast The time the Spanning Tree Protocol (STP) takes to transition ports over to the forwarding state can cause problems like delays when client computers connect to switches. Port‐fast solves the problem by effectively preventing the implementation of STP on that port. Auto Edge By default, “auto‐edge” is enabled on all ports. This will look for BPDUs for 3 seconds and, if none are found, will begin forwarding packets, and the port is set as “edge.” If there are BPDUs, the port is set as “non‐edge.” BDPU Guard BPDU guard disables the port upon BPDU reception if port‐fast is enabled on the port. This effectively denies devices connected to these ports from participating in the designed STP, thus protecting your data‐center core. BPDU Filter Enabling BPDU filtering for a port stops sending or receiving BPDU on this interface; this is the same as disabling spanning tree on the interface. It is a risky choice, unless you are sure that no switch can ever be connected to this port. TC Guard In certain situations, it may be desirable to prevent ports from propagating topology changes to the rest of the network. This may be the case when the network is not under a single administrative control and it is beneficial to prevent devices external to the core of the network from causing MAC‐address flushing in the core. Enable this by configuring Topology Change Guard (TC Guard) on the port. Priority If a loop occurs in the network, MSTP uses the port priority parameter when it selects an interface to put into the forwarding state. Assign higher priority values (lower numbers) to interfaces that you want selected first and lower priority values (higher numbers) that you want selected last. If all interfaces have the same priority value, MSTP puts the port with the lowest interface number in the forwarding state and blocks the other ports. Path Cost The MSTP path cost default value is derived from the media speed of an interface. If a loop occurs, MSTP uses cost when selecting an interface to put in the forwarding state. Assign lower cost values to interfaces that you want selected first and higher cost values that you ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports DHCP ELAY GENT A DHCP client is an Internet host using DHCP to obtain configuration parameters such as an IP address. A DHCP relay agent is any host that forwards DHCP packets between clients and servers. Relay agents are used to forward requests and replies between clients and servers when they are not on the same physical subnet. The Intellinet switch can fulfill the role of such a relay agent. 6.8.1 DHCP Relay Item Description DHCP relay enable Enable or disable DHCP relay. DHCP OPTION trust field enable: When enabled, the client that receives the DHCP message with option82 information will forward it; otherwise, it will be discarded. DHCP Server IP Provide the IP address of the DHCP server, and click “add.” 6.8.2 Option82 6.8.2.1 Circuit Control Item Description Circuit Control Provide the circuit ID number. Possible values range from 3 to 63. VLAN ID Type in the VLAN ID. Use value 1 for the default VLAN.. ...
Page 56
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.8.2.2 Proxy Remote Item Description Proxy Remote ASCII Remote ID string, up to 63 characters. VLAN ID Type in the VLAN ID. Use value 1 for the default VLAN. 6.8.2.3 IP Address Item Description IP Address IP address of DHCP server. VLAN ID Type in the VLAN ID. Use value 1 for the default VLAN. 38 ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.9 DHCP ERVER The Dynamic Host Configuration Protocol (DHCP) is a standardized network protocol used on Internet Protocol (IP) networks for dynamically distributing network configuration parameters such as IP addresses for interfaces and services. A typical DHCP server is a router or a Windows server. The Intellinet 8‐Port Gigabit Ethernet Web‐Managed Switch can also fulfill the role of a DHCP server. 6.9.1 DHCP Config 6.9.1.1 Enable Config Set this option to “Open” in order to activate the DHCP server function. Note that when you want to use the DHCP Server function, you cannot use the DHCP relay feature (see section 6.8 DHCP Relay Agent) at the same time. 6.9.1.2 Pool Config Item Description Pool ID Identifies the dynamic address pool from which the DHCP requests are served. Domain If you are on a domain network, the domain name should go here. Network IP This is the first IP address of the subnet ending in “.0”. It can’t be assigned to an actual network client. ...
Page 58
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports Item Description Pool ID Identifies the dynamic address pool from which the DHCP requests are served. Code Possible values are – to 255. These are the codes or tags per RFC2132. Code Value Type Select the appropriate value (i.e., select IP if you enter an IP address in the code value field below). Code Value Provide the value for the tag (code) you selected. 6.9.1.4 Bind Config This page displays all clients that have obtained an IP address from the Intellinet switch. Click on to set the lease time to expired, which forces the connected client to obtain a new IP address instantly. 6.9.1.5 Gateway Config On this page, provide the Gateway IP address that you wish to provide to the DHCP clients. 40 ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.9.1.6 DNS Config On this page, provide the DNS IP address(es) that you wish to provide to DHCP clients. 6.10 IGMP NOOPING The Internet Group Management Protocol (IGMP) lets hosts and routers share information about multicast group memberships. IGMP snooping is a switch feature that monitors the exchange of IGMP messages and copies them to the CPU for future processing. The overall purpose of IGMP Snooping is to limit the forwarding of multicast frames to only ports that are a member of the multicast group. Computers and network devices that want to receive multicast transmissions need to inform nearby routers that they will become members of a multicast group. The Internet Group Management Protocol (IGMP) is used to communicate this information. IGMP is also used to periodically check the multicast group for members that are no longer active. In the case where there is more than one multicast router on a sub network, one router is elected as the "queried." This router then keeps track of the membership of the multicast groups that have active members. The information received from IGMP is then used to determine if multicast packets should be forwarded to a given sub network or not. Using IGMP, the router can check to see if there is at least one member of a multicast group on a given sub network. If there are no members on a sub network, packets will not be forwarded to that sub network. Multicast Service 41 ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.10.1 IGMP Config 6.10.1.1 IGMP Config Options Item Description Open IGMP Snooping Activate to enable IPMP snooping. Forwarding mode Select the forwarding mode to be either IP‐based or MAC‐based. Filtering mode Enable or disable IGMP filtering. Query mode Enable or disable the MLD querier function. Query interval Enable MLD snooping (Multicast Listener Discovery) for IPv6. Unknow group suppression Flood: Unknown multicast data is flooded. Drop: Unknown multicast data is dropped. Default policy: Set the default policy to either “Allow” or “Refush” (Chinese for “Refuse”). Query response time Define the time in seconds. Query response interval Define the interval in 1/10 of a second. Multicast aging time Define the multicast aging time in seconds. 42 ...
Page 61
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.10.1.2 IGMP Port Config Item Description Maximum multicast number Type in the multicast number from 1‐254. Policy Assign a policy (strategy). 6.10.1.3 IGMP LAN Config Item Description VLAN Select the VLAN ID for which you wish to enable IGMP snooping. IGMP Snooping VLAN Click to enable IGMP Snooping for the above VLAN ID. IGMP Snooping Leave Query Set IGMP snooping fast‐leave. IGMP Snooping Dyanmic Learn Dynamically learn the IP multicast groups through IGMP snooping. IGMP Snooping Querier In networks/VLANs do not have a router that can take on the multicast router role and provide the mrouter (static multicast router) discovery on the switches, turn on the IGMP snooping querier feature. Querier version Defines the querier version. 2=IGMPv2, 3 = IGMPv3. Querier IP Snooping querier on an interface when there is no multicast router in the VLAN to generate queries. Querier Max‐Response time Define the time in seconds. Querier Response Interval Define the time in seconds. Querier timeout ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.10.2 IGMP Filter Policy Config Item Description Create a new strategy Select this if you wish to set up a new strategy. Select the existing strategy Select this in order to edit a strategy previously set up. Default policy Set to either allow or refuse. Multicast IP address IPv4 addresses that are reserved for IP multicasting and registered with the Internet Assigned Numbers Authority (IANA). For example 224.0.0.1 = all hosts on the same network segment; 224.0.0.13 = Protocol Independent Multicast (PIM) Version 2. Possible values range from 224.0.0.0 through 239.255.255.255. Mask Provide the network mask. Mode Set to either allow or refuse. 44 ...
CCESS ONTROL YSTEM Terminal Access Controller Access‐Control System (TACACS, usually pronounced like "tack‐axe") refers to a family of related protocols that handle remote authentication and related services for networked access control through a centralized server. The original TACACS protocol, which dates back to 1984, was used for communicating with an authentication server, common in older UNIX networks; it spawned related protocols. Terminal Access Controller Access‐Control System Plus (TACACS+) is a protocol released as an open standard beginning in 1993. Although derived from TACACS, TACACS+ is a separate protocol that handles authentication, authorization and accounting (AAA) services. Compared to the open standard RADIUS authentication (section 6.12 Radius), TACACS+ encrypts the entire payload whereas RADIUS only encrypts passwords. Item Description Global Config Global parameters that can be overwritten by port‐specific configuration. Server timeout The global timeout interval determines how long the Intellinet switch waits for responses from TACACS+ servers before declaring a timeout failure. Server retry Specifies the number of retry attempts that will be made to establish a Transmission count Control Protocol (TCP) connection between a TACACS+ client and the TACACS+ server. The default value is 3. Conversation / This parameter defines how many connections there will be between router daemon. Connect Only: “single‐connection" The daemon must support single‐connection mode for this to be effective; otherwise, the connection between the network access server and the daemon will lock up or you will receive spurious errors. Key type 0: Key value in clear text format 7: Key value is type‐7 encrypted. Key Type in the key value. ...
Page 64
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports Item Description Port Config Global parameters that can be overwritten by port‐specific configuration. Server IP IP Address for the TACSACS+ server. Authentication port Define the TCP port number of the TACSACS+ server connection. Server timeout The timeout interval determines how long the Intellinet switch waits for responses from a specific TACACS+ server before declaring a timeout failure. If left empty, the global server timeout value will be used; otherwise, the server timeout takes precedence. Key type 0: Key value in clear text format 7: Key value is type‐7 encrypted. Key Key value. 46 ...
Remote Authentication Dial‐In User Service (RADIUS) is a networking protocol that provides centralized Authentication, Authorization and Accounting (AAA or Triple A) management for users who connect and use a network service. RADIUS is a client/server protocol that runs in the application layer and can use either TCP or UDP as transport. Network access servers, the gateways that control access to a network, usually contain a RADIUS client component that communicates with the RADIUS server. RADIUS is often the back‐end of choice for 802.1X authentication as well. The RADIUS server is usually a background process running on a UNIX or Microsoft Windows server. 6.12.1 Radius General Config Item Description Server repeat number Specifies the number of retry attempts that will be made to establish a connection between a RADIUS client and the RADIUS server. The default value is 3. Server timeout The timeout interval determines how long the Intellinet switch waits for responses from RADIUS server before declaring a timeout failure. Server quiet time If the Intellinet switch is unable to authenticate the client, it will wait a specified amount of time before trying again. The amount of time is specified with the quiet‐period parameter. Entered in minutes; max. 1440 minutes (24 hours). Dead‐criteria retry count Set the number of times that the Intellinet switch does not receive a valid response from the RADIUS server before the server is considered unavailable. Dead‐criteria timeout Set the time in seconds during which the Intellinet switch does not need to receive a valid response from the RADIUS server. The range is from 1 to 120 seconds. 47 ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.12.2 Radius Server Config Item Description Server address Type in the address of the RADIUS server. Charging port Type the accounting port number on the RADIUS server’s host computer. The default port number is 1813. Authentication port Type the accounting port number on the RADIUS server’s host computer. The default port number is 1812. Key The key parameter in the radius‐server command is used to encrypt RADIUS packets before they are sent over the network. The value for the key parameter on the Intellinet switch device should match the one configured on the RADIUS server. The default value is “radius”. Active detection Enables or disables active detection of RADIUS server. Test name The user name for active detection. Idle time The interval time for RADIUS security server send message on accessible state. The default value is 60 minutes. Possible values range from 0 to1440 minutes (24 hours). 48 ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.13 AAA Authentication, authorization and accounting (AAA) is a system for tracking user activities on an IP‐based network and controlling their access to network resources. AAA is often implemented as a dedicated server. 6.13.1 Enable Config Enable or disable AAA. 6.13.2 Region Config Item Description Domain name Type in the name of the ISP domain. An Internet service provider (ISP) domain is a group of users who belong to the same ISP. For a user name in the format of userid@isp‐name or userid.isp‐name, the isp‐name following the "@" or “.” character is the ISP domain name. The access device uses userid as the user name for authentication, and isp‐name as the domain name. Status Set to either “block” or “active.” By default, an ISP domain is in the active state, which means that all the users in the domain are allowed to request network service. Verify that the Verify that the user is carrying the domain name. user … 49 ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.14 Q – UALITY OF ERVICE Quality of Service (QoS) is an advanced traffic prioritization feature that allows an administrator to establish control over network traffic. QoS enables you to assign various grades of network service to different types of traffic such as multi‐media, video, protocol‐specific, time critical, and file‐backup traffic. QoS reduces bandwidth limitations, delay, loss, and jitter. It also provides increased reliability for delivery of your data and allows you to prioritize certain applications across your network. You can define exactly how you want the switch to treat selected applications and types of traffic. You can use QoS on your system to control a wide variety of network traffic by: • Classifying traffic based on packet attributes. • Assigning priorities to traffic (for example, to set higher priorities to time‐critical or business‐critical applications). • Applying security policy through traffic filtering. • Providing predictable throughput for multimedia applications such as video conferencing or Voice over IP by minimizing delay and jitter. • Improving performance for specific types of traffic and preserving performance as the amount of traffic grows. • Reducing the need to constantly add bandwidth to the network. • Managing network congestion. 6.14.1 QoS Rules ...
Value Key in the value that corresponds to the value type you selected above. CoS mapping CoS stands for Class of Service. There are eight values to choose from. Priority remark As an alternative to CoS mapping, you can define the priority value here, values 0 – 7. Choose port to config Select the port or ports for the QoS rule. Select all ports if you want the rule to apply to whichever port the devices are connected. 6.14.2 Queue Config In this section, you define which priority algorithm you wish the Intellinet switch to utilize. Item Description Queue mode SP = Strict Priority, RR = Round Robin, WRR = Weighted Round Robin and WFQ = Weighted Fair Queuing. 51 ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.14.3 Queue Mapping 6.14.3.1 CoS‐Queue‐Map This page allows the network administrator to classify CoS settings to traffic queues. The server ID represents the CoS (Class of Server) ID. 6.14.3.2 DSCP‐CoS‐Map This allows network managers to determine the output queue that is assigned for a specific DSCP field. The server ID represents the DSCP field ID, and the QUEUE ID is listed as the server list on the screen. 6.14.3.3 Port‐CoS‐Map This page allows the network administrator to classify CoS settings to the 10 physical ports on the Intellinet switch. The server ID represents the CoS (Class of Server) ID. 52 ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.15 A DDRESS ABLE To switch data packets between LAN ports efficiently, the Intellinet switch maintains an address table. When the switch receives a frame, it associates the media access control (MAC) address of the sending network device with the LAN port on which it was received. In doing so, the switch drastically cuts down on unnecessary network traffic because, instead of flooding all LAN ports of the same VLAN with the information, it only sends it to the port where the recipient is connected. 6.15.1 Address Table Config 6.15.1.1 MAC Add & Delete The screen is divided into three sections. Section 1 (“clear Mac addr list”) allows you to clear the MAC address table. Section 2 can be used to manually enter a VLAN – MAC Address – Port pairing. Section 3 displays all MAC addresses that are currently in the MAC address table. 53 ...
Page 72
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.15.1.2 MAC study & aging This section allows the network administrator to specify the maximum amount of MAC addresses that can be learned per port. You can configure a maximum number of secure MAC addresses for each port. The default interface maximum is 8191 addresses. Interface maximums cannot exceed the device maximum, which is also 8191. Item Description Ports Select one or multiple ports, for which you want to define the MAC addres study limit MAC address study limit Key in the maximum MAC address limit for the selected port(s). The Intellinet switch also provides a mechanism to adjust the aging time for stored MAC addresses. The aging time controls how long the switch stores the MAC address in the MAC address table. Every time a client sends or receives traffic, the aging time for the client’s MAC address is reset. If there is no traffic for a MAC address in a time frame that exceeds the time defined in the aging time, the MAC address is removed from the MAC address table. The default aging time is 300 seconds. Setting the value to “0” disables the aging time mechanism, which means that a MAC address that has been learned once will be kept in the MAC address table until the switch is reset. But since the Intellinet switch has only a finite amount of space to hold MAC addresses, it is recommended to keep the aging time at or around the default value. 6.15.1.3 MAC Filter With this feature, the network administrator can prevent access to the network for selected MAC addresses and VLAN IDs (1 = default VLAN). Item Description MAC Address Type in the MAC address that you want to block. ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.16 SNMP Simple Network Management Protocol (SNMP) is an OSI Layer 7 (Application Layer) designed specifically for managing and monitoring network devices. SNMP enables network management stations to read and modify the settings of gateways, routers, switches and other network devices. Use SNMP to configure system features for proper operation, monitor performance and detect potential problems in the switch, switch group or network. 6.16.1 SNMP Config Activate or deactivate SNMP. 6.16.1.1 Community Config Item Description Community name SNMP Community string. The SNMP read‐only community string is like a password. It is sent along with each SNMP Get‐Request and allows (or denies) access to device. Access authority Set to read‐only or read‐write. 55 ...
Page 74
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.16.1.2 Group Config The Intellinet switch uses a view‐based access control model that allows the network administrator to configure the access privileges granted to a group. Item Description Group name Provide a group name. Security level Select the desired security level. Read view Assign the desired view (a view must be created first ‐ see SNMP View Config). Read and write view Notify view 56 ...
Page 75
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.16.1.3 User Config This section describes how to set up SNMP users and assign them to an SNMP group. Item Description User name Provide a group name. Security level Select the desired security level. Group name Provide a group name. Authentication mode Select the function of choice. Authentication password Key in the password. Encryption mode Select either AES or DES to encrypt the password. Encrypted password Key in the encrypted password. 57 ...
Page 76
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.16.1.4 Trap Config Item Description Destination IP Address The IP address of the SNMP manager (TRAP viewer) Address type IPv4 (and perhaps later IPv6 will be supported) Security name When using security mode v3, you can select a user from a drop down list. That user was created in the SNMP user config. Port for Simple Network Management Protocol Trap (SNMPTRAP). UDP port number Security mode Select the security mode (V1, V2 or V3). 58 ...
Page 77
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.16.1.5 View Config SNMPv3 defines the concept of MIB views in RFC 3415, View‐based Access Control Model (VACM) for SNMP. MIB views provide an agent with better control over who can access specific branches and objects within its MIB tree. A view consists of a name and a collection of SNMP object identifiers, which are either explicitly included or excluded. Once defined, a view is then assigned to an SNMP group ‐ see SNMP Group Config. Once a view has been created, create a rule for the view. Item Description Rule Also referred to as the '"Type." Specifies whether to include or exclude the view subtree or family of subtrees from the MIB view. Enter an OID string for the subtree to include or exclude from the view. OID string MIB subtree OID is 256 characters in length. For example, the system subtree is specified by the OID string .1.3.6.1.2.1.1. Provide the OID mask here. Subtree mask 59 ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.16.2 RMON Config Remote Monitoring (RMON) is a standard monitoring specification that enables various network monitors and console systems to exchange network‐monitoring data. RMON is the most important expansion of the SNMP standard. RMON is a set of MIB definitions that is used to define standard network monitor functions and interfaces, enabling communication between SNMP management terminals and remote monitors. RMON provides a highly efficient method to monitor actions inside the subnets. MID of RMON consists of 10 groups. The Intellinet 8‐Port Gigabit Ethernet PoE+ Web‐Managed Switch supports the most frequently used groups 1, 2, 3 and 9: Statistics: Collects Ethernet, Fast Ethernet, and Gigabit Ethernet statistics on an interface. History: Collects a history group of statistics on Ethernet, Fast Ethernet, and Gigabit Ethernet interfaces for a specified polling interval. Alarm: Monitors a specific management information base (MIB) object for a specified interval, triggers an alarm at a specified value (rising threshold) and resets the alarm at another value (falling threshold). Alarms can be used with events; the alarm triggers an event, which can generate a log entry or an SNMP trap. Event: Determines the action to take when an event is triggered by an alarm. The action can be to generate a log entry or an SNMP trap. RMON is specified as part of the Management Information Base (MIB) in RFC1757 as an extension of the Simple Network Management Protocol (SNMP). 60 ...
Page 79
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.16.2.1 Statistics Group Item Description Index Specify the history table index number. Select one of the eighteen Gigabit ports from the drop‐down list. Interface name Optional field that allows the network administrator to enter the name of the Owner owner of the Statistics RMON group. 6.16.2.2 History Group Item Description Index Specify the history table index number. Select one of the eighteen Gigabit ports from the drop‐down list. Interface name This is the number of samples ("buckets") to keep before they are overwritten. Maximum number of samples Sample period The number of seconds in each polling cycle. 61 ...
Page 80
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.16.2.3 Alarm Group Item Description Index Specify the alarm table index number. Specify the MIB variable that is monitored by the alarm entry. Static table Statistical group index This is the number of samples ("buckets") to keep before they are overwritten. Sampling time The number of seconds in each polling cycle. interval Sample type This is the method of sampling the selected variable and calculating the value to be compared against the thresholds. Owner Optional field that allows the network administrator to enter the name of the owner of the Alarm RMON group. The alarm threshold This is the rising threshold number that triggers the alarm. This value ranges limit between 0 and 2147483647. Events exceeding The event number to trigger when the rising threshold exceeds its limit. threshold Alarm threshold limit This is the falling threshold number that resets the alarm. This value ranges between 0 and 2147483647. Events below The event number to trigger when the falling threshold exceeds its limit. threshold limit ...
Page 81
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.16.2.4 Event Group Item Description Index Specify the event table index number. A descriptive name of the event. Description Optional field that allows the network administrator to enter the name of the Owner owner of the Event RMON group. Action Set to either "Log" to generate a log entry or "Trap" to generate a trap message. 63 ...
6.17 S YSTEM 6.17.1 System Config 6.17.1.1 System Settings Item Description VLAN The default VLAN ID of the switch ("1: by default). The LAN IP address of the switch. The default IP address is "192.168.2.1". IP The default network mask is 255.255.255.0. Mask The optional default gateway is only needed when you require Internet access for Default Gateway the Intellinet switch (e.g., in order to obtain time information from an NTP server). Jumboframe Here you can specify the maximum frame size supported by the Intellinet switch. The maximum is 9216 (kB). DNS Server The optional DNS server is only needed when you require Internet access for the Intellinet switch (e.g., in order to obtain time information from an NTP server). Login timeout This parameter applies to the web administrator UI. By default, users will be automatically logged out after 30 minutes of inactivity. IPv6 address Optional IPv6 address for the Intellinet switch. Device name Device name for the Intellinet switch. Device position, Optional additional information you can provide for the Intellinet switch. contacts and contact information ...
Page 83
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports Index Specify the history table index number. Click in order to set the time for the Intellinet switch manually. Set time [ ] NTP Server Activate this option if you want the Intellinet switch to obtain the system time from a NTP server. For that to work, be sure to provide a proper gateway and DNS server address. 6.17.1.2 System Restart Click "Restart" in order to have the Intellinet switch perform a system restart. 6.17.1.3 Password On this screen, you can change the administrator password. The default password is "1234". 65 ...
Page 84
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.17.1.4 EEE Enable Energy‐Efficient Ethernet (EEE) is a set of enhancements to the twisted‐pair and backplane Ethernet family of computer networking standards that allow for less power consumption during periods of low data activity. The intention was to reduce power consumption by 50% or more while retaining full compatibility with existing equipment. The Institute of Electrical and Electronics Engineers (IEEE), through the IEEE 802.3az task force developed the standard. EEE is a power saving option that reduces the power usage when there is low or no traffic utilization. When there is no traffic, EEE powers down circuits. When a port is powered down to save power, the outgoing traffic is stored in a buffer until the port is powered up again. Using this technique, more power can be saved if the traffic can be buffered up until a large burst of traffic can be transmitted. Keep in mind that buffering traffic will give some latency in the traffic. Should you encounter problems related to EEE (e.g., related to auto negotiation), you can disable EEE support and the Intellinet switch will no longer use it. 6.17.1.5 SSH Login Activate SSH support by setting the SSH CONFIG to "OPEN". 6.17.1.6 Telnet Login Activate Telnet support by setting the TELNET CONFIG to "OPEN". 66 ...
Page 85
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.17.1.7 System Log The Intellinet switch has the ability to create a history log of important events. These logs can be stored either in the switches own memory or on a remote Syslog server. In order to utilize the logging service, you must first enable it. Index Specify the history table index number. Select one of the eighteen Gigabit port from the drop‐down list. Log switch Provide the IP address of the Syslog server. Note that the Syslog server must be set Server IP to UDP port 514. Define the amount of detail you wish the Intellinet switch to log. Send log level 67 ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.17.2 System Update Intellinet may release a new firmware for this switch to provide new functions and, perhaps, bug fixes. You can install the new firmware on this screen. Should a new firmware be made available, it will be available at http://intellinet‐network.com/search?q=561167. How to install the new firmware: 1. Download the firmware from the web site 2. If the firmware is a compressed file such as RAR, 7Z or ZIP, you need to uncompress the file first before it can be installed on the Intellinet switch. 3. The correct file extension for the firmware is ".bix". 4. Click "Browse" and select the ".bix" file from your computer's HDD. 5. Click "Start Upgrade." 6. Confirm your decision by clicking OK. The upgrade will now begin. 7. Hope that there won't be a power outage during the next 3 minutes. Note that if you still see the message above after 5 minutes, open a new browser window and re‐connect to the IP address of the Intellinet switch (default = http://192.168.2.1). 68 ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.17.3 Configuration Management 6.17.3.1 Config Export and Import This function allows an administrator to backup and restore the configuration data of the Intellinet switch. Index Specify the history table index number. Shows the current switch configuration in a pop‐up window. Show Current Config Export Config Saves the current configuration data to a file on your computer's HDD. backup When a file name is provided (see below), click this button to create a backup of the configuration, which the Intellinet switch will keep in its memory. The config‐ restore function provides access to these backups and lets you restore them, delete them, rename them or save them to your computer's HDD. File name Filename for backup, e.g., backup. Import configuration In order to upload a previously saved configuration, activate this option, and then click on "Browse" and select the correct ".conf" from your computer's HDD. Click the "Import Configuration" button to begin. 6.17.3.2 Config Restore The config restore function provides access to backups that were created previously and lets you restore them, delete them, rename them or save them to your computer's HDD. 6.17.3.3 Factory Reset This feature allows an administrator to restore all settings to the factory default values. If you managed to lock yourself out from configuring the switch and have lost access to the web admin interface, you can reinstate the factory default settings by pressing the reset button on the front of the switch for 20 seconds. 69 ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.17.4 Config Save The Intellinet 8‐Port Gigabit Ethernet PoE+ Web‐Managed Switch provides a myriad of configuration options, many of which are designed for experienced network administrators and aren’t easy to configure. It would be a real shame if all the configuration data was lost after a power failure or after the switch was restarted. In order to make the configuration permanent, it needs to be saved. 6.17.5 Administrator Settings You can create new user accounts and modify existing ones on this page. A user account that does not have administrator right can only monitor the main status information of the Intellinet switch but cannot make any changes to the configuration. Index Specify the history table index number. User name When creating a new account, type in the new username. If editing an existing account, the field will be read‐only. New password Type in the new password. Confirm new password Repeat the new password. 70 ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports 6.17.6 Information Collect Click on the button to create a file that contains the configuration data of the Intellinet switch. After a few seconds, you will be asked to open or save the file (or whatever web browser default action for unknown files is in place on your system). This information can be useful when it comes to troubleshooting technical problems. 71 ...
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports ARRANTY Deutsch ‐ Garantieinformationen finden Sie hier unter intellinetnetwork.com/warranty. English ‐ For warranty information, go to intellinetnetwork.com/warranty. Español ‐ Si desea obtener información sobre la garantía, visite intellinetnetwork.com/warranty. Français ‐ Pour consulter les informations sur la garantie, rendezvous à l’adresse intellinetnetwork.com/warranty. Italiano ‐ Per informazioni sulla garanzia, accedere a intellinetnetwork.com/warranty. Polski ‐ Informacje dotyczące gwarancji znajdują się na stronie intellinetnetwork.com/warranty. México ‐ Póliza de Garantía Intellinet — Datos del importador y responsable ante el consumidor IC Intracom México, S.A.P.I. de C.V. • Av. Interceptor Poniente # 73, Col. Parque Industrial La Joya, Cuautitlan Izcalli, Estado de México, C.P. 54730, México. • Tel. (55)1500‐4500 La presente garantía cubre los siguientes productos contra cualquier defecto de fabricación en sus materiales y mano de obra. A. Garantizamos cámaras IP y productos con partes móviles por 3 años. B. Garantizamos los demás productos por 5 años (productos sin partes móviles), bajo las siguientes condiciones: 1. Todos los productos a que se refiere esta garantía, ampara su cambio físico, sin ningún cargo para el consumidor. 2. El comercializador no tiene talleres de servicio, debido a que los productos que se garantizan no cuentan con reparaciones, ni refacciones, ya que su garantía es de cambio físico. 3. La garantía cubre exclusivamente aquellas partes, equipos o sub‐ensambles que hayan sido instaladas de fábrica y no incluye en ningún caso el equipo adicional o cualesquiera que hayan sido adicionados al mismo por el usuario o distribuidor. Para hacer efectiva esta garantía bastará con presentar el producto al distribuidor en el domicilio donde ue adquirido o en el domicilio de IC Intracom México, S.A.P.I. de C.V., junto con los accesorios contenidos n su empaque, acompañado de su póliza debidamente llenada y sellada por la casa vendedora indispensable el sello y fecha de compra) donde lo adquirió, o bien, la factura o ticket de compra original donde se mencione ...
Page 92
8‐Port Desktop Gigabit Web‐Smart PoE+ Switch with 2 SFP Ports EDERAL OMMUNICATION OMMISSION NTERFERENCE TATEMENT This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: 1. Reorient or relocate the receiving antenna. 2. Increase the separation between the equipment and receiver. 3. Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. 4. Consult the dealer or an experienced radio technician for help. FCC Caution This device and its antenna must not be co‐located or operating in conjunction with any other antenna or transmitter. This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Any changes or modifications not expressly approved by the party responsible for compliance could void the authority to operate equipment. FCC Radiation Exposure Statement: This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator & your body. Safety This equipment is designed with the utmost care for the safety of those who install and use it. However, special attention must be paid to the dangers of electric shock and static electricity when working with electrical equipment. All guidelines of this and of the computer manufacture must therefore be allowed at all times to ensure the safe use of the equipment. EU Countries Intended for Use The ETSI version of this device is intended for home and office use in Austria, Belgium, Bulgaria, Cyprus, Czech, Denmark, ...
Need help?
Do you have a question about the 561167 and is the answer not in the manual?
Questions and answers
I reset the switch but now it doesn't accept the factory credentials (user:admin and pass:serialnumber), what do I do?
If the Intellinet switch 561167 does not accept the factory credentials after a reset, you can restore the factory default settings by pressing the reset button on the front of the switch for 20 seconds. After the reset, try logging in again using the default credentials:
- Username: admin
- Password: The serial number found on the bottom of the switch.
If login still fails, verify the serial number and ensure the reset process was completed correctly.
This answer is automatically generated