HP 438031-B21 - 1:10Gb Ethernet BL-c Switch Application Manual

Hp 1:10gb ethernet bl-c switch for c-class bladesystem application guide
Hide thumbs Also See for 438031-B21 - 1:10Gb Ethernet BL-c Switch:
Table of Contents

Advertisement

HP 1:10Gb Ethernet BL-c Switch for c-Class
BladeSystem
Application Guide
Part number: 445881-001
First edition: April 2007

Advertisement

Table of Contents
loading

Summary of Contents for HP 438031-B21 - 1:10Gb Ethernet BL-c Switch

  • Page 1 HP 1:10Gb Ethernet BL-c Switch for c-Class BladeSystem Application Guide Part number: 445881-001 First edition: April 2007...
  • Page 2 Legal notices © 2007 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty.
  • Page 3: Table Of Contents

    Contents Contents Accessing the switch Introduction ............................9 Additional references ........................... 10 Typographical conventions........................10 Management Network.......................... 10 Connecting through the console port....................11 Connecting through Telnet........................ 11 Connecting through Secure Shell....................... 11 Using the command line interfaces ......................12 Configuring an IP interface.......................
  • Page 4 Contents User access control ..........................34 Setting up user IDs .......................... 35 Ports and trunking Introduction ............................36 Ports on the switch ..........................36 Port trunk groups..........................37 Statistical load distribution........................ 37 Built-in fault tolerance........................37 Before you configure trunks ........................38 Trunk group configuration rules......................
  • Page 5 Contents Introduction ............................66 Overview............................66 Bridge Protocol Data Units ........................66 Determining the path for forwarding BPDUs..................67 Bridge priority ........................... 67 Port priority ..........................67 Port path cost ..........................67 Spanning Tree Group configuration guidelines ..................67 Default Spanning Tree configuration ....................67 Adding a VLAN to a Spanning Tree Group ..................
  • Page 6 Contents Using ACL Groups ..........................88 ACL Metering and Re-marking ....................... 89 Metering ............................89 Re-marking ............................. 89 Viewing ACL statistics........................... 89 ACL configuration examples ........................90 Configure Access Control Lists (CLI example) ..................90 Configure Access Control Lists and Groups (BBI example 1) ..............91 Using DSCP values to provide QoS ......................
  • Page 7 Contents Configuring IGMP Snooping (CLI example) ................. 119 Configuring IGMP Filtering (CLI example)..................120 Configuring a Static Mrouter (CLI example) ................. 120 Configuring IGMP Snooping (BBI example) ................. 121 Configuring IGMP Filtering (BBI example) ................... 123 Configuring a Static Multicast Router (BBI example) ..............127 OSPF OSPF overview ..........................
  • Page 8 Contents High availability Introduction ............................164 Uplink Failure Detection ........................164 Failure Detection Pair........................165 Spanning Tree Protocol with UFD ....................165 Configuration guidelines ........................ 166 Monitoring Uplink Failure Detection....................166 Configuring Uplink Failure Detection....................166 Configuring UFD on Switch 1 (CLI example) ................167 Configuring UFD on Switch 2 (CLI example) ................
  • Page 9: Accessing The Switch

    Accessing the switch Accessing the switch Introduction This guide will help you plan, implement, and administer the switch software for the HP 1:10Gb Ethernet BL-c Switch. Where possible, each section provides feature overviews, usage examples, and configuration instructions. “Accessing the switch” describes how to configure and view information and statistics on the switch over an IP network.
  • Page 10: Additional References

    Accessing the switch Additional references Additional information about installing and configuring the switch is available in the following guides, which are available at http://www.hp.com/go/bladesystem/documentation. HP 1:10Gb Ethernet BL-c Switch User Guide HP 1:10Gb Ethernet BL-c Switch Command Reference HP 1:10Gb Ethernet BL-c Switch ISCLI Reference Guide HP 1:10Gb Ethernet BL-c Switch Browser-based Interface Reference HP 1:10Gb Ethernet BL-c Switch Quick Setup Instructions Typographical conventions...
  • Page 11: Connecting Through The Console Port

    Accessing the switch ○ Untagged ○ Port VLAN ID (PVID): 4095 VLAN 4095—Management VLAN 4095 isolates management traffic within the HP 1:10GbE switch. VLAN 4095 contains only one member port (port 18). No other ports can be members of VLAN 4095. Interface 256—Management interface 256 is associated with VLAN 4095.
  • Page 12: Using The Command Line Interfaces

    Accessing the switch Using the command line interfaces The command line interface (CLI) can be accessed via local terminal connection or a remote session using Telnet or SSH. The CLI is the most direct method for collecting switch information and performing switch configuration.
  • Page 13: Using The Browser-Based Interface

    Accessing the switch The following example shows how to manually configure an IP address on the switch: Configure an IP interface for the Telnet connection, using the sample IP address of 205.21.17.3. The pending subnet mask address and broadcast address are automatically calculated. >>...
  • Page 14: Using Simple Network Management Protocol

    Accessing the switch Using Simple Network Management Protocol The switch software provides SNMP v1.0 and SNMP v3.0 support for access through any network management software, such as HP-OpenView. SNMP v1.0 To access the SNMP agent on the switch, the read and write community strings on the SNMP manager should be configured to match those on the switch.
  • Page 15: User Configuration

    Accessing the switch User configuration Users can be configured to use the authentication/privacy options. The HP 1:10GbE switch supports two authentication algorithms: MD5 and SHA, as specified in the following command: /cfg/sys/ssnmp/snmpv3/usm <x>/auth md5|sha To configure a user with name admin, authentication type MD5, authentication password of admin, and privacy option DES with privacy password of admin, use the following CLI commands: >>...
  • Page 16: View Based Configurations

    Accessing the switch View based configurations CLI user equivalent To configure an SNMP user equivalent to the CLI user, use the following configuration: /c/sys/ssnmp/snmpv3/usm 4 name "usr" (Configure the user) /c/sys/ssnmp/snmpv3/access 3 name "usrgrp" (Configure access group 3) rview "usr" wview "usr"...
  • Page 17: Cli Oper Equivalent

    Accessing the switch CLI oper equivalent To configure an SNMP user equivalent to the CLI oper, use the following configuration: /c/sys/ssnmp/snmpv3/usm 5 name "oper" (Configure the oper) /c/sys/ssnmp/snmpv3/access 4 name "opergrp" (Configure access group 4) rview "oper" wview "oper" nview "oper" /c/sys/ssnmp/snmpv3/group 4 (Assign oper to access group 4) uname oper...
  • Page 18 Accessing the switch Configure an entry in the notify table. /c/sys/ssnmp/snmpv3/notify 10 (Assign user to the notify table) name v1trap tag v1trap Specify the IP address and other trap parameters in the Target Address( targetAddr) and Target Parameters (targetParam) tables. Use the following command to specify the user name used with this targetParam table: c/sys/ssnmp/snmpv3/tparam <x>/uname /c/sys/ssnmp/snmpv3/taddr 10...
  • Page 19: Snmpv2 Trap Host Configuration

    Accessing the switch SNMPv2 trap host configuration The SNMPv2 trap host configuration is similar to the SNMPv1 trap host configuration. Wherever you specify the model, specify snmpv2 instead of snmpv1. c/sys/ssnmp/snmpv3/usm 10 (Configure user named “v2trap”) name "v2trap" /c/sys/ssnmp/snmpv3/access 10 (Define access group to view SNMPv2 traps) name "v2trap"...
  • Page 20: Secure Access To The Switch

    Accessing the switch The following example shows how to configure a SNMPv3 user v3trap with authentication only: /c/sys/ssnmp/snmpv3/usm 11 (Configure user named “v3trap”) name "v3trap" auth md5 authpw v3trap /c/sys/ssnmp/snmpv3/access 11 (Define access group to view SNMPv3 traps) name "v3trap" level authNoPriv nview "iso"...
  • Page 21: Configuring An Ip Address Range For The Management Network

    Accessing the switch Configuring an IP address range for the management network Configure the management network IP address and mask from the System Menu in the CLI. For example: >> Main# /cfg/sys/access/mgmt/add Enter Management Network Address: 192.192.192.0 Enter Management Network Mask: 255.255.255.128 In this example, the management network is set to 192.192.192.0 and management mask is set to 255.255.255.128.
  • Page 22: Configuring Radius On The Switch (Cli Example)

    Accessing the switch Configuring RADIUS on the switch (CLI example) To configure RADIUS on the switch, do the following: Turn RADIUS authentication on, and then configure the Primary and Secondary RADIUS servers. For example: >> Main# /cfg/sys/radius (Select the RADIUS Server menu) >>...
  • Page 23: Configuring Radius On The Switch (Bbi Example)

    Accessing the switch Configuring RADIUS on the switch (BBI example) Configure RADIUS parameters. Click the Configure context button. Open the System folder, and select Radius. Enter the IP address of the primary and secondary RADIUS servers, and enter the RADIUS secret for each server.
  • Page 24: Radius Authentication Features

    Accessing the switch Apply, verify, and save the configuration. RADIUS authentication features The switch supports the following RADIUS authentication features: Supports RADIUS client on the switch, based on the protocol definitions in RFC 2138 and RFC 2866. Allows RADIUS secret password up to 32 bytes. Supports secondary authentication server so that when the primary authentication server is unreachable, the switch can send client authentication requests to the secondary authentication server.
  • Page 25: Radius Attributes For User Privileges

    Accessing the switch Table 2 User access levels User account Description and tasks performed Administrator Administrators are the only ones that can make permanent changes to the switch configuration—changes that are persistent across a reboot/reset of the switch. Administrators can access switch functions to configure and troubleshoot problems on the switch level.
  • Page 26: How Tacacs+ Authentication Works

    Accessing the switch TACACS+ offers the following advantages over RADIUS: TACACS+ uses TCP-based connection-oriented transport; whereas RADIUS is UDP based. TCP offers a connection-oriented transport, while UDP offers best-effort delivery. RADIUS requires additional programmable variables such as re-transmit attempts and time-outs to compensate for best-effort transport, but it lacks the level of built-in support that a TCP transport offers.
  • Page 27: Accounting

    Accessing the switch Alternate mapping between TACACS+ privilege levels and switch management access levels is shown in the table below. Use the command /cfg/sys/tacacs/cmap ena to use the alternate TACACS+ privilege levels. Alternate TACACS+ privilege levels Table 5 User access level TACACS+ level user 0—1...
  • Page 28: Configuring Tacacs+ Authentication On The Switch (Cli Example)

    Accessing the switch Configuring TACACS+ authentication on the switch (CLI example) Turn TACACS+ authentication on, and then configure the Primary and Secondary TACACS+ servers. >> Main# /cfg/sys/tacacs (Select the TACACS+ Server menu) >> TACACS+ Server# on (Turn TACACS+ on) Current status: OFF New status: ON >>...
  • Page 29: Configuring Tacacs+ Authentication On The Switch (Bbi Example)

    Accessing the switch Configuring TACACS+ authentication on the switch (BBI example) Configure TACACS+ authentication for the switch. Click the Configure context button. Open the System folder, and select Tacacs+. Enter the IP address of the primary and secondary TACACS+ servers, and enter the TACACS+ secret.
  • Page 30: Secure Shell And Secure Copy

    Accessing the switch Configure custom privilege-level mapping (optional). Click Submit to accept each mapping change. Apply, verify, and save the configuration. Secure Shell and Secure Copy Secure Shell (SSH) and Secure Copy (SCP) use secure tunnels to encrypt and secure messages between a remote administrator and the switch.
  • Page 31: Configuring Ssh And Scp Features (Cli Example)

    Accessing the switch The switch implementation of SSH is based on version 1.5 and version 2.0, and supports SSH clients from version 1.0 through version 2.0. Client software can use SSH version 1 or version 2. The following SSH clients are supported: SSH 3.0.1 for Linux (freeware) SecureCRT®...
  • Page 32: Using Ssh And Scp Client Commands

    Accessing the switch Configuring the SCP administrator password To configure the scpadmin (SCP administrator) password, first connect to the switch via the RS-232 management console. For security reasons, the scpadmin password can be configured only when connected directly to the switch console. To configure the password, enter the following CLI command.
  • Page 33: Ssh And Scp Encryption Of Management Messages

    Accessing the switch Applying and saving configuration Enter the apply and save commands after the command above (scp ad4.cfg 205.178.15.157:putcfg), or use the following commands. You will be prompted for a password. >> # scp <local_filename> <user>@<switch IP addr>:putcfg_apply >> # scp <local_filename> <user>@<switch IP addr>:putcfg_apply_save For example: >>...
  • Page 34: Ssh/Scp Integration With Radius And Tacacs+ Authentication

    Accessing the switch A value of 0 denotes that RSA server key autogeneration is disabled. When greater than 0, the switch will auto generate the RSA server key every specified interval; however, RSA server key generation is skipped if the switch is busy doing other key or cipher generation when the timer expires. The switch will perform only one session of key/cipher generation at a time.
  • Page 35: Setting Up User Ids

    Accessing the switch Setting up user IDs The administrator can configure up to 10 user accounts. To configure an end-user account, perform the following steps: Select a user ID to define. >> # /cfg/sys/access/user/uid 1 Define the user name and password. >>...
  • Page 36: Ports And Trunking

    Ports and trunking Ports and trunking Introduction The first part of this chapter describes the different types of ports used on the switch. This information is useful in understanding other applications described in this guide, from the context of the embedded switch/server environment.
  • Page 37: Port Trunk Groups

    Ports and trunking Table 7 Ethernet switch port names Port number Port alias Downlink13 Downlink14 Downlink15 Downlink16 XConnect1 Mgmt Uplink1 Uplink2 Uplink3 Uplink4 Uplink5 Uplink6 Uplink7 Port trunk groups When using port trunk groups between two switches, you can create an aggregate link operating at up to five Gigabits per second, depending on how many physical ports are combined.
  • Page 38: Before You Configure Trunks

    Ports and trunking Before you configure trunks When you create and enable a trunk, the trunk members (switch ports) take on certain settings necessary for correct operation of the trunking feature. Before you configure your trunk, you must consider these settings, along with specific configuration rules, as follows: Read the configuration rules provided in the “Trunk group configuration rules”...
  • Page 39: Port Trunking Example

    Ports and trunking Port trunking example In this example, the Gigabit uplink ports on each switch are configured into a total of four trunk groups: two on each switch. NOTE: The actual mapping of switch ports to NIC interfaces is dependant on the operating system software, the type of server blade, and the enclosure type.
  • Page 40: Configuring Trunk Groups (Cli Example)

    Ports and trunking Configuring trunk groups (CLI example) On Switch 1, configure trunk groups 5 and 3: >> # /cfg/l2/trunk 5 (Select trunk group 5) >> Trunk group 5# add 24 (Add port 24 to trunk group 5) >> Trunk group 5# add 25 (Add port 25 to trunk group 5) >>...
  • Page 41: Configuring Trunk Groups (Bbi Example)

    Ports and trunking Configuring trunk groups (BBI example) Configure trunk groups. Click the Configure context button on the Toolbar. Open the Layer 2 folder, and select Trunk Groups. Click a Trunk Group number to select it.
  • Page 42 Ports and trunking Enable the Trunk Group. To add ports, select each port in the Ports Available list, and click Add. Click Submit. Apply, verify, and save the configuration. Examine the trunking information on each switch. Click the Dashboard context button on the Toolbar.
  • Page 43: Configurable Trunk Hash Algorithm

    Ports and trunking Select Trunk Groups. Information about each configured trunk group is displayed. Make sure that trunk groups consist of the expected ports and that each port is in the expected state. Configurable Trunk Hash algorithm This feature allows you to configure the particular parameters for the HP 1:10GbE switch Trunk Hash algorithm instead of having to utilize the defaults.
  • Page 44: Link Aggregation Control Protocol

    Ports and trunking Link Aggregation Control Protocol Link Aggregation Control Protocol (LACP) is an IEEE 802.3ad standard for grouping several physical ports into one logical port (known as a dynamic trunk group or Link Aggregation group) with any device that supports the standard. Refer to the IEEE 802.3ad-2002 for a full description of the standard. The 802.3ad standard allows standard Ethernet links to form a single Layer 2 link using the Link Aggregation Control Protocol (LACP).
  • Page 45: Configuring Lacp

    Ports and trunking Each port in the HP 1:10GbE switch can have one of the following LACP modes. off (default)—The user can configure this port in to a regular static trunk group. active—The port is capable of forming an LACP trunk. This port sends LACPDU packets to partner system ports.
  • Page 46: Port-Based Network Access And Traffic Control

    Port-based Network Access and traffic control Port-based Network Access and traffic control Port-based Network Access control Port-based Network Access control provides a means of authenticating and authorizing devices attached to a LAN port that has point-to-point connection characteristics. It prevents access to ports that fail authentication and authorization.
  • Page 47: 802.1X Authentication Process

    Port-based Network Access and traffic control 802.1x authentication process The clients and authenticators communicate using Extensible Authentication Protocol (EAP), which was originally designed to run over PPP, and for which the IEEE 802.1x Standard has defined an encapsulation method over Ethernet frames, called EAP over LAN (EAPOL). The following figure shows a typical message exchange initiated by the client.
  • Page 48: 802.1X Port States

    Port-based Network Access and traffic control The Radius server chooses an EAP-supported authentication algorithm to verify the client’s identity, and sends an EAP-Request packet to the client via the switch authenticator. The client then replies to the Radius server with an EAP-Response containing its credentials. Upon a successful authentication of the client by the server, the 802.1x-controlled port transitions from unauthorized to authorized state, and the client is allowed full access to services through the controlled port.
  • Page 49: Eapol Configuration Guidelines

    Port-based Network Access and traffic control Table 9 EAP support for RADIUS attributes Attribute Attribute Value State Server-specific value. This is sent unmodified back to the server in an Access-Request that is in response to an Access-Challenge. Called-Station-ID The MAC address of the authenticator encoded as an ASCII string in canonical format, e.g.
  • Page 50: Port-Based Traffic Control

    Port-based Network Access and traffic control The 802.1x standard has optional provisions for supporting dynamic virtual LAN assignment via RADIUS tunneling attributes, for example, Tunnel-Type (=VLAN), Tunnel-Medium-Type (=802), and Tunnel-Private-Group-ID (=VLAN id). These attributes are not supported and might affect 802.1x operations.
  • Page 51: Vlans

    VLANs VLANs Introduction This chapter describes network design and topology considerations for using Virtual Local Area Networks (VLANs). VLANs are commonly used to split up groups of network users into manageable broadcast domains, to create logical segmentation of workgroups, and to enforce security policies among logical segments.
  • Page 52: Viewing Vlans

    VLANs Viewing VLANs The VLAN information menu (/info/l2/vlan) displays all configured VLANs and all member ports that have an active link state, for example: >> Layer 2# vlan VLAN Name Status Ports ---- -------------------------------- ------ ---------------------- Default VLAN 1 4-18 19-25 VLAN 2 4095 VLAN 4095...
  • Page 53: Vlan Tagging

    VLANs VLAN tagging The switch supports IEEE 802.1Q VLAN tagging, providing standards-based VLAN support for Ethernet systems. Tagging places the VLAN identifier in the frame header, allowing each port to belong to multiple VLANs. When you configure multiple VLANs on a port, you must also enable tagging on that port. Since tagging fundamentally changes the format of frames transmitted on a tagged port, you must carefully plan network designs to prevent tagged frames from being transmitted to devices that do not support 802.1Q VLAN tags, or devices where tagging is not enabled.
  • Page 54 VLANs Figure 3 Default VLAN settings NOTE: The port numbers specified in these illustrations may not directly correspond to the physical port configuration of your switch model. When you configure VLANs, you configure the switch ports as tagged or untagged members of specific VLANs.
  • Page 55 VLANs Figure 5 802.1Q tagging (after port-based VLAN assignment) In the following figure, the tagged incoming packet is assigned directly to VLAN 2 because of the tag assignment in the packet. Port 5 is configured as a tagged member of VLAN 2, and port 7 is configured as an untagged member of VLAN 2.
  • Page 56: Vlans And Ip Interfaces

    VLANs Figure 7 802.1Q tagging (after 802.1Q tag assignment) NOTE: Using the /boot/conf factory command resets all ports to VLAN 1 (except management port 18) and all other settings to the factory defaults at the next reboot. VLANs and IP interfaces Carefully consider how you create VLANs within the switch, so that communication with the switch remains possible.
  • Page 57: Vlan Configuration Rules

    VLANs VLAN configuration rules VLANs operate according to specific configuration rules which must be considered when creating VLANs. For example: HP recommends that all ports involved in trunking and Port Mirroring have the same VLAN configuration. If a port is on a trunk with a mirroring port, the VLAN configuration cannot be changed.
  • Page 58 VLANs Figure 8 Multiple VLANs with VLAN tagging The features of this VLAN are described in the following table: Table 10 Multiple VLANs with tagging Component Description Switch 1 Switch 1 is configured for VLANS 1, 2, and 3. Port 1 is tagged to accept traffic from VLANs 1 and 2.
  • Page 59: Configuring The Example Network

    VLANs Table 10 Multiple VLANs with tagging Component Description Blade Server #1 This high-use blade server needs to be accessed from all VLANs and IP subnets. The server has a VLAN-tagging adapter installed with VLAN tagging turned on. One adapter is attached to one of the switch's 10/100/1000 Mbps ports, that is configured for VLANs 1 and 2.
  • Page 60: Configuring Ports And Vlans On Switch 1 (Cli Example)

    VLANs Configuring ports and VLANs on Switch 1 (CLI example) To configure ports and VLANs on Switch 1, do the following: On Switch 1, enable VLAN tagging on the necessary ports. Main# /cfg/port 1 >> Port 1# tag e (Select port 1: connection to server 1) Current VLAN tag support: disabled New VLAN tag support: enabled...
  • Page 61: Configuring Ports And Vlans On Switch 2 (Cli Example)

    VLANs Configuring ports and VLANs on Switch 2 (CLI example) To configure ports and VLANs on Switch 2, do the following: On Switch 2, enable VLAN tagging on the necessary ports. Port 4 (connection to server 2) remains untagged, so it is not configured below. Main# /cfg/port 2 (Select port 2: connection to server 1) >>...
  • Page 62: Configuring Ports And Vlans On Switch 1 (Bbi Example)

    VLANs Configuring ports and VLANs on Switch 1 (BBI example) To configure ports and VLANs on Switch 1, do the following: On the switch 1, enable VLAN tagging on the necessary ports. Click the Configure context button on the Toolbar. Open the Switch folder, and select Switch Ports (click the underlined text, not the folder).
  • Page 63 VLANs Enable the port and enable VLAN tagging. Click Submit. Configure the VLANs and their member ports. Open the Virtual LANs folder, and select Add VLAN.
  • Page 64 VLANs Enter the VLAN name, VLAN ID number, and enable the VLAN. To add ports, select each port in the Ports Available list and click Add. Since all ports are configured for VLAN 1 by default, configure only those ports that belong to VLAN 2. The crosslink port 17 must belong to VLAN 1 and VLAN 2.
  • Page 65: Fdb Static Entries

    VLANs FDB static entries Static entries in the Forwarding Database (FDB) allow the switch to forward packets without flooding ports to perform a lookup. A FDB static entry is a MAC address associated with a specific port and VLAN. The switch supports 128 static entries.
  • Page 66: Spanning Tree Protocol

    Spanning Tree Protocol Spanning Tree Protocol Introduction When multiple paths exist on a network, Spanning Tree Protocol (STP) configures the network so that a switch uses only the most efficient path. The following topics are discussed in this chapter: Overview Bridge Protocol Data Units (BPDUs) Spanning Tree Group (STG) configuration guidelines Multiple Spanning Trees...
  • Page 67: Determining The Path For Forwarding Bpdus

    Spanning Tree Protocol Determining the path for forwarding BPDUs When determining which port to use for forwarding and which port to block, the switch uses information in the BPDU, including each bridge priority ID. A technique based on the lowest root cost is then computed to determine the most efficient path for forwarding.
  • Page 68: Adding A Vlan To A Spanning Tree Group

    Spanning Tree Protocol Adding a VLAN to a Spanning Tree Group If no VLANs exist beyond the default VLAN 1, see the “Creating a VLAN” section in this chapter for information on adding ports to VLANs. Add the VLAN to the STG using the command /cfg/l2/stp <stg number>/add <vlan number>. Creating a VLAN When you create a VLAN, then that VLAN automatically belongs to STG 1, the default STG.
  • Page 69: Assigning Cost To Ports And Trunk Groups

    Spanning Tree Protocol The relationship between ports, trunk groups, VLANs, and spanning trees is shown in the following table. Ports, trunk groups, and VLANs Table 11 Switch element Belongs to Port Trunk group, or one or more VLANs Trunk group Only one VLAN VLAN (non-default) One Spanning Tree Group...
  • Page 70: Why Do We Need Multiple Spanning Trees

    Spanning Tree Protocol Why do we need Multiple Spanning Trees? The following figure shows a simple example of why we need multiple Spanning Trees. This example assumes that port 24 and 25 are not part of a Trunk Group. Two VLANs (VLAN 1 and VLAN 2) exist between Switch 1 and Switch 2.
  • Page 71: Vlan Participation In Spanning Tree Groups

    Spanning Tree Protocol VLAN participation in Spanning Tree Groups The following table shows which switch ports participate in each Spanning Tree Group. By default, server ports (ports 1-16) do not participate in Spanning Tree, even though they are members of their respective VLANs.
  • Page 72: Configuring Switch 1 (Bbi Example)

    Spanning Tree Protocol Configuring Switch 1 (BBI example) Configure port and VLAN membership on Switch 1 as described in the “Configuring ports and VLANs on Switch 1 (BBI example)” section, in the “VLANs” chapter of this guide. Add VLAN 2 to Spanning Tree Group 2. Click the Configure context button on the Toolbar.
  • Page 73 Spanning Tree Protocol Enter the Spanning Tree Group number and set the Switch Spanning Tree State to on. To add a VLAN to the Spanning Tree Group, select the VLAN in the VLANs Available list, and click Add. VLAN 2 is automatically removed from Spanning Tree Group 1. Scroll down, and click Submit.
  • Page 74: Port Fast Forwarding

    Spanning Tree Protocol Port Fast Forwarding Port Fast Forwarding permits a port that participates in Spanning Tree to bypass the Listening and Learning states and enter directly into the Forwarding state. While in the Forwarding state, the port listens to the BPDUs to learn if there is a loop and, if dictated by normal STG behavior (following priorities, etc.), the port transitions into the Blocking state.
  • Page 75: Rstp And Mstp

    RSTP and MSTP RSTP and MSTP Introduction Rapid Spanning Tree Protocol (IEEE 802.1w) enhances the Spanning Tree Protocol (IEEE 802.1d) to provide rapid convergence on Spanning Tree Group 1. Multiple Spanning Tree Protocol (IEEE 802.1s) extends the Rapid Spanning Tree Protocol to provide both rapid convergence and load balancing in a VLAN environment.
  • Page 76: Port Type And Link Type

    RSTP and MSTP Port type and link type Spanning Tree Configuration includes the following parameters to support RSTP and MSTP: Edge port Link type Although these parameters are configured for Spanning Tree Groups 1-128 (/cfg/l2/stp y/port x), they only take effect when RSTP/MSTP is turned on. Edge port A port that connects to a server or stub network is called an edge port.
  • Page 77: Configuring Rapid Spanning Tree Protocol (Bbi Example)

    RSTP and MSTP Configuring Rapid Spanning Tree Protocol (BBI example) Configure port and VLAN membership on the switch, as described in the “Configuring ports and VLANs (BBI example)” section in the “VLANs” chapter of this guide. Configure RSTP general parameters. Click the Configure context button on the Toolbar.
  • Page 78: Multiple Spanning Tree Protocol

    RSTP and MSTP Apply, verify, and save the configuration. Multiple Spanning Tree Protocol IEEE 802.1s Multiple Spanning Tree extends the IEEE 802.1w Rapid Spanning Tree Protocol through multiple Spanning Tree Groups. MSTP maintains up to 32 spanning-tree instances that correspond to STP Groups 1-32.
  • Page 79: Mstp Configuration Guidelines

    RSTP and MSTP MSTP configuration guidelines This section provides important information about configuring Multiple Spanning Tree Groups: When you turn on MSTP, the switch automatically moves VLAN 1 to the Common Internal Spanning Tree (CIST). Region Name and revision level must be configured. Each bridge in the region must have the same name and revision level.
  • Page 80: Configuring Multiple Spanning Tree Protocol (Bbi Example)

    RSTP and MSTP Configuring Multiple Spanning Tree Protocol (BBI example) Configure port and VLAN membership on the switch, as described in the “Configuring ports and VLANs (BBI example)” section in the “VLANs” chapter of this guide. Configure MSTP general parameters. Click the Configure context button on the Toolbar.
  • Page 81 RSTP and MSTP Configure Common Internal Spanning Trees (CIST) bridge parameters. Open the MSTP/RSTP folder, and select CIST-Bridge. Enter the Bridge Priority, Maximum Age, and Forward Delay values. Click Submit.
  • Page 82 RSTP and MSTP Configure Common Internal Spanning Tree (CIST) port parameters. Open the MSTP/RSTP folder, and select CIST-Ports. Click a port number to select it.
  • Page 83 RSTP and MSTP Enter the Port Priority, Path Cost, and select the Link Type. Set the CIST Port State to ON. Click Submit. Apply, verify, and save the configuration.
  • Page 84: Quality Of Service

    Quality of Service Quality of Service Introduction Quality of Service features allow you to allocate network resources to mission-critical applications at the expense of applications that are less sensitive to such factors as time delays or network congestion. You can configure your network to prioritize specific types of traffic, ensuring that each type receives the appropriate Quality of Service (QoS) level.
  • Page 85: Using Acl Filters

    Quality of Service The basic HP 1:10GbE switch QoS model works as follows: Classify traffic: ○ Read 802.1p Priority ○ Match ACL filter parameters Meter traffic: ○ Define bandwidth and burst parameters ○ Select actions to perform on in-profile and out-of-profile traffic Perform actions: ○...
  • Page 86 Quality of Service Table 14 Well-known protocol types Number Protocol Name ospf vrrp TCP/UDP ○ TCP/UDP application source port, as shown in the table titled “Well-Known Application Ports” ○ TCP/UDP application destination port, as shown in the table titled “Well-Known Application Ports”...
  • Page 87: Summary Of Acl Actions

    Quality of Service Packet Format ○ Ethernet format (eth2, SNAP, LLC) ○ Ethernet tagging format Egress port packets Note that the egress port ACL will not match a broadcast, multicast, unknown unicast, or Layer 3 packet. The egress port ACL will not match packets if the destination port is a trunk member. Summary of ACL actions Actions determine how the traffic is treated.
  • Page 88: Using Acl Groups

    Quality of Service Using ACL Groups Access Control Lists (ACLs) allow you to classify packets according to a particular content in the packet header, such as the source address, destination address, source port number, destination port number, and others. Packet classifiers identify flows for more processing. You can define a traffic profile by compiling a number of ACLs into an ACL Group, and assigning the ACL Group to a port.
  • Page 89: Acl Metering And Re-Marking

    Quality of Service ACL Metering and Re-marking You can define a profile for the aggregate traffic flowing through the HP 1:10GbE switch, by configuring a QoS meter (if desired), and assigning ACL Groups to ports. When you add ACL Groups to a port, make sure they are ordered correctly in terms of precedence.
  • Page 90: Acl Configuration Examples

    Quality of Service ACL configuration examples Configure Access Control Lists (CLI example) The following configuration examples illustrate how to use Access Control Lists (ACLs) to block traffic. These basic configurations illustrate common principles of ACL filtering. NOTE: Each ACL filters traffic that ingresses on the port to which the ACL is added. The egrport classifier filters traffic that ingresses the port to which the ACL is added, and then egresses the port specified by egrport.
  • Page 91: Configure Access Control Lists And Groups (Bbi Example 1)

    Quality of Service Example 3 Use this configuration to block traffic from a source that is destined for a specific egress port. >> Main# /cfg/acl/acl 1 (Define ACL 1) >> ACL 1# ethernet/smac 002100000000 ffffffffffff >> Filtering Ethernet# .. >> ACL 1# action deny >>...
  • Page 92 Quality of Service Configure the ACL parameters. Set the Filter Action to Deny, the Ethernet Type to IPv4, and the Destination IP Address to 100.10.1.116. Click Submit. Apply, verify, and save the configuration.
  • Page 93 Quality of Service Add ACL 1 to port 1. Click the Configure context button on the Toolbar. Select Switch Ports (click the underlined text, not the folder). Select a port.
  • Page 94 Quality of Service Add the ACL to the port. Click Submit. Apply, verify, and save the configuration.
  • Page 95: Using Dscp Values To Provide Qos

    Quality of Service Using DSCP values to provide QoS The six most significant bits in the TOS byte of the IP header are defined as DiffServ Code Points (DSCP). Packets are marked with a certain value depending on the type of treatment the packet must receive in the network device.
  • Page 96: Qos Levels

    Quality of Service Class Selector (CS)—This PHB has eight priority classes, with CS7 representing the highest priority, and CS0 representing the lowest priority, as shown below. CS PHB is described in RFC 2474. Class selector priority classes Table 18 Priority Class Selector DSCP Highest...
  • Page 97 Quality of Service The IEEE 802.1p standard uses eight levels of priority (0-7). Priority 7 is assigned to highest priority network traffic, such as OSPF or RIP routing table updates, priorities 5-6 are assigned to delay-sensitive applications such as voice and video, and lower priorities are assigned to standard applications. A value of 0 (zero) indicates a best effort traffic prioritization, and this is the default when traffic priority has not been configured on your network.
  • Page 98: P Configuration (Cli Example)

    Quality of Service 802.1p configuration (CLI example) Configure a port’s default 802.1 priority. >> Main# cfg/port 20 (Select port) >> Port 20# 8021ppri (Set port’s default 802.1p priority) Current 802.1p priority: 0 Enter new 802.1p priority [0-7]: 1 >> Port 20# apply Map the 802.1p priority value to a COS queue and set the COS queue scheduling weight.
  • Page 99 Quality of Service Select a port.
  • Page 100 Quality of Service Set the 802.1p priority value. Click Submit.
  • Page 101 Quality of Service Map the 802.1p priority value to a COS queue. Click the Configure context button on the Toolbar. Open the 802.1p folder, and select Priority - CoS. Select an 802.1p priority value. Select a Class of Service queue (CoSQ) to correlate with the 802.1p priority value. Click Submit.
  • Page 102 Quality of Service Set the COS queue scheduling weight. Click the Configure context button on the Toolbar. Open the 802.1p folder, and select CoS - Weight. Select a Class of Service queue (CoS). Enter a value for the weight of the Class of Service queue. Click Submit.
  • Page 103: Queuing And Scheduling

    Quality of Service Apply, verify, and save the configuration. Queuing and scheduling The switch can be configured with either two or eight output Class of Service queues (COSq) per port, into which each packet is placed. Each packet’s 802.1p priority determines its COSq, except when an ACL action sets the COSq of the packet.
  • Page 104: Basic Ip Routing

    Basic IP routing Basic IP routing This chapter provides configuration background and examples for using the HP 1:10GbE switch to perform IP routing functions. The following topics are addressed in this chapter: IP Routing Benefits Routing Between IP Subnets Example of Subnet Routing Defining IP Address Ranges for the Local Route Cache Dynamic Host Configuration Protocol IP routing benefits...
  • Page 105 Basic IP routing For example, consider the following topology migration: Figure 14 Router legacy network In this example, a corporate campus has migrated from a router-centric topology to a faster, more powerful, switch-based topology. As is often the case, the legacy of network growth and redesign has left the system with a mix of illogically distributed subnets.
  • Page 106 Basic IP routing Take a closer look at the HP 1:10GbE switch in the following configuration example: Figure 15 Switch-based routing topology The switch connects the Gigabit Ethernet and Fast Ethernet trunks from various switched subnets throughout one building. Common servers are placed on another subnet attached to the switch. Primary and backup routers are attached to the switch on yet another subnet.
  • Page 107: Example Of Subnet Routing

    Basic IP routing Example of subnet routing Prior to configuring, you must be connected to the switch Command Line Interface (CLI) as the administrator. NOTE: For details about accessing and using any of the menu commands described in this example, see the HP c-Class 1:10Gb Ethernet Blade Switch Command Reference Guide. Assign an IP address (or document the existing one) for each router and client workstation.
  • Page 108: Using Vlans To Segregate Broadcast Domains

    Basic IP routing Configuring the default gateways allows the switch to send outbound traffic to the routers: >> IP Interface 5# ../gw 1 (Select primary default gateway) >> Default gateway 1# addr 205.21.17.1(Assign IP address) >> Default gateway 1# ena (Enable primary default gateway) >>...
  • Page 109: Dynamic Host Configuration Protocol

    Basic IP routing The VLANs shown in the table above are configured as follows: >> # /cfg/l2/vlan 1(Select VLAN 1) >> VLAN 1# add port 20 (Add port for 1st floor to VLAN 1) >> VLAN 1# add port 21 (Add port for 2nd floor to VLAN 1) >>...
  • Page 110: Dhcp Relay Agent

    Basic IP routing Built on the client/server model, DHCP allows hosts or clients on an IP network to obtain their configurations from a DHCP server, thereby reducing network administration. The most significant configuration the client receives from the server is its required IP address; (other optional parameters include the generic file name to be booted, the address of the default gateway, and so forth).
  • Page 111 Basic IP routing In HP 1:10GbE switch implementation, there is no need for primary or secondary servers. The client request is forwarded to the BOOTP servers configured on the switch. The use of two servers provides failover redundancy. However, no health checking is supported. Use the following commands to configure the switch as a DHCP relay agent: >>...
  • Page 112: Routing Information Protocol

    Routing Information Protocol Routing Information Protocol In a routed environment, routers communicate with one another to keep track of available routes. Routers can learn about available routes dynamically, using the Routing Information Protocol (RIP). HP 1:10GbE switch software supports RIP version 1 (RIPv1) and RIP version 2 (RIPv2) for exchanging TCP/IP route information with other routers.
  • Page 113: Ripv1

    Routing Information Protocol RIPv1 RIP version 1 use broadcast User Datagram Protocol (UDP) data packets for the regular routing updates. The main disadvantage is that the routing updates do not carry subnet mask information. Hence, the router cannot determine whether the route is a subnet route or a host route. It is of limited usage after the introduction of RIPv2.
  • Page 114: Multicast

    Routing Information Protocol Multicast RIPv2 messages use IP multicast address (224.0.0.9) for periodic broadcasts. Multicast RIPv2 announcements are not processed by RIPv1 routers. IGMP is not needed since these are inter-router messages which are not forwarded. To configure RIPv2 in RIPv1-compatibility mode, set multicast to disable. Default The RIP router can listen and supply a default route, usually represented as 0.0.0.0 in the routing table.
  • Page 115: Rip Configuration Example

    Routing Information Protocol RIP configuration example NOTE: An interface RIP disabled uses all the default values of the RIP, no matter how the RIP parameters are configured for that interface. RIP sends out RIP regular updates to include an Up interface, but not a Down interface.
  • Page 116: Igmp Snooping

    IGMP Snooping IGMP Snooping Introduction IGMP Snooping allows the switch to forward multicast traffic only to those ports that request it. IGMP Snooping prevents multicast traffic from being flooded to all data ports. The switch learns which server hosts are interested in receiving multicast traffic, and forwards it only to ports connected to those servers. The following topics are discussed in this chapter: Overview IGMPv3...
  • Page 117: Igmpv3

    IGMP Snooping Periodically, the Mrouter sends Membership Queries to ensure that the host wants to continue receiving the multicast. If the host fails to respond with a Membership Report, the Mrouter stops sending the multicast to that path. The host can send an IGMPv2 Leave report to the switch, which sends a proxy Leave report to the Mrouter.
  • Page 118: Igmp Filtering

    IGMP Snooping IGMP Filtering With IGMP Filtering, you can allow or deny a port to send and receive multicast traffic to certain multicast groups. Unauthorized users are restricted from streaming multicast traffic across the network. If access to a multicast group is denied, IGMP Membership Reports from the port for that group are dropped, and the port is not allowed to receive IP multicast traffic from that group.
  • Page 119: Static Multicast Router

    IGMP Snooping Static multicast router A static multicast router (Mrouter) can be configured for a particular port on a particular VLAN. A static Mrouter does not have to be learned through IGMP Snooping. You can configure static Mrouters on any switch port except the management port 18. The switch supports up to total of sixteen static Mrouters.
  • Page 120: Configuring Igmp Filtering (Cli Example)

    IGMP Snooping Configuring IGMP Filtering (CLI example) Enable IGMP Filtering on the switch. >> /cfg/l3/igmp/igmpflt (Select IGMP Filtering menu) >> IGMP Filter# ena (Enable IGMP Filtering) Current status: disabled New status: enabled Define an IGMP Filter. >> //cfg/l3/igmp/igmpflt (Select IGMP Filtering menu) >>IGMP Filter# filter 1 (Select Filter 1 Definition menu) >>IGMP Filter 1 Definition# range 224.0.1.0...
  • Page 121: Configuring Igmp Snooping (Bbi Example)

    IGMP Snooping Configuring IGMP Snooping (BBI example) Configure port and VLAN membership on the switch, as described in the “Configuring ports and VLANs (BBI example)” section in the “VLANs” chapter. Configure IGMP Snooping. Click the Configure context button. Open the IGMP folder, and select IGMP Snooping (click the underlined text, not the folder).
  • Page 122 IGMP Snooping Enable IGMP Snooping. Click Submit.
  • Page 123: Configuring Igmp Filtering (Bbi Example)

    IGMP Snooping Apply, verify, and save the configuration. Configuring IGMP Filtering (BBI example) Configure IGMP Snooping. Enable IGMP Filtering. Click the Configure context button. Open the IGMP folder, and select IGMP Filters (click the underlined text, not the folder).
  • Page 124 IGMP Snooping Enable IGMP Filtering globally. Click Submit. Define the IGMP Filter. Select Layer 3 > IGMP > IGMP Filters > Add Filter.
  • Page 125 IGMP Snooping Enable the IGMP Filter. Assign the range of IP multicast addresses and the filter action (allow or deny). Click Submit. Assign the filter to a port and enable IGMP Filtering on the port. Select Layer 3 > IGMP > IGMP Filters > Switch Ports.
  • Page 126 IGMP Snooping Select a port from the list. Enable IGMP Filtering on the port. Select a filter in the IGMP Filters Available list, and click Add. Click Submit. Apply, verify, and save the configuration.
  • Page 127: Configuring A Static Multicast Router (Bbi Example)

    IGMP Snooping Configuring a Static Multicast Router (BBI example) Configure Static Mrouter. Click the Configure context button. Open the Switch folder and select Layer 3 > IGMP > IGMP Static Mrouter > Add Mrouter. Enter a port number, VLAN ID number, and IGMP version number. Click Submit.
  • Page 128: Ospf

    OSPF OSPF The HP 1:10GbE switch software supports the Open Shortest Path First (OSPF) routing protocol. The switch implementation conforms to the OSPF version 2 specifications detailed in Internet RFC 1583. The following sections discuss OSPF support for the HP 1:10GbE switch: OSPF Overview: This section provides information on OSPF concepts, such as types of OSPF areas, types of routing devices, neighbors, adjacencies, link state database, authentication, and internal versus external routing.
  • Page 129: Types Of Ospf Routing Devices

    OSPF Figure 17 OSPF area types Types of OSPF routing devices As shown in the figure, OSPF uses the following types of routing devices: Internal Router (IR)—a router that has all of its interfaces within the same area. IRs maintain LSDBs identical to those of other routing devices within the local area.
  • Page 130: Neighbors And Adjacencies

    OSPF Neighbors and adjacencies In areas with two or more routing devices, neighbors and adjacencies are formed. Neighbors are routing devices that maintain information about each others’ health. To establish neighbor relationships, routing devices periodically send hello packets on each of their interfaces. All routing devices that share a common network segment, appear in the same area, and have the same health parameters (hello and dead intervals) and authentication parameters respond to each other’s hello packets and become neighbors.
  • Page 131: Internal Versus External Routing

    OSPF Internal versus external routing To ensure effective processing of network traffic, every routing device on your network needs to know how to send a packet (directly or indirectly) to any other location/destination in your network. This is referred to as internal routing and can be done with static routes or using active internal routing protocols, such as OSPF, RIP, or RIPv2.
  • Page 132: Defining Areas

    OSPF In addition to the above parameters, you can also specify the following: Link-State Database size—The size of the external LSA database can be specified to help manage the memory resources on the switch. Shortest Path First (SPF) interval—Time interval between successive calculations of the shortest path tree using the Dijkstra’s algorithm.
  • Page 133: Using The Area Id To Assign The Ospf Area Number

    OSPF Using the area ID to assign the OSPF area number The OSPF area number is defined in the areaid <IP address> option. The octet format is used in order to be compatible with two different systems of notation used by other OSPF network vendors. There are two valid ways to designate an area ID: Placing the area number in the last octet (0.0.0.n) Most common OSPF vendors express the area ID number as a single number.
  • Page 134: Electing The Designated Router And Backup

    OSPF Electing the designated router and backup In any area with more than two routing devices, a Designated Router (DR) is elected as the central contact for database exchanges among neighbors, and a Backup Designated Router (BDR) is elected in case the DR fails.
  • Page 135: Virtual Links

    OSPF In more complex OSPF areas with multiple ABRs or ASBRs (such as area 0 and area 2 in the figure), there are multiple routes leading from the area. In such areas, traffic for unrecognized destinations cannot tell which route leads upstream without further configuration. To resolve the situation and select one default route among multiple choices in an area, you can manually configure a metric value on each ABR.
  • Page 136: Authentication

    OSPF Authentication OSPF protocol exchanges can be authenticated so that only trusted routing devices can participate. This ensures less processing on routing devices that are not listening to OSPF packets. OSPF allows packet authentication and uses IP multicast when sending and receiving packets. Routers participate in routing domains based on predefined passwords.
  • Page 137: Host Routes For Load Balancing

    OSPF Use the following commands to configure MD5 authentication on the switches shown in the figure: Enable OSPF MD5 authentication for Area 0 on switches 1, 2, and 3 >> # /cfg/l3/ospf/aindex 0/auth md5 Configure MD5 key ID for Area 0 on switches 1, 2, and 3. >>...
  • Page 138: Ospf Features Not Supported In This Release

    OSPF OSPF features not supported in this release The following OSPF features are not supported in this release: Summarizing external routes Filtering OSPF routes Using OSPF to forward multicast routes Configuring OSPF on non-broadcast multi-access networks (such as frame relay, X.25, and ATM) OSPF configuration examples A summary of the basic steps for configuring OSPF on the switch is listed here.
  • Page 139: Example 1: Simple Ospf Domain (Bbi Example)

    OSPF Follow this procedure to configure OSPF support as shown in the figure. Configure IP interfaces on each network that will be attached to OSPF areas. In this example, two IP interfaces are needed: one for the backbone network on 10.10.7.0/24 and one for the stub area network on 10.10.12.0/24.
  • Page 140 OSPF Open the IP Interfaces folder, and select Add IP Interface. Configure an IP interface. Enter the IP address, subnet mask, and enable the interface. Click Submit. Apply, verify, and save the configuration.
  • Page 141 OSPF Enable OSPF. Open the OSPF Routing Protocol folder, and select General. Enable OSPF. Click Submit.
  • Page 142 OSPF Configure OSPF Areas. Open the OSPF Areas folder, and select Add OSPF Area.
  • Page 143 OSPF Configure the OSPF backbone area 0. Click Submit. Select Add OSPF Area. Configure the OSPF area 1. Click Submit.
  • Page 144 OSPF Configure OSPF Interfaces. Open the OSPF Interfaces folder, and select Add OSPF Interface.
  • Page 145 OSPF Configure the OSPF Interface 1, and attach it to the backbone area 0. Click Submit. Select Add OSPF Interface.
  • Page 146 OSPF Configure the OSPF Interface 2, and attach it to the stub area 1. Click Submit. Apply, verify, and save the configuration.
  • Page 147: Example 2: Virtual Links

    OSPF Example 2: Virtual links In the example shown in the following figure, area 2 is not physically connected to the backbone as is usually required. Instead, area 2 will be connected to the backbone via a virtual link through area 1. The virtual link must be configured at each endpoint.
  • Page 148: Configuring Ospf For A Virtual Link On Switch B

    OSPF Attach the network interface to the backbone. >> OSPF Area (index) 1 # ../if 1 (Select OSPF menu for IP interface 1) >> OSPF Interface 1 # aindex 0 (Attach network to backbone index) >> OSPF Interface 1 # enable (Enable the backbone interface) Attach the network interface to the transit area.
  • Page 149: Other Virtual Link Options

    OSPF Define the transit area. >> OSPF Area (index) 0 # ../aindex 1 (Select menu for area index 1) >> OSPF Area (index) 1 # areaid 0.0.0.1(Set the area ID for OSPF area 1) >> OSPF Area (index) 1 # type transit (Define area as transit type) >>...
  • Page 150 OSPF Figure 23 Summarizing routes NOTE: You can specify a range of addresses to prevent advertising by using the hide option. In this example, routes in the range 36.128.200.0 through 36.128.200.255 are kept private. Follow this procedure to configure OSPF support on Switch A and Switch B, as shown in the figure. Configure IP interfaces for each network which will be attached to OSPF areas.
  • Page 151: Verifying Ospf Configuration

    OSPF Configure route summarization by specifying the starting address and mask of the range of addresses to be summarized. >> OSPF Interface 2 # ../range 1 (Select menu for summary range) >> OSPF Summary Range 1 # addr 36.128.192.0 (Set base IP address of summary range) >>...
  • Page 152: Remote Monitoring

    Remote monitoring Remote monitoring Introduction Remote Monitoring (RMON) allows network devices to exchange network monitoring data. RMON performs the following major functions: Gathers cumulative statistics for Ethernet interfaces Tracks a history of statistics for Ethernet interfaces Creates and triggers alarms for user-defined events Overview The RMON MIB provides an interface between the RMON agent on the switch and an RMON management application.
  • Page 153: Configuring Rmon Statistics (Cli Example)

    Remote monitoring Configuring RMON Statistics (CLI example) Enable RMON on each port where you wish to collect RMON statistics. >> /cfg/port 23/rmon (Select Port 23 RMON) >> Port 23 RMON# ena (Enable RMON) >> Port 23 RMON# apply (Make your changes active) >>...
  • Page 154 Remote monitoring Select a port. Enable RMON on the port.
  • Page 155: Rmon Group 2-History

    Remote monitoring Click Submit. Apply, verify, and save the configuration. RMON group 2—history The RMON History group allows you to sample and archive Ethernet statistics for a specific interface during a specific time interval. NOTE: RMON port statistics must be enabled for the port before an RMON history group can monitor the port.
  • Page 156 Remote monitoring Configure RMON History (CLI example) Enable RMON on each port where you wish to collect RMON History. >> /cfg/port 23/rmon (Select Port 23 RMON) >> Port 23# ena (Enable RMON) >> Port 23 RMON# apply (Make your changes active) >>...
  • Page 157: Rmon Group 3-Alarms

    Remote monitoring Configure RMON History Group parameters. Click Submit. Apply, verify, and save the configuration. RMON group 3—alarms The RMON Alarm group allows you to define a set of thresholds used to determine network performance. When a configured threshold is crossed, an alarm is generated. For example, you can configure the switch to issue an alarm if more than 1,000 CRC errors occur during a 10-minute time interval.
  • Page 158 Remote monitoring 258 = port 2 280 = port 24 This value represents the alarm’s MIB OID, as a string. Note that for non-tables, you must supply a .0 to specify end node. Configure RMON Alarms (CLI example 1) Configure the RMON Alarm parameters to track the number of packets received on a port. >>...
  • Page 159 Remote monitoring Configure RMON Alarms (BBI example 1) Configure an RMON Alarm group. Click the Configure context button. Open the Switch folder, and select RMON > Alarm > Add Alarm Group. Configure RMON Alarm Group parameters to check ifInOctets on port 20 once every hour. Enter a rising limit of two billion, and a rising event index of 6.
  • Page 160 Remote monitoring Apply, verify, and save the configuration. Configure RMON Alarms (BBI example 2) Configure an RMON Alarm group. Click the Configure context button. Open the Switch folder, and select RMON > Alarm > Add Alarm Group.
  • Page 161: Rmon Group 9-Events

    Remote monitoring Configure RMON Alarm Group parameters to check icmpInEchos, with a polling interval of 60, a rising limit of 200, and a rising event index of 5. This configuration creates an RMON alarm that checks icmpInEchos on the switch once every minute. If the statistic exceeds 200 within a 60 second interval, an alarm is generated that triggers event index 5.
  • Page 162: Configuring Rmon Events (Cli Example)

    Remote monitoring Configuring RMON Events (CLI example) Configure the RMON Event parameters. >> /cfg/rmon/event 5 (Select RMON Event 5) >> RMON Event 5# descn "SYSLOG_generation_event" >> RMON Event 5# type log >> RMON Event 5# owner “Owner_event_5” Apply and save the configuration. >>...
  • Page 163 Remote monitoring Click Submit. Apply, verify, and save the configuration.
  • Page 164: High Availability

    High availability High availability Introduction Switches support high availability network topologies. This release provides information about Uplink Failure Detection and Virtual Router Redundancy Protocol (VRRP). Uplink Failure Detection Uplink Failure Detection (UFD) is designed to support Network Adapter Teaming on HP server blades. For details about Network Adapter Teaming on HP ProLiant server blades, see the white paper at the following location: http://h18004.www1.hp.com/products/servers/networking/whitepapers.html...
  • Page 165: Failure Detection Pair

    High availability Figure 24 Uplink Failure Detection for switches Failure Detection Pair To use UFD, you must configure a Failure Detection Pair and then turn UFD on. A Failure Detection Pair consists of the following groups of ports: Link to Monitor (LtM) The Link to Monitor group consists of one uplink port (19-25), or one trunk group that contains only uplink ports.
  • Page 166: Configuration Guidelines

    High availability Configuration guidelines This section provides important information about configuring UFD: UFD is required only when uplink-path redundancy is not available on the blade switches. Only one Failure Detection pair (one group of Links to Monitor and one group of Links to Disable) is supported on each switch (all VLANs and Spanning Tree Groups).
  • Page 167: Configuring Ufd On Switch 1 (Cli Example)

    High availability In this example, NIC 1 is the primary network adapter; NIC 2, NIC 3, and NIC 4 are non-primary adapters. NIC 1 and NIC 2 are connected to port 1 and port 2 on Blade Switch 1. NIC 3 and NIC 4 are connected to port 1 and port 2 on Blade Switch 2.
  • Page 168: Configuring Uplink Failure Detection (Bbi Example)

    High availability Configuring Uplink Failure Detection (BBI example) Configure Uplink Failure Detection. Click the Configure context button. Open the Switch folder, and select Uplink Failure Detection (click the underlined text, not the folder). Turn Uplink Failure Detection on, and then select FDP.
  • Page 169 High availability Enable the FDP. Select ports in the LtM Ports Available list, and click Add to place the ports into the Link to Monitor (LtM). Select ports in the LtD Ports Available list, and click Add to place the ports into the Link to Disable (LtD).
  • Page 170: Vrrp Overview

    High availability VRRP overview In a high-availability network topology, no device can create a single point-of-failure for the network or force a single point-of-failure to any other part of the network. This means that your network will remain in service despite the failure of any single device. To achieve this usually requires redundancy for all vital network components.
  • Page 171: Master And Backup Virtual Router

    High availability Master and backup virtual router Within each virtual router, one VRRP router is selected to be the virtual router master. See “Selecting the Master VRRP Router” for an explanation of the selection process. NOTE: If the IP address owner is available, it will always become the virtual router master. The virtual router master forwards packets sent to the virtual router.
  • Page 172: Failover Methods

    High availability A backup router can stop receiving advertisements for one of two reasons—the master can be down, or all communications links between the master and the backup can be down. If the master has failed, it is clearly desirable for the backup (or one of the backups, if there is more than one) to become the master. NOTE: If the master is healthy but communication between the master and the backup has failed, there will then be two masters within the virtual router.
  • Page 173: Hp 1:10Gbe Switch Extensions To Vrrp

    High availability Figure 26 Active-Active redundancy HP 1:10GbE switch extensions to VRRP This section describes VRRP enhancements that are implemented in switch software: Tracking VRRP router priority The HP 1:10GbE switch software supports a tracking function that dynamically modifies the priority of a VRRP router, based on its current state.
  • Page 174: Virtual Router Deployment Considerations

    High availability Virtual router deployment considerations Review the following issues described in this section to prevent network problems when deploying virtual routers: Assigning VRRP Virtual Router ID Configuring the Switch for Tracking Assigning VRRP virtual router ID During the software upgrade process, VRRP virtual router IDs are assigned automatically if failover is enabled on the switch.
  • Page 175: High Availability Configurations

    High availability High availability configurations The HP 1:10GbE switches offer flexibility in implementing redundant configurations. This section discusses the Active-Active configuration. Active-Active configuration The following figure shows an example configuration, where two switches are used as VRRP routers in an active-active configuration.
  • Page 176 High availability Configure client and server interfaces. /cfg/l3/if 1 (Select interface 1) >> IP Interface 1# addr 192.168.1.100 (Define IP address for interface 1) >> IP Interface 1# vlan 10 (Assign VLAN 10 to interface 1) >> IP Interface 1# ena (Enable interface 1) >>...
  • Page 177: Task 2: Configure Switch B

    High availability Task 2: Configure Switch B Configure ports. /cfg/l2/vlan 10 (Select VLAN 10) >> VLAN 10# ena (Enable VLAN 10) >> VLAN 10# add 20 (Add port 20 to VLAN 10) >> VLAN 10# .. >> Layer 2# vlan 20 (Select VLAN 20) >>...
  • Page 178: Task 1: Configure Switch A (Bbi Example)

    High availability Enable tracking on ports. Set the priority of Virtual Router 2 to 101, so that it becomes the Master. /cfg/l3/vrrp/vr 1 (Select VRRP virtual router 1) >> VRRP Virtual Router 1# track/ports/ena (Set tracking on ports) >> VRRP Virtual Router 1 Priority Tracking# .. >>...
  • Page 179 High availability Configure port 20 as a member of VLAN 10 and port 21 as a member of VLAN 20. Enable each VLAN. Click Submit. Configure the following client and server interfaces: IF 1 IP address = 192.168.1.100 Subnet mask = 255.255.255.0 VLAN 10 IF 2 IP address = 10.10.12.1...
  • Page 180 High availability Open the IP Interfaces folder, and select Add IP Interface. Configure an IP interface. Enter the IP address, subnet mask, and VLAN membership. Enable the interface. Click Submit.
  • Page 181 High availability Configure the default gateways. Each default gateway points to one of the Layer 2 routers. Open the Default Gateways folder, and select Add Default Gateway. Configure the IP address for each default gateway. Enable the default gateways. Click Submit.
  • Page 182 High availability Turn on VRRP and configure two Virtual Interface routers. Open the Virtual Router Redundancy Protocol folder, and select General.
  • Page 183 High availability Enable VRRP processing. Click Submit. Open the Virtual Routers folder, and select Add Virtual Router.
  • Page 184 High availability Configure the IP address for Virtual Router 1 (VR1). Enable tracking on ports, and set the priority to 101. Enable The Virtual Router. Click Submit. Select Add Virtual Router.
  • Page 185 High availability Configure the IP address for Virtual Router 2 (VR2). Enable tracking on ports, but set the priority to 100 (default value). Enable The Virtual Router. Click Submit. Turn off Spanning Tree globally. Open the Spanning Tree Groups folder, and select Add Spanning Tree Group.
  • Page 186 High availability Select a Spanning Tree Group.
  • Page 187 High availability Enter Spanning Tree Group ID 1 and set the Switch Spanning Tree State to off. Click Submit. Apply, verify, and save the configuration.
  • Page 188: Troubleshooting Tools

    Troubleshooting tools Troubleshooting tools Introduction This appendix discusses some tools to help you use the Port Mirroring feature to troubleshoot common network problems on the switch. Port Mirroring The Port Mirroring feature on the switch is very useful for troubleshooting any connection-oriented problem.
  • Page 189: Configuring Port Mirroring (Cli Example)

    Troubleshooting tools Ingress traffic is duplicated and sent to the mirrored port before processing, and egress traffic is duplicated and sent to the mirrored port after processing. Configuring Port Mirroring (CLI example) To configure Port Mirroring for the example shown in the preceding figure: Specify the monitoring port.
  • Page 190: Configuring Port Mirroring (Bbi Example)

    Troubleshooting tools Configuring Port Mirroring (BBI example) Configure Port Mirroring. Click the Configure context button. Open the Switch folder, and select Port-Based Port Mirroring (click the underlined text, not the folder). Click a port number to select a monitoring port.
  • Page 191 Troubleshooting tools Click Add Mirrored Port. Enter a port number for the mirrored port, and select the Port Mirror Direction. Click Submit. Apply, verify, and save the configuration. Verify the Port Mirroring information on the switch.
  • Page 192: Other Network Troubleshooting Techniques

    Troubleshooting tools Other network troubleshooting techniques Other network troubleshooting techniques include the following. Console and Syslog messages When a switch experiences a problem, review the console and Syslog messages. The switch displays these informative messages when state changes and system problems occur. Syslog messages can be viewed by using the /info/sys/log command.
  • Page 193: Statistics And State Information

    Troubleshooting tools Statistics and state information The switch keeps track of a large number of statistics and many of these are error condition counters. The statistics and state information can be very useful when troubleshooting a LAN or Real Server problem. For more information about available statistics, see one of the following: "Viewing statistics"...
  • Page 194 Index Index fault tolerance, port trunking, 37 FDB static entries, 65 802.1x port states, 48 Main Menu, command line interface frame tagging, 53 (CLI), 12 media access control (MAC) accessing the switch: defining address, 12 default gateway, 106 source IP addresses, 20; meter, 89 RADIUS authentication, 21;...
  • Page 195 Index RSA keys, 33 technical terms: port VLAN identifier (PVID), 53; tagged frame, 53; RSTP, 75 Quality of Service, 84 tagged member, 53; untagged queuing and scheduling, 103 frame, 53; untagged member, 53; VLAN identifier (VID), 53 security, 20; RADIUS authentication, 21;...

This manual is also suitable for:

1:10gbe

Table of Contents