Motorola PMP 100 Release Notes And User Manual Supplement page 28

Software release 10.5, fsk/ofdm
Table of Contents

Advertisement

Release 10.5
For 1/8 Cyclic Prefix the calculation is
64 Bytes/fragment x 3 fragments/slot x 17 slots/frame x 400 frames/sec x 8 bits/byte = 10.4 Mbps
For 1/16 Cyclic Prefix the calculation is
64 Bytes/fragment x 3 fragments/slot x 18 slots/frame x 400 frames/sec x 8 bits/byte = 11.0 Mbps
With 5MHz channels, 9.2 Mbps is a typical maximum aggregate (uplink plus downlink) throughput
for larger packet sizes in a system configured with 1/4 cyclic prefix. For 1/8 cyclic prefix systems
10.4 Mbps is a typical maximum aggregate throughput and for 1/16 cyclic prefix 11.0 Mbps is a
typical maximum aggregate throughput. Longer range settings can reduce the number of slots in
a frame and packet size (breakage on 64-byte boundaries) can affect packing efficiency (the
percentage of fragments fully packed with 64 bytes).
PMP 430 (5.4 and 5.8-GHz OFDM) with 10MHz Channels:
For 1/4 Cyclic Prefix the calculation is
64 Bytes/fragment x 3 fragments/slot x 33 slots/frame x 400 frames/sec x 8 bits/byte = 20.2 Mbps
For 1/8 Cyclic Prefix the calculation is
64 Bytes/fragment x 3 fragments/slot x 37 slots/frame x 400 frames/sec x 8 bits/byte = 22.7 Mbps
For 1/16 Cyclic Prefix the calculation is
64 Bytes/fragment x 3 fragments/slot x 42 slots/frame x 400 frames/sec x 8 bits/byte = 25.8 Mbps
With 10MHz channels, 20.2 Mbps is a typical maximum aggregate (uplink plus downlink)
throughput for larger packet sizes in a system configured with 1/4 cyclic prefix. For 1/8 cyclic
prefix systems 22.7 Mbps is a typical maximum aggregate throughput and for 1/16 cyclic prefix
25.8 Mbps is a typical maximum aggregate throughput. Longer range settings can reduce the
number of slots in a frame and packet size (breakage on 64-byte boundaries) can affect packing
efficiency (the percentage of fragments fully packed with 64 bytes).
PMP 430 (5.4 and 5.8-GHz OFDM) with 20MHz Channels:
For 1/4 Cyclic Prefix the calculation is
64 Bytes/fragment x 3 fragments/slot x 73 slots/frame x 400 frames/sec x 8 bits/byte = 44.8 Mbps
For 1/8 Cyclic Prefix the calculation is
64 Bytes/fragment x 3 fragments/slot x 81 slots/frame x 400 frames/sec x 8 bits/byte = 49.7 Mbps
For 1/16 Cyclic Prefix the calculation is
64 Bytes/fragment x 3 fragments/slot x 86 slots/frame x 400 frames/sec x 8 bits/byte = 52.8 Mbps
With 20MHz channels, 44.8 Mbps is a typical maximum aggregate (uplink plus downlink)
throughput for larger packet sizes in a system configured with 1/4 cyclic prefix. For 1/8 cyclic
prefix systems 49.7 Mbps is a typical maximum aggregate throughput and for 1/16 cyclic prefix
52.8 Mbps is a typical maximum aggregate throughput. Longer range settings can reduce the
number of slots in a frame and packet size (breakage on 64-byte boundaries) can affect packing
efficiency (the percentage of fragments fully packed with 64 bytes).
Smaller Packets
With smaller packets, the system constraint is processing power in any module handling the
traffic stream. Even though there may be airtime or slots available, the overall throughput is
limited by packet handling ability.
FCC Draft, November 2010
Release Notes and User Guide Supplement
Page 28

Advertisement

Table of Contents
loading

This manual is also suitable for:

Ptp 200Ptp 100Pmp 400

Table of Contents