Carrier 58TP0B Installation, Start-Up, Operating And Service And Maintenance Instructions page 45

Table of Contents

Advertisement

58TP0B/58TP1B: Installation, Start-up, Operating and Service and Maintenance Instructions
control CPU will begin a 15-second prepurge period, and
continue to run the inducer motor IDM at high-speed.
(2.) If the furnace control CPU selects high-heat operation, the
inducer motor IDM remains running at high-speed, and the
high-heat pressure switch relay HPSR is energized to close
the NO contact. When sufficient pressure is available the
high-heat pressure switch HPS closes, and the high-heat gas
valve solenoid GV-HI is energized. The furnace control
CPU begins a 15-second prepurge period after the low-heat
pressure switch LPS closes. If the high-heat pressure switch
HPS fails to close and the low-heat pressure switch LPS
closes, the furnace will operate at low-heat gas flow rate
until the high-heat pressure switch closes for a maximum of
2 minutes after ignition.
b. Igniter Warm-Up -At the end of the prepurge period, the
Hot-Surface Igniter HSI is energized for a 17-second igniter
warm-up period.
c. Trial-For-Ignition Sequence -When the igniter warm-up period
is completed the main gas valve relay contact GVR closes to
energize the gas valve solenoid GV-M. The gas valve solenoid
GV-M permits gas flow to the burners where it is ignited by the
HSI. Five seconds after the GVR closes, a 2-second flame
proving period begins. The HSI igniter will remain energized
until the flame is sensed or until the 2-second flame proving
period begins. If the furnace control CPU selects high-heat
operation, the high-heat gas valve solenoid GV-HI is also
energized.
d. Flame-Proving - When the burner flame is proved at the
flame-proving sensor electrode FSE, the inducer motor IDM
switches to low-speed unless the furnace is operating in
high-heat, and the furnace control CPU begins the blower-ON
delay period and continues to hold the gas valve GV-M open. If
the burner flame is not proved within two seconds, the control
CPU will close the gas valve GV-M, and the control CPU will
repeat the ignition sequence for up to three more
Trials-For-Ignition before going to Ignition-Lockout. Lockout
will be reset automatically after three hours, or by momentarily
interrupting 115 VAC power to the furnace, or by interrupting 24
VAC power at SEC1 or SEC2 to the furnace control CPU (not at
W/W1, G, R, etc.). If flame is proved when flame should not be
present, the furnace control CPU will lock out of Gas-Heating
mode and operate the inducer motor IDM on high speed until
flame is no longer proved.
e. Blower-ON delay - If the burner flame is proven the blower-ON
delays for low-heat and high-heat are as follows:
Low-heat - 45 seconds after the gas valve GV-M is opened the
blower motor BLWM is turned ON at low-heat airflow.
High-heat - 25 seconds after the gas valve GV-M is opened the
BLWM is turned ON at high-heat airflow. Simultaneously, the
electronic air cleaner terminal EAC-1 is energized and remains
energized throughout the heating cycle.
f. Switching from Low- to High-Heat - If the furnace control
CPU switches from low-heat to high-heat, the furnace control
CPU will switch the inducer motor IDM speed from low to high.
The high-heat pressure switch relay HPSR is energized to close
the NO contact. When sufficient pressure is available the
high-heat pressure switch HPS closes, and the high-heat gas
valve solenoid GV-HI is energized. The blower motor BLWM
will transition to high-heat airflow five seconds after the furnace
control CPU switches from low-heat to high-heat.
g. Switching from High- to Low-Heat -The furnace control CPU
will not switch from high-heat to low-heat while the thermostat
R-to-W circuit is closed when using a single-stage thermostat.
h. Blower-OFF Delay -When the thermostat is satisfied, the R to
W circuit is opened, de-energizing the gas valve GV-M, stopping
gas flow to the burners. The inducer motor IDM will remain
energized for a 5-second post-purge period, after which the
inducer motor IDM will stop, the low-heat pressure switch LPS
Manufacturer reserves the right to change, at any time, specifications and designs without notice and without obligations.
will open de-energizing the humidifier terminal HUM. The
blower motor BLWM and air cleaner terminal EAC-1 will
remain energized at low-heat airflow or transition to low-heat
airflow for 90, 120, 150, or 180 seconds (depending on the
heat-OFF delay selection). The furnace control CPU is
factory-set for a 120-second heat-OFF delay.
2. Two-Stage Thermostat and Two-Stage Heating
See
Fig. 30
for thermostat connections.
NOTE: In this mode (Htt) must be set to (2St) to select the low-heat
only operation mode in response to closing the thermostat R-to-W1
circuit. Closing the thermostat R-to- W1-and-W2 circuits always causes
high-heat operation, regardless of the setting of (Htt).
The wall thermostat "calls for heat", closing the R-to-W1 circuit for
low-heat or closing the R-to-W1-and-W2 circuits for high-heat. The
furnace control performs a self-check, verifies the low-heat and
high-heat pressure switch contacts LPS and HPS are open, and starts the
inducer motor IDM in high-speed.
The start up and shut down functions and delays described in item 1.
above apply to the 2-stage heating mode as well, except for switching
from low- to high-Heat and vice versa.
a. Switching from Low- to High-Heat - If the thermostat R-to-W1
circuit is closed and the R-to-W2 circuit closes, the furnace
control CPU will switch the inducer motor IDM speed from low
to high. The high-heat pressure switch relay HPSR is energized
to close the NO contact. When sufficient pressure is available the
high-heat pressure switch HPS closes, and the high-heat gas
valve solenoid GV-HI is energized. The blower motor BLWM
will transition to high-heat airflow five seconds after the
R-to-W2 circuit closes.
b. Switching from High- to Low-Heat -If the thermostat R-to- W2
circuit opens, and the R-to-W1 circuit remains closed, the
furnace control CPU will switch the inducer motor IDM speed
from high to low. The high-heat pressure switch relay HPSR is
de-energized to open the NO contact and de-energize the
high-heat gas valve solenoid GV-HI. When the inducer motor
IDM reduces pressure sufficiently, the high-heat pressure switch
HPS will open. The gas valve solenoid GV-M will remain
energized as long as the low-heat pressure switch LPS remains
closed. The blower motor BLWM will transition to low-heat
airflow five seconds after the R-to-W2 circuit opens.
3. Cooling mode
The thermostat "calls for cooling".
a. Single-Speed Cooling-
See
Fig. 30
for thermostat connections
The thermostat closes the R-to-G-and-Y circuits. The R-to- Y
circuit starts the outdoor unit, and the R-to-G-and-Y/Y2 circuits
start the furnace blower motor BLWM on high cooling airflow.
High cooling airflow is based on the high cooling speed (CL2)
selection. The electronic air cleaner terminal EAC-1 is energized
with 115 VAC when the blower motor BLWM is operating.
When the thermostat is satisfied, the R-to-G-and-Y circuits are
opened. The outdoor unit will stop, and the furnace blower motor
BLWM will continue operating at cooling airflow for an
additional (See
Fig.
cooling blower-OFF delay (Cod) setting). The furnace CPU is
factory set for a 90 second cooling blower-OFF delay.
b. Single-Stage Thermostat and Two-Speed Cooling (Adaptive
Mode) -
See
Fig. 30
for thermostat connections.
This furnace can operate a two-speed cooling unit with a
single-stage thermostat because the furnace control CPU
includes a programmed adaptive sequence of controlled
operation, which selects low-cooling or high-cooling operation.
This selection is based upon the stored history of the length of
previous cooling period of the single-stage thermostat.
NOTE: (Ctt) must be set to (1St) to enable the adaptive cooling mode
in response to a call for cooling. See
45
45) 5, 30, or 90 seconds (depending on the
Fig.
45. When (Ctt) is set to (1St)

Advertisement

Table of Contents
loading

This manual is also suitable for:

58tp1b

Table of Contents