Table of Contents

Advertisement

Quick Links

Advertisement

Table of Contents
loading
Need help?

Need help?

Do you have a question about the SINAMICS G120XA USS & Modbus and is the answer not in the manual?

Questions and answers

Summary of Contents for Siemens SINAMICS G120XA USS & Modbus

  • Page 3 Fundamental safety instructions Description Mounting SINAMICS Wiring SINAMICS G120XA SINAMICS G120XA USS converter Commissioning Upload of the converter settings Operating Instructions Protecting the converter settings Advanced commissioning Parameters Warnings, faults and system messages Corrective maintenance Technical data Appendix USS & Modbus (USS) 12/2024, FW V1.04 A5E44751205B AG...
  • Page 4: Qualified Personnel

    Note the following: WARNING Siemens products may only be used for the applications described in the catalog and in the relevant technical documentation. If products and components from other manufacturers are used, these must be recommended or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and maintenance are required to ensure that the products operate safely and without any problems.
  • Page 5: Table Of Contents

    OpenSSL ..........................28 2.2.3 Transferring OpenOSS license terms to a PC................ 29 Scope of delivery ....................... 30 Directives and standards ....................33 ID link and Siemens Online Support..................35 Device disposal ........................36 Optional components ......................37 2.7.1 External line filter....................... 37 2.7.2...
  • Page 6 Table of contents 3.2.5 Mounting the optional components ................... 69 Wiring ..............................71 Line supply and motor ....................... 71 4.1.1 EMC-compliant setup of the machine or plant ..............71 4.1.1.1 Control cabinet ........................72 4.1.1.2 Cables ..........................74 4.1.1.3 Electromechanical components..................76 4.1.2 Permissible line supplies.....................
  • Page 7 Table of contents Commissioning ..........................141 Commissioning guidelines ....................141 Tools..........................142 Preparing for commissioning.................... 144 5.3.1 Collecting motor data ...................... 144 5.3.2 Precharing the circuit (FSH/FSJ only)................. 146 5.3.3 Forming DC link capacitors....................147 5.3.4 Converter factory setting....................148 Quick commissioning using the BOP-2 operator panel ............
  • Page 8 Table of contents 8.3.1 Switching the motor on and off ..................194 8.3.1.1 Sequence control when switching the motor on and off............ 194 8.3.1.2 Selecting the ON/OFF functions..................196 8.3.1.3 Function diagram 2634 - Sequence control - Missing enable signals, line contactor control... 198 8.3.2 Adapt the default setting of the terminal strips ..............
  • Page 9 Table of contents 8.3.6.7 Function diagram 9372 - Status word free interconnection ..........267 8.3.7 11Function diagrams for internal control/status words............268 8.3.7.1 Function diagram 2501 - Control word, sequence control (r0898) ........268 8.3.7.2 Function diagram 2503 - Status word, sequence control (r0899) ........270 8.3.7.3 Function diagram 2505 - Control word, setpoint channel (r1198) ........
  • Page 10 Table of contents 8.4.1 Multi-pump control ......................325 8.4.1.1 Pump switch-in/switch-out ....................328 8.4.1.2 Stop mode ........................332 8.4.1.3 Pump switchover ......................334 8.4.1.4 Service mode........................336 8.4.2 Frost protection ....................... 339 8.4.3 Condensation protection....................340 8.4.4 Cavitation protection ....................... 342 8.4.5 Deragging ........................
  • Page 11 Table of contents 8.7.3 V/f control........................404 8.7.3.1 U/f control ........................404 8.7.3.2 Optimizing motor starting....................407 8.7.3.3 U/f control with Standard Drive Control application class........... 409 8.7.3.4 Optimizing motor starting using Standard Drive Control ........... 412 8.7.3.5 Function diagram 6300 - U/f control, overview ..............414 8.7.3.6 Function diagram 6301 - U/f control, characteristic and voltage boost.......
  • Page 12 Table of contents 8.7.4.36 Function diagram 6832 - Dynamic Drive Control, current setpoint filter ......463 8.7.4.37 Function diagram 6833 - Dynamic Drive Control, Iq and Id controllers....... 464 8.7.4.38 Function diagram 6834 - Dynamic Drive Control, flux setpoint .......... 465 8.7.4.39 Function diagram 6835 - Dynamic Drive Control, Id setpoint reluctance motor ....
  • Page 13 Table of contents 8.10.3 Kinetic buffering (Vdc min control) ................... 528 8.10.4 Essential service mode ..................... 529 8.10.5 Function diagram 7033 - Technology functions, essential service mode ......533 8.11 Energy saving ........................534 8.11.1 Efficiency optimization ..................... 534 8.11.2 ECO mode ........................
  • Page 14 Table of contents 11.1.2.2 Manual downloading from the memory card with the BOP-2 .......... 1134 11.1.2.3 Download from BOP-2 operator panel ................1135 11.1.2.4 Download from IOP-2 operator panel ................1137 11.1.2.5 Download from Smart Access..................1138 11.1.2.6 Download with active know-how protection with copy protection........1140 11.2 Replacing spare parts .....................
  • Page 15 Table of contents A.1.2 Configuring support ....................... 1193 A.1.3 Product Support......................1195 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 16 Table of contents SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 17: Fundamental Safety Instructions

    Fundamental safety instructions General safety instructions WARNING Electric shock and danger to life due to other energy sources Touching live components can result in death or severe injury. • Only work on electrical devices when you are qualified for this job. •...
  • Page 18 Fundamental safety instructions 1.1 General safety instructions WARNING Risk of electric shock and fire from supply networks with an excessively low impedance Excessively high short-circuit currents can lead to the protective devices not being able to interrupt these short-circuit currents and being destroyed, and thus causing electric shock or a fire.
  • Page 19 Fundamental safety instructions 1.1 General safety instructions WARNING Electric shock due to unconnected cable shield Hazardous touch voltages can occur through capacitive cross-coupling due to unconnected cable shields. • As a minimum, connect cable shields and the conductors of power cables that are not used (e.g.
  • Page 20 Fundamental safety instructions 1.1 General safety instructions WARNING Electromagnetic interference due to inadequate shield support A lack of adequate shield support for the power cables can cause malfunctions and impermissibly high levels of interference. • Use the shield connection plates supplied or recommended. •...
  • Page 21 Fundamental safety instructions 1.1 General safety instructions WARNING Unexpected machine movement caused by radio devices or cellphones Using radio devices, cellphones, or mobile WLAN devices in the immediate vicinity of the components can result in equipment malfunction or faults and damage to the devices. Malfunctions may impair the functional safety of machines and can therefore put people in danger or lead to property damage.
  • Page 22 Fundamental safety instructions 1.1 General safety instructions WARNING Electric shock due to unsuitable motor temperature evaluation system Voltage flashovers to the electronics of the converter can occur in motors without safe electrical separation of the temperature sensors in accordance with IEC 61800‑5‑1 when the motor develops a fault.
  • Page 23 Fundamental safety instructions 1.1 General safety instructions NOTICE Device damage caused by incorrect insulation resistance tests High test voltages can damage the device. • Measure the insulation resistance of low voltage circuits of machines or systems only with ≤ 500 V DC. • Measure the insulation resistance of SELV circuits of machines or systems only with ≤ 250 V DC.
  • Page 24: Equipment Damage Due To Electric Fields Or Electrostatic Discharge

    Fundamental safety instructions 1.2 Equipment damage due to electric fields or electrostatic discharge Equipment damage due to electric fields or electrostatic discharge Electrostatic sensitive devices (ESD) are individual components, integrated circuits, modules or devices that may be damaged by either electric fields or electrostatic discharge. NOTICE Equipment damage due to electric fields or electrostatic discharge Electric fields or electrostatic discharge can cause malfunctions through damaged individual...
  • Page 25: Warranty And Liability For Application Examples

    Fundamental safety instructions 1.3 Warranty and liability for application examples Warranty and liability for application examples Application examples are not binding and do not claim to be complete regarding configuration, equipment, or any eventuality which may arise. Application examples do not represent customer-specific solutions, but merely serve to provide assistance with typical tasks.
  • Page 26: Cybersecurity Information

    Siemens’ products and solutions undergo continuous development to make them more secure. Siemens strongly recommends that product updates are applied as soon as they are available and that the latest product versions are used. Use of product versions that are no longer supported, and failure to apply the latest updates may increase customer’s exposure...
  • Page 27: Residual Risks Of Power Drive Systems

    Fundamental safety instructions 1.5 Residual risks of power drive systems Residual risks of power drive systems When assessing the machine or system-related risk in accordance with the respective local regulations (e.g. EC Machinery Directive), the machine manufacturer or system integrator must take into account the following residual risks emanating from the control and drive components of a drive system: 1.
  • Page 28 Fundamental safety instructions 1.5 Residual risks of power drive systems 6. Influence of network-connected and wireless communications systems, e.g. ripple-control transmitters or data communication via the network or mobile radio, WLAN or Bluetooth. 7. Motors for use in potentially explosive areas: When moving components such as bearings become worn, this can cause enclosure components to exhibit unexpectedly high temperatures during operation, creating a hazard in areas with a potentially explosive atmosphere.
  • Page 29: Description

    Description About the Manual Who requires the operating instructions and what for? These operating instructions primarily address fitters, commissioning engineers and machine operators. The operating instructions describe the devices and device components and enable the target groups being addressed to install, connect-up, set, and commission the converters safely and in the correct manner.
  • Page 30: About The Converter

    This document contains recommendations relating to third-party products. Siemens accepts the fundamental suitability of these third-party products. You can use equivalent products from other manufacturers. Siemens does not accept any warranty for the properties of third-party products. 2.2.2 OpenSSL Use of OpenSSL This product contains software developed in the OpenSSL project for use within the OpenSSL toolkit.
  • Page 31: Transferring Openoss License Terms To A Pc

    Description 2.2 About the converter 2.2.3 Transferring OpenOSS license terms to a PC Requirement You have an empty memory card and a reader for the memory card. Procedure Procedure To transfer OpenOSS license terms to a PC, proceed as follows: 1. Switch off the converter power supply. 2.
  • Page 32: Scope Of Delivery

    • A ready-to-run converter with loaded firmware. Options for upgrading and downgrading the firmware can be found on the Internet: Firmware (https://support.industry.siemens.com/cs/ww/en/view/67364620) • One pluggable RS485 connector for USS/Modbus RTU connection. • One set of shield connection kit (available for FSA to FSG only). For FSD to FSG, the supplied shield connection kit is for the control connections only, and shield connection kit for the power connections can be ordered as an optional module.
  • Page 33 Description 2.3 Scope of delivery Technical data 3-phase 380 V AC to 440 V AC (article number: 6SL32...) SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 34: Rating Plate

    Description 2.3 Scope of delivery Rating plate You can find a rating plate at the side of the converter. See the following for examples: ① ⑤ Article number Degree of protection ② ⑥ Product serial number Net weight ③ ⑦ Motor data FS code ④...
  • Page 35: Directives And Standards

    The converters fulfill the requirements stipulated in Directive 2012/19/EU with regard to the return and recycling of waste electrical and electronic equipment. Quality systems Siemens AG employs a quality management system that meets the requirements of ISO 9001 and ISO 14001. SINAMICS G120XA USS converter...
  • Page 36 Description 2.4 Directives and standards Certificates for download • EC Declaration of Conformity: (https://support.industry.siemens.com/cs/us/en/view/ 109767762) Standards that are not relevant China Compulsory Certification The converters do not fall in the area of validity of the China Compulsory Certification (CCC). SINAMICS G120XA USS converter...
  • Page 37: Id Link And Siemens Online Support

    ID link and Siemens Online Support You can find additional information about the product: • via ID link • using the Siemens Industry Online Support – Website: SIOS (https://support.industry.siemens.com/cs/ww/en/) – App Industry Online Support (for Apple iOS and Android) Product-specific information via ID link The QR code on your product and on the product packaging contains the ID link.
  • Page 38: Device Disposal

    Description 2.6 Device disposal Device disposal Recycling and disposal For environmentally-friendly recycling and disposal of your old device, contact a company certified for the disposal of waste electrical and electronic equipment, and dispose of the old device as prescribed in the respective country of use. SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 39: Optional Components

    Description 2.7 Optional components Optional components The following optional components are available so that you can adapt the converter to different applications and ambient conditions: • External line filter (Page 37) • Line harmonics filter (Page 38) • Line reactor (Page 40) • Output reactor (Page 42) •...
  • Page 40: Article Number

    Description 2.7 Optional components Article number Converter Line filter (Category C3) Frame size Rated power (kW) Article number Rated current (A) 0.75 … 3 6SL3203-0BE17-7BA0 11.4 5.5 … 7.5 6SL3203-0BE21-8BA0 23.5 11 … 15 6SL3203-0BE23-8BA0 49.4 18.5 … 22 30 … 37 6SL3203-0BE27-5BA0 6SL3203-0BE31-1BA0 75 … 110 6SL3203-0BE31-8BA0 2.7.2 Line harmonics filter...
  • Page 41: Restrictions For Use

    Description 2.7 Optional components Converter Line harmonics filter Manufacturer: Schaffner EMV AG Frame Article number Rated power (kW) Article number Power loss size @25 °C, 50 Hz 6SL3220 - . YD42 – 0UB0 UAC:FS4284215040 6SL3220 - . YD44 – 0UB0 UAC:FS4284218040 6SL3220 - . YD46 – 0UB0 UAC:FS4284221040 6SL3220 - .
  • Page 42: Short Circuit Protection

    – Disconnect B1 and B2 – Disconnect C1 and C2 Further information You find further information on the internet: User and installation manual (https://support.industry.siemens.com/cs/attachments/ 109975781/User_and_installation_manual_FS42842_rev01.pdf) 2.7.3 Line reactor Note Line reactors are available as optional components for converters of frame sizes FSH and FSJ only.
  • Page 43 Description 2.7 Optional components = Relative Short-Circuit power: ratio of short-circuit power S at the supply connection k Line point to the fundamental apparent power S of the connected converters (to IEC 60146-1-1). Requirements for line reactors Rated power of converter (kW) Line reactor can be omitted for Line reactor is required for R 315 ...
  • Page 44: Output Reactor

    Description 2.7 Optional components Article number Converter frame Rated power (kW) Line reactor size 6SL3000-0CE36-3AA0 355 ... 400 6SL3000-0CE37-7AA0 6SL3000-0CE38-7AA0 500 ... 560 6SL3000-0CE41-0AA0 Technical data Article number 6SL3000-0CE36 6SL3000-0CE37 6SL3000-0CE38 6SL3000-0CE41 -3AA0 -7AA0 -7AA0 -0AA0 Rated voltage (V) 3 AC 380 –10% to 3 AC 480 +10% (-15% < 1 min) Power loss (kW) 0.368 0.351...
  • Page 45: Sine-Wave Filter

    Description 2.7 Optional components NOTICE Damage to the output reactor if it is not activated during commissioning The output reactor may be damaged if it is not activated during commissioning. • Activate the output reactor during commissioning via parameter p0230. • Activate the output reactor during commissioning according to the electric specifications. Article number Converter frame Rated power (kW)
  • Page 46 Description 2.7 Optional components Precondition NOTICE Damage to the sine-wave filter if it is not activated during commissioning The sine-wave filter may be damaged if it is not activated during commissioning. • Activate the sine-wave filter during commissioning via parameter p0230. •...
  • Page 47 Description 2.7 Optional components Converter variants Sine-wave filter Frame size Rated power (kW) Article number 6SL3202-0AE31-5SA0 6SL3202-0AE31-8SA0 6SL3000-2CE32-3AA0 6SL3000-2CE32-8AA0 6SL3000-2CE33-3AA0 6SL3000-2CE34-1AA0 Dimensions, drilling patterns, and weights Sine-wave filter - stand alone, frame size 1 Sine-wave filter Overall dimensions Drilling dimensions Fixing/ Weight (mm) (mm)
  • Page 48 Description 2.7 Optional components Sine-wave filter - stand alone, frame size 2 Sine-wave filter Overall dimensions Drilling dimensions Fixing/ Weight (mm) (mm) torque (kg) (Nm) 6SL3000-2CE32-3AA0 6 x M10 / 20 6SL3000-2CE32-8AA0 6 x M10 / 20 6SL3000-2CE33-3AA0 6 x M10 / 20 6SL3000-2CE34-1AA0 6 x M10 / 20 Technical data...
  • Page 49: Dv/Dt Filter Plus Vpl

    • Activate the dv/dt filter plus VPL during commissioning via parameter p0230. • Activate the dv/dt filter plus VPL during commissioning according to the electric specifications. Further information is provided on the Internet: • dv/dt filter plus VPL (https://support.industry.siemens.com/cs/ww/en/view/109766019) • Functional principle and application cases (https:// support.industry.siemens.com/cs/ww/en/view/109748645) SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 50: Operator Panel

    The SINAMICS G120 Smart Access is a Wi-Fi-based Web server module and an engineering tool. It has been designed for quick commissioning, parameterization, and maintenance of the converter. Article number: 6SL3255-0AA00-5AA0 FAQ (https://support.industry.siemens.com/cs/ww/en/view/109765499) SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 51: Memory Card

    Description 2.7 Optional components 2.7.9 Memory card Function description Table 2-1 Memory card to back up converter settings Scope of delivery Article number Memory card without firmware 6SL3054-4AG00-2AA0 More information Using memory cards from other manufacturers If you use a different SD memory card, then you must format it as follows: •...
  • Page 52: Sinamics Fsg Adapter Set

    Description 2.7 Optional components Converter frame size Article number 6SL3262-1AF02-0DA0 6SL3262-1AG02-0DA0 2.7.11 SINAMICS FSG Adapter Set With the SINAMICS FSG Adapter Set, you can use cables with a maximum cross-section of 4 x 120 mm² per phase for line and motor connections on the G120XA USS FSG converters. Article number: 6SL3266-2HG00-0BA0 Note After installation, the FSG Adapter Set does not affect the technical specifications of the G120XA...
  • Page 53: Dimensions (Unit: Mm)

    Description 2.7 Optional components Dimensions (Unit: mm) Cable cross-sections and screw tightening torques Cable lug Cross-section Tightening torque 35 ... 4 x 120 mm 22 ... 25 Nm 1 ... 4 x 4/0 AWG 195 ... 221 lbf.in Cable lug for M10 screws SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 54: Installation

    Description 2.7 Optional components Installation Note To ensure correct and safe connections, crimp the cable lugs with a hexagon crimping tool. SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 55 Description 2.7 Optional components Note To install the cover in place, do not use shrink-on sleeves if the cable cross-section > 120 mm². Note Re-install the insulating plates in place after connecting the cables. SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 56: Motors And Multi-Motor Drives That Can Be Operated

    Motors that can be operated (https://support.industry.siemens.com/cs/ww/en/view/ 100426622) Third-party motors that can be operated You can also operate the following non-Siemens motors with the converter: • Standard asynchronous motors • Most permanent magnet synchronous motors designed for converter operation with moderate saturation: –...
  • Page 57: Additional Information

    For standard induction motors, multi-motor operation is generally permissible. Additional preconditions and restrictions relating to multi-motor operation are available on the Internet: Multi-motor drive (http://support.automation.siemens.com/WW/view/en/84049346) Standard induction motors are permissible in the range of 25% to 125% of the converter power.
  • Page 58 Description 2.8 Motors and multi-motor drives that can be operated SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 59: Mounting

    Mounting Power losses and air cooling requirements Overview To protect the components from overheating, the control cabinet requires a cooling air flow, which depends on the power loss of the individual components. Measures in order to ensure that the components are adequately cooled •...
  • Page 60 Mounting 3.1 Power losses and air cooling requirements Further measures Air barriers can prevent converters from overheating each other. Such measures are only necessary in extreme cases when the cooling air temperature reaches the maximum ambient temperature of the converter. SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 61: Mounting The Converter

    • When control cabinet doors are open, only qualified electrical personnel are allowed to carry out service and maintenance work. • Comply with the minimum control cabinet volume. Information on the minimum control cabinet volume is available on the Internet: Protective Devices for SINAMICS G120XA (https://support.industry.siemens.com/cs/cn/en/ view/109762896) 3.2.1 Basic installation rules Requirements When installing the converters carefully observe the conditions listed below in order to guarantee reliable, continuous and disturbance-free operation.
  • Page 62 • For a system configuration in conformance with IEC, use the IEC-approved fuses or circuit breakers under the following Internet address: Fuses and circuit breakers (https://support.industry.siemens.com/cs/cn/en/view/ 109762896) • The converter of frame size FSA has to be mounted in an enclosure sized min. 500 mm (height) ×...
  • Page 63: Mounting Position

    Mounting 3.2 Mounting the converter Mounting position Figure 3-1 Only mount in the vertical position with the line connection at the bottom 3.2.2 Dimension drawings and drill patterns Overview The converters are designed to be mounted in accordance with the dimension drawings, in a cabinet using screws, nuts and washers.
  • Page 64 Mounting 3.2 Mounting the converter Dimensions and clearance distances (mm) Frame Height Height Width Depth Depth with additional Clearance size includ‐ module With op‐ With lateral front shield erator G120 plate panel Smart Ac‐ cess 1255 1487 1438 The shield plates for FSD to FSG are available as options only. The cooling air clearances A and B refer to the converter without shield plate.
  • Page 65 Mounting 3.2 Mounting the converter Drill patterns (mm) Table 3-1 FSA … FSG Drill pattern Dimensions 221.5 970.5 Ø 12.0 Fixings (bolts, 4 × M4 4 × M4 4 × M5 4 × M5 4 × M6 4 × M8 4 × M10 washers, nuts) Tightening torque (Nm)
  • Page 66: Mounting The Shield Connection Kit

    Mounting 3.2 Mounting the converter 3.2.3 Mounting the shield connection kit Overview We recommend that you mount the shield connection kits provided. The shield connection kit makes it simpler to install the converter in compliance with EMC regulations and to provide strength relief for the connected cables.
  • Page 67 Mounting 3.2 Mounting the converter Mounting the shield connection kit for the control connection, FSD ... FSG Attach the shielding plate as shown below. Use a cross-tip screwdriver PZ to tighten the screw to fix it onto the converter. Mounting the shield connection kit for the power connection, FSD ... FSG Procedure, FSD/FSE 1.
  • Page 68: Additional Mounting Instructions For Fsd

    Mounting 3.2 Mounting the converter Procedure, FSF 1. Attach the shielding plate to the bottom of the converter and fasten it in place using four ① screws 2. If the converter has an integrated line filter, mount the EMC connecting bracket additionally ②...
  • Page 69: Hoisting Gear

    Mounting 3.2 Mounting the converter Converter weight: Technical data dependent on the power (Page 1180) Hoisting gear Use crane lifting lugs and the appropriate hoisting gear when mounting the converters on the cabinet panel. 3.2.4.2 Additional mounting instructions, FSH/FSJ Overview Lifting the converter The converters FSH and FSJ can be lifted into the cabinet with the lifting eyes.
  • Page 70 Mounting 3.2 Mounting the converter Installing Removing the pallet Lifting the converter into the cabinet The electrical cabinet installation must be realized in accordance with the dimension drawings supplied. The minimum cabinet sizes for the installation of converters FSH and FSJ are provided as follows: •...
  • Page 71: Mounting The Optional Components

    Mounting 3.2 Mounting the converter After the converter is installed in the cabinet, install the side, back, and top plates back to the cabinet frame. 3.2.5 Mounting the optional components Depending on the particular application, converters may require optional components. For more information about optional components, refer to Section "Optional components (Page 37)".
  • Page 72 Mounting 3.2 Mounting the converter SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 73: Wiring

    Wiring Line supply and motor 4.1.1 EMC-compliant setup of the machine or plant The converter is designed for operation in industrial environments where strong electromagnetic fields are to be expected. Reliable and disturbance-free operation is only guaranteed for EMC-compliant installation. To achieve this, subdivide the control cabinet and the machine or system into EMC zones: EMC zones Figure 4-1...
  • Page 74: Control Cabinet

    Wiring 4.1 Line supply and motor Outside the control cabinet • Zone D: Motors Devices in Zone D generate electromagnetic fields with a significant amount of energy 4.1.1.1 Control cabinet • Assign the various devices to zones in the control cabinet. • Electromagnetically uncouple the zones from each other by means of one of the following actions: –...
  • Page 75: Further Information

    Grounding and high-frequency equipotential bonding measures in the control cabinet and in the plant/system Further information Additional information about EMC-compliant installation is available in the Internet: EMC installation guideline (http://support.automation.siemens.com/WW/view/en/ 60612658) SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 76: Cables

    Wiring 4.1 Line supply and motor 4.1.1.2 Cables Cables with a high level of interference and cables with a low level of interference are connected to the converter: • Cables with a high level of interference: – Cable between the line filter and converter –...
  • Page 77 Wiring 4.1 Line supply and motor Figure 4-3 Routing converter cables inside and outside a control cabinet Routing cables outside the control cabinet • Maintain a minimum clearance of 25 cm between cables with a high level of interference and cables with a low level of interference. •...
  • Page 78: Electromechanical Components

    Wiring 4.1 Line supply and motor Requirements relating to shielded cables • Use cables with finely-stranded, braided shields. • Connect the shield to at least both ends of the cable. Figure 4-4 Examples for EMC-compliant shield support • Attach the shield to the shield support directly after the cable enters the cabinet. •...
  • Page 79: Permissible Line Supplies

    Wiring 4.1 Line supply and motor 4.1.2 Permissible line supplies 4.1.2.1 TN system Overview Figure 4-5 TN system A TN system transfers the PE protective conductor to the installed plant or system using a cable. Generally, in a TN system the neutral point is grounded. There are versions of a TN system with a grounded line conductor, e.g.
  • Page 80: Tt System

    Wiring 4.1 Line supply and motor 4.1.2.2 TT system Overview Figure 4-6 TT system In a TT system, the transformer grounding and the installation grounding are independent of one another. There are TT supplies where the neutral conductor N is either transferred – or not. Function description Table 4-2 Converter operated on a TT system...
  • Page 81: It System

    Wiring 4.1 Line supply and motor 4.1.2.3 IT system Overview Figure 4-7 IT system In an IT system, all of the conductors are insulated with respect to the PE protective conductor – or connected to the PE protective conductor through an impedance. There are IT systems with and without transfer of the neutral conductor N.
  • Page 82 Wiring 4.1 Line supply and motor Precondition Switch off the converter power supply before removing the functional grounding. WARNING Electric shock as a result of a residual charge in power components After the power supply has been switched off, it takes up to 5 minutes until the capacitors in the converter have discharged so that the residual charge is at a non-hazardous level.
  • Page 83: Requirements For The Protective Conductor

    Wiring 4.1 Line supply and motor ⑤ 3. Slide the connection clip towards the left until the clip is disconnected from the PE ③ ④ connections at screws 4. Tighten all screws with 6 Nm. You have disconnect the basic interference suppression module. ❑...
  • Page 84 Wiring 4.1 Line supply and motor No restriction applies to the length of the protective conductor for touch protection. However, short protective conductors are advantageous for EMC-compliant installation. Description WARNING Electric shock due to interrupted protective conductor The drive components conduct a high leakage current via the protective conductor. Touching conductive parts when the protective conductor is interrupted can result in death or serious injury.
  • Page 85: Fault Protection For The Motor Circuit

    More information You can find more information on the Internet: Manufacturer's declaration (https:// support.industry.siemens.com/cs/ww/en/view/109476638) 4.1.5 Operation with residual current protective device (RCD) WARNING Fire or electric shock due to unsuitable residual-current protective devices The converter may create a current through the protective conductor.
  • Page 86 • The neutral point of the line supply is grounded. • For converters with rated input currents ≤ 80 A referred to LO, use a Siemens SIQUENCE RCCB (series 5SV364.-4), type B, short-time delayed [K] with a rated residual current of 300 mA.
  • Page 87: Maximum Permissible Motor Cable Length

    Wiring 4.1 Line supply and motor • For converters with rated input currents > 160 A referred to LO, use a Siemens modular RCCB device (MRCD type B 5SV8111-4KK) with a current transformer (5SV870.-2K), a circuit breaker (series 3VA1) and a trip element (3VA9988-0BL30).
  • Page 88 Wiring 4.1 Line supply and motor Description EMC category according to EN 61800‑3 Shielded motor cables and EMC-compliant installation are required in order to satisfy an EMC category. EMC-compliant setup of the machine or plant (Page 71) Table 4-4 Maximum permissible motor cable length depending on EMC category (Second Environment, C3) Converter frame size With shielded motor cable...
  • Page 89: Connecting The Converter And Converter Components

    Wiring 4.1 Line supply and motor 4.1.7 Connecting the converter and converter components WARNING Electric shock when the motor terminal box is open As soon as the converter is connected to the line supply, the motor connections of the converter may carry dangerous voltages. When the motor is connected to the converter, there is danger to life through contact with the motor terminals if the motor terminal box is open.
  • Page 90: Connection Overview

    Wiring 4.1 Line supply and motor Note Fault protection when insulation fails in the motor circuit at the output side In case of insulation failure in the motor circuit, the overcurrent trip of the converter meets the requirements of IEC 60364-4-41:2005/AMD1:2017 Section 411 and Annex D for protection against electric shock.
  • Page 91: Connecting Converters

    Wiring 4.1 Line supply and motor Figure 4-10 Connecting converters FSH/FSJ and their optional components 4.1.7.2 Connecting converters Connecting converters, FSA ... FSC SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 92 Wiring 4.1 Line supply and motor Connecting converters, FSD ... FSG You must remove the connection cover from the converter in order to connect the line supply and motor to the converter. • For FSD/FSE, remove the connection cover as shown below: Figure 4-11 Removing the connection cover, FSD/FSE •...
  • Page 93 Wiring 4.1 Line supply and motor Figure 4-13 Connections for the line supply and motor Additional information when connecting FSG converters Remove the plastic insulating plate as shown below to gain better access to the terminals for the power connections. WARNING Damage to converter as a result of operation without insulating plates Without the insulating plates, voltage flashovers may occur between the phases.
  • Page 94 Wiring 4.1 Line supply and motor Connecting converters, FSH/FSJ To access the line and motor terminals, release the screws (four screws on FSH, and six screws on FSJ) from the front cover, and remove the cover towards the front. See the following example of removing the covers from converter FSH: 5 Nm The diagram shows the layout of line and motor terminals, DC link terminals, and terminal...
  • Page 95: Cable Cross-Sections And Screw Tightening Torques

    Wiring 4.1 Line supply and motor Note For converters FSH/FSJ, the DCP and DCN terminals are only used to connect the dv/dt filters plus VPL. For more information about the connection of terminal strip X9, see Chapter "Terminal strip X9 (FSH/FSJ only) (Page 134)". For converter FSH, you must make openings on the cable entry protection cover for the line and motor connections according to the diameter of the cable to be introduced.
  • Page 96: Cable Lugs

    Wiring 4.1 Line supply and motor Converter Terminal/connector type Cable cross-section Screw tightening tor‐ Stripped in‐ frame size que - Nm (lbf.in) sulation length (mm) Line, motor 35 ... 2 × 120 1 … 2 × 4/0 22 ... 194.7 ... and PE 25 Nm 221.3 lbf.in Cable lug according...
  • Page 97: Connecting The Cable Shields (Fsa

    Wiring 4.1 Line supply and motor Converter Screw/bolt Cable cross-sec‐ a (mm) c (mm) d1 (mm) d (mm) l (mm) frame size tion (mm 10.5 59.5 FSG/FSH 10.5 72.5 FSH/FSJ 23.5 The cable lugs can be attached as shown in the following diagram if, at one connection per phase, two cable lugs can be connected.
  • Page 98 Wiring 4.1 Line supply and motor Connecting the cable shields, FSA ... FSC The shield support for converter FSB is displayed as an example. ① Unshielded line cable ② Cable tie ③ Shielded communication cable ④ Unlacquered, good electrically conducting mounting plate ⑤...
  • Page 99: Connecting The Copper Busbars (Fsh Only)

    Wiring 4.1 Line supply and motor ① ④ Unshielded line cable Toothed tape ② ⑤ Shielded motor cable Shielded control cable ③ ⑥ Hose clamp Shielded communication cable 4.1.7.6 Connecting the copper busbars (FSH only) For converter FSH, you must remove the cable entry protection cover of the Power Module for the copper busbar connection.
  • Page 100 Wiring 4.1 Line supply and motor Procedure 1. Switch off the converter power supply. 2. Release the four TX-25 screws (M5 x 12) from the front cover and remove the cover. 3. Release the six TX-25 screws (M5 x 12) from the cable entry protection cover of the Power Module and remove the cover.
  • Page 101 Wiring 4.1 Line supply and motor 4. Release the six screws (M12 x 30) and M12 washers from the line terminals. 5. Align the copper busbars to the screw holes of the line terminals and tighten the six screws (M12 x 30) and M12 washers again. 6.
  • Page 102: Connecting The Motor To The Converter In A Star Or Delta Connection

    Wiring 4.1 Line supply and motor 4.1.8 Connecting the motor to the converter in a star or delta connection Overview Standard induction motors up to a rated power of approximately 3 kW are usually connected in star/delta connection (Y/Δ) at 400 V/230 V. For a 400‑V line supply, you can connect the motor to the converter either in a star or in a delta connection.
  • Page 103: Control Interfaces

    Wiring 4.2 Control interfaces Control interfaces 4.2.1 Overview of the interfaces Overview To access the interfaces, you must open the front door. ① ② Bus terminating resistor Terminal strip ③ ④ Status LED Connection to the operator panel or SINAMICS G120 Smart Access ⑤...
  • Page 104: Terminal Strips

    Wiring 4.2 Control interfaces Table 4-6 Number of inputs and outputs Digital inputs Digital outputs Analog inputs Analog out‐ Input for motor temperature puts AO sensor 4.2.2 Terminal strips Terminal strips with wiring example The digital outputs are designed for low voltage systems of overvoltage category II. In installations of overvoltage category III, galvanic isolation is required between the supply network and the digital output.
  • Page 105 Wiring 4.2 Control interfaces You may use the internal 10 V power supply or an external power supply to supply the analog inputs. → When you use the internal 10 V power supply, you must connect "AI GND" with "GND". Additional options for wiring the digital inputs The following diagram shows how you supply the digital inputs and digital outputs with an external voltage.
  • Page 106: Factory Interface Settings

    Wiring 4.2 Control interfaces WARNING Electric shock due to unsuitable power supply When equipment is connected to an unsuitable power supply, exposed components may carry a hazardous voltage that might result in serious injury or death. • Only use power supplies that provide SELV (Safety Extra Low Voltage) or PELV- (Protective Extra Low Voltage) output voltages (maximum 60 V DC briefly) for all connections and terminals of the electronics modules.
  • Page 107: Default Setting Of The Interfaces (Macros)

    Wiring 4.2 Control interfaces 4.2.4 Default setting of the interfaces (macros) 4.2.4.1 Overview Function description The function of most of the converter terminals can be set. In order to avoid having to successively change terminal for terminal, multiple terminals can be set jointly for quick commissioning. Parameter p0015 for quick commissioning initiates a macro that adopts the setting of the terminals.
  • Page 108 Wiring 4.2 Control interfaces   Default setting (macro) Terminal DI 4 local ↔ remote manual ↔ auto manual ↔ auto DI 5 Acknowledge fault Acknowledge fault Acknowledge fault Acknowledge fault Acknowledge fault DO 0 Fault Fault Fault Fault Fault DO 1 Operation Operation Operation Pump 1 Operation DO 2 Ready for operation...
  • Page 109: Default Setting (Macro) 41: "Analog Control

    Wiring 4.2 Control interfaces 4.2.4.2 Default setting (macro) 41: "Analog control" Function description "Analog control" is the default factory setting. Table 4-10 Characteristics Analog input Analog outputs Table 4-11 Procedure for selecting the default setting Operator panel BOP-2 Operator panel IOP-2 → Setup → Quick commissioning → I/O setup → Select macro → (41) Analog control →...
  • Page 110 Wiring 4.2 Control interfaces Table 4-12 Parameters that define the functions of the inputs and outputs Setting Parameter Setting Parameter Default setting 41 p0015 = 41 DI 0 p29652[0] = 722.0 p29650[0] = 0 AI 0 p1070[0] = 755[0] ON/OFF1 p0840[0] = 29659.0 OFF2 p0844[0] = 29659.1 DI 5 p2104[0] = 722.5 AO 0 p0771[0] = 21...
  • Page 111: Default Setting (Macro) 42: "Pid Controller With Analog Control

    Wiring 4.2 Control interfaces 4.2.4.3 Default setting (macro) 42: "PID controller with analog control" Function description Table 4-13 Characteristics Analog inputs Analog outputs Table 4-14 Procedure for selecting the default setting Operator panel BOP-2 Operator panel IOP-2 → Setup → Quick commissioning → I/O setup → Select macro → (42) PID controller with analog control →...
  • Page 112 Wiring 4.2 Control interfaces Table 4-15 Parameters that define the functions of the inputs and outputs Setting Parameter Setting Parameter Default setting 42 p0015 = 42 DI 0 p29652[0] = 722.0 p29650[0] = 0 AI 0 p2253[0] = 755[0] ON/OFF1 p0840[0] = 29659.0 p1070[0] = 755[0] OFF2 p0844[0] = 29659.1...
  • Page 113: Default Setting (Macro) 43: "2 Pumps With Analog Control

    Wiring 4.2 Control interfaces 4.2.4.4 Default setting (macro) 43: "2 pumps with analog control" Function description Table 4-16 Characteristics Analog inputs Analog outputs SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 114 Wiring 4.2 Control interfaces Table 4-17 Procedure for selecting the default setting Operator panel BOP-2 Operator panel IOP-2 → Setup → Quick commissioning → I/O setup → Select macro → (43) 2 pumps with analog control → Complete setup Smart Access → Quick setup → I/O configuration → 43: 2 pumps with analog control → Complete quick setup Table 4-18 Parameters that define the functions of the inputs and outputs...
  • Page 115: Default Setting (Macro) 44: "3 Pumps With Analog Setpoint

    Wiring 4.2 Control interfaces 4.2.4.5 Default setting (macro) 44: "3 pumps with analog setpoint" Function description Table 4-19 Characteristics Analog inputs Analog outputs SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 116 Wiring 4.2 Control interfaces Table 4-20 Procedure for selecting the default setting Operator panel BOP-2 Operator panel IOP-2 → Setup → Quick commissioning → I/O setup → Select macro → (44) 3 pumps with analog setpoint → Complete setup Smart Access → Quick setup → I/O configuration → 44: 3 pumps with analog setpoint →...
  • Page 117: Default Setting (Macro) 45: "Fixed Setpoint Control

    Wiring 4.2 Control interfaces 4.2.4.6 Default setting (macro) 45: "Fixed setpoint control" Function description Table 4-22 Characteristics Analog outputs Table 4-23 Procedure for selecting the default setting Operator panel BOP-2 Operator panel IOP-2 → Setup → Quick commissioning → I/O setup → Select macro → (45) Fixed setpoint control →...
  • Page 118 Wiring 4.2 Control interfaces Table 4-24 Parameters that define the functions of the inputs and outputs Setting Parameter Setting Parameter Default setting 45 p0015 = 45 DI 0 p29652[0] = 722.0 p29650[0] = 0 AO 0 p0771[0] = 21 ON/OFF1 p0840[0] = 29659.0 AO 1 p0771[1] = 27 OFF2 p0844[0] = 29659.1...
  • Page 119: Default Setting (Macro) 46: "Ai Control Local/Remote

    Wiring 4.2 Control interfaces 4.2.4.7 Default setting (macro) 46: "AI control local/remote" Function description Table 4-25 Characteristics Analog inputs Analog outputs Table 4-26 Procedure for selecting the default setting Operator panel BOP-2 Operator panel IOP-2 → Setup → Quick commissioning → I/O setup → Select macro → (46) AI control local/remote →...
  • Page 120 Wiring 4.2 Control interfaces Table 4-27 Parameters that define the functions of the inputs and outputs Setting Parameter Setting Parameter Default setting 46 p0015 = 46 DI 0 p29652[1] = 722.0 p29650[0] = 1 AI 0 p1070[1] = 755[0] ON/OFF1 p0840[0] = 29659.0 AI 1 p1070[0] = 755[1] OFF2 p0844[0] = 29659.1 AO 0 p0771[0] = 21...
  • Page 121: Default Setting (Macro) 47: "Pid Controller With Internal Fixed Setpoint

    Wiring 4.2 Control interfaces 4.2.4.8 Default setting (macro) 47: "PID controller with internal fixed setpoint" Function description Table 4-28 Characteristics Analog input Analog outputs Table 4-29 Procedure for selecting the default setting Operator panel BOP-2 Operator panel IOP-2 → Setup → Quick commissioning → I/O setup → Select macro → (47) PID controller with internal fixed setpoint →...
  • Page 122 Wiring 4.2 Control interfaces Table 4-30 Parameters that define the functions of the inputs and outputs Setting Parameter Setting Parameter Default setting 47 p0015 = 47 DI 0 p29652[0] = 722.0 p29650[0] = 0 AI 1 p2264[0] = 755[1] ON/OFF1 p0840[0] = 29659.0 AO 0 p0771[0] = 21 OFF2 p0844[0] = 29659.1 AO 1 p0771[1] = 27...
  • Page 123: Default Setting (Macro) 48: "2 Pumps And Internal Fixed Setpoint

    Wiring 4.2 Control interfaces 4.2.4.9 Default setting (macro) 48: "2 pumps and internal fixed setpoint" Function description Table 4-31 Characteristics Analog input Analog outputs SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 124 Wiring 4.2 Control interfaces Table 4-32 Procedure for selecting the default setting Operator panel BOP-2 Operator panel IOP-2 → Setup → Quick commissioning → I/O setup → Select macro → (48) 2 pumps and internal fixed setpoint → Complete setup Smart Access → Quick setup → I/O configuration → 48: 2 pumps and internal fixed setpoint →...
  • Page 125: Default Setting (Macro) 49: "3 Pumps And Internal Fixed Setpoint

    Wiring 4.2 Control interfaces 4.2.4.10 Default setting (macro) 49: "3 pumps and internal fixed setpoint" Function description Table 4-34 Characteristics Analog input Analog outputs SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 126 Wiring 4.2 Control interfaces Table 4-35 Procedure for selecting the default setting Operator panel BOP-2 Operator panel IOP-2 → Setup → Quick commissioning → I/O setup → Select macro → (49) 3 pumps and internal fixed setpoint → Complete setup Smart Access → Quick setup → I/O configuration → 49: 3 pumps and internal fixed setpoint →...
  • Page 127: Default Setting (Macro) 51: "Modbus Rtu Control

    Wiring 4.2 Control interfaces 4.2.4.11 Default setting (macro) 51: "Modbus RTU control" Function description Table 4-37 Characteristics Analog outputs Table 4-38 Procedure for selecting the default setting Operator panel BOP-2 Operator panel IOP-2 → Setup → Quick commissioning → I/O setup → Select macro → (51) Modbus RTU control →...
  • Page 128 Wiring 4.2 Control interfaces Table 4-39 Parameters that define the functions of the inputs and outputs Setting Parameter Setting Parameter Default setting 51 p0015 = 51 DI 0 p29652[0] = 722.0 p29650[0] = 0 AO 0 p0771[0] = 21 ON/OFF1 p0840[0] = 29659.0 AO 1 p0771[1] = 27 OFF2 p0844[0] = 29659.1...
  • Page 129: Default Setting (Macro) 52: "Modbus Rtu Control Local/Remote

    Wiring 4.2 Control interfaces 4.2.4.12 Default setting (macro) 52: "Modbus RTU control local/remote" Function description Table 4-40 Characteristics Analog input Analog outputs SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 130 Wiring 4.2 Control interfaces Table 4-41 Procedure for selecting the default setting Operator panel BOP-2 Operator panel IOP-2 → Setup → Quick commissioning → I/O setup → Select macro → (52) Modbus RTU control local/remote → Complete setup Smart Access → Quick setup → I/O configuration → 52: Modbus RTU control local/ remote →...
  • Page 131: Default Setting (Macro) 54: "Uss Control

    Wiring 4.2 Control interfaces 4.2.4.13 Default setting (macro) 54: "USS control" Function description Table 4-43 Characteristics Analog outputs Table 4-44 Procedure for selecting the default setting Operator panel BOP-2 Operator panel IOP-2 → Setup → Quick commissioning → I/O setup → Select macro → (54) USS control →...
  • Page 132 Wiring 4.2 Control interfaces Table 4-45 Parameters that define the functions of the inputs and outputs Setting Parameter Setting Parameter Default setting 54 p0015 = 54 DI 0 p29652[0] = 722.0 p29650[0] = 0 AO 0 p0771[0] = 21 ON/OFF1 p0840[0] = 29659.0 AO 1 p0771[1] = 27 OFF2 p0844[0] = 29659.1...
  • Page 133: Default Setting (Macro) 55: "Uss Control Local/Remote

    Wiring 4.2 Control interfaces 4.2.4.14 Default setting (macro) 55: "USS control local/remote" Function description Table 4-46 Characteristics Analog input Analog outputs SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 134: Default Setting (Macro) 58: "Mop Control

    Wiring 4.2 Control interfaces Table 4-47 Procedure for selecting the default setting Operator panel BOP-2 Operator panel IOP-2 → Setup → Quick commissioning → I/O setup → Select macro → (55) USS control local/remote → Complete setup Smart Access → Quick setup → I/O configuration → 55: USS control local/remote → Complete quick setup Table 4-48 Parameters that define the functions of the inputs and outputs...
  • Page 135: Default Setting (Macro) 59: "Blank I/O

    Wiring 4.2 Control interfaces Table 4-49 Characteristics Analog outputs Table 4-50 Procedure for selecting the default setting Operator panel BOP-2 Operator panel IOP-2 → Setup → Quick setup→ I/O setup → Select macro → (58) MOP control → Complete setup Smart Access → Quick setup → I/O configuration → 58: MOP control → Complete quick setup Table 4-51 Parameters that define the functions of the inputs and outputs...
  • Page 136: Terminal Strip X9 (Fsh/Fsj Only)

    Wiring 4.2 Control interfaces Table 4-52 Procedure for selecting the default setting Operator panel BOP-2 Operator panel IOP-2 → Setup → Quick setup → I/O setup → Select macro → (59): Blank I/O → Complete setup Smart Access → Quick setup → I/O configuration → 59: Blank I/O → Complete quick setup Table 4-53 Parameters which define the digital input function...
  • Page 137 Wiring 4.2 Control interfaces Note Line contactor control If the line contactor is controlled via terminals 11 and 12, then it is not necessary to use a control transformer to provide isolation from the line supply. A 250 V/8 A fuse must be used as protection.
  • Page 138 Wiring 4.2 Control interfaces Termi‐ Name Meaning Input/ Technical data output External alert External alarm Input Voltage: -3 V ... +30 V Current consumption: External fault External fault Input • 6.4 mA at 24 V DC Stop 0 Emergency OFF, cate‐ Input gory 0 •...
  • Page 139: Wiring The Terminal Strips

    You can find additional information about the temperature monitoring relay on the Internet: Manual 3RS1 / 3RS2 temperature monitoring relays (https:// support.industry.siemens.com/cs/ww/en/view/54999309) Note Malfunction caused by incorrect switching states as the result of diagnostic flows in the off state (logical state "0") In contrast to mechanical switching contacts, e.g.
  • Page 140 Further information about EMC-compliant wiring is available on the Internet: EMC installation guideline (http://support.automation.siemens.com/WW/view/en/ 60612658) • Use the right shield connection plate for shield support and strain relief. Mounting the shield connection kit (Page 64) SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 141: Fieldbus

    Wiring 4.2 Control interfaces 4.2.7 Fieldbus Assignment 4.2.8 Connecting to Modbus RTU, USS or BACnet MS/TP Function description Figure 4-21 Connection with the fieldbus via RS485 The RS485 ports of the converter are short-circuit proof and isolated. You must switch-in the bus-terminating resistor for the first and last nodes. The bus terminating resistor is located next to the terminal strips behind the front door of the converter.
  • Page 142: Additional Information

    Wiring 4.2 Control interfaces Additional information The precondition for error-free communications is that the first and last station are supplied with power. Communication is maintained if you withdraw individual devices from the fieldbus without interrupting the cable. SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 143: Commissioning

    Commissioning Commissioning guidelines Overview 1. Define the requirements to be met by the drive for your application. (Page 144) 2. Restore the factory settings of the con‐ verter if necessary. (Page 166) 3. Check if the factory setting of the con‐ verter is sufficient for your application. (Page 148) 4.
  • Page 144: Tools

    IOP‑2 enables intuitive converter operation. Additional information on the IOP‑2 is available in the Internet: SINAMICS IOP-2 release for sale (https://support.industry.siemens.com/cs/ww/en/view/ 109747625) The Operator Panel BOP‑2 for snapping onto the converter has a two-line display for diagnostics and operating the converter.
  • Page 145 Commissioning 5.2 Tools Compliance with the General Data Protection Regulation Siemens respects the principles of data protection, in particular the data minimization rules (privacy by design). For this product, this means: The product does not process neither store any person-related data, only technical function data (e.g.
  • Page 146: Preparing For Commissioning

    Commissioning 5.3 Preparing for commissioning Preparing for commissioning 5.3.1 Collecting motor data Data for a standard induction motor Before starting commissioning, you must know the following data: • Which motor is connected to the converter? Note down the Article No. of the motor and the motor’s nameplate data. If available, note down the motor code on the motor’s nameplate.
  • Page 147 16131 1LE0003-1DB43-3... 16165 1LE0003-2DD23-3… 16199 1LE0003-3BD53-3… 16132 1LE0003-1DC23-3... 16166 1LE0003-3AA03-3... 17100 1LE0003-3BD63-3… 16133 1LE0003-1DC43-3... 16167 1LE0003-3AA23-3...     Further information can be found on the internet: 1LE0 motor (https://support.industry.siemens.com/cs/ww/en/view/109795680) SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 148: Precharing The Circuit (Fsh/Fsj Only)

    Commissioning 5.3 Preparing for commissioning Data for a synchronous reluctance motor Before starting commissioning, you must know the following data: • Which motor is connected to the converter? Note down the motor code on the type plate of the motor. Figure 5-2 Example of a type plate for a reluctance motor •...
  • Page 149: Forming Dc Link Capacitors

    Commissioning 5.3 Preparing for commissioning 5.3.3 Forming DC link capacitors Overview You have to reform the DC link capacitors if the converter has been stored for more than one year. Non-formed DC link capacitors can damage the converter in operation. Precondition The converter has not yet been used, and according to the production date it was made over a year ago.
  • Page 150: Converter Factory Setting

    Commissioning 5.3 Preparing for commissioning 5.3.4 Converter factory setting Motor In the factory, the converter is set for an induction motor that matches the rated power of the converter. Converter interfaces The inputs and outputs and the fieldbus interface of the converter have specific functions when set to the factory settings.
  • Page 151 Commissioning 5.3 Preparing for commissioning Calculating maximum speed for permanent magnet synchronous motors CAUTION Damage to the converter due to generator-driven motor If the load machine drives the permanent magnet synchronous motor unintentionally, the permanent magnet synchronous motor charges the DC link of the converter. An impermissibly high DC link voltage can destroy the DC link capacitors of the converter.
  • Page 152: Quick Commissioning Using The Bop-2 Operator Panel

    Commissioning 5.4 Quick commissioning using the BOP-2 operator panel Quick commissioning using the BOP-2 operator panel 5.4.1 Fitting the BOP-2 to the converter Fitting the BOP-2 to the converter Procedure 1. Open the cover of the interface X21 on the front of the converter. 2.
  • Page 153: Overview

    Commissioning 5.4 Quick commissioning using the BOP-2 operator panel 5.4.2 Overview User actions Converter response Figure 5-5 Quick commissioning using the BOP-2 operator panel SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 154: Starting Quick Commissioning

    Commissioning 5.4 Quick commissioning using the BOP-2 operator panel 5.4.3 Starting quick commissioning Requirement The following requirements apply: • The power supply is switched on. • The operator panel displays setpoints and actual values. Function description Procedure Press the ESC key. Press one of the arrow keys until the BOP-2 displays menu To start quick commissioning, press the OK key in menu We recommend resetting the converter to the factory setting before commencing quick...
  • Page 155 Commissioning 5.4 Quick commissioning using the BOP-2 operator panel Function description Select one of the application classes or setting "Expert": • Standard Drive Control (Page 154) • Dynamic Drive Control (Page 156) • Expert (Page 159) Application Standard Drive Control Dynamic Drive Control class Properties •...
  • Page 156: Standard Drive Control

    Commissioning 5.4 Quick commissioning using the BOP-2 operator panel Application Standard Drive Control Dynamic Drive Control class Torque control Without torque control Speed control with lower-level torque control With permanent magnet synchronous motor: Speed control without lower-level torque control Commissioning • Unlike "Dynamic Drive Control,"...
  • Page 157 Commissioning 5.4 Quick commissioning using the BOP-2 operator panel Rated motor voltage Rated motor current Rated motor power Rated motor frequency Rated motor speed Motor cooling: • Natural cooling • Forced-air cooling • Liquid cooling • Without fan Select the basic setting for the motor control: •...
  • Page 158: Dynamic Drive Control

    Commissioning 5.4 Quick commissioning using the BOP-2 operator panel Figure 5-7 Ramp-up and ramp-down time of the motor Ramp-down time after the OFF3 command Motor data identification. Select the method which the converter uses to measure the data of the connected motor: •...
  • Page 159 Commissioning 5.4 Quick commissioning using the BOP-2 operator panel Motors with motor code stamped on the rating plate: • : 1LE1 . 9 • : 1PC1 Depending on the converter, the motor list in BOP‑2 can deviate from the list shown above. If you have selected a motor type with motor code, you must now enter the motor code. The converter assigns the following motor data corresponding to the motor code.
  • Page 160 Commissioning 5.4 Quick commissioning using the BOP-2 operator panel Figure 5-8 Minimum and maximum motor frequency CAUTION Material damage caused by unexpected acceleration of the motor The converter sets the minimum frequency p1080 to 20% of the maximum frequency. Also for setpoint = 0, the motor accelerates for p1080 > 0 to the minimum frequency after switching on the motor.
  • Page 161: Expert

    Commissioning 5.4 Quick commissioning using the BOP-2 operator panel Complete the data entry for quick commissioning as follows: 1. Switch over the display using an arrow key:  →  2. Press the OK key. You have entered all of the data that is necessary for the quick commissioning of the converter.
  • Page 162 Commissioning 5.4 Quick commissioning using the BOP-2 operator panel Rated motor power Rated motor frequency Rated motor speed Motor cooling: • : Natural cooling • : Forced-air cooling • : Liquid cooling • : Without fan Select the appropriate application: • In all applications that do not fit the other setting options.
  • Page 163 Commissioning 5.4 Quick commissioning using the BOP-2 operator panel Control mode U/f control or flux current control (FCC) Sensorless vector control Properties • Typical settling time after a speed change: • Typical settling time after a speed change: 100 ms … 200 ms < 100 ms • Typical settling time after a load surge: 500 ms •...
  • Page 164 Commissioning 5.4 Quick commissioning using the BOP-2 operator panel Figure 5-10 Minimum and maximum motor frequency CAUTION Material damage caused by unexpected acceleration of the motor The converter sets the minimum frequency p1080 to 20% of the maximum frequency. Also for setpoint = 0, the motor accelerates for p1080 > 0 to the minimum frequency after switching on the motor.
  • Page 165 Commissioning 5.4 Quick commissioning using the BOP-2 operator panel • : Setting the same as After the motor data identification, the motor accelerates to the current setpoint. • : Setting the same as After the motor data identification, the motor accelerates to the current setpoint. Complete the data entry for quick commissioning as follows: 1.
  • Page 166: Identifying The Motor Data And Optimizing The Closed-Loop Control

    Commissioning 5.4 Quick commissioning using the BOP-2 operator panel 5.4.8 Identifying the motor data and optimizing the closed-loop control Overview Using the motor data identification, the converter measures the data of the stationary motor. In addition, based on the response of the rotating motor, the converter can determine a suitable setting for the vector control.
  • Page 167 Commissioning 5.4 Quick commissioning using the BOP-2 operator panel If the converter does not output alarm A07991, switch off the motor as described below, and switch over the converter control from HAND to AUTO. Switch on the motor to start the rotating measurement. During motor data identification flashes on the BOP‑2.
  • Page 168: Restoring The Factory Settings

    Commissioning 5.5 Restoring the factory settings Restoring the factory settings Why restore the factory settings? Reset the converter to the factory settings in the following cases: • You do not know the converter settings. • The line voltage was interrupted during commissioning and you were not able to complete commissioning.
  • Page 169: Handling The Bop-2 Operator Panel

    Commissioning 5.6 Handling the BOP-2 operator panel Handling the BOP-2 operator panel Overview Status display once the power supply for the converter has been switched on. Figure 5-12 Menu of the BOP-2 Figure 5-13 Additional symbols of the BOP-2 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 170: Switching The Motor On And Off

    Commissioning 5.6 Handling the BOP-2 operator panel 5.6.1 Switching the motor on and off Overview The BOP‑2 offers the option of switching the motor on and off using the control keys. Function description Procedure 1. Enable the control priority via the operator panel. 2.
  • Page 171: Changing Parameter Values

    Commissioning 5.6 Handling the BOP-2 operator panel 5.6.2 Changing parameter values Overview You can modify the settings of the converter by changing the parameter values in the converter. Precondition The converter only permits changes to write parameters. Write parameters begin with a "P", e.g. P45.
  • Page 172: Changing Indexed Parameters

    Commissioning 5.6 Handling the BOP-2 operator panel 5.6.3 Changing indexed parameters Overview For indexed parameters, several parameter values are assigned to a parameter number. Each of the parameter values has its own index. Precondition You are in the menu for displaying and changing parameter values. The number of an indexed parameter flashes in the BOP-2 display.
  • Page 173: Entering The Parameter Number Directly

    Commissioning 5.6 Handling the BOP-2 operator panel 5.6.4 Entering the parameter number directly Overview The BOP‑2 offers the possibility of setting the parameter number digit by digit. Precondition You are in the menu for displaying and changing parameter values. The number of a given parameter flashes in the BOP-2 display. Function description Procedure 1.
  • Page 174: Entering The Parameter Value Directly

    Commissioning 5.6 Handling the BOP-2 operator panel 5.6.5 Entering the parameter value directly Overview The BOP‑2 offers the option of setting the parameter value digit by digit. Precondition You are in the menu for displaying and changing parameter values. The parameter value flashes in the BOP-2 display. Function description Procedure 1.
  • Page 175: Why Can A Parameter Value Not Be Changed

    Commissioning 5.6 Handling the BOP-2 operator panel 5.6.6 Why can a parameter value not be changed? Overview Whether or not a parameter value can be changed depends on the type of parameter and the operating mode of the converter. Function description The converter indicates why it currently does not permit a parameter to be changed: Read parameters cannot be adjusted...
  • Page 176: Series Commissioning

    Commissioning 5.7 Series commissioning Series commissioning Overview Series commissioning is the commissioning of several identical converters. During series commissioning, it is sufficient to commission one of the converters and then transfer the settings of the first converter to additional converters. Precondition The following preconditions apply to the converters regarding series commissioning: •...
  • Page 177: Upload Of The Converter Settings

    Upload of the converter settings Overview After commissioning, your settings are permanently saved in the converter. We recommend that you additionally back up the converter settings on an external storage medium by means of an upload. Without a backup, your settings could be lost should the converter develop a fault.
  • Page 178: Upload From The Converter To The Memory Card

    Upload of the converter settings 6.1 Upload from the converter to the memory card Upload from the converter to the memory card 6.1.1 Automatic upload Overview We recommend that you insert the memory card before switching on the converter. The converter automatically backs up its settings on the inserted memory card and always keeps it up to date.
  • Page 179: Manual Upload With Bop-2

    Upload of the converter settings 6.1 Upload from the converter to the memory card 6.1.2 Manual upload with BOP-2 Overview If you insert the memory card into a converter that is already supplied with power, you must start the upload manually using a commissioning tool. Precondition The converter power supply has been switched on.
  • Page 180: Message For A Memory Card That Is Not Inserted

    Upload of the converter settings 6.1 Upload from the converter to the memory card 6.1.3 Message for a memory card that is not inserted Function description The converter identifies that a memory card is not inserted, and signals this state. The message is deactivated in the converter factory setting.
  • Page 181: Safely Removing A Memory Card Using The Bop-2

    Upload of the converter settings 6.1 Upload from the converter to the memory card 6.1.4 Safely removing a memory card using the BOP-2 Function description NOTICE Data loss from improper handling of the memory card If you remove the memory card when the converter is switched on without implementing the "safe removal"...
  • Page 182: Uploading To The Bop-2

    Upload of the converter settings 6.2 Uploading to the BOP-2 Uploading to the BOP-2 Overview You can back up the converter settings on the BOP-2 operator panel. Precondition The converter power supply has been switched on. Function description Procedure 1. Select the upload to the operator panel. 2.
  • Page 183: More Options For The Upload

    On the memory card, you can back up 99 other settings in addition to the default setting. Further information is provided on the Internet: Memory options (http://support.automation.siemens.com/WW/view/en/43512514) SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 184 Upload of the converter settings 6.3 More options for the upload SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 185: Protecting The Converter Settings

    Protecting the converter settings Write protection Overview The write protection prevents unauthorized changing of the converter settings. Function description Write protection is applicable for all user interfaces: • Commissioning tool, e.g. operator panel or PC • Parameter changes via fieldbus No password is required for write protection.
  • Page 186 Protecting the converter settings 7.1 Write protection Number Name p8806[0...53] Identification and Maintenance 1 / I&M 1 p8807[0...15] Identification and Maintenance 2 / I&M 2 p8808[0...53] Identification and Maintenance 3 / I&M 3 p8809[0...53] Identification and Maintenance 4 / I&M 4 p9400 Safely remove memory card / Mem_card rem p9484...
  • Page 187: Know-How Protection

    Know-how protection without copy protection The converter can be operated with or without mem‐ ory card. Know-how protection with basic copy protection The converter can only be operated with a SIEMENS memory card Know-how protection with extended copy pro‐ Memory card (Page 49) tection...
  • Page 188 Protecting the converter settings 7.2 Know-how protection • Locked functions: – Automatic controller optimization – Stationary or rotating measurement of the motor data identification – Deleting the alarm history and the fault history – Generating acceptance documents for safety functions • Executable functions: –...
  • Page 189 Protecting the converter settings 7.2 Know-how protection Number Name p0970 Reset drive parameters / Drive par reset p0971 Save parameters / Sav par p0972 Drive unit reset / Drv_unit reset p2040 Fieldbus interface monitoring time / Fieldbus t_monit p2111 Alarm counter / Alarm counter p3950 Service parameter / Serv par p3981...
  • Page 190: Extending The Exception List For Know-How Protection

    Protecting the converter settings 7.2 Know-how protection Number Name p1520[0...n] CO: Torque limit upper / M_max upper p2000 Reference speed reference frequency / n_ref f_ref p2001 Reference voltage / Reference voltage p2002 Reference current / I_ref p2003 Reference torque / M_ref p2006 Reference temperature / Ref temp p2030...
  • Page 191: Activating And Deactivating Know-How Protection

    Protecting the converter settings 7.2 Know-how protection 7.2.2 Activating and deactivating know-how protection Requirements • The converter has now been commissioned. • You have generated the exception list for know-how protection. • To guarantee know-how protection, you must ensure that the project does not remain at the end user as a file.
  • Page 192: Further Information

    Protecting the converter settings 7.2 Know-how protection Further information Preventing data reconstruction from the memory card As soon as know-how protection has been activated, the converter only backs up encrypted data to the memory card. In order to guarantee know-how protection, after activating know-how protection, we recommend that you insert a new, empty memory card.
  • Page 193: Advanced Commissioning

    Advanced commissioning Overview of the converter functions Drive control The converter receives its commands from the higher-level control via the terminal strip or the fieldbus interface. The drive control defines how the converter responds to the commands. Drive control (Page 194) Thecon can switch between different settings of the drive control.
  • Page 194 Advanced commissioning 8.1 Overview of the converter functions Technology controller The technology controller controls process variables, e.g. pressure, temperature, level or flow. The motor closed-loop control either receives its setpoint from the higher-level control - or from the technology controller. Technology controller (Page 375) Motor control The motor closed-loop control ensures that the motor follows the speed setpoint.
  • Page 195: Brief Description Of The Parameters

    Advanced commissioning 8.2 Brief description of the parameters Brief description of the parameters Overview The brief parameter description provides the most important information for all of the parameters that are assigned to a certain converter function. If the number of parameter indices depends on the data sets, then the parameter index is shown in an abbreviated form.
  • Page 196: Drive Control

    Advanced commissioning 8.3 Drive control Drive control 8.3.1 Switching the motor on and off 8.3.1.1 Sequence control when switching the motor on and off Overview The sequence control defines the rules for switching the motor on and off. Figure 8-2 Simplified representation of the sequence control After switching the supply voltage on, the converter normally goes into the "ready to start"...
  • Page 197 Advanced commissioning 8.3 Drive control Function description Figure 8-3 Sequence control of the converter when the motor is switched on and off The sequence control defines the transition from one of the converter states S1 … S5b to another converter state. Table 8-1 Converter states The motor is switched off The motor is switched on Current does not flow in the motor and the motor...
  • Page 198: Selecting The On/Off Functions

    Advanced commissioning 8.3 Drive control Table 8-2 Commands for switching the motor on and off The converter switches the motor on. Enable opera‐ tion OFF3 1. The converter brakes the motor. 2. The converter switches off the motor once it comes to a standstill. The converter identifies that the motor is at a standstill when at least one of the following conditions is satisfied: •...
  • Page 199 Advanced commissioning 8.3 Drive control ON/OFF2 In the factory setting, the ON/OFF2 function is enabled by default (p29650 = 0). ON/OFF1 To use the ON/OFF1 function, you need to first disable the ON/OFF2 function by setting p29650 = -1 and configure the command and command source as required. Table 8-3 Example: ON/OFF1 command via DI 0 Parameter...
  • Page 200: Function Diagram 2634 - Sequence Control - Missing Enable Signals, Line Contactor Control

    Advanced commissioning 8.3 Drive control 8.3.1.3 Function diagram 2634 - Sequence control - Missing enable signals, line contactor control SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 201: Adapt The Default Setting Of The Terminal Strips

    Advanced commissioning 8.3 Drive control Figure 8-4 FP 2634 8.3.2 Adapt the default setting of the terminal strips Overview In the converter, the input and output signals are interconnected with specific converter functions using special parameters. The following parameters are available to interconnect signals: •...
  • Page 202: Digital Inputs

    Advanced commissioning 8.3 Drive control 8.3.2.1 Digital inputs Function description To change the function of a digital input, you must interconnect the status parameter of the digital input with a binector input of your choice. Binector inputs are designated in the parameter list with the prefix "BI:". Example To acknowledge converter fault messages using digital input DI 1, you must interconnect DI 1 with the command to acknowledge faults (p2103).
  • Page 203: Analog Input As Digital Input

    Advanced commissioning 8.3 Drive control Parameter Description Factory setting p1113[C] BI: Setpoint inversion Dependent on the converter p2103[C] BI: 1. Acknowledge faults Dependent on the converter p2106[C] BI: External fault 1 p2112[C] BI: External alarm 1 For further binector inputs and additional information on parameters, please refer to the parameter list.
  • Page 204: Digital Outputs

    Advanced commissioning 8.3 Drive control 8.3.2.3 Digital outputs Function description To change the function of a digital output, you must interconnect the digital output with a binector output of your choice. Binector outputs are designated in the parameter list with a "BO:" as prefix. Example To output converter fault messages via digital output DO 1, you must interconnect DO 1 with these fault messages.
  • Page 205 Advanced commissioning 8.3 Drive control Parameters Table 8-4 Frequently used binector outputs (BO) of the converter Parameter Description Factory setting r0052.0...15 CO/BO: Status word 1 1 signal: Ready for switching on 1 signal: Ready for operation 1 signal: Operation enabled 1 signal: Fault active 0 signal: OFF2 active 0 signal: OFF3 active 1 signal: Switching on inhibited active...
  • Page 206: Analog Inputs

    Advanced commissioning 8.3 Drive control 8.3.2.4 Analog inputs Function description Define the analog input type With parameter p0756[x] you specify the type of analog input. Table 8-5 Default settings via parameter p0756 AI 0 Unipolar voltage input 0 V … +10 V p0756[0]  Unipolar voltage input monitored +2 V … +10 V Unipolar current input 0 mA … +20 mA...
  • Page 207: Adjusting Characteristics For Analog Input

    Advanced commissioning 8.3 Drive control Parameters Table 8-6 Frequently used connector inputs (CI) of the converter Parameter Description Factory setting p1070[C] CI: Main setpoint Dependent on the converter p1075[C] CI: Supplementary setpoint p2253[C] CI: Technology controller setpoint 1 p2264[C] CI: Technology controller actual value You can find additional connector inputs in the parameter list.
  • Page 208 Advanced commissioning 8.3 Drive control Example The converter should convert a 6 mA … 12 mA signal into the value range ‑100% … 100% via analog input 0. The wire-break monitoring of the converter should respond when 6 mA is fallen below. Procedure 1. set p0756[0] = 3 You have defined analog input 0 as a current input with wire-break monitoring. 2.
  • Page 209: Setting The Deadband

    Advanced commissioning 8.3 Drive control 8.3.2.6 Setting the deadband Function description With the control enabled, electromagnetic interference on the signal cable can cause the motor to slowly rotate in one direction in spite of a speed setpoint = 0. The deadband acts on the zero crossover of the analog input characteristic. Internally, the converter sets its speed setpoint = 0, even if the signal at the analog input terminals is slightly positive or negative.
  • Page 210: Analog Outputs

    Advanced commissioning 8.3 Drive control 8.3.2.7 Analog outputs Function description Connector outputs are designated with a "CO” as prefix. Defining the analog output type Define the analog output type using parameter p0776. AO 0 Current output (factory setting) 0 mA … +20 mA p0776[0] = Voltage output 0 V … +10 V Current output +4 mA … +20 mA...
  • Page 211: Adjusting Characteristics For Analog Output

    Advanced commissioning 8.3 Drive control Parameter Description Factory setting r0027 CO: Absolute actual current, smoothed - Arms r0063[0...2] CO: Speed actual value - rpm You can find additional connector outputs in the parameter list. Parameters (Page 563) 8.3.2.8 Adjusting characteristics for analog output Function description If you change the analog output type, then the converter automatically selects the appropriate scaling of the analog output.
  • Page 212 Advanced commissioning 8.3 Drive control 3. Set p0778[0] = 6.0 (y1) 4. Set p0779[0] = 100.0 (x2) 5. Set p0780[0] = 12.0 (y2) The characteristic for the application example is set. ❒ Parameters Table 8-8 Parameters for the scaling characteristic Parameter Description Factory setting p0777[0…1]...
  • Page 213: Function Diagram 2221 - Digital Inputs

    Advanced commissioning 8.3 Drive control 8.3.2.9 Function diagram 2221 - Digital inputs Figure 8-5 FP 2221 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 214: Function Diagram 2243 - Digital Outputs

    Advanced commissioning 8.3 Drive control 8.3.2.10 Function diagram 2243 - Digital outputs Figure 8-6 FP 2243 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 215: Function Diagram 2251 - Analog Inputs 0 And 1

    Advanced commissioning 8.3 Drive control 8.3.2.11 Function diagram 2251 - Analog inputs 0 and 1 Figure 8-7 FP 2251 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 216: Function Diagram 2256 - Analog Inputs As Digital Inputs

    Advanced commissioning 8.3 Drive control 8.3.2.12 Function diagram 2256 - Analog inputs as digital inputs Figure 8-8 FP 2256 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 217: Function Diagram 2261 - Analog Outputs

    Advanced commissioning 8.3 Drive control 8.3.2.13 Function diagram 2261 - Analog outputs Figure 8-9 FP 2261 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 218: Modbus Rtu

    Advanced commissioning 8.3 Drive control 8.3.3 Modbus RTU 8.3.3.1 Activating communication via fieldbus Function description Procedure Proceed as follows to activate communication via Modbus RTU: 1. Start quick commissioning. 2. In the first steps of the quick commissioning, confirm all of the values that have already been set.
  • Page 219: Setting The Address

    Advanced commissioning 8.3 Drive control 8.3.3.2 Setting the address Function description Procedure 1. Using parameter p2021, set the address using an operator panel or SINAMICS G120 Smart Access. Permissible addresses: 0 … 31. 2. Switch off the converter power supply. 3. Wait until all LEDs on the converter are dark. 4.
  • Page 220 Advanced commissioning 8.3 Drive control Modbus timing     p2024[0 … 2] • p2024[0]: Maximum device telegram processing time: The time after which the server must have sent a response to the client. 0 ms … 10000 ms, factory setting = 6000 ms. • p2024[1]: Character delay time: Character delay time: Maximum permissible time between the individual characters in the Modbus frame.
  • Page 221 Advanced commissioning 8.3 Drive control Note Reset to the factory setting for Modbus If you have set communication via Modbus (p2030 = 2), when restoring the factory settings, the analog outputs are again interconnected with p0771[0] = 791[0] and p0771[1] = 791[1]. SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 222: Modbus Rtu Telegram

    Advanced commissioning 8.3 Drive control 8.3.3.4 Modbus RTU telegram Description For Modbus, there is precisely one client and up to 247 servers. The client always starts the communication. Servers send data when requested to do so by the client. Server-to-server communication is not possible. The converter always operates as server. The following figure shows the structure of a Modbus RTU telegram.
  • Page 223: Baud Rates And Mapping Tables

    Advanced commissioning 8.3 Drive control 8.3.3.5 Baud rates and mapping tables Permissible baud rates and telegram delay The Modbus RTU telegram requires pauses for the following situations: • for the start identifier • for separating the individual frames • for the end identifier Minimum duration: Processing time for 3.5 bytes (can be set via p2024[2]).
  • Page 224 Advanced commissioning 8.3 Drive control Table 8-10 Assigning the Modbus registers to the process data Regis‐ Description Access Scaling Data / parameter 40100 Control word Process data 1 40101 Main setpoint Process data 2 40110 Status word Process data 1 40111 Main actual value Process data 2 SINAMICS G120XA USS converter...
  • Page 225: Mapping Tables - Converter Data

    Advanced commissioning 8.3 Drive control 8.3.3.6 Mapping tables - converter data Table 8-11 Assigning the Modbus registers to the parameters - inputs and outputs Regis‐ Description Ac‐ Unit Scaling ON/OFF text/ Data / parameter cess value range Digital outputs 40200 DO 0 HIGH p0730, r747.0, p748.0 40201...
  • Page 226 Advanced commissioning 8.3 Drive control Regis‐ Description Ac‐ Unit Scaling ON/OFF text/ Data / parameter cess value range 40345 Current actual value 0 … 163.83 r0027 40346 Actual torque value - 325.00 … 325.00 r0031 40347 Actual active power 0 … 327.67 r0032 40348 Energy consumption...
  • Page 227 Advanced commissioning 8.3 Drive control Table 8-15 Assigning the Modbus registers to the parameters - PID diagnostics Regis‐ Description Ac‐ Unit Scaling ON/OFF text/ Data / parameter cess value range 40520 Effective setpoint acc. to internal tech‐ -100.0 … 100.0 r2250 nology controller MOP ramp-function generator 40521...
  • Page 228: Acyclic Communication Via Modbus Rtu

    Advanced commissioning 8.3 Drive control 8.3.3.7 Acyclic communication via Modbus RTU Acyclic communication or general parameter access is realized using the Modbus registers 40601 … 40722. Acyclic communication is controlled using 40601. 40602 contains the function code (always = 47 = 2F hex) and the number of the following user data. User data are contained in registers 40603 … 40722.
  • Page 229: Write And Read Access Using Function Codes

    Advanced commissioning 8.3 Drive control 8.3.3.8 Write and read access using function codes Basic structure of read and write access using function codes Function codes used For data exchange between the client and server, predefined function codes are used for communication via Modbus. The converter uses the following Modbus function codes: •...
  • Page 230 Advanced commissioning 8.3 Drive control The response returns the corresponding data set: Table 8-19 Server response to the read request, example Value Byte Description 11 h Server address 03 h Function code 04 h Number of bytes (4 bytes are returned) 11 h Data first register "High"...
  • Page 231: Reading And Writing Parameters Acyclically Via Fc 16

    Advanced commissioning 8.3 Drive control The response returns register address (bytes 2 and 3) and the value (bytes 4 and 5), which the higher-level control had written to the register. Table 8-22 Server response to the write request Value Byte Description 11 h Server address 06 h...
  • Page 232 Advanced commissioning 8.3 Drive control Example: r0002 read acyclically Table 8-24 Write parameter request: Reading the parameter value of r0002 from server number 17 Value Byte Description 11 h Server address 10 h Function code (write multiple) 0258 h Register start address 0007 h Number of registers to be read (40601 …...
  • Page 233 Advanced commissioning 8.3 Drive control Table 8-27 Response for unsuccessful read operation - read request still not completed Value Byte Description 11 h Server address 03 h Function code (read) 20 h Number of following data bytes (20 h: 32 bytes corresponds to 16 registers) 0001 h 40601: Check value 1 = request is processed 2F00 h...
  • Page 234: Communication Procedure

    Advanced commissioning 8.3 Drive control Table 8-30 Response for successful write operation Value Byte Description 11 h Server address 06 h Function code (write) 20 h Number of following data bytes (20 h: 32 bytes corresponds to 16 registers) 0002 h 40601: DS47 Control = 2 (request was executed) 2F04 h 40602: Function code 2F h (47), response length 4 bytes...
  • Page 235: Application Example

    Adjust the time (factory setting = 100 ms) depending on the number of servers and the baud rate set on the bus. 8.3.3.11 Application example An application example for MODBUS RTU is provided on the Internet: Communication via the MODBUS interface (https:// support.industry.siemens.com/cs/ww/en/view/35928944) SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 236: Uss

    Advanced commissioning 8.3 Drive control 8.3.4 8.3.4.1 Activating communication via fieldbus Function description Procedure Proceed as follows to activate communication via USS: 1. Start quick commissioning. 2. In the first steps of the quick commissioning, confirm all of the values that have already been set.
  • Page 237: Setting The Address

    Advanced commissioning 8.3 Drive control 8.3.4.2 Setting the address Function description Procedure 1. Using parameter p2021, set the address using an operator panel or SINAMICS G120 Smart Access. Permissible addresses: 1 … 247. 2. Switch off the converter power supply. 3. Wait until all LEDs on the converter are dark. 4.
  • Page 238: Specify User Data Of Telegram

    Advanced commissioning 8.3 Drive control Telegram part Description • Bit 7 = 0: Normal data exchange. Bit 7 =1, to transfer telegrams that require a net data structure different from the device profile. • Bit 6 = 0: Normal data exchange. Bit 6 = 1: Testing the bus connection: The converter returns the telegram unchanged to the master.
  • Page 239: Uss Process Data Channel (Pzd)

    Advanced commissioning 8.3 Drive control • p2023 = 4: If you want to read or write 32-bit values (for example indexed parameters or bit parameters, e.g. r0722.2), then this setting is required. In this case, the send or receive telegram always contains four words, even if only three would be required.
  • Page 240 Advanced commissioning 8.3 Drive control Control word 1 (STW1) Bit Significance Explanation Signal inter‐ connection in the con‐ verter 0 = OFF1 The motor brakes with the ramp-down time p1121 of p0840[0] = the ramp-function generator. The converter switches r2090.0 off the motor at standstill. 0 → 1 = ON The converter goes into the "ready"...
  • Page 241 Advanced commissioning 8.3 Drive control Status word 1 (ZSW1) Significance Remarks Signal inter‐ connection in the con‐ verter 1 = Ready for switching Power supply switched on; electronics initialized; pul‐ p2080[0] = ses locked. r0899.0 1 = Ready Motor is switched on (ON/OFF1 = 1), no fault is active. p2080[1] = With the command "Enable operation"...
  • Page 242: Telegram Monitoring

    Advanced commissioning 8.3 Drive control 8.3.4.6 Telegram monitoring Function description You require the telegram runtimes in order to set the telegram monitoring. The character runtime is the basis of the telegram runtime: Table 8-33 Character runtime Baud rate in bit/s Transmission time per bit Character run time (= 11 bits) 9600 104.170 µs...
  • Page 243: Uss Parameter Channel

    Advanced commissioning 8.3 Drive control Baud rate in bit/s Transmission time per character (= 11 bits) Min. start delay 38400 0.286 ms > 0.573 ms 57600 0.191 ms > 0.382 ms 115200 0.095 ms > 0.191 ms The character delay time must be shorter than the start delay. Telegram monitoring of the master With your USS master, we recommend that the following times are monitored: •...
  • Page 244 Advanced commissioning 8.3 Drive control You can find examples of telegrams at the end of this section. Function description AK: Request and response ID Table 8-35 Request identifiers, control → converter Description Response identifier positive nega‐ tive No request 7 / 8 Request parameter value 1 / 2 7 / 8...
  • Page 245 Advanced commissioning 8.3 Drive control Description Converter cannot process the request. In the most significant word of the parameter channel, the converter sends an error number to the control, refer to the following table. No master controller status / no authorization to change parameters of the parameter channel interface The required element of the parameter is specified in IND (2nd word).
  • Page 246 Advanced commissioning 8.3 Drive control PNU (parameter number) and page index Parameter number Page index 0000 … 1999 0000 … 1999 0 hex 2000 … 3999 0000 … 1999 80 hex 6000 … 7999 0000 … 1999 90 hex 8000 … 9999 0000 … 1999 20 hex 10000 …...
  • Page 247: Parameter Number

    Advanced commissioning 8.3 Drive control • IND, bit 0 … 7 (subindex): = 2 (index of parameter) • Because you want to read the parameter value, words 3 and 4 in the parameter channel for requesting the parameter value are irrelevant. They should be assigned a value of 0, for example.
  • Page 248 Advanced commissioning 8.3 Drive control Parameter contents Parameter contents can be parameter values or connector parameters. You require two words for connector parameters. You can find more information on interconnecting connector parameters in the operating instructions of the converter in the section "Interconnecting signals in the converter".
  • Page 249: Bacnet Ms/Tp

    Advanced commissioning 8.3 Drive control • IND, bit 0 … 7 (subindex): = 0 hex (parameter is not indexed) • PWE1, bit 0 … 15: = 0 hex • PWE2, bit 0 … 15:  = 1A hex (26 = 1A hex) Figure 8-18 Telegram, to activate the automatic restart with p1210 = 26 Write request: Assign digital input 2 with the function ON/OFF1 (p0840[1] = 722.2) In order to link digital input 2 with ON/OFF1, you must assign parameter p0840[1] (source, ON/OFF1) the value 722.2 (DI 2).
  • Page 250: Further Information

    The converter can also send telegrams automatically itself, respectively execute services, e.g. COV_Notification. The converter supports Unicode, coded with character set UTF-8 Further information The Protocol Implementation Conformance Statement (PICS) is available on the Internet: PICS (https://support.industry.siemens.com/cs/us/en/view/109760469) 8.3.5.2 Activating communication via fieldbus Function description Procedure Proceed as follows to activate communication via BACnet MS/TP: 1.
  • Page 251: Setting The Address

    Advanced commissioning 8.3 Drive control 8.3.5.3 Setting the address Function description Procedure 1. Using parameter p2021, set the address using an operator panel or SINAMICS G120 Smart Access. Permissible addresses: 0 … 127. 2. Switch off the converter power supply. 3. Wait until all LEDs on the converter are dark. 4.
  • Page 252: Setting Communication Via Bacnet

    Advanced commissioning 8.3 Drive control 8.3.5.4 Setting communication via BACnet General settings Processing times    p2024[0 … 2] p2024[0]:   0 ms … 10000 ms, maximum processing time (APDU timeout), factory setting = 6000 ms, p2024 [1 … 2]: Irrelevant BACnet communication parameter    p2025[0 … 3] • p2025 [0]: 0 … 4194303: Device object instance number, Factory setting = 1 •...
  • Page 253: Supported Services And Objects

    Advanced commissioning 8.3 Drive control p7610[0…79] contains the device names in ASCII format. Changing device names Change the device name either in the converter or via the controller: • Converter: Change p7610 • Controller: Change the "object-name" property via the Write Property Service Restoring factory settings The device name is retained when the factory settings are restored.
  • Page 254 Advanced commissioning 8.3 Drive control The converter is a server and therefore operates as B device, as "BACnet Application Specific Controller" (B-ASC). It uses the following executed BIBBs. Overview of the BIBB used and the associated services Short designation BIBB Service DS-RP-B Data Sharing-ReadProperty-B ReadProperty...
  • Page 255: Language Switching

    Advanced commissioning 8.3 Drive control Object properties of the "Device" object type • Object_Identifier • Application_Software_Version • APDU_Timeout • Object_Name • Protocol_Version • Number_Of_APDU_Retries • Object_Type • Protocol_Revision • Max manager • System_Status • Protocol_Services_Supported • Max Info Frames • Vendor_Name •...
  • Page 256: Binary Input Objects

    Advanced commissioning 8.3 Drive control Binary Input Objects In‐ Object name Description Possible val‐ Text active / Access Parameter stance text inactive type DI0 ACT State of DI 0 ON/OFF ON/OFF r0722.0 DI1 ACT State of DI 1 ON/OFF ON/OFF r0722.1 DI2 ACT State of DI 2 ON/OFF ON/OFF r0722.2...
  • Page 257 Advanced commissioning 8.3 Drive control Analog Output Objects In‐ Object name Description Unit Range Access Parameter stance type ANALOG OUTPUT 0 Value of AO 0 Converter-depend‐ p0791[0] ANALOG OUTPUT 1 Value of AO 1 Converter-depend‐ p0791[1] Binary Value BV… In‐ Object name Description Possible values Text ac‐...
  • Page 258 Advanced commissioning 8.3 Drive control In‐ Object name Description Possible values Text ac‐ Text in‐ Ac‐ Parameter stance tive active cess type BV28 OFF3 Status OFF3  RUN / STOP r0054.2 BV28 sets the r0054.4, r0054.5, and r0054.6 bits BV50 ENABLE PID Enable technology controller ENABLED / DISA‐...
  • Page 259 Advanced commissioning 8.3 Drive control In‐ Object name Description Unit Range Access Parameter stance type AV10 Cumulative converter energy Converter-depend‐ r0039 KWH NR consumption (cannot be reset!) AV12 Motor's operating hours (is reset 0 … 4294967295 p0650 INV RUN TIME by entering "0") AV13 Code number of Power Module Converter-depend‐...
  • Page 260 Advanced commissioning 8.3 Drive control In‐ Object name Description Unit Range Access Parameter stance type AV5002 Technology controller actual val‐ 0 … 60 p2265 FILTER TIME ue filter time constant AV5003 DIFF TIME Technology controller differentia‐ 0 … 60 p2274 tion time constant AV5004 PROP GAIN Technology controller propor‐...
  • Page 261 Advanced commissioning 8.3 Drive control In‐ Object name Description Unit Range Access Parameter stance type AV5301 RAMP DOWN TIME 2 Technology controller 2 ramp- 0 … 650 p11258 down time AV5302 FILTER TIME 2 Technology controller 2 actual 0 … 60 p11265 value filter time constant AV5303 DIFF TIME 2 Technology controller 2 differen‐...
  • Page 262: Acyclic Communication (General Parameter Access) Via Bacnet

    Advanced commissioning 8.3 Drive control 8.3.5.6 Acyclic communication (general parameter access) via BACnet Acyclic communication or general parameter access is realized via BACnet objects DS47IN and DS47OUT. Acyclic communication uses the octet string value objects OSV0 and OSV1. Instance Object name Description Access type  ...
  • Page 263: Function Diagrams For Uss, Modbus And Bacnet

    Advanced commissioning 8.3 Drive control If the response is still not available, then you receive the following message via the present value window of the OSV1: Table 8-42 Read parameter content via OSV1   Byte Description 2F h Function code 2F h (47) 00 h Response length 0 (error) 0004 h...
  • Page 264: Function Diagram 9310 - Configuration, Addresses And Diagnostics

    Advanced commissioning 8.3 Drive control 8.3.6.2 Function diagram 9310 - Configuration, addresses and diagnostics Figure 8-20 FP 9310 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 265: Function Diagram 9342 - Control Word

    Advanced commissioning 8.3 Drive control 8.3.6.3 Function diagram 9342 - Control word Figure 8-21 FP 9342 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 266: Function Diagram 9352 - Status Word

    Advanced commissioning 8.3 Drive control 8.3.6.4 Function diagram 9352 - Status word Figure 8-22 FP 9352 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 267: Function Diagram 9360 - Receive Telegram

    Advanced commissioning 8.3 Drive control 8.3.6.5 Function diagram 9360 - Receive telegram Figure 8-23 FP 9360 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 268: Function Diagram 9370 - Send Telegram

    Advanced commissioning 8.3 Drive control 8.3.6.6 Function diagram 9370 - Send telegram Figure 8-24 FP 9370 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 269: Function Diagram 9372 - Status Word Free Interconnection

    Advanced commissioning 8.3 Drive control 8.3.6.7 Function diagram 9372 - Status word free interconnection Figure 8-25 FP 9372 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 270: 11Function Diagrams For Internal Control/Status Words

    Advanced commissioning 8.3 Drive control 8.3.7 11Function diagrams for internal control/status words 8.3.7.1 Function diagram 2501 - Control word, sequence control (r0898) SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 271 Advanced commissioning 8.3 Drive control Figure 8-26 FP 2501 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 272: Function Diagram 2503 - Status Word, Sequence Control (R0899)

    Advanced commissioning 8.3 Drive control 8.3.7.2 Function diagram 2503 - Status word, sequence control (r0899) Figure 8-27 FP 2503 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 273: Function Diagram 2505 - Control Word, Setpoint Channel (R1198)

    Advanced commissioning 8.3 Drive control 8.3.7.3 Function diagram 2505 - Control word, setpoint channel (r1198) Figure 8-28 FP 2505 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 274: Function Diagram 2510 - Status Word 1 (R0052)

    Advanced commissioning 8.3 Drive control 8.3.7.4 Function diagram 2510 - Status word 1 (r0052) Figure 8-29 FP 2510 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 275: Function Diagram 2511 - Status Word 2 (R0053)

    Advanced commissioning 8.3 Drive control 8.3.7.5 Function diagram 2511 - Status word 2 (r0053) Figure 8-30 FP 2511 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 276: Function Diagram 2512 - Control Word 1 (R0054)

    Advanced commissioning 8.3 Drive control 8.3.7.6 Function diagram 2512 - Control word 1 (r0054) Figure 8-31 FP 2512 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 277: Function Diagram 2513 - Supplementary Control Word (R0055)

    Advanced commissioning 8.3 Drive control 8.3.7.7 Function diagram 2513 - Supplementary control word (r0055) Figure 8-32 FP 2513 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 278: Function Diagram 2522 - Status Word, Speed Controller (R1407)

    Advanced commissioning 8.3 Drive control 8.3.7.8 Function diagram 2522 - Status word, speed controller (r1407) Figure 8-33 FP 2522 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 279: Function Diagram 2526 - Status Word, Closed-Loop Control (R0056)

    Advanced commissioning 8.3 Drive control 8.3.7.9 Function diagram 2526 - Status word, closed-loop control (r0056) Figure 8-34 FP 2526 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 280: Function Diagram 2530 - Status Word, Current Control (R1408)

    Advanced commissioning 8.3 Drive control 8.3.7.10 Function diagram 2530 - Status word, current control (r1408) Figure 8-35 FP 2530 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 281: Function Diagram 2534 - Status Word, Monitoring Functions 1 (R2197)

    Advanced commissioning 8.3 Drive control 8.3.7.11 Function diagram 2534 - Status word, monitoring functions 1 (r2197) Figure 8-36 FP 2534 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 282: Function Diagram 2536 - Status Word, Monitoring Functions 2 (R2198)

    Advanced commissioning 8.3 Drive control 8.3.7.12 Function diagram 2536 - Status word, monitoring functions 2 (r2198) Figure 8-37 FP 2536 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 283: Function Diagram 2537 - Status Word, Monitoring Functions 3 (R2199)

    Advanced commissioning 8.3 Drive control 8.3.7.13 Function diagram 2537 - Status word, monitoring functions 3 (r2199) Figure 8-38 FP 2537 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 284: Function Diagram 2546 - Control Word, Faults/Alarms (R2138)

    Advanced commissioning 8.3 Drive control 8.3.7.14 Function diagram 2546 - Control word, faults/alarms (r2138) Figure 8-39 FP 2546 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 285: Function Diagram 2548 - Status Word, Faults/Alarms 1 And 2 (R2139 And R2135)

    Advanced commissioning 8.3 Drive control 8.3.7.15 Function diagram 2548 - Status word, faults/alarms 1 and 2 (r2139 and r2135) Figure 8-40 FP 2548 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 286: Changeover Drive Control

    Advanced commissioning 8.3 Drive control 8.3.8 Changeover drive control Overview Several applications require the option of switching over the master control to operate the converter. Figure 8-41 Converter control either via fieldbus or via terminal strip Function description Command data set (CDS) You can set the converter control in various ways and toggle between the settings.
  • Page 287 Advanced commissioning 8.3 Drive control Parameters Parameters Description Factory settings p0010 Drive commissioning parameter filter r0050 CO/BO: Command data set CDS effective p0170 Number of command data sets (CDS) p0809[0 … 2] Copy command data set CDS p0810 BI: Command data set selection CDS bit 0 p0811 BI: Command data set selection CDS bit 1 See also...
  • Page 288: Function Diagram 8560 - Command Data Set

    Advanced commissioning 8.3 Drive control 8.3.9 Function diagram 8560 - Command Data Set Figure 8-42 FP 8560 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 289: Selecting Physical Units

    Advanced commissioning 8.3 Drive control 8.3.10 Selecting physical units 8.3.10.1 Unit system Some physical units depend on the system of units selected (SI or US), for example the power [kW or hp] or the torque [Nm or lbf ft]. You can select in which system of units the converter represents its physical values.
  • Page 290: Groups Of Units

    Advanced commissioning 8.3 Drive control For each parameter you can find the associated reference variable for scaling in the parameter list. Example: r0065 is scaled with reference variable p2000. If scaling is not specified in the parameter list, then the converter always shows/displays the parameter unscaled.
  • Page 291: Technological Unit Of The Technology Controller

    Advanced commissioning 8.3 Drive control Unit group Unit selection for p0505 = Reference value for % 21_2 ° F ° F 39_1 1/s² 1/s² p2007 8.3.10.2 Technological unit of the technology controller Options when selecting the technological unit p0595 defines in which technological unit the input and output variables of the technology controller are calculated, e.g.
  • Page 292: Free Function Blocks

    Advanced commissioning 8.3 Drive control 8.3.11 Free function blocks 8.3.11.1 Overview Overview The free function blocks permit configurable signal processing in the converter. Requirement The free function blocks are only available on converters FSA … FSG. Function description The following free function blocks are available: Table 8-46 Free function blocks Logic blocks...
  • Page 293: Runtime Groups And Run Sequence

    Advanced commissioning 8.3 Drive control 8.3.11.2 Runtime groups and run sequence In order to activate a free function block, you must assign it to a runtime group. There are 3 runtime groups in different time slices. Table 8-47 Permissible runtime groups of the free function blocks Runtime group Time slice 64 ms...
  • Page 294 Advanced commissioning 8.3 Drive control   OR 0 OR 1 OR 2 Runtime group p20048 p20052 p20056 Run sequence p20049 p20053 p20057 Logic block XOR (EXKLUSIVE OR block) The function block logically combines the binary quantities at inputs I according to a logical exclusive or function. Table 8-48 Truth table  ...
  • Page 295 Advanced commissioning 8.3 Drive control   NOT 0 NOT 1 NOT 2 p20078[0] p20082[0] p20086[0] r20079 r20083 r20087 Runtime group p20080 p20084 p20088 Run sequence p20081 p20085 p20089 Calculation block ADD (adder) Y = X0 + X1 + X2 + X3 The function block adds inputs X0 … X3, and limits the result in the range -3.4E38 …...
  • Page 296 Advanced commissioning 8.3 Drive control   MUL 0 MUL 1 X0 … X3 p20110[0 … 3] p20114[0 … 3] r20111 r20115 Runtime group p20112 p20116 Run sequence p20113 p20117 Calculation block DIV (divider) Y = X0 / X1 The function block divides the inputs and limits the result in the range -3.4E38 … 3.4E38. With a division of 0/0, Y remains unchanged.
  • Page 297 Advanced commissioning 8.3 Drive control   NCM 0 NCM 1 X0, X1 p20312[0, 1] p20318[0, 1] r20313 r20319 r20314 r20320 r20315 r20321 Runtime group p20316 p20322 Run sequence p20317 p20323 Timer block MFP - pulse generator The pulse generator generates a pulse with a fixed duration. The rising edge of a pulse at input I sets output Q = 1 for pulse duration T.
  • Page 298 Advanced commissioning 8.3 Drive control Timer block PDF (OFF delay) When I = 1, then the function block sets Q = 1. The falling edge of a pulse at input I sets output Q = 0 after OFF delay time T. When input I returns to 1 before time T has expired, output Q remains 1.
  • Page 299 Advanced commissioning 8.3 Drive control Breaker block NSW (numeric changeover switch) This function block switches one of two numeric input vari‐ ables to the output: When I = 0, then Y = X0. When I = 1, then Y = X1.   NSW 0 NSW 1 X0, X1 p20218[0, 1] p20223[0, 1] p20219[0]...
  • Page 300: Activating Free Function Blocks

    Advanced commissioning 8.3 Drive control Complex block LVM (limit monitor) The function block monitors an input quantity by comparing it with reference quantities.   LVM 0 LVM 1 p20266[0] p20275[0] p20267 p20276 p20268 p20277 p20269 p20278 r20270 r20279 r20271 r20280 r20272 r20281 Runtime group p20273 p20282 Run sequence...
  • Page 301 Advanced commissioning 8.3 Drive control Example p20096 = 5 assigns ADD 0 to runtime group 5. p20097 < p20101 (factory setting): The converter first calculates ADD 0 and then ADD 1. SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 302: Function Diagram 7200 - Sampling Times Of The Runtime Groups

    Advanced commissioning 8.3 Drive control 8.3.11.5 Function diagram 7200 – Sampling times of the runtime groups Figure 8-43 FP 7200 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 303: Function Diagram 7210 - Logic Block And

    Advanced commissioning 8.3 Drive control 8.3.11.6 Function diagram 7210 - Logic block AND Figure 8-44 FP 7210 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 304: Function Diagram 7212 - Logic Block Or

    Advanced commissioning 8.3 Drive control 8.3.11.7 Function diagram 7212 - Logic block OR Figure 8-45 FP 7212 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 305: Function Diagram 7214 - Logic Block Exclusive Or

    Advanced commissioning 8.3 Drive control 8.3.11.8 Function diagram 7214 - Logic block EXCLUSIVE OR Figure 8-46 FP 7214 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 306: Function Diagram 7216 - Logic Block Inverter

    Advanced commissioning 8.3 Drive control 8.3.11.9 Function diagram 7216 - Logic block INVERTER Figure 8-47 FP 7216 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 307: Function Diagram 7220 - Arithmetic Blocks Adder And Subtractor

    Advanced commissioning 8.3 Drive control 8.3.11.10 Function diagram 7220 - Arithmetic blocks ADDER and SUBTRACTOR Figure 8-48 FP 7220 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 308: Function Diagram 7222 - Arithmetic Blocks Multiplier And Divider

    Advanced commissioning 8.3 Drive control 8.3.11.11 Function diagram 7222 - Arithmetic blocks MULTIPLIER and DIVIDER Figure 8-49 FP 7222 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 309: Function Diagram 7225 - Arithmetic Block Comparator

    Advanced commissioning 8.3 Drive control 8.3.11.12 Function diagram 7225 - Arithmetic block COMPARATOR Figure 8-50 FP 7225 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 310: Function Diagram 7230 - Timer Block Pulse Generator

    Advanced commissioning 8.3 Drive control 8.3.11.13 Function diagram 7230 - Timer block PULSE GENERATOR Figure 8-51 FP 7230 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 311: Function Diagram 7232 - Timer Blocks Switch-On Delay

    Advanced commissioning 8.3 Drive control 8.3.11.14 Function diagram 7232 - Timer blocks SWITCH-ON DELAY Figure 8-52 FP 7232 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 312: Function Diagram 7233 - Timer Blocks Switch-Off Delay

    Advanced commissioning 8.3 Drive control 8.3.11.15 Function diagram 7233 - Timer blocks SWITCH-OFF DELAY Figure 8-53 FP 7233 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 313: Function Diagram 7240 - Memory Block Rs Flip-Flop

    Advanced commissioning 8.3 Drive control 8.3.11.16 Function diagram 7240 - Memory block RS flip-flop Figure 8-54 FP 7240 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 314: Function Diagram 7250 - Switch Block Numerical Switchover

    Advanced commissioning 8.3 Drive control 8.3.11.17 Function diagram 7250 - Switch block NUMERICAL SWITCHOVER Figure 8-55 FP 7250 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 315: Function Diagram 7260 - Control Block Limiter

    Advanced commissioning 8.3 Drive control 8.3.11.18 Function diagram 7260 - Control block LIMITER Figure 8-56 FP 7260 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 316: Function Diagram 7270 - Block Limit Monitor

    Advanced commissioning 8.3 Drive control 8.3.11.19 Function diagram 7270 - Block LIMIT MONITOR Figure 8-57 FP 7270 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 317: Controlling Clockwise And Counter-Clockwise Operation Via Digital Inputs

    Advanced commissioning 8.3 Drive control 8.3.12 Controlling clockwise and counter-clockwise operation via digital inputs 8.3.12.1 Overview The converter offers various methods to start and stop the motor and reverse its direction: • Two-wire control, ON/reverse • Two-wire control, clockwise/counter-clockwise rotation 1 •...
  • Page 318: Two-Wire Control, Clockwise/Counter-Clockwise Rotation 1

    Advanced commissioning 8.3 Drive control Example The following parameter setting example is based on the default macro p0015 = 41. Step Parameter Description p29650 = -1 Disable the ON/OFF2 function p29652 = 0 Disable the internal interconnection between ON/OFF2 and DI 0 p1110 = 0 Activate negative direction p3334 = 0...
  • Page 319 Advanced commissioning 8.3 Drive control Assign the following digital inputs to the commands: • DI 0: ON/OFF1 clockwise rotation • DI 1 or other available DI terminals: ON/OFF1 counter-clockwise rotation Table 8-52 Function table ON/OFF1 clockwise rota‐ ON/OFF1 counter-clock‐ Function tion wise rotation The motor stops.
  • Page 320 Advanced commissioning 8.3 Drive control 8.3.12.4 Two-wire control, clockwise/counter-clockwise rotation 2 Function description Commands "ON/OFF1 clockwise rotation" and "ON/OFF1 counter-clockwise rotation" switch on the motor - and simultaneously select a direction of rotation. The converter accepts a new command at any time, independent of the motor speed. Figure 8-60 Two-wire control, clockwise/counter-clockwise rotation Assign the following digital inputs to the commands:...
  • Page 321: Three-Wire Control, Enable/Clockwise/Counter-Clockwise Rotation

    Advanced commissioning 8.3 Drive control Step Parameter Description p1113 = r3333.1 Set the signal source to invert the setpoint p0971 = 1 Save settings Parameters Parameter Description Factory setting r0722.0…12 CO/BO: CU digital inputs, status p0840[C] BI: ON/OFF (OFF1) p1110[C] BI: Inhibit negative direction p1113[C] BI: Setpoint inversion p3330[C]...
  • Page 322 Advanced commissioning 8.3 Drive control Table 8-54 Function table Enable / OFF1 ON clockwise rota‐ ON counter-clock‐ Function tion wise rotation 0 or 1 0 or 1 The motor stops. 0→1 Clockwise motor rotation. 0→1 Counter-clockwise motor rotation. The motor stops. Example The following parameter setting example is based on the default macro p0015 = 41.
  • Page 323: Three-Wire Control, Enable/On/Reverse

    Advanced commissioning 8.3 Drive control 8.3.12.6 Three-wire control, enable/ON/reverse Function description The "Enable" command is a precondition for switching on the motor. The "ON" command switches the motor on. The "Reversing" command inverts the motor direction of rotation. Removing the enable switches the motor off (OFF1). Figure 8-62 Three-wire control, enable/ON/reverse Assign the following digital inputs to the commands:...
  • Page 324 Advanced commissioning 8.3 Drive control Step Parameter Description p1113 = r3333.1 Sets the signal source to invert the setpoint p0971 = 1 Save settings Parameter Parameter Description Factory setting r0722.0…12 CO/BO: CU digital inputs, status p0840[C] BI: ON/OFF (OFF1) p1110[C] BI: Inhibit negative direction p1113[C] BI: Setpoint inversion p3330[C]...
  • Page 325: Function Diagram 2272 - Two-Wire Control

    Advanced commissioning 8.3 Drive control 8.3.12.7 Function diagram 2272 - Two-wire control Figure 8-63 FP 2272 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 326: Function Diagram 2273 - Three-Wire Control

    Advanced commissioning 8.3 Drive control 8.3.12.8 Function diagram 2273 - Three-wire control Figure 8-64 FP 2273 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 327: Pump Control

    Advanced commissioning 8.4 Pump control Pump control 8.4.1 Multi-pump control Overview Multi-pump control is suitable for applications that require simultaneous operation of up to four pumps, for example, equalizing significantly fluctuating water pressures or flow rates. After the function is enabled, you can configure the following four sub-functions based on your particular requirements: •...
  • Page 328 Advanced commissioning 8.4 Pump control Q/Q1 ... Q4 Low-voltage circuit breakers M1 … M4 Motors Pressure sensor. Interconnect the signal of the pressure sensor with the actual-value input of the technology controller. Figure 8-65 Mains circuit Figure 8-66 External relay control circuit SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 329: Further Information

    Advanced commissioning 8.4 Pump control Note When using the multi-pump control for the first time, make sure that the circuit breakers are disconnected until the relevant parameters are configured. Note When the multi-pump control is enabled (p29520=1), the minimum value and default value of p1274 will be set to 40 ms and 50 ms respectively.
  • Page 330: Pump Switch-In/Switch-Out

    Advanced commissioning 8.4 Pump control 8.4.1.1 Pump switch-in/switch-out Pump switch-in If the pump controlled by the converter runs at the maximum speed (p1082) and the technology controller deviation (r2273) exceeds the switch-in threshold (p29523) but is lower than the overcontrol threshold (p29526) for a specified time (p29524), the converter first switches the pump from converter operation to line operation, and then switches on an idle pump.
  • Page 331 Advanced commissioning 8.4 Pump control Figure 8-67 Pump switch-in SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 332 Advanced commissioning 8.4 Pump control Pump switch-out If the pump controlled by the converter runs at a speed lower than the switch-out threshold (p29528 + p1080) and the technology controller deviation is lower than the switch-out threshold (-p29523) for a specified time (p29525), the converter switches off a line-controlled pump based on the selection mode.
  • Page 333 Advanced commissioning 8.4 Pump control Figure 8-68 Pump switch-out Parameters Number Name Factory setting p0730 ... p0733 BI: Signal source for digital outputs DO 0 ... DO 3 p1080[D] Minimum speed Depending on the converter p1082[D] Maximum speed 1500 rpm p1120[D] Ramp-function generator ramp-up time Depending on the converter p1274[0...1]...
  • Page 334: Stop Mode

    Advanced commissioning 8.4 Pump control Number Name Factory setting p29523 Multi-pump control switch-in threshold p29524 Multi-pump control switch-in delay 30 s p29525 Multi-pump control switch-out delay 30 s p29526 Multi-pump control overcontrol threshold p29527 Multi-pump control interlocking time p29528 Multi-pump control switch-out speed offset 100 rpm r29529 BO/CO: Multi-pump control status word...
  • Page 335 Advanced commissioning 8.4 Pump control Note Sequence stop During sequence stop, the motors are switched off in the reverse sequence in which they are switched on. It is therefore important that the motor configuration parameter p29521 is not changed while the converter is running. Otherwise, the parameter value may no longer correspond to the mapping of the motors connected.
  • Page 336: Pump Switchover

    Advanced commissioning 8.4 Pump control Parameters Number Name Factory setting r29529.0...19 CO/BO: Multi-pump control status word p29533 Multi-pump control switch-off sequence p29537 Multi-pump control disconnection lockout time r29538 Multi-pump control variable-speed motor 8.4.1.3 Pump switchover Function description With pump switchover enabled (with p29539), the converter monitors the operation status of all running pumps.
  • Page 337 Advanced commissioning 8.4 Pump control Figure 8-70 Pump switchover Note Possible alarms and faults With pump switchover enabled, if the continuous operating hours (p29547) of the pump exceed the threshold (p29531) while the pump switchover is not possible (r29529.19 = 1), alarm A52962 appears.
  • Page 338: Service Mode

    Advanced commissioning 8.4 Pump control Number Name Factory setting p29534 Multi-pump control switchover lockout time 0.5 h p29539 Multi-pump control switchover enable p29547[0...3] Multi-pump control motors continuous operating hours r29538 Multi-pump control variable-speed motor 8.4.1.4 Service mode Function description When a pump is in the service mode, the converter locks the corresponding relay. Then you can perform troubleshooting of this pump without interrupting the operation of other pumps.
  • Page 339 Advanced commissioning 8.4 Pump control SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 340 Advanced commissioning 8.4 Pump control Figure 8-71 Service mode Figure 8-72 Service mode- no idle motor SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 341: Frost Protection

    Advanced commissioning 8.4 Pump control Parameters Number Name Factory setting p29522 Multi-pump control motor selection mode r29529.0...19 CO/BO: Multi-pump control status word r29538 Multi-pump control variable-speed motor p29540 Multi-pump control service mode enable p29542 BO/CO: Multi-pump control service mode interlock manually p29543[0...3] BI: Multi-pump control motor under repair [0] p29542.0...
  • Page 342: Condensation Protection

    Advanced commissioning 8.4 Pump control Note If you want to run frost protection, make sure that Operator Panels (BOP-2 or IOP-2) or G120 Smart Access does not get control of the motor in the JOG/Hand mode. Parameters Number Name Factory setting p29622[C] BI: Frost protection enable p29623[D]...
  • Page 343 Advanced commissioning 8.4 Pump control Function description • OFF1/OFF3: OFF3 disables the condensation protection function while OFF1 enables this function again. • OFF2/fault: The motor stops and the condensation protection function is deactivated. If the converter is not running and the protection signal becomes active, protection measure is applied as follows: •...
  • Page 344: Cavitation Protection

    Advanced commissioning 8.4 Pump control 8.4.4 Cavitation protection Overview Cavitation occurs when air bubbles are generated around the surface of the impeller, resulting in pump damage, unexpected noise, and decreased flow or pressure of the pipe system. The cavitation protection will generate a fault/warning when cavitation conditions are deemed to be present.
  • Page 345 Advanced commissioning 8.4 Pump control Parameters Number Name Factory setting p29625[D] Cavitation protection enable p29626[D] Cavitation protection threshold p29627[D] Cavitation protection time 30 s SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 346: Deragging

    Advanced commissioning 8.4 Pump control 8.4.5 Deragging Overview Blockage (such as plastic bags) in the wastewater pumps can reduce the efficiency of the system and decrease the pump life time. With the deragging (pump clearing) function enabled, any clogs on the pump impellers, pipes or valves can be cleared automatically by executing the forward and reverse rotations of the pumps .
  • Page 347: Interaction With Other Functions

    Advanced commissioning 8.4 Pump control Note To enable the deragging by a Binector input (p29590 = 3), make sure that the converter is in OFF state. Parameters Number Name Factory setting p29590[D] Deragging mode p29591[C] BI: Deragging enable p29592[D] Deragging forward speed 500 rpm p29593[D] Deragging reverse speed...
  • Page 348: Pipe Filling

    Advanced commissioning 8.4 Pump control 8.4.6 Pipe filling Overview In the water supply systems, the rapid inrush of water into an empty pipe can cause hammer effect and thus damage the pipe or the valve. With the pipe filling function enabled, the converter fills the pipe slowly and smoothly after each power-up or switch on to avoid hammer effect to the pipe.
  • Page 349 Advanced commissioning 8.4 Pump control • Pressure mode: – p29611 = 1 The converter fills the pipe according to the PID feedback from the pressure sensor after each power-up. The filling stops when the actual pressure (r2272) ≥ the threshold (p29614) for a specified time (p29615). –...
  • Page 350: Setpoints And Setpoint Processing

    Advanced commissioning 8.5 Setpoints and setpoint processing Setpoints and setpoint processing 8.5.1 Setpoints Overview The converter receives its main setpoint from the setpoint source. The main setpoint generally specifies the motor speed. Figure 8-73 Setpoint sources for the converter You have the following options when selecting the source of the main setpoint: •...
  • Page 351: Analog Input As Setpoint Source

    Advanced commissioning 8.5 Setpoints and setpoint processing • When controlling from an operator panel • When controlling from SINAMICS G120 Smart Access 8.5.1.1 Analog input as setpoint source Function description Figure 8-74 Example: Analog input 0 as setpoint source In the quick commissioning, you define the preassignment for the converter interfaces. Depending on what has been preassigned, after quick commissioning, the analog input can be interconnected with the main setpoint.
  • Page 352: Specifying The Setpoint Via The Fieldbus

    Advanced commissioning 8.5 Setpoints and setpoint processing 8.5.1.2 Specifying the setpoint via the fieldbus Function description Figure 8-75 Fieldbus as setpoint source In the quick commissioning, you define the preassignment for the converter interfaces. Depending on what has been preassigned, after quick commissioning, the receive word PZD02 can be interconnected with the main setpoint.
  • Page 353: Motorized Potentiometer As Setpoint Source

    Advanced commissioning 8.5 Setpoints and setpoint processing 8.5.1.3 Motorized potentiometer as setpoint source Function description The "Motorized potentiometer" function emulates an electromechanical potentiometer. The output value of the motorized potentiometer can be set with the "higher" and "lower" control signals. Figure 8-76 Motorized potentiometer as setpoint source Figure 8-77 Function chart of the motorized potentiometer...
  • Page 354 Advanced commissioning 8.5 Setpoints and setpoint processing Parameter Table 8-56 Basic setup of motorized potentiometer Number Name Factory setting p1035[C] BI: Motorized potentiometer setpoint higher p1036[C] BI: Motorized potentiometer setpoint lower Dependent on the converter p1040[D] Motorized potentiometer start value 0 rpm p1047[D] Motorized potentiometer, ramp-up time 10 s...
  • Page 355: Fixed Speed Setpoint As Setpoint Source

    Advanced commissioning 8.5 Setpoints and setpoint processing 8.5.1.4 Fixed speed setpoint as setpoint source Function description Figure 8-78 Fixed speed setpoint as setpoint source The converter makes a distinction between two methods when selecting the fixed speed setpoints: • Direct selection (p1016 = 1) •...
  • Page 356 Advanced commissioning 8.5 Setpoints and setpoint processing p1023 p1022 p1021 p1020 Resulting setpoint p1001 + p1002 + p1003 p1004 p1001 + p1004 p1002 + p1004 p1001 + p1002 + p1004 p1003 + p1004 p1001 + p1003 + p1004 p1002 + p1003 + p1004 p1001 + p1002 + p1003 + p1004 Selecting the fixed speed setpoint, binary Figure 8-80...
  • Page 357: Factory Setting

    Advanced commissioning 8.5 Setpoints and setpoint processing Parameter Number Name Factory setting p1001[D] CO: Fixed speed setpoint 1 0 rpm p1002[D] CO: Fixed speed setpoint 2 0 rpm p1003[D] CO: Fixed speed setpoint 3 0 rpm p1004[D] CO: Fixed speed setpoint 4 0 rpm p1005[D] CO: Fixed speed setpoint 5 0 rpm p1006[D]...
  • Page 358: Function Diagram 3001 - Overview Setpoint Channel

    Advanced commissioning 8.5 Setpoints and setpoint processing 8.5.1.5 Function diagram 3001 - Overview setpoint channel Figure 8-81 FP 3001 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 359: Function Diagram 3010 - Fixed Speed Setpoints Binary Selection

    Advanced commissioning 8.5 Setpoints and setpoint processing 8.5.1.6 Function diagram 3010 - Fixed speed setpoints binary selection Figure 8-82 FP 3010 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 360: Function Diagram 3011 - Fixed Speed Setpoints Direct Selection

    Advanced commissioning 8.5 Setpoints and setpoint processing 8.5.1.7 Function diagram 3011 - Fixed speed setpoints direct selection Figure 8-83 FP 3011 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 361: Function Diagram 3020 - Motorized Potentiometer

    Advanced commissioning 8.5 Setpoints and setpoint processing 8.5.1.8 Function diagram 3020 - Motorized potentiometer Figure 8-84 FP 3020 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 362: Function Diagram 3030 - Setpoint Scaling, Jogging

    Advanced commissioning 8.5 Setpoints and setpoint processing 8.5.1.9 Function diagram 3030 - Setpoint scaling, jogging Figure 8-85 FP 3030 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 363: Setpoint Processing

    Advanced commissioning 8.5 Setpoints and setpoint processing 8.5.2 Setpoint processing 8.5.2.1 Overview Overview Setpoint processing influences the setpoint using the following functions: • "Invert" inverts the motor direction of rotation. • The "direction of rotation deactivate" function prevents the motor rotating in the incorrect direction.
  • Page 364: Invert Setpoint

    Advanced commissioning 8.5 Setpoints and setpoint processing 8.5.2.2 Invert setpoint Function description The function inverts the sign of the setpoint using a binary signal. Example To invert the setpoint via an external signal, interconnect parameter p1113 with a binary signal of your choice. Table 8-60 Application examples showing how a setpoint is inverted Parameter...
  • Page 365: Enable Direction Of Rotation

    Advanced commissioning 8.5 Setpoints and setpoint processing 8.5.2.3 Enable direction of rotation Function description In the factory setting of the converter, the negative direction of rotation of the motor is inhibited. Set parameter p1110 = 0 to permanently enable the negative direction of rotation. Set parameter p1111 = 1 to permanently inhibit the positive direction of rotation.
  • Page 366: Skip Frequency Bands And Minimum Speed

    Advanced commissioning 8.5 Setpoints and setpoint processing 8.5.2.4 Skip frequency bands and minimum speed Overview The converter has a minimum speed and four skip frequency bands: • The minimum speed prevents continuous motor operation at speeds less than the minimum speed. •...
  • Page 367 Advanced commissioning 8.5 Setpoints and setpoint processing Number Name Factory setting p1091[D] Skip speed 1 0 rpm p1092[D] Skip speed 2 0 rpm p1093[D] Skip speed 3 0 rpm p1094[D] Skip speed 4 0 rpm p1098[C] CI: Skip speed scaling r1099 CO/BO: Skip frequency band of status word p1101 Skip speed bandwidth 0 rpm...
  • Page 368: Speed Limitation

    Advanced commissioning 8.5 Setpoints and setpoint processing 8.5.2.5 Speed limitation The maximum speed limits the speed setpoint range for both directions of rotation. The converter generates a message (fault or alarm) when the maximum speed is exceeded. If you must limit the speed depending on the direction of rotation, then you can define speed limits for each direction.
  • Page 369: Extended Ramp-Function Generator

    Advanced commissioning 8.5 Setpoints and setpoint processing 8.5.2.6 Ramp-function generator The ramp-function generator in the setpoint channel limits the rate change of the speed setpoint (acceleration). A reduced acceleration reduces the accelerating torque of the motor. As a consequence, the motor reduces the stress on the mechanical system of the driven machine. The extended ramp-function generator not only limits the acceleration, but by rounding the setpoint, also acceleration changes (jerk).
  • Page 370 Advanced commissioning 8.5 Setpoints and setpoint processing Parameter Table 8-64 Additional parameters to set the extended ramp-function generator Number Name Factory setting p1120[D] Ramp-function generator ramp-up time Dependent on the converter p1121[D] Ramp-function generator ramp-down time p1130[D] Ramp-function generator initial rounding time p1131[D] Ramp-function generator final rounding time p1134[D]...
  • Page 371: Dual Ramp Function

    Advanced commissioning 8.5 Setpoints and setpoint processing 5. Evaluate your drive response. – If the motor decelerates too slowly, then reduce the ramp-down time. The minimum ramp-down time that makes sense depends on your particular application. Depending on the Power Module used, for an excessively short ramp-down time, the converter either reaches the motor current, or the DC link voltage in the converter becomes too high.
  • Page 372 Advanced commissioning 8.5 Setpoints and setpoint processing Parameters Parameter Description Factory setting p29570[D] Ramp-up scaling 1 100% p29571[D] Threshold speed 2 30 rmp p29572[D] Ramp-up scaling 2 100% p29573[D] Ramp-down scaling 1 100% p29574[D] Threshold speed 3 30 rmp p29575[D] Ramp-down scaling 2 100% r29576 CO: Ramp-up scaling output...
  • Page 373: Function Diagram 3040 - Direction Limitation And Direction Reversal

    Advanced commissioning 8.5 Setpoints and setpoint processing 8.5.2.8 Function diagram 3040 - Direction limitation and direction reversal Figure 8-87 FP 3040 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 374: Function Diagram 3050 - Skip Frequency Bands

    Advanced commissioning 8.5 Setpoints and setpoint processing 8.5.2.9 Function diagram 3050 - Skip frequency bands Figure 8-88 FD 3050 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 375: Function Diagram 3070 - Extended Ramp-Function Generator

    Advanced commissioning 8.5 Setpoints and setpoint processing 8.5.2.10 Function diagram 3070 - Extended ramp-function generator Figure 8-89 FP 3070 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 376: Function Diagram 3080 - Ramp-Function Generator Status Word

    Advanced commissioning 8.5 Setpoints and setpoint processing 8.5.2.11 Function diagram 3080 - Ramp-function generator status word Figure 8-90 FP 3080 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 377: Technology Controller

    Advanced commissioning 8.6 Technology controller Technology controller 8.6.1 PID technology controller Overview The technology controller controls process variables, e.g. pressure, temperature, level or flow. Figure 8-91 Example: Technology controller as a level controller Requirement The U/f control or the vector control have been set. Function description Function diagram The technology controller is implemented as a PID controller (controller with proportional,...
  • Page 378: Basic Settings

    Advanced commissioning 8.6 Technology controller ① The converter uses the start value when all the following conditions are simultaneously satisfied: • The technology controller supplies the main setpoint (p2251 = 0). • The ramp-function generator output of the technology controller has not yet reached the start value. Figure 8-92 Simplified representation of the technology controller Basic settings...
  • Page 379 Advanced commissioning 8.6 Technology controller Set controller parameters K and T Procedure 1. Temporarily set the ramp-up and ramp-down times of the ramp-function generator (p2257 and p2258) to zero. 2. Enter a setpoint step and monitor the associated actual value. The slower the response of the process to be controlled, the longer you must monitor the controller response.
  • Page 380 Advanced commissioning 8.6 Technology controller Parameter Table 8-65 Basic settings Number Name Factory setting r0046[0…31] CO/BO: Missing enable signals r0052[0…15] CO/BO: Status word 1 r0056[0…15] CO/BO: Status word, closed-loop control r1084 CO: Speed limit positive active r1087 CO: Speed limit negative active - rpm p2200[C] BI: Technology controller enable...
  • Page 381: Factory Setting

    Advanced commissioning 8.6 Technology controller Number Name Factory setting r2294 CO: Technology controller output signal p2295 CO: Technology controller output scaling 100% p2296[C] CI: Technology controller output scaling 2295 p2297[C] CI: Technology controller maximum limiting signal source 1084 p2298[C] CI: Technology controller minimum limiting signal source 1087 p2299[C] CI: Technology controller limitation offset...
  • Page 382 Advanced commissioning 8.6 Technology controller Number Name Factory setting r2225 CO/BO: Technology controller fixed value selection status word r2229 Technology controller number actual Table 8-69 PID technology controller, fixed values (direct selection) Number Name Factory setting p2216[D] Technology controller fixed value selection method p2220[C] BI: Technology controller fixed value selection bit 0 p2221[C]...
  • Page 383: Further Information

    • PID controller: Principle of operation of the D component, inhibiting the I component and the control sense • Enable, limiting the controller output and fault response FAQ (http://support.automation.siemens.com/WW/view/en/92556266) SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 384: Autotuning The Pid Technology Controller

    Advanced commissioning 8.6 Technology controller 8.6.1.1 Autotuning the PID technology controller Overview Autotuning is a converter function for the automatic optimization of the PID technology controller. Requirement The following requirements apply: • The motor closed-loop control is set • The PID technology controller must be set the same as when used in subsequent operation: –...
  • Page 385 Advanced commissioning 8.6 Technology controller Figure 8-94 Example for speed setpoint and actual process value for autotuning The converter calculates the parameters of the PID controller from the determined oscillation frequency. Executing autotuning 1. Select with p2350 the appropriate controller setting. 2. Switch on the motor. The converter signals Alarm A07444.
  • Page 386 Advanced commissioning 8.6 Technology controller Number Name Factory setting p2350 Enable PID autotuning Automatic controller setting based on the "Ziegler Nichols" method. After completion of the autotuning, the converter sets p2350 = 0. 0: No function 1: The process variable follows the setpoint after a sudden setpoint change (step function) relatively quickly, however with an overshoot.
  • Page 387: Function Diagram 7950 - Technology Controller Fixed Setpoints Binary Selection

    Advanced commissioning 8.6 Technology controller 8.6.1.2 Function diagram 7950 - Technology controller fixed setpoints binary selection Figure 8-95 FP 7950 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 388: Function Diagram 7951 - Technology Controller Fixed Setpoints Direct Selection

    Advanced commissioning 8.6 Technology controller 8.6.1.3 Function diagram 7951 - Technology controller fixed setpoints direct selection Figure 8-96 FP 7951 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 389: Function Diagram 7954 - Technology Controller Motorized Potentiometer

    Advanced commissioning 8.6 Technology controller 8.6.1.4 Function diagram 7954 - Technology controller motorized potentiometer Figure 8-97 FP 7954 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 390: Function Diagram 7958 - Technology Controller Closed-Loop Control

    Advanced commissioning 8.6 Technology controller 8.6.1.5 Function diagram 7958 - Technology controller closed-loop control Figure 8-98 FP 7958 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 391: Function Diagram 7959 - Technology Controller Kp/Tn Adaptation

    Advanced commissioning 8.6 Technology controller 8.6.1.6 Function diagram 7959 - Technology controller Kp/Tn adaptation Figure 8-99 FP 7959 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 392: Free Technology Controllers

    Advanced commissioning 8.6 Technology controller 8.6.2 Free technology controllers Overview The converter has three additional technology controllers. The three "free technology controllers" have fewer setting options compared with the PID technology controller described above. PID technology controller (Page 375) Function description n = 0 Free technology controller 0 n = 1 Free technology controller 1 n = 2 Free technology controller 2 Figure 8-100...
  • Page 393: Staging Control

    Advanced commissioning 8.6 Technology controller Number Name Factory setting p11053 CI: Free tec_ctrl 0 setpoint signal source p11057 Free tec_ctrl 0 setpoint ramp-up time 1 s p11058 Free tec_ctrl 0 setpoint ramp-down time 1 s p11063 Free tec_ctrl 0 error signal inversion p11064 CI: Free tec_ctrl 0 actual value signal source p11065 Free tec_ctrl 0 actual value smoothing time constant...
  • Page 394 Advanced commissioning 8.6 Technology controller Speed-controlled motor … M Uncontrolled motors Pressure sensor. Interconnect the signal of the pressure sensor with the actual-value input of the technology controller. Figure 8-101 Example: Cascade control for the pressure in a liquid pipe Depending on the control deviation of the technology controller, the converter cascade control switches a maximum of three additional motors directly to the line supply via contactors.
  • Page 395 Advanced commissioning 8.6 Technology controller Function description Activate uncontrolled motors M  … M Figure 8-102 Activate uncontrolled motors M  … M Procedure for connecting an uncontrolled motor: 1. The speed-controlled motor turns with maximum speed p1082. 2. The control deviation of the technology controller is greater than p2373. 3.
  • Page 396 Advanced commissioning 8.6 Technology controller Deactivate uncontrolled motors M  … M Figure 8-103 Deactivate uncontrolled motors M  … M Procedure for switching off an uncontrolled motor: 1. The speed-controlled motor turns with minimum speed p1080. 2. The control deviation of the technology controller is less than -p2373. 3.
  • Page 397: Further Information

    Advanced commissioning 8.6 Technology controller Parameter Parameter Description Factory setting p2200 Technology controller enable p2251 Technology controller mode p2370 Cascade control enable p2371 Cascade control configuration p2372 Cascade control motor selection mode p2373 Cascade control activation threshold 20 % p2374 Cascade control activation delay 30 s p2375 Cascade control deactivation delay...
  • Page 398: Real Time Clock (Rtc)

    Advanced commissioning 8.6 Technology controller 8.6.4 Real time clock (RTC) The real-time clock is the basis for time-dependent process controls, e.g.: • To reduce the temperature of a heating control during the night • To increase the pressure of a water supply at certain times during the day Accept the real-time clock in the alarm and fault buffer Using the real-time clock, you can track the sequence of alarms and faults over time.
  • Page 399: Factory Setting

    Advanced commissioning 8.6 Technology controller Parameters Number Name Factory setting p8400[0 … 2] RTC time p8401[0 … 2] RTC date 1.1.1970 p8402[0 … 8] RTC daylight saving time setting r8403 RTC daylight saving time actual difference r8404 RTC weekday p8405 Activate/deactivate RTC alarm A01098 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 400: Time Switch (Dtc)

    Advanced commissioning 8.6 Technology controller 8.6.5 Time switch (DTC) The "time switch" (DTC) function, along with the real-time clock in the converter, offers the option of controlling when signals are switched on and off. Examples: • Switching temperature control from day to night mode. •...
  • Page 401: Function Diagram 7030 - Technology Functions, Free Technology Controller

    Advanced commissioning 8.6 Technology controller 8.6.6 Function diagram 7030 - Technology functions, free technology controller Figure 8-105 FP 7030 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 402: Function Diagram 7036 - Technology Functions, Free Technology Controller

    Advanced commissioning 8.6 Technology controller 8.6.7 Function diagram 7036 - Technology functions, free technology controller Figure 8-106 FP 7036 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 403: Motor Control

    Advanced commissioning 8.7 Motor control Motor control Overview The converter has two alternative methods to ensure the motor speed follows the configured speed setpoint: • U/f control • Vector control 8.7.1 Reactor, filter and cable resistance at the converter output Overview Components between the converter and the motor influence the closed-loop control quality of the converter: •...
  • Page 404: Setting The Saturation Characteristic Of The Permanent Magnet Synchronous Motor (Third-Party Motor)

    "Quadrature axis flux over quadrature axis current" of the permanent magnet synchronous motor. The saturation characteristics of Siemens motors are stored in the converter. For non-Siemens motors, you need to set the saturation characteristic using the motor data sheet, for example. Precondition Quick commissioning has been completed.
  • Page 405 Advanced commissioning 8.7 Motor control Procedure 1. Determine the following values using the motor data sheet: – Set the current value of the saturation characteristic iq[0] … iq[4]. – Determine the flux values psiq[0] … psiq[4] associated with the current values. Figure 8-107 Saturation characteristic of the permanent magnet synchronous motor If the saturation characteristic of the third-party motor is not available, leave parameters...
  • Page 406: V/F Control

    Advanced commissioning 8.7 Motor control Result The parameters for emulating the saturation characteristic are defined in the converter in ascending order: • 20 % < p0362 < p0363 < p0364 < p0365 • 20 % < p0366 < p0367 < p0368 < p0369 The converter extrapolates the characteristic curve linearly for currents iq >...
  • Page 407 Advanced commissioning 8.7 Motor control Function description The converter has different U/f characteristics. ① The voltage boost of the characteristic optimizes motor start-up ② With flux current control (FCC), the converter compensates the voltage drop across the stator resist‐ ance of the motor Figure 8-109 U/f characteristics of the converter With increasing speed or output frequency, the converter increases its output voltage U.
  • Page 408 Advanced commissioning 8.7 Motor control General converter technical data (Page 1178) Table 8-73 Linear and parabolic characteristics Requirement Application examples Remark Characteristic Parameter The required tor‐ Eccentric-worm pump, Linear p1300 = 0 que is independ‐ compressor The converter compensates for the voltage Linear with Flux p1300 = 1 ent of the speed drops across the stator resistance.
  • Page 409: Optimizing Motor Starting

    Advanced commissioning 8.7 Motor control 8.7.3.2 Optimizing motor starting Overview After selection of the U/f characteristic, no further settings are required in most applications. In the following circumstances, the motor cannot accelerate to its speed setpoint after it has been switched on: •...
  • Page 410 Advanced commissioning 8.7 Motor control 3. If the motor does not rotate smoothly, or even remains stationary, increase the voltage boost p1310 until the motor runs smoothly. 4. Accelerate the motor to the maximum speed with maximum load. 5. Check that the motor follows the setpoint. 6.
  • Page 411: U/F Control With Standard Drive Control Application Class

    Advanced commissioning 8.7 Motor control 8.7.3.3 U/f control with Standard Drive Control application class Overview Figure 8-111 Default setting of the U/f control after selecting Standard Drive Control Selecting application class Standard Drive Control in the quick commissioning adapts the structure and the setting options of the U/f control as follows: •...
  • Page 412 Advanced commissioning 8.7 Motor control Function description Characteristics after selecting the application class Standard Drive Control ① The closed-loop starting current control optimizes the speed control at low speeds ② The converter compensates the voltage drop across the motor stator resistance Figure 8-112 Characteristics after selecting Standard Drive Control The application class Standard Drive Control reduces the number of characteristics and...
  • Page 413 Advanced commissioning 8.7 Motor control Number Name Factory setting p0310[M] Rated motor frequency 0 Hz p501 Technology application SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 414: Optimizing Motor Starting Using Standard Drive Control

    Advanced commissioning 8.7 Motor control 8.7.3.4 Optimizing motor starting using Standard Drive Control Overview After selecting application class Standard Drive Control, in most applications no additional settings need to be made. At standstill, the converter ensures that at least the rated motor magnetizing current flows. Magnetizing current p0320 approximately corresponds to the no-load current at 50 % …...
  • Page 415 Advanced commissioning 8.7 Motor control Procedure 1. Switch on the motor with a setpoint of a few revolutions per minute. 2. Check whether the motor rotates smoothly. 3. If the motor does not rotate smoothly, or even remains stationary, increase the voltage boost p1310 until the motor runs smoothly.
  • Page 416: Function Diagram 6300 - U/F Control, Overview

    Advanced commissioning 8.7 Motor control 8.7.3.5 Function diagram 6300 - U/f control, overview Figure 8-114 FP 6300 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 417: Function Diagram 6301 - U/F Control, Characteristic And Voltage Boost

    Advanced commissioning 8.7 Motor control 8.7.3.6 Function diagram 6301 - U/f control, characteristic and voltage boost Figure 8-115 FP 6301 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 418: Function Diagram 6310 - U/F Control, Resonance Damping And Slip Compensation

    Advanced commissioning 8.7 Motor control 8.7.3.7 Function diagram 6310 - U/f control, resonance damping and slip compensation Figure 8-116 FP 6310 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 419: Function Diagram 6320 - U/F Control, Vdc_Max And Vdc_Min Controllers

    Advanced commissioning 8.7 Motor control 8.7.3.8 Function diagram 6320 - U/f control, Vdc_max and Vdc_min controllers Figure 8-117 FP 6320 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 420: Function Diagram 6850 - Standard Drive Control, Overview

    Advanced commissioning 8.7 Motor control 8.7.3.9 Function diagram 6850 - Standard Drive Control, overview Figure 8-118 FP 6850 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 421: Function Diagram 6851 - Standard Drive Control, Characteristic And Voltage Boost

    Advanced commissioning 8.7 Motor control 8.7.3.10 Function diagram 6851 - Standard Drive Control, characteristic and voltage boost Figure 8-119 FP 6851 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 422: Function Diagram 6853 - Standard Drive Control, Resonance Damping And Slip Compensation

    Advanced commissioning 8.7 Motor control 8.7.3.11 Function diagram 6853 - Standard Drive Control, resonance damping and slip compensation SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 423 Advanced commissioning 8.7 Motor control Figure 8-120 FP 6853 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 424: Function Diagram 6854 - Standard Drive Control, Vdc_Max And Vdc_Min Controllers

    Advanced commissioning 8.7 Motor control 8.7.3.12 Function diagram 6854 - Standard Drive Control, Vdc_max and Vdc_min controllers Figure 8-121 FP 6854 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 425: Function Diagram 6855 - Standard Drive Control, Dc Quantity Control

    Advanced commissioning 8.7 Motor control 8.7.3.13 Function diagram 6855 - Standard Drive Control, DC quantity control Figure 8-122 FP 6855 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 426: Function Diagram 6856 - Standard Drive Control, Interface To The Power Module

    Advanced commissioning 8.7 Motor control 8.7.3.14 Function diagram 6856 - Standard Drive Control, interface to the Power Module Figure 8-123 FP 6856 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 427: Encoderless Vector Control

    Advanced commissioning 8.7 Motor control 8.7.4 Encoderless vector control 8.7.4.1 Structure of vector control without encoder (sensorless) Overview The vector control comprises closed-loop current control and a higher-level closed-loop speed control. for induction motors Settings that are required Figure 8-124 Simplified function diagram for sensorless vector control with speed controller Using the motor model, the converter calculates the following closed-loop control signals from the measured phase currents and the output voltage: •...
  • Page 428: Optimizing The Speed Controller

    Advanced commissioning 8.7 Motor control and I controllers keep the motor flux constant using the output voltage, and adjust the matching current component I in the motor. Settings that are required Restart quick commissioning and select the vector control in quick commissioning. Commissioning (Page 141) In order to achieve a satisfactory control response, as a minimum you must set the partial functions –...
  • Page 429 Advanced commissioning 8.7 Motor control If the motor exhibits the following response, the speed control is well set and you do not have to adapt the speed controller manually: The speed setpoint (broken line) increases with the set ramp-up time and rounding. The speed actual value follows the setpoint without any over‐...
  • Page 430 Advanced commissioning 8.7 Motor control 6. Optimize the controller by adapting the ratio of the moments of inertia of the load and motor (p0342): Initially, the speed actual value follows the speed setpoint with some delay, and then overshoots the speed setpoint. •...
  • Page 431: Optimizing Operation Of The Permanent Magnet Synchronous Motor

    Advanced commissioning 8.7 Motor control 8.7.4.3 Optimizing operation of the permanent magnet synchronous motor Overview An unfavorable parameter setting can lead to malfunctions or unwanted behavior of the motor during operation of the permanent magnet synchronous motor. Description Problem Possible cause Solution The converter reports the The value of the rated motor volt‐...
  • Page 432: Additional Information

    Motor model changeover speed sensorless operation 210000 rpm p1980[D] PolID technique Additional information You can find more information on the Internet. Commissioning a permanent magnet synchronous motor (https:// support.industry.siemens.com/cs/us/en/view/109780815) SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 433: Function Diagram 6020 - Vector Control, Overview

    Advanced commissioning 8.7 Motor control 8.7.4.4 Function diagram 6020 - Vector control, overview Figure 8-125 FP 6020 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 434: Function Diagram 6030 - Vector Control, Speed Setpoint

    Advanced commissioning 8.7 Motor control 8.7.4.5 Function diagram 6030 - Vector control, speed setpoint Figure 8-126 FP 6030 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 435: Function Diagram 6031 - Vector Control, Acceleration Model

    Advanced commissioning 8.7 Motor control 8.7.4.6 Function diagram 6031 - Vector control, acceleration model Figure 8-127 FP 6031 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 436: Function Diagram 6040 - Vector Control, Speed Controller

    Advanced commissioning 8.7 Motor control 8.7.4.7 Function diagram 6040 - Vector control, speed controller Figure 8-128 FP 6040 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 437: Function Diagram 6050 - Vector Control, Kp And Tn Adaptation

    Advanced commissioning 8.7 Motor control 8.7.4.8 Function diagram 6050 - Vector control, Kp and Tn adaptation Figure 8-129 FP 6050 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 438: Function Diagram 6060 - Vector Control, Torque Setpoint

    Advanced commissioning 8.7 Motor control 8.7.4.9 Function diagram 6060 - Vector control, torque setpoint Figure 8-130 FP 6060 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 439: Function Diagram 6220 - Vector Control, Vdc_Max And Vdc_Min Controllers

    Advanced commissioning 8.7 Motor control 8.7.4.10 Function diagram 6220 - Vector control, Vdc_max and Vdc_min controllers Figure 8-131 FP 6220 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 440: Function Diagram 6490 - Vector Control, Closed-Loop Speed Control Configuration

    Advanced commissioning 8.7 Motor control 8.7.4.11 Function diagram 6490 - Vector control, closed-loop speed control configuration Figure 8-132 FP 6490 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 441: Function Diagram 6491 - Vector Control, Flux Control Configuration

    Advanced commissioning 8.7 Motor control 8.7.4.12 Function diagram 6491 - Vector control, flux control configuration Figure 8-133 FP 6491 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 442: Function Diagram 6630 - Vector Control, Upper And Lower Torque Limits

    Advanced commissioning 8.7 Motor control 8.7.4.13 Function diagram 6630 - Vector control, upper and lower torque limits Figure 8-134 FP 6630 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 443: Function Diagram 6640 - Vector Control, Current/Power/Torque Limits

    Advanced commissioning 8.7 Motor control 8.7.4.14 Function diagram 6640 - Vector control, current/power/torque limits Figure 8-135 FP 6640 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 444: Function Diagram 6700 - Vector Control, Closed-Loop Current Control Overview

    Advanced commissioning 8.7 Motor control 8.7.4.15 Function diagram 6700 - Vector control, closed-loop current control overview Figure 8-136 FP 6700 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 445: Function Diagram 6710 - Vector Control, Current Setpoint Filter

    Advanced commissioning 8.7 Motor control 8.7.4.16 Function diagram 6710 - Vector control, current setpoint filter Figure 8-137 FP 6710 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 446: Function Diagram 6714 - Vector Control, Iq And Id Controllers

    Advanced commissioning 8.7 Motor control 8.7.4.17 Function diagram 6714 - Vector control, Iq and Id controllers Figure 8-138 FP 6714 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 447: Function Diagram 6721 - Vector Control, Id Setpoint

    Advanced commissioning 8.7 Motor control 8.7.4.18 Function diagram 6721 - Vector control, Id setpoint Figure 8-139 FP 6721 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 448: Function Diagram 6722 - Vector Control, Field Weakening Characteristic Flux Setpoint

    Advanced commissioning 8.7 Motor control 8.7.4.19 Function diagram 6722 - Vector control, field weakening characteristic flux setpoint Figure 8-140 FP 6722 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 449: Function Diagram 6723 - Vector Control, Field Weakening Controller Flux Controller

    Advanced commissioning 8.7 Motor control 8.7.4.20 Function diagram 6723 - Vector control, field weakening controller flux controller Figure 8-141 FP 6723 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 450: Function Diagram 6724 - Vector Control, Field Weakening Controller

    Advanced commissioning 8.7 Motor control 8.7.4.21 Function diagram 6724 - Vector control, field weakening controller Figure 8-142 FP 6724 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 451: Function Diagram 6730 - Vector Control, Interface To The Induction Motor

    Advanced commissioning 8.7 Motor control 8.7.4.22 Function diagram 6730 - Vector control, interface to the induction motor Figure 8-143 FP 6730 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 452: Function Diagram 6731 - Vector Control, Interface To The Synchronous Motor

    Advanced commissioning 8.7 Motor control 8.7.4.23 Function diagram 6731 - Vector control, interface to the synchronous motor Figure 8-144 FP 6731 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 453: Function Diagram 6790 - Vector Control, Flux Setpoint Reluctance Motor

    Advanced commissioning 8.7 Motor control 8.7.4.24 Function diagram 6790 - Vector control, flux setpoint reluctance motor Figure 8-145 FP 6790 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 454: Function Diagram 6791 - Vector Control, Id Setpoint Reluctance Motor

    Advanced commissioning 8.7 Motor control 8.7.4.25 Function diagram 6791 - Vector control, Id setpoint reluctance motor Figure 8-146 FP 6791 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 455: Function Diagram 6792 - Vector Control, Interface To The Reluctance Motor

    Advanced commissioning 8.7 Motor control 8.7.4.26 Function diagram 6792 - Vector control, interface to the reluctance motor Figure 8-147 FP 6792 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 456: Function Diagram 6797 - Vector Control, Closed-Loop Dc Quantity Control

    Advanced commissioning 8.7 Motor control 8.7.4.27 Function diagram 6797 - Vector control, closed-loop DC quantity control Figure 8-148 FP 6797 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 457: Function Diagram 6799 - Vector Control, Display Signals

    Advanced commissioning 8.7 Motor control 8.7.4.28 Function diagram 6799 - Vector control, display signals Figure 8-149 FP 6799 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 458: Function Diagram 6820 - Dynamic Drive Control, Overview

    Advanced commissioning 8.7 Motor control 8.7.4.29 Function diagram 6820 - Dynamic Drive Control, overview Figure 8-150 FP 6820 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 459: Function Diagram 6821 - Dynamic Drive Control, Closed-Loop Current Control

    Advanced commissioning 8.7 Motor control 8.7.4.30 Function diagram 6821 - Dynamic Drive Control, closed-loop current control Figure 8-151 FP 6821 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 460: Function Diagram 6822 - Dynamic Drive Control, Acceleration Model

    Advanced commissioning 8.7 Motor control 8.7.4.31 Function diagram 6822 - Dynamic Drive Control, acceleration model Figure 8-152 FP 6822 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 461: Function Diagram 6824 - Dynamic Drive Control, Speed Controller

    Advanced commissioning 8.7 Motor control 8.7.4.32 Function diagram 6824 - Dynamic Drive Control, speed controller Figure 8-153 FP 6824 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 462: Function Diagram 6826 - Dynamic Drive Control, Torque Setpoint

    Advanced commissioning 8.7 Motor control 8.7.4.33 Function diagram 6826 - Dynamic Drive Control, torque setpoint Figure 8-154 FP 6826 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 463: Function Diagram 6827 - Dynamic Drive Control, Vdc_Max And Vdc_Min Controller

    Advanced commissioning 8.7 Motor control 8.7.4.34 Function diagram 6827 - Dynamic Drive Control, Vdc_max and Vdc_min controller Figure 8-155 FP 6827 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 464: Function Diagram 6828 - Dynamic Drive Control, Current/Power/Torque Limits

    Advanced commissioning 8.7 Motor control 8.7.4.35 Function diagram 6828 - Dynamic Drive Control, current/power/torque limits Figure 8-156 FP 6828 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 465: Function Diagram 6832 - Dynamic Drive Control, Current Setpoint Filter

    Advanced commissioning 8.7 Motor control 8.7.4.36 Function diagram 6832 - Dynamic Drive Control, current setpoint filter Figure 8-157 FP 6832 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 466: Function Diagram 6833 - Dynamic Drive Control, Iq And Id Controllers

    Advanced commissioning 8.7 Motor control 8.7.4.37 Function diagram 6833 - Dynamic Drive Control, Iq and Id controllers Figure 8-158 FP 6833 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 467: Function Diagram 6834 - Dynamic Drive Control, Flux Setpoint

    Advanced commissioning 8.7 Motor control 8.7.4.38 Function diagram 6834 - Dynamic Drive Control, flux setpoint Figure 8-159 FP 6834 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 468: Function Diagram 6835 - Dynamic Drive Control, Id Setpoint Reluctance Motor

    Advanced commissioning 8.7 Motor control 8.7.4.39 Function diagram 6835 - Dynamic Drive Control, Id setpoint reluctance motor Figure 8-160 FP 6835 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 469: Function Diagram 6836 - Dynamic Drive Control, Id Setpoint Synchronous Motor

    Advanced commissioning 8.7 Motor control 8.7.4.40 Function diagram 6836 - Dynamic Drive Control, Id setpoint synchronous motor Figure 8-161 FP 6836 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 470: Function Diagram 6837 - Dynamic Drive Control, Field Weakening Characteristic

    Advanced commissioning 8.7 Motor control 8.7.4.41 Function diagram 6837 - Dynamic Drive Control, field weakening characteristic Figure 8-162 FP 6837 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 471: Function Diagram 6838 - Dynamic Drive Control, Field Weakening Controller Induction Motor

    Advanced commissioning 8.7 Motor control 8.7.4.42 Function diagram 6838 - Dynamic Drive Control, field weakening controller induction motor SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 472 Advanced commissioning 8.7 Motor control Figure 8-163 FP 6838 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 473: Function Diagram 6839 - Dynamic Drive Control, Field Weakening Controller Synchronous Motor

    Advanced commissioning 8.7 Motor control 8.7.4.43 Function diagram 6839 - Dynamic Drive Control, field weakening controller synchronous motor SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 474 Advanced commissioning 8.7 Motor control Figure 8-164 FP 6839 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 475: Function Diagram 6841 - Dynamic Drive Control, Interface To The Induction Motor

    Advanced commissioning 8.7 Motor control 8.7.4.44 Function diagram 6841 - Dynamic Drive Control, interface to the induction motor Figure 8-165 FP 6841 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 476: Function Diagram 6842 - Dynamic Drive Control, Interface To The Synchronous Motor

    Advanced commissioning 8.7 Motor control 8.7.4.45 Function diagram 6842 - Dynamic Drive Control, interface to the synchronous motor SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 477 Advanced commissioning 8.7 Motor control Figure 8-166 FP 6842 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 478: Function Diagram 6843 - Dynamic Drive Control, Interface To The Reluctance Motor

    Advanced commissioning 8.7 Motor control 8.7.4.46 Function diagram 6843 - Dynamic Drive Control, interface to the reluctance motor Figure 8-167 FP 6843 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 479: Function Diagram 6844 - Dynamic Drive Control, Dc Quantity Control

    Advanced commissioning 8.7 Motor control 8.7.4.47 Function diagram 6844 - Dynamic Drive Control, DC quantity control Figure 8-168 FP 6844 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 480: Electrically Braking The Motor

    Advanced commissioning 8.7 Motor control 8.7.5 Electrically braking the motor Overview Braking with the motor in generator operation If the motor brakes the connected load electrically, it converts the kinetic energy of the motor into electrical energy. The electrical energy E released on braking the load is proportional to the moment of inertia J of the motor and load and to the square of the speed n.
  • Page 481: Dc Braking

    Advanced commissioning 8.7 Motor control 8.7.5.1 DC braking Requirement DC braking is not possible with a permanent magnet synchronous motor. Function description NOTICE Motor overheating as a result of DC braking The motor will overheat if you use DC braking too frequently or use it for too long. This may damage the motor.
  • Page 482 Advanced commissioning 8.7 Motor control DC braking when a fault occurs Precondition: Fault number and fault response are assigned via p2100 and p2101. Function: 1. A fault occurs, which initiates DC braking as response. 2. The motor brakes along the down ramp to the speed for the start of DC braking.
  • Page 483 Advanced commissioning 8.7 Motor control Parameters Settings for DC braking Number Name Factory setting p0347[M] Motor de-excitation time 0 s p1230[C] BI: DC braking activation p1231[M] Configuring DC braking p1232[M] DC braking, braking current 0 Arms p1233[M] DC braking duration p1234[M] Speed at the start of DC braking 210000 rpm r1239.8…13 CO/BO: DC braking status word...
  • Page 484: Compound Braking

    Advanced commissioning 8.7 Motor control 8.7.5.2 Compound braking Requirement Compound braking is not possible with a permanent magnet synchronous motor. Function description Figure 8-169 Motor brakes with and without active compound braking Compound braking prevents the DC-link voltage increasing above a critical value. The converter activates compound braking depending on the DC-link voltage.
  • Page 485 Advanced commissioning 8.7 Motor control Parameters Table 8-78 Setting and enabling compound braking Number Name Factory setting r1282 Vdc_max controller, switch-on level (U/f) p3856[D] Compound braking current (%) r3859.0 CO/BO: Compound braking/DC quantity control status word SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 486: Function Diagram 7017 - Technology Functions, Dc Braking

    Advanced commissioning 8.7 Motor control 8.7.5.3 Function diagram 7017 - Technology functions, DC braking Figure 8-170 FP 7017 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 487: Pulse Frequency Wobbling

    Advanced commissioning 8.7 Motor control 8.7.6 Pulse frequency wobbling Note This function is only available for the converters of frame sizes FSH and FSJ. Overview Pulse frequency wobbling damps the spectral components, which can generate unwanted noise in the motor. Wobbling is activated by default for the converters of frame sizes FSH and FSJ. Wobbling causes the pulse frequency in a modulation interval to deviate from the setpoint frequency.
  • Page 488 • p1980 = 10: Comparatively slow method. This method is only possible if the motor can rotate freely during pole position identification. If you are using a Siemens motor, then the converter automatically selects the appropriate technique to determine the pole position.
  • Page 489: Drive Protection

    Advanced commissioning 8.8 Drive protection Drive protection 8.8.1 Overcurrent protection Overview The U/f control prevents too high a motor current by influencing the output frequency and the motor voltage (I-max controller). Requirement You have selected U/f control. The application must allow the motor torque to decrease at a lower speed. Function description The I-max controller influences the output frequency and the motor voltage.
  • Page 490: Converter Protection Using Temperature Monitoring

    Advanced commissioning 8.8 Drive protection 8.8.2 Converter protection using temperature monitoring Overview The converter temperature is essentially defined by the following effects: • The ambient temperature • The ohmic losses increasing with the output current • Switching losses increasing with the pulse frequency Monitoring types The converter monitors its temperature using the following monitoring types: •...
  • Page 491 Advanced commissioning 8.8 Drive protection The converter responds in 2 stages: 1. If you operate the converter with increased pulse frequency setpoint p1800, then the converter reduces its pulse frequency starting at p1800. In spite of the temporarily reduced pulse frequency, the base-load output current remains unchanged at the value that is assigned to parameter p1800.
  • Page 492 Advanced commissioning 8.8 Drive protection Overload response for p0290 = 12 The converter responds in 2 stages: 1. If you operate the converter with increased pulse frequency setpoint p1800, then the converter reduces its pulse frequency starting at p1800. There is no current derating as a result of the higher pulse frequency setpoint. Once the overload condition has been removed, the converter increases the pulse frequency back to the pulse frequency setpoint p1800.
  • Page 493: Motor Protection With Temperature Sensor

    Advanced commissioning 8.8 Drive protection 8.8.3 Motor protection with temperature sensor Overview The converter can evaluate one of the following sensors to protect the motor against overtemperature: • KTY84 • Temperature switch (e.g. bimetallic switch) • PTC • Pt1000 • Pt100 Evaluated via a converter analog input Function description KTY84 sensor...
  • Page 494 Advanced commissioning 8.8 Drive protection Bimetallic switch The converter interprets a resistance ≥ 100 Ω as an opened bimetallic switch and responds according to the setting for p0610. PTC sensor The converter interprets a resistance > 1650 Ω as being an overtemperature and responds according to the setting for p0610. The converter interprets a resistance < 20 Ω...
  • Page 495 Advanced commissioning 8.8 Drive protection Settings: • Analog output AO and analog input AI: p0776[x] = 0: AO x is current output 0 mA … 20 mA, corresponding to the factory setting 0% … 100% p0756[x] = 0: AI x is voltage input 0 V … 10 V, corresponding to the factory setting 0% … 100%.
  • Page 496: Motor Protection By Calculating The Temperature

    Advanced commissioning 8.8 Drive protection 8.8.4 Motor protection by calculating the temperature Overview The converter calculates the motor temperature based on a thermal motor model. After commissioning, the converter sets the thermal motor type to match the motor. The thermal motor model responds far faster to temperature increases than a temperature sensor.
  • Page 497: How Do I Achieve A Motor Overload Protection In Accordance With Iec/Ul 61800-5-1

    Advanced commissioning 8.8 Drive protection Thermal motor model 1 for synchronous reluctance motors Thermal motor model 1 calculates the temperature of the stator winding from the motor current and the thermal time constant of the motor model. Figure 8-175 Thermal motor model 1 for reluctance motors Parameters Table 8-82 Thermal motor model 1 for reluctance motors...
  • Page 498 Thermal overload of third-party motors due to a trip threshold that is too high With a Siemens motor, the converter sets the trip threshold of the thermal motor model to match the motor. With a third-party motor, the converter cannot ensure in every case that the trip threshold is exactly right for the motor.
  • Page 499: Motor And Converter Protection By Limiting The Voltage

    Advanced commissioning 8.8 Drive protection 8.8.6 Motor and converter protection by limiting the voltage Overview An electric motor converts electrical energy into mechanical energy to drive the load. If the motor is driven by its load, e.g. by the inertia of the load during braking, the energy flow reverses: The motor operates temporarily as a generator, and converts mechanical energy into electrical energy.
  • Page 500: Factory Setting

    Advanced commissioning 8.8 Drive protection Parameter The parameters differ depending on the motor control mode. Table 8-83 Parameters for U/f control Number Name Factory setting p0210 Device supply voltage 400 V p1280[D] Vdc controller configuration (U/f) r1282 Vdc_max controller switch-on level (U/f) p1283[D] Vdc_max controller, dynamic factor (U/f) 100%...
  • Page 501: Function Diagram 6220 - Vector Control, Vdc_Max And Vdc_Min Controllers

    Advanced commissioning 8.8 Drive protection 8.8.7 Function diagram 6220 - Vector control, Vdc_max and Vdc_min controllers Figure 8-177 FP 6220 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 502: Function Diagram 6320 - U/F Control, Vdc_Max And Vdc_Min Controllers

    Advanced commissioning 8.8 Drive protection 8.8.8 Function diagram 6320 - U/f control, Vdc_max and Vdc_min controllers Figure 8-178 FP 6320 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 503: Function Diagram 6854 - Standard Drive Control, Vdc_Max And Vdc_Min Controllers

    Advanced commissioning 8.8 Drive protection 8.8.9 Function diagram 6854 - Standard Drive Control, Vdc_max and Vdc_min controllers SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 504 Advanced commissioning 8.8 Drive protection Figure 8-179 FP 6854 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 505: Function Diagram 8017 - Motor Temperature Model 1

    Advanced commissioning 8.8 Drive protection 8.8.10 Function diagram 8017 - motor temperature model 1 Figure 8-180 FP 8017 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 506: Function Diagram 8018 - Motor Temperature Model 2

    Advanced commissioning 8.8 Drive protection 8.8.11 Function diagram 8018 - motor temperature model 2 Figure 8-181 FP 8018 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 507: Monitoring The Driven Load

    Advanced commissioning 8.9 Monitoring the driven load Monitoring the driven load In many applications, the speed and the torque of the motor can be used to determine whether the driven load is in an impermissible operating state. The use of an appropriate monitoring function in the converter prevents failures and damage to the machine or plant.
  • Page 508: Stall Protection

    Advanced commissioning 8.9 Monitoring the driven load 8.9.1 Stall protection Function description If the load of a standard induction motor exceeds the stall torque of the motor, the motor can also stall during operation on the converter. A stalled motor is stationary and does not develop sufficient torque to accelerate the load.
  • Page 509: Blocking Protection

    Advanced commissioning 8.9 Monitoring the driven load 8.9.3 Blocking protection Function description If the mechanical load is too high, the motor may block. For a blocked motor, the motor current corresponds to the set current limit without the speed reaching the specified setpoint. If the speed lies below the speed threshold p2175 for the time p2177 while the motor current reaches the current limit, the converter signals "Motor blocked"...
  • Page 510: Torque Monitoring

    Advanced commissioning 8.9 Monitoring the driven load 8.9.4 Torque monitoring Function description In applications with fans, pumps or compressors with the flow characteristic, the torque follows the speed according to a specific characteristic. An insufficient torque for fans indicates that the power transmission from the motor to the load is interrupted. For pumps, insufficient torque can indicate a leakage or dry-running.
  • Page 511 Advanced commissioning 8.9 Monitoring the driven load Number Name Factory setting p2185[D] Load monitoring, torque threshold 1, upper 10000000 Nm p2186[D] Load monitoring torque threshold 1, lower 0 Nm p2187[D] Load monitoring torque threshold 2, upper 10000000 Nm p2188[D] Load monitoring torque threshold 2, lower 0 Nm p2189[D] Load monitoring torque threshold 3, upper...
  • Page 512: Blocking Protection, Leakage Protection And Dry-Running Protection

    Advanced commissioning 8.9 Monitoring the driven load 8.9.5 Blocking protection, leakage protection and dry-running protection Overview In applications with fans, pumps or compressors with the flow characteristic, the torque follows the speed according to a specific characteristic. An insufficient torque for fans indicates that the power transmission from the motor to the load is interrupted.
  • Page 513 Advanced commissioning 8.9 Monitoring the driven load Setting pump monitoring 1. Set p2193 = 4. 2. The converter sets the monitoring as shown. Figure 8-182 Default settings for pumps 3. The converter sets monitoring response p2181 = 7 4. If necessary, adjust the speed thresholds p2182 … p2184. 5.
  • Page 514: Further Information

    Advanced commissioning 8.9 Monitoring the driven load 4. If necessary, adjust the speed thresholds p2182 … p2184. 5. Set the torque threshold for each speed. The converter displays the current torque in r0031. You have now set monitoring. ❒ Parameter Number Name Factory setting r0031...
  • Page 515: Rotation Monitoring

    Advanced commissioning 8.9 Monitoring the driven load 8.9.6 Rotation monitoring Function description The converter monitors the speed or velocity of a machine component via an electromechanic or electronic encoder, e.g. a proximity switch. Examples of how the function can be used: •...
  • Page 516: Function Diagram 8005 - Monitoring, Overview

    Advanced commissioning 8.9 Monitoring the driven load 8.9.7 Function diagram 8005 - Monitoring, overview Figure 8-185 FP 8005 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 517: Function Diagram 8010 - Monitoring, Speed Signals 1/2

    Advanced commissioning 8.9 Monitoring the driven load 8.9.8 Function diagram 8010 - Monitoring, speed signals 1/2 Figure 8-186 FP 8010 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 518: Function Diagram 8011 - Monitoring, Speed Signals 2/2

    Advanced commissioning 8.9 Monitoring the driven load 8.9.9 Function diagram 8011 - Monitoring, speed signals 2/2 Figure 8-187 FP 8011 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 519: Function Diagram 8012 - Monitoring, Motor Blocked

    Advanced commissioning 8.9 Monitoring the driven load 8.9.10 Function diagram 8012 - Monitoring, motor blocked Figure 8-188 FP 8012 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 520: Function Diagram 8013 - Monitoring, Load Monitoring 1/2

    Advanced commissioning 8.9 Monitoring the driven load 8.9.11 Function diagram 8013 - Monitoring, load monitoring 1/2 Figure 8-189 FP 8013 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 521: Function Diagram 8014 - Monitoring, Load Monitoring 2/2

    Advanced commissioning 8.9 Monitoring the driven load 8.9.12 Function diagram 8014 - Monitoring, load monitoring 2/2 Figure 8-190 FP 8014 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 522: Function Diagram 8016 - Thermal Monitoring Motor

    Advanced commissioning 8.9 Monitoring the driven load 8.9.13 Function diagram 8016 - Thermal monitoring motor Figure 8-191 FP 8016 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 523: Function Diagram 8021 - Thermal Monitoring, Power Module

    Advanced commissioning 8.9 Monitoring the driven load 8.9.14 Function diagram 8021 - Thermal monitoring, power module Figure 8-192 FP 8021 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 524: Function Diagram 8022 - Monitoring Functions

    Advanced commissioning 8.9 Monitoring the driven load 8.9.15 Function diagram 8022 - Monitoring functions Figure 8-193 FP 8022 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 525: Drive Availability

    Advanced commissioning 8.10 Drive availability 8.10 Drive availability 8.10.1 Flying restart – switching on while the motor is running Overview If you switch on the motor while it is still rotating, without the "Flying restart" function, there is a high probability that a fault will occur as a result of overcurrent (F30001 or F07801).
  • Page 526 Advanced commissioning 8.10 Drive availability Parameters Number Name Factory setting p1200[D] Flying restart operating mode r0331[M] Actual motor magnetizing current / short-circuit current - Arms p0346[M] Motor excitation build-up time 0 s p0347[M] Motor de-excitation time 0 s p1201[C] BI: Flying restart enable signal source p1202[D] Flying restart detection current 90% …...
  • Page 527: Automatic Restart

    Advanced commissioning 8.10 Drive availability 8.10.2 Automatic restart Overview The automatic restart includes two different functions: • The converter automatically acknowledges faults. • After a fault occurs or after a power failure, the converter automatically switches-on the motor again. The converter interprets the following events as power failure: •...
  • Page 528 Advanced commissioning 8.10 Drive availability The principle of operation of the other parameters is explained in the following diagram and in the table below. The converter automatically acknowledges faults under the following conditions: • p1210 = 1 or 26: Always. • p1210 = 4 or 6: If the command to switch-on the motor is available at a digital input or via the fieldbus (ON/OFF1 = 1).
  • Page 529 Advanced commissioning 8.10 Drive availability Suppressing the automatic restart only functions for the setting p1210 = 6, 16 or 26. Note Motor starts in spite of an OFF command via the fieldbus The converter responds with a fault if fieldbus communication is interrupted. For one of the settings p1210 = 6, 16 or 26, the converter automatically acknowledges the fault and the motor restarts, even if the higher-level control attempts to send an OFF command to the converter.
  • Page 530: Kinetic Buffering (Vdc Min Control)

    Advanced commissioning 8.10 Drive availability 8.10.3 Kinetic buffering (Vdc min control) Overview Kinetic buffering increases the drive availability. The kinetic buffering utilizes the kinetic energy of the load to buffer line dips and failures. During a line dip, the converter keeps the motor in the switched-on state for as long as possible.
  • Page 531: Essential Service Mode

    Advanced commissioning 8.10 Drive availability Number Name Factory setting p1240[D] Vdc controller configuration (vector control) p1245[D] Vdc_min controller, switch-on level (kinetic buffering) See parameter list r1246 Vdc_min controller, switch-on level (kinetic buffering) p1247[D] Vdc_min controller, dynamic factor (kinetic buffering) 300% p1255[D] Vdc_min controller, time threshold 0 s p1257[D]...
  • Page 532 Advanced commissioning 8.10 Drive availability The converter blocks all functions that switch off the motor to save energy, e.g. the hibernation mode. Reaction to faults during active essential service mode In "essential service mode", the converter does not switch off the motor when faults develop, but rather reacts differently depending on the fault type: •...
  • Page 533 The essential service mode prevents the propagation of flue gas in the stairwell, thereby keeping the stairs free as an evacuation route as long as possible. An application example for the essential service mode can be found on the Internet: http://support.automation.siemens.com/WW/view/en/63969509 (http:// support.automation.siemens.com/WW/view/en/63969509)
  • Page 534 Advanced commissioning 8.10 Drive availability Parameter Description Factory setting p1267 Bypass changeover source configuration 0000 bin p3880 BI: ESM activation signal source p3881 ESM setpoint source p3882 ESM alternative setpoint source p3883 BI: ESM direction of rotation signal source p3884 CI: ESM technology controller setpoint r3889.0…10 CO/BO: ESM status word SINAMICS G120XA USS converter...
  • Page 535: Function Diagram 7033 - Technology Functions, Essential Service Mode

    Advanced commissioning 8.10 Drive availability 8.10.5 Function diagram 7033 - Technology functions, essential service mode Figure 8-198 FP 7033 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 536: Energy Saving

    Advanced commissioning 8.11 Energy saving 8.11 Energy saving 8.11.1 Efficiency optimization Overview The efficiency optimization reduces the motor losses as far as possible. Active efficiency optimization has the following advantages: • Lower energy costs • Lower motor temperature rise • Lower motor noise levels Active efficiency optimization has the following disadvantage: •...
  • Page 537 Advanced commissioning 8.11 Energy saving However, in all applications, speed and torque are specified by the driven machine. As a consequence, the remaining variable for the efficiency optimization is the flux. The converter has two different methods of optimizing the efficiency. Efficiency optimization, method 2 Generally, energy efficiency optimization method 2 achieves a better efficiency than method 1.
  • Page 538 Advanced commissioning 8.11 Energy saving Efficiency optimization, method 1 Figure 8-202 Reduce the flux setpoint in the partial load range of the motor The motor operates in partial load mode between no-load operation and the rated motor torque. Depending on p1580, in the partial load range, the converter reduces the flux setpoint linearly with the torque.
  • Page 539: Eco Mode

    Advanced commissioning 8.11 Energy saving 8.11.2 ECO mode Overview ECO mode works by slightly changing the output voltage either up or down in order to find the minimum input power. It is suitable for applications with a low dynamic response and constant speed setpoint, and allows energy savings of up to 40% in the ideal case.
  • Page 540: Further Information

    Advanced commissioning 8.11 Energy saving Parameters Number Name Factory setting p0096 Application class Dependend on the power rating p1148[D] Ramp-function gen. tolerance for ramp-up and ramp-down 19.8 rpm active p1300[D] Open-loop/closed-loop control operating mode Dependend on the power rating p1335[D] Slip compensation scaling Further information about the parameter: Parameters (Page 563) Further information...
  • Page 541: Bypass

    Advanced commissioning 8.11 Energy saving 8.11.3 Bypass Overview The "Bypass" function switches the motor between converter and line operation. Figure 8-204 Bypass control via converter Requirements • The "Bypass" function is supported only for induction motors. • The K1 converter contactor and K2 line contactor are designed for switching under load. •...
  • Page 542 Advanced commissioning 8.11 Energy saving Function description Switching from converter operation to line operation 1. The converter switches the motor OFF. 2. The converter opens the K1 converter contactor via a digital output. 3. The converter waits for the unlocking time of the motor. 4.
  • Page 543 Advanced commissioning 8.11 Energy saving How is the changeover triggered? The following options are provided to switch between converter operation and line operation: • Changeover for activation via a control command Figure 8-205 Changeover when activating via a control signal (p1267.0 = 1) The converter switches the motor between converter operation and line operation depending on the bypass control command p1266.
  • Page 544 Advanced commissioning 8.11 Energy saving If the speed setpoint r1119 lies above the bypass speed threshold p1265, the converter switches the motor to line operation. If the speed setpoint falls below the bypass speed threshold, the converter switches the motor to converter operation. Parameter Number Name...
  • Page 545: Hibernation Mode

    Advanced commissioning 8.11 Energy saving 8.11.4 Hibernation mode Overview When the hibernation mode is active, the converter switches off the motor once the system conditions allow it. The hibernation mode saves energy, reduces wear and noise. Pressure and temperature controls involving pumps and fans are typical applications for the hibernation mode.
  • Page 546 Advanced commissioning 8.11 Energy saving Deactivating hibernation mode The converter deactivates the hibernation mode in the following cases: • With external setpoint value specification: The converter deactivates the hibernation mode once the positive setpoint value is greater than the restart speed. To monitor the setpoint, set p1110 = 0.
  • Page 547: Factory Setting

    Advanced commissioning 8.11 Energy saving Number Name Factory setting r2399 CO/BO: Hibernation mode status word 00 Hibernation mode enabled (p2398 <> 0) 01 Hibernation mode active 02 Hibernation mode delay time active 03 Hibernation mode boost active 04 Hibernation mode motor switched off 05 Hibernation mode motor switched off, cyclic restart active 06 Energy-saving mode motor restarts 07 Hibernation mode supplies total setpoint of ramp-function...
  • Page 548 Advanced commissioning 8.11 Energy saving Number Name Factory setting r2399 CO/BO: Hibernation mode status word 00 Hibernation mode enabled (p2398 <> 0) 01 Hibernation mode active 02 Hibernation mode delay time active 03 Hibernation mode boost active 04 Hibernation mode motor switched off 05 Hibernation mode motor switched off, cyclic restart active 06 Energy-saving mode motor restarts 07 Hibernation mode supplies total setpoint of ramp-function...
  • Page 549: Calculating The Energy Saving For Fluid Flow Machines

    Advanced commissioning 8.11 Energy saving 8.11.5 Calculating the energy saving for fluid flow machines Overview Fluid flow machines, which mechanically control the flow rate using valves or throttle flaps, operate with a constant speed corresponding to the line frequency. Figure 8-207 Flow control with pump and throttle connected to a 50 Hz line supply The lower the flow rate, the poorer the efficiency of the fluid flow machine (pump).
  • Page 550: Flow Characteristic

    Advanced commissioning 8.11 Energy saving Flow characteristic Figure 8-209 Factory setting of the flow characteristic To set the characteristic, you require the following data from the machine manufacturer for each speed interpolation point: • The flow rate of the fluid-flow machine associated with the 5 selected converter speeds •...
  • Page 551: Flow Meter

    Advanced commissioning 8.11 Energy saving 8.11.6 Flow meter Overview With the flow meter function configured with parameters p29631 and p29632, the converter estimates the real-time flow of the pumps and fans based on the defined characteristic, so as to realize effective flow control and reduces the system power loss. Function description The converter calculates the real-time flow according to the flow characteristic derived from the values entered in p29631[0...4] and p29632[0...4].
  • Page 552 Advanced commissioning 8.11 Energy saving Parameters Number Name Factory setting p29631[0...4] Flow meter pump power 0.00 kW p29632[0...4] Flow meter pump flow 0.00 m r29633 Flow meter calculated flow For more information about the parameters, see Chapter "Parameter list (Page 566)". SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 553: Function Diagram 7035 - Technology Functions, Bypass

    Advanced commissioning 8.11 Energy saving 8.11.7 Function diagram 7035 - Technology functions, bypass Figure 8-210 FP 7035 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 554: Function Diagram 7038 - Technology Functions, Hibernation Mode

    Advanced commissioning 8.11 Energy saving 8.11.8 Function diagram 7038 - Technology functions, hibernation mode Figure 8-211 FP 7038 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 555: Switchover Between Different Settings

    Advanced commissioning 8.12 Switchover between different settings 8.12 Switchover between different settings Overview There are applications that require different converter settings. Example: Different motors are operated on one converter. The converter must operate with the motor data of the particular motor and the appropriate ramp-function generator. Function description Drive Data Sets (DDS) Some converter functions can be set differently, and there can be a switch between the...
  • Page 556 Advanced commissioning 8.12 Switchover between different settings Selecting the number of drive data sets Parameter p0180 defines the number of drive data sets (1 ... 4). Parameter Description p0010 = 0 Drive commissioning: Ready p0010 = 15 Drive commissioning: Data sets p0180 Drive data set (DDS) number Copying the drive data sets Parameter Description...
  • Page 557: Function Diagram 8565 - Drive Data Set

    Advanced commissioning 8.13 Function diagram 8565 - Drive Data Set 8.13 Function diagram 8565 - Drive Data Set Figure 8-212 FP 8565 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 558: Explanation On The Function Diagrams

    Advanced commissioning 8.14 Explanation on the function diagrams 8.14 Explanation on the function diagrams 8.14.1 Symbols in the function diagrams Function description The symbols used in the function diagrams are explained below. Figure 8-213 Parameter SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 559 Advanced commissioning 8.14 Explanation on the function diagrams Figure 8-214 Binary and analog blocks SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 560: Interconnecting Signals In The Converter

    Advanced commissioning 8.14 Explanation on the function diagrams Figure 8-215 Analog blocks 8.14.2 Interconnecting signals in the converter The following functions are implemented in the converter: • Open-loop and closed-loop control functions • Communication functions • Diagnosis and operating functions Every function comprises one or several blocks that are interconnected with one another. Figure 8-216 Example of a block: Motorized potentiometer (MOP) Most of the blocks can be adapted to specific applications using parameters.
  • Page 561 Advanced commissioning 8.14 Explanation on the function diagrams You cannot change the signal interconnection within the block. However, the interconnection between blocks can be changed by interconnecting the inputs of a block with the appropriate outputs of another block. The signal interconnection of the blocks is realized, contrary to electric circuitry, not using cables, but in the software.
  • Page 562 Advanced commissioning 8.14 Explanation on the function diagrams Principle when connecting BICO blocks using BICO technology When interconnecting the signal, the following principle applies: Where does the signal come from? An interconnection between two BICO blocks consists of a connector or a binector and a BICO parameter.
  • Page 563: Function Diagram 1021 - Explanation Of The Symbols

    Advanced commissioning 8.14 Explanation on the function diagrams 8.14.3 Function diagram 1021 - Explanation of the symbols Figure 8-219 FP 1021 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 564 Advanced commissioning 8.14 Explanation on the function diagrams SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 565: Parameters

    Parameters Explanation of the detailed parameter list Overview Figure 9-1 Parameter description Function description Parameter number The parameter number is made up of a "p" or "r", followed by a number and optionally the index or bit array. • p1234 Adjustable parameters (read and write) •...
  • Page 566 Parameters 9.1 Explanation of the detailed parameter list Parameter name The following abbreviations can appear in front of the names: Binector input Binector output Connector input Connector output CO/BO Connector/binector output Interconnecting signals in the converter (Page 558) Can be changed "-" The parameter can be changed in any state, and the change becomes immedi‐...
  • Page 567 Parameters 9.1 Explanation of the detailed parameter list Additional information This parameter list is based on the following firmware: • Firmware version: V1.04 • Firmware version of the basic system V04715215_1040006 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 568: Parameter List

    Parameters 9.2 Parameter list Parameter list Version: 4715224 All objects: G120XA_USS r0002 Drive operating display / Drv op_display   Access level: 2 Calculated: - Data type: Integer16 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max:...
  • Page 569 SDC as default(p96=1), or set as 1 if DDC as default(p96=2), depending on the power unit that is connected. p0010 = 3 is used for the subsequent commissioning of additional drive data sets (creating data sets: see p0010 = 15). p0010 = 29, 39, 49: Only for internal Siemens use! p0015 Macro drive unit / Macro drv unit  ...
  • Page 570 Parameters 9.2 Parameter list Description: Runs the corresponding macro files(41/42/43/44/45/46/47/48/49/51/52/54/55). 41: Analog control 42: PID with analog control 43: 2-pump with analog control 44: 3-pump with analog control 45: Fixed setpiont control 46: AI control local / remote 47: PID control with internal fixed setpiont 48: 2-pump and internal fixed setpiont 49: 3-pump and internal fixed setpiont 51: MODBUS control...
  • Page 571 Parameters 9.2 Parameter list r0021 CO: Actual speed smoothed / Actual speed   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: p2000 Dyn. index: - Unit group: 3_1 Unit selection: p0505 Function diagram: 6799 Min: Max: Factory setting: - [rpm] - [rpm]...
  • Page 572 Parameters 9.2 Parameter list r0025 CO: Output voltage smoothed / Output voltage   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: p2001 Dyn. index: - Unit group: - Unit selection: - Function diagram: 5730, 6300, 6799 Min: Max: Factory setting:...
  • Page 573 Parameters 9.2 Parameter list r0028 Modulation depth smoothed / Mod_depth smth   Access level: 4 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: p2002 Dyn. index: - Unit group: - Unit selection: - Function diagram: 5730, 6799, 8950 Min: Max: Factory setting: - [%]...
  • Page 574 Parameters 9.2 Parameter list Note Smoothing time constant = 100 ms The signal is not suitable as a process quantity and may only be used as a display quantity. The torque actual value is available smoothed (r0031) and unsmoothed (r0080). r0032 CO: Active power actual value smoothed / Power  ...
  • Page 575 Parameters 9.2 Parameter list Note Smoothing time constant = 100 ms The signal is not suitable as a process quantity and may only be used as a display quantity. For r0034 = -200.0 %, the following applies: The value is invalid (e.g. the motor temperature model is not activated or has been incorrectly parameterized). r0035 CO: Motor temperature / Mot temp  ...
  • Page 576 [17] = Depletion layer 5 [18] = Depletion layer 6 [19] = Reserved NOTICE Only for internal Siemens troubleshooting. Note The value of -200 indicates that there is no measuring signal. r0037[0]: Maximum value of the inverter temperatures (r0037[5...10]). r0037[1]: Maximum value of the depletion layer temperatures (r0037[13...18]).
  • Page 577 [17] = Depletion layer 5 [18] = Depletion layer 6 [19] = Reserved NOTICE Only for internal Siemens troubleshooting. Note The value of -200 indicates that there is no measuring signal. r0037[0]: Maximum value of the inverter temperatures (r0037[5...10]). r0037[1]: Maximum value of the depletion layer temperatures (r0037[13...18]).
  • Page 578 Parameters 9.2 Parameter list r0039[0...2] CO: Energy display / Energy display   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting: - [kWh] - [kWh] - [kWh]...
  • Page 579 Parameters 9.2 Parameter list r0042[0...2] CO: Process energy display / Proc energy disp   Access level: 2 Calculated: - Data type: Integer32 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting: - [Wh]...
  • Page 580 Parameters 9.2 Parameter list   OFF3 enable missing   Operation enable missing   DC braking enable missing   Safety enable missing   Ramp-function generator enable missing   Ramp-function generator start missing   Setpoint enable missing   OFF1 enable internal missing   OFF2 enable internal missing  ...
  • Page 581 Parameters 9.2 Parameter list Note The value r0046 = 0 indicates that all enable signals for this drive are present. Bit 00 = 1 (enable signal missing), if: - the signal source in p0840 is a 0 signal. - there is a "switching on inhibited". Bit 01 = 1 (enable signal missing), if: - the signal source in p0844 or p0845 is a 0 signal.
  • Page 582 Parameters 9.2 Parameter list r0047 Motor data identification and speed controller optimization / MotID and n_opt   Access level: 1 Calculated: - Data type: Integer16 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting:...
  • Page 583 Parameters 9.2 Parameter list r0050.0...1 CO/BO: Command Data Set CDS effective / CDS effective   Access level: 3 Calculated: - Data type: Unsigned8 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 8560 Min: Max: Factory setting:...
  • Page 584 Parameters 9.2 Parameter list   I, M, P limit reached   Alarm motor overtemperature   Motor rotates forwards   Alarm drive converter overload NOTICE p2080 is used to define the signal sources of the PROFIdrive status word interconnection. Note For bit 03: This signal is inverted if it is interconnected to a digital output.
  • Page 585 Parameters 9.2 Parameter list Note The following status bits are displayed in r0053: Bit 01: r2197 Bit 5 (negated) Bit 02: r2197 Bit 0 (negated) Bit 03: r2197 Bit 8 Bit 04: r2197 Bit 2 Bit 05: r2197 Bit 1 Bit 06: r2197 Bit 4 Bit 07: r2197 Bit 9 Bit 08: r2197 Bit 10 Bit 09: r1199 Bit 2 (negated)
  • Page 586 Parameters 9.2 Parameter list r0054.0...15 CO/BO: Control word 1 / STW 1   Access level: 2 Calculated: - Data type: Unsigned16 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting: Description: Displays control word 1.
  • Page 587 Parameters 9.2 Parameter list   Fixed setpoint bit 2   Fixed setpoint bit 3   DDS selection bit 0   DDS selection bit 1   Technology controller enable   Reserved   Reserved   External fault 1 (F07860)   CDS bit 1 Note CDS: Command Data Set DDS: Drive Data Set...
  • Page 588 Parameters 9.2 Parameter list Note CDS: Command Data Set DDS: Drive Data Set The following control bits are displayed in r0055: Bit 00: r1198.0 Bit 01: r1198.1 Bit 02: r1198.2 Bit 03: r1198.3 Bit 04: r0837.0 Bit 05: r0837.1 Bit 08: r2349.0 (negated) Bit 09: r1239.11 Bit 13: r2138.13 (negated) Bit 15: r0836.1...
  • Page 589 Parameters 9.2 Parameter list Note The speed setpoint is available smoothed (r0020) and unsmoothed (r0060). r0062 CO: Speed setpoint after the filter / n_set after filter   Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: p2000 Dyn.
  • Page 590 Parameters 9.2 Parameter list r0066 CO: Output frequency / f_outp   Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: p2000 Dyn. index: - Unit group: 2_1 Unit selection: p0505 Function diagram: 6730, 6731, 6792, 6799, 6841, 6842, 6843 Min: Max: Factory setting:...
  • Page 591 Parameters 9.2 Parameter list Description: Display and connector output for the measured actual phase currents as peak value. Index: [0] = Phase U [1] = Phase V [2] = Phase W [3] = Phase U offset [4] = Phase V offset [5] = Phase W offset [6] = Total U, V, W [7] = Alpha component...
  • Page 592 Parameters 9.2 Parameter list r0072 CO: Output voltage / U_output   Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: p2001 Dyn. index: - Unit group: 5_1 Unit selection: p0505 Function diagram: 5700, 6730, 6731, 6799 Min: Max: Factory setting: - [Vrms]...
  • Page 593 Parameters 9.2 Parameter list r0076 CO: Current actual value field-generating / Id_act   Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: p2002 Dyn. index: - Unit group: 6_2 Unit selection: p0505 Function diagram: 5700, 5714, 5730, 6700, 6714, 6799 Min: Max: Factory setting:...
  • Page 594 Parameters 9.2 Parameter list r0080[0...1] CO: Torque actual value / Actual torque   Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: p2003 Dyn. index: - Unit group: 7_1 Unit selection: p0505 Function diagram: 6714, 6799 Min: Max: Factory setting: - [Nm]...
  • Page 595 Parameters 9.2 Parameter list r0087 CO: Actual power factor / Cos phi act   Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting: Description:...
  • Page 596 Parameters 9.2 Parameter list p0096 Application class / Appl_class G120XA_USS (PM330) Access level: 1 Calculated: - Data type: Integer16 Can be changed: C2(1) Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 6019 Min: Max: Factory setting: Description: Setting the commissioning and control view for various application classes.
  • Page 597 Parameters 9.2 Parameter list Note While p0124 = 1, the READY LED flashes green/orange or red/orange with 2 Hz at the appropriate Control Unit. p0133[0...n] Motor configuration / Motor config   Access level: 2 Calculated: - Data type: Unsigned16 Can be changed: C2(1, 3) Scaling: - Dyn.
  • Page 598 Parameters 9.2 Parameter list r0197[0...1] Bootloader version / Bootloader vers   Access level: 4 Calculated: - Data type: Unsigned32 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting: Description: Displays the bootloader version.
  • Page 599 Parameters 9.2 Parameter list Description: Sets the actual code number from r0200 to acknowledge the power unit being used. When commissioned for the first time, the code number is automatically transferred from r0200 into p0201. Note The parameter is used to identify when the drive is being commissioned for the first time. The power unit commissioning can only be exited (p0201 = r0200), if the actual and acknowledged code numbers are identical (p0010 = 2).
  • Page 600 Parameters 9.2 Parameter list Note For parallel circuit configurations, the parameter index is assigned to a power unit. r0204[0...n] Power unit hardware properties / PU HW property   Access level: 3 Calculated: - Data type: Unsigned32 Can be changed: - Scaling: - Dyn.
  • Page 601 Parameters 9.2 Parameter list Dependency: See also: r3996 NOTICE The parameter value is not reset when the factory setting is restored (see p0010 = 30, p0970). When the power unit use is changed, short-term communication interruptions may occur. Note When the parameter is changed, all of the motor parameters (p0305 ... p0311), the technological application (p0500) and the control mode (p1300) are pre-assigned according to the selected application.
  • Page 602 Parameters 9.2 Parameter list r0207[0...4] Rated power unit current / PU PI_rated G120XA_USS (PM330) Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 8021 Min: Max: Factory setting: - [Arms]...
  • Page 603 - Do not parameterize p0210 with values that exceed the actual line voltage by more than 10 %. Note For bit 07: Only for internal Siemens use For bit 08 = 1: The activation threshold of the braking chopper (referred to the DC link voltage) is reduced as a function of p0210.
  • Page 604 Value: No filter   Motor reactor   dv/dt filter   Sine-wave filter Siemens   Sine-wave filter third-party Dependency: The following parameters are influenced using p0230: p0230 = 1: --> p0233 (power unit, motor reactor) = filter inductance p0230 = 3: -->...
  • Page 605 Description: Enter the inductance of a filter connected at the power unit output. Dependency: This parameter is automatically pre-set when you select a filter via p0230 if a SIEMENS filter is defined for the power unit. See also: p0230 Note When exiting the quick commissioning using p3900 = 1, the parameter value is set to the value of the defined SIEMENS filter or to zero.
  • Page 606 The parameter value includes the sum of all of the capacitances of a phase connected in series (phase - ground). When exiting the quick commissioning using p3900 = 1, the parameter value is set to the value of the defined SIEMENS filter or to zero.
  • Page 607 Parameters 9.2 Parameter list p0251[0...n] Operating hours counter power unit fan / PU fan t_oper   Access level: 3 Calculated: - Data type: Unsigned32 Can be changed: T Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting:...
  • Page 608 Parameters 9.2 Parameter list Description: Sets the shutdown thresholds for the ground fault monitoring. The setting is made as a percentage of the maximum current of the power unit (r0209). Index: [0] = Threshold at which precharging starts [1] = Threshold at which precharging stops Dependency: See also: p1901 See also: F30021...
  • Page 609 Parameters 9.2 Parameter list Note The setting p0290 = 0, 2 is only practical if the load decreases with decreasing speed (e.g. for applications with variable torque such as for pumps and fans). Under overload conditions, the current and torque limit are reduced, and therefore the motor is braked and forbidden speed ranges (e.g.
  • Page 610 Parameters 9.2 Parameter list p0292[0...1] Power unit temperature alarm threshold / PU T_alrm thresh   Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 8021 Min: Max: Factory setting:...
  • Page 611 Parameters 9.2 Parameter list r0296 DC link voltage undervoltage threshold / Vdc U_lower_thresh   Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting: - [V]...
  • Page 612 (write protection). The write protection is canceled if the motor type p0300 is set to a non-Siemens motor that matches p0301 (e.g. p0300 = 1 for p0301 = 1xxxx). Write protection is automatically canceled when the results of motor data identification are copied to the motor parameters.
  • Page 613 (write protection). The write protection is canceled if the motor type p0300 is set to a non-Siemens motor that matches p0301 (e.g. p0300 = 1 for p0301 = 1xxxx). Write protection is automatically canceled when the results of motor data identification are copied to the motor parameters.
  • Page 614 Parameters 9.2 Parameter list p0304[0...n] Rated motor voltage / Mot U_rated   Access level: 1 Calculated: - Data type: FloatingPoint32 Can be changed: C2(1, 3) Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: 6301, 6724 Min: Max: Factory setting:...
  • Page 615 Parameters 9.2 Parameter list CAUTION The motors to be connected in parallel must be of the same type and size (same order no. (MLFB)). The mounting regulations when connecting motors in parallel must be carefully maintained! The number of motors set must correspond to the number of motors that are actually connected in parallel. After changing p0306, it is imperative that the control parameters are adapted (e.g.
  • Page 616 Parameters 9.2 Parameter list Note The parameter is not used for synchronous motors (p0300 = 2xx). Once the Control Unit has booted for the first time or if the factory settings have been restored, the parameter is pre- assigned to match the power unit. p0309[0...n] Rated motor efficiency / Mot eta_rated  ...
  • Page 617 Parameters 9.2 Parameter list NOTICE When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. If p0310 is changed during quick commissioning (p0010 = 1), the maximum speed p1082, which is also associated with quick commissioning, is pre-assigned accordingly.
  • Page 618 Parameters 9.2 Parameter list p0314[0...n] Motor pole pair number / Mot pole pair No.   Access level: 4 Calculated: - Data type: Unsigned16 Can be changed: C2(1, 3) Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting:...
  • Page 619 Parameters 9.2 Parameter list p0320[0...n] Motor rated magnetizing current/short-circuit current / Mot I_mag_rated   Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting:...
  • Page 620 Parameters 9.2 Parameter list Note The parameter has no effect for induction motors. The parameter has not effect for synchronous motors if a value of 0.0 is entered. The user-selectable current limit is entered into p0640. p0325[0...n] Motor pole position identification current 1st phase / Mot PolID I 1st Ph  ...
  • Page 621 Parameters 9.2 Parameter list NOTICE When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. Note For synchronous motors without reluctance torque, the value 0 must be set. p0329[0...n] Motor pole position identification current / Mot PolID current  ...
  • Page 622 Parameters 9.2 Parameter list r0332[0...n] Rated motor power factor / Mot cos phi rated   Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting:...
  • Page 623 Parameters 9.2 Parameter list r0337[0...n] Rated motor EMF / Mot EMF_rated   Access level: 4 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting: - [Vrms] - [Vrms]...
  • Page 624 Parameters 9.2 Parameter list p0341[0...n] Motor moment of inertia / Mot M_mom of inert   Access level: 3 Calculated: CALC_MOD_ALL Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: 25_1 Unit selection: p0100 Function diagram: 6020, 6030, 6031, 6822 Min: Max:...
  • Page 625 Parameters 9.2 Parameter list NOTICE When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. Note The parameter influences the thermal 3 mass model of the induction motor. The parameter is not used for synchronous motors (p0300 = 2xx).
  • Page 626 Parameters 9.2 Parameter list Note The parameter is calculated using p0340 = 1, 3. For induction motors, the result depends on the rotor time constant (r0384). if this time is shortened too much, then this can result in an inadequate de-magnetizing of the induction motor and in an overcurrent condition when the pulses are subsequently enabled (only when the flying restart function is activated and the motor is rotating).
  • Page 627 Parameters 9.2 Parameter list CAUTION The cable resistance should be entered prior to motor data identification. If it is used subsequently, the difference by which p0352 was changed must be subtracted from the stator resistance p0350 or motor data identification must be repeated.
  • Page 628 Parameters 9.2 Parameter list p0357[0...n] Motor stator inductance d axis / Mot L_stator d   Access level: 3 Calculated: CALC_MOD_EQU Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting:...
  • Page 629 Parameters 9.2 Parameter list p0362[0...n] Motor saturation characteristic flux 1 / Mot saturat.flux 1   Access level: 4 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: 6723, 6838 Min: Max: Factory setting:...
  • Page 630 Parameters 9.2 Parameter list p0365[0...n] Motor saturation characteristic flux 4 / Mot saturat.flux 4   Access level: 4 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: 6723, 6838 Min: Max: Factory setting:...
  • Page 631 Parameters 9.2 Parameter list p0368[0...n] Motor saturation characteristic I_mag 3 / Mot sat. I_mag 3   Access level: 4 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: 6723, 6838 Min: Max:...
  • Page 632 Parameters 9.2 Parameter list Description: Displays the total cable resistance between power unit and motor, as well as the internal converter resistance. Dependency: See also: r0238, p0352 r0373[0...n] Motor rated stator resistance / Mot R_stator rated   Access level: 4 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: -...
  • Page 633 Parameters 9.2 Parameter list r0382[0...n] Motor magnetizing inductance transformed / Mot L_magn transf   Access level: 4 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting:...
  • Page 634 Parameters 9.2 Parameter list r0395[0...n] Actual stator resistance / R_stator act   Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting: - [ohm] - [ohm]...
  • Page 635 Parameters 9.2 Parameter list Note The calculation of parameters dependent on the technology application can be called up as follows: - when exiting quick commissioning using p3900 > 0 - when writing p0340 = 1, 3, 5 For p0500 = 0 and when the calculation is initiated, the following parameters are set: - p1574 = 10 V - p1750.2 = 0 - p1802 = 4 (SVM/FLB without overcontrol) (PM240: p1802 = 0, PM260: p1802 = 2)
  • Page 636 Parameters 9.2 Parameter list Note The calculation of parameters dependent on the technology application can be called up as follows: - when exiting quick commissioning using p3900 > 0 - when writing p0340 = 1, 3, 5 For p0500 = 1 and when the calculation is initiated, the following parameters are set: - p1570 = 100 % - p1580 = 0 % (no efficiency optimization) - p1574 = 2 V...
  • Page 637 Parameters 9.2 Parameter list Description: Sets the technology application for dynamic applications (p0096 = 2). The parameter influences the calculation of open-loop and closed-loop control parameters that is e.g. initiated using p0340 or p3900. Value: Standard drive (e.g. pumps, fans)   Dynamic starting or reversing  ...
  • Page 638 Parameters 9.2 Parameter list p0505 Selecting the system of units / Unit sys select   Access level: 1 Calculated: - Data type: Integer16 Can be changed: C2(5) Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting:...
  • Page 639 Parameters 9.2 Parameter list p0515[0...19] Scaling specific parameters referred to p0514[0] / Scal spec p514[0]   Access level: 3 Calculated: CALC_MOD_ALL Data type: Unsigned32 Can be changed: T Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting:...
  • Page 640 Parameters 9.2 Parameter list Description: Sets the parameters with reference value in p0514[3] for the specific scaling. p0518[0]: parameter number p0518[1]: parameter number p0518[2]: parameter number p0518[19]: parameter number Dependency: See also: p0514 p0519[0...19] Scaling specific parameters referred to p0514[4] / Scal spec p514[4]  ...
  • Page 641 Parameters 9.2 Parameter list p0522[0...19] Scaling specific parameters referred to p0514[7] / Scal spec p514[7]   Access level: 3 Calculated: CALC_MOD_ALL Data type: Unsigned32 Can be changed: T Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting:...
  • Page 642 Parameters 9.2 Parameter list Description: Sets the bearing version. Corresponding to the bearing version entered, its code number (p0531) is automatically set. 0 = No data 1 = Manual entry 101 = STANDARD 102 = PERFORMANCE 103 = HIGH PERFORMANCE 104 = ADVANCED LIFETIME Dependency: See also: p0301, p0531, p0532, p1082 NOTICE...
  • Page 643 Parameters 9.2 Parameter list NOTICE This parameter is pre-assigned in the case of motors from the motor list (p0301) if a bearing version (p0530) is selected. When selecting a catalog motor, this parameter cannot be changed (write protection). The information in p0530 should be observed when removing write protection.
  • Page 644 Parameters 9.2 Parameter list   kg/h   t/min             °F   gallon/s   inch³/s   gallon/min   inch³/min   gallon/h   inch³/h   lb/s   lb/min   lb/h     lbf ft       parts/min  ...
  • Page 645 Parameters 9.2 Parameter list Description: Sets the reference quantity for the technological units. When changing over using changeover parameter p0595 to absolute units, all of the parameters involved refer to the reference quantity. Dependency: See also: p0595 NOTICE When changing over from one technological unit into another, or when changing the reference parameter, a changeover is not made.
  • Page 646 Parameters 9.2 Parameter list p0605[0...n] Mot_temp_mod 1/2/sensor threshold and temperature value / Mod1/2/sens T_thr   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: 21_1 Unit selection: p0505 Function diagram: 8016, 8017 Min: Max: Factory setting:...
  • Page 647 Parameters 9.2 Parameter list Note The I_max reduction is not executed for PTC (p0601 = 1) or bimetallic NC contact (p0601 = 4). The I_max reduction results in a lower output frequency. If value = 0: An alarm is output and I_max is not reduced. If value = 1: An alarm is output and a timer is started.
  • Page 648 Parameters 9.2 Parameter list   Activate mot_temp_mod 2 extensions   Mot_temp_mod 1 (I2t) ambient temperature can be adjusted Yes (via p0613) No (fixed 20 °C) Dependency: For synchronous motors and synchronous reluctance motors, when exiting commissioning, temperature model 1 is automatically activated if a time constant has been entered in p0611. See also: r0034, p0604, p0605, p0611, p0613, p0615, p0625, p0626, p0627, p0628, r0630, r0631, r0632, r0633, p5350, r5389, p5390, p5391 See also: F07011, A07012, F07013, A07014, A07910...
  • Page 649 Parameters 9.2 Parameter list Description: Sets the ambient temperature for motor temperature model 1 or 3. - temperature model 1 (I2t, p0612.0 = 1): For firmware version < 4.7 SP6 or p0612.12 = 0, the following applies: The parameter is not relevant. From firmware version 4.7 SP6 and p0612.12 = 1, the following applies: The parameter defines the current ambient temperature.
  • Page 650 Parameters 9.2 Parameter list p0620[0...n] Thermal adaptation, stator and rotor resistance / Mot therm_adapt R   Access level: 4 Calculated: CALC_MOD_ALL Data type: Integer16 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: - Min: Max:...
  • Page 651 Parameters 9.2 Parameter list Note The measurement is carried out: - For induction motors - When vector control is active (see p1300) - if a temperature sensor (KTY/PT1000) has not been connected - When the motor is at a standstill when switched on When a flying restart is performed on a rotating motor, the temperatures of the thermal motor model are set to a third of the overtemperatures.
  • Page 652 Parameters 9.2 Parameter list Note The measurement is carried out: - For induction motors - When vector control is active (see p1300) - if a temperature sensor (KTY/PT1000) has not been connected - When the motor is at a standstill when switched on When a flying restart is performed on a rotating motor, the temperatures of the thermal motor model are set to a third of the overtemperatures.
  • Page 653 Parameters 9.2 Parameter list p0626[0...n] Motor overtemperature, stator core / Mot T_over core   Access level: 4 Calculated: CALC_MOD_EQU Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: 21_2 Unit selection: p0505 Function diagram: 8018 Min: Max: Factory setting:...
  • Page 654 Parameters 9.2 Parameter list Description: Defines the rated overtemperature of the squirrel cage rotor referred to ambient temperature in the motor temperature model 2 (p0612.1 = 1). Dependency: For 1LA7 motors (p0300), the parameter is pre-set as a function of p0307 and p0311. See also: p0625 NOTICE When selecting a standard induction motor listed in the catalog (p0300 >...
  • Page 655 Parameters 9.2 Parameter list r0632[0...n] Mot_temp_mod stator winding temperature / Mod T_winding   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: p2006 Dyn. index: DDS, p0180 Unit group: 21_1 Unit selection: p0505 Function diagram: 8017, 8018 Min: Max: Factory setting:...
  • Page 656 Parameters 9.2 Parameter list p0644[0...n] Current limit excitation induction motor / Imax excitat ASM G120XA_USS (PM330) Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: - Min: Max:...
  • Page 657 Parameters 9.2 Parameter list Description: Displays the number of inputs and outputs. Index: [0] = Number of digital inputs [1] = Number of digital outputs [2] = Number of digital input/outputs bidirectional [3] = Number of analog inputs [4] = Number of analog outputs r0721 CU digital inputs terminal actual value / CU DI term act val  ...
  • Page 658 Parameters 9.2 Parameter list Note AI: Analog Input DI: Digital Input r0723.0...12 CO/BO: CU digital inputs status inverted / CU DI status inv   Access level: 3 Calculated: - Data type: Unsigned32 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 2119, 2120,...
  • Page 659 Parameters 9.2 Parameter list Recommendation: r0052.0 Ready for switching on r0052.1 Ready for operation r0052.2 Operation enabled r0052.3 Fault present r0052.4 Coast down active (OFF2) r0052.5 Quick stop active (OFF3) r0052.6 Switching on inhibited active r0052.7 Alarm present r0052.9 Control request r0052.14 Motor rotates forwards r0053.0 DC braking active r0053.1 n_act >...
  • Page 660 Parameters 9.2 Parameter list Note DO: Digital Output Relay output: NO = normally open, NC = normally closed p0732 BI: CU signal source for terminal DO 2 / CU s_s DO 2   Access level: 2 Calculated: - Data type: Unsigned32 / Binary Can be changed: T, U Scaling: - Dyn.
  • Page 661 Parameters 9.2 Parameter list Description: Displays the status of digital outputs. Bit array: Signal name 1 signal 0 signal   DO 0 (NO: X134. 19 / NC: X134. 18) High   DO 1 (NO: X134. 21) High   DO 2 (NO: X134. 24) High  ...
  • Page 662 Parameters 9.2 Parameter list r0752[0...3] CO: CU analog inputs input voltage/current actual / CU AI U/I_inp act   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: p0514 Dyn. index: - Unit group: - Unit selection: - Function diagram: 9566, 9568, 9576 Min:...
  • Page 663 Parameters 9.2 Parameter list p0756[0...3] CU analog inputs type / CU AI type   Access level: 2 Calculated: - Data type: Integer16 Can be changed: T, U Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 9566, 9568, 9576 Min: Max:...
  • Page 664 Parameters 9.2 Parameter list Note The parameters for the characteristic do not have a limiting effect. p0758[0...3] CU analog inputs characteristic value y1 / CU AI char y1   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn.
  • Page 665 Parameters 9.2 Parameter list Index: [0] = AI0 (X131 3/4) [1] = AI1 (X131 10/11) [2] = Reserved [3] = Reserved Note The parameters for the characteristic do not have a limiting effect. p0761[0...3] CU analog inputs wire breakage monitoring response threshold / CU WireBrkThresh  ...
  • Page 666 Parameters 9.2 Parameter list Description: Determines the width of the dead zone at the analog input. Analog input type unipolar (e.g. 0 ... +10 V): The dead zone starts with the characteristic value x1/y1 (p0757/p0758). Analog input type bipolar (e.g. -10 V ... +10 V): The dead zone is located at the symmetrical center between characteristic value x1/y1 (p0757/p0758) and x2/y2 (p0759/p0760).
  • Page 667 Parameters 9.2 Parameter list Index: [0] = AO0 (X132 12/13) [1] = AO1 (X131 26/X132 27) [2] = Reserved Note AO: Analog Output r0774[0...2] CU analog outputs output voltage/current actual / CU AO U/I_outp   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: p2001 Dyn.
  • Page 668 Parameters 9.2 Parameter list Index: [0] = AO0 (X132 12/13) [1] = AO1 (X131 26/X132 27) [2] = Reserved Note When changing p0776, the parameters of the scaling characteristic (p0777, p0778, p0779, p0780) are overwritten with the following default values: For p0776 = 0, p0777 is set to 0.0 %, p0778 = 0.0 mA, p0779 = 100.0 % and p0780 to 20.0 mA. For p0776 = 1, p0777 is set to 0.0 %, p0778 = 0.0 V, p0779 = 100.0 % and p0780 to 10.0 V.
  • Page 669 Parameters 9.2 Parameter list p0779[0...2] CU analog outputs characteristic value x2 / CU AO char x2   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 9572 Min: Max:...
  • Page 670 Parameters 9.2 Parameter list Note AO: Analog Output r0785.0...1 BO: CU analog outputs status word / CU AO ZSW   Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 9572 Min: Max:...
  • Page 671 Parameters 9.2 Parameter list   DI 12 (X131.10, 11) AI 1 Simulation Terminal eval Dependency: The setpoint for the input signals is specified using p0796. See also: p0796 Note This parameter is not saved when data is backed up (p0971). AI: Analog Input DI: Digital Input p0796 CU digital inputs simulation mode setpoint / CU DI simul setp...
  • Page 672 Parameters 9.2 Parameter list Note This parameter is not saved when data is backed up (p0971). AI: Analog Input p0798[0...3] CU analog inputs simulation mode setpoint / CU AI sim setp   Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn.
  • Page 673 Parameters 9.2 Parameter list Value: Source/target standard   Source/target with setting 10   Source/target with setting 11   Source/target with setting 12   Source/target with setting 30 Dependency: See also: p0802, p0804 Note The volatile device memory is not influenced by data transfer. p0804 Data transfer start / Data transf start  ...
  • Page 674 Parameters 9.2 Parameter list Note If a parameter backup with setting 0 is detected on the memory card when the Control Unit is switched on (PS000xxx.ACX), this is transferred automatically to the device memory. When the memory card is inserted, a parameter backup with setting 0 (PS000xxx.ACX) is automatically written to the memory card when the parameters are saved in a non-volatile memory (e.g.
  • Page 675 Parameters 9.2 Parameter list p0809[0...2] Copy Command Data Set CDS / Copy CDS   Access level: 2 Calculated: - Data type: Unsigned8 Can be changed: T Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 8560 Min: Max: Factory setting: Description:...
  • Page 676 Parameters 9.2 Parameter list p0819[0...2] Copy Drive Data Set DDS / Copy DDS   Access level: 2 Calculated: - Data type: Unsigned8 Can be changed: C2(15) Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 8565 Min: Max: Factory setting: Description:...
  • Page 677 Parameters 9.2 Parameter list Note If the motor numbers are identical, the same thermal motor model is used for calculation after data set changeover. If different motor numbers are used, different models are also used for calculating (the inactive motor cools down in each case).
  • Page 678 Parameters 9.2 Parameter list r0837.0...1 CO/BO: Drive Data Set DDS selected / DDS selected   Access level: 3 Calculated: - Data type: Unsigned8 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 8565 Min: Max: Factory setting:...
  • Page 679 Parameters 9.2 Parameter list Description: Sets the first signal source for the command "No coast down/coast down (OFF2)". The following signals are AND'ed: - BI: p0844 "No coast-down / coast-down (OFF2) signal source 1" - BI: p0845 "No coast-down / coast-down (OFF2) signal source 2" For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 1 (STW1.1).
  • Page 680 Parameters 9.2 Parameter list p0848[0...n] BI: No Quick Stop / Quick Stop (OFF3) signal source 1 / OFF3 S_s 1   Access level: 3 Calculated: - Data type: Unsigned32 / Binary Can be changed: T Scaling: - Dyn. index: CDS, p0170 Unit group: - Unit selection: - Function diagram: 2501...
  • Page 681 Parameters 9.2 Parameter list Description: Sets the second signal source for the command "No quick stop/quick stop (OFF3)". The following signals are AND'ed: - BI: p0848 "No quick stop / quick stop (OFF3) signal source 1" - BI: p0849 "No quick stop / quick stop (OFF3) signal source 2" For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 2 (STW1.2).
  • Page 682 Parameters 9.2 Parameter list p0857 Power unit monitoring time / PU t_monit   Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: T Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 8760, 8864, 8964 Min: Max: Factory setting:...
  • Page 683 Parameters 9.2 Parameter list Dependency: See also: p0860, r0863 See also: F07300 Note The monitoring function is disabled for the factory setting of p0860. r0863.0...1 CO/BO: Drive coupling status word/control word / CoupleZSW/STW   Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: - Scaling: - Dyn.
  • Page 684 Parameters 9.2 Parameter list p0869 Sequence control configuration / Seq_ctrl config   Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: T Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting: 0000 bin Description: Sets the configuration for the sequence control.
  • Page 685 Parameters 9.2 Parameter list r0899.0...11 CO/BO: Status word sequence control / ZSW seq_ctrl   Access level: 2 Calculated: - Data type: Unsigned16 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 2503 Min: Max: Factory setting: Description:...
  • Page 686 Parameters 9.2 Parameter list Note The buffer parameters are cyclically updated in the background (refer to status signal in r2139). Fault buffer structure (general principle): r0945[0], r0949[0], r0948[0], r2109[0] --> actual fault case, fault 1 . . . r0945[7], r0949[7], r0948[7], r2109[7] --> actual fault case, fault 8 r0945[8], r0949[8], r0948[8], r2109[8] -->...
  • Page 687 Min: Max: Factory setting: Description: Displays the device identification. Index: [0] = Company (Siemens = 42) [1] = Device type [2] = Firmware version [3] = Firmware date (year) [4] = Firmware date (day/month) [5] = Number of drive objects...
  • Page 688 Start a BICO interconnection reset   300: Only Siemens internal NOTICE After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 = 0.
  • Page 689 Parameters 9.2 Parameter list Value: Inactive   Save drive object   Save in non-volatile memory as setting 10   Save in non-volatile memory as setting 11   Save in non-volatile memory as setting 12   State when delivered, save in non-volatile memory as setting 30 Dependency: See also: p0970, p1960, r3996 CAUTION...
  • Page 690 Parameters 9.2 Parameter list Note For value = 1: Reset is immediately executed and communications interrupted. After communications have been established, check the reset operation (refer below). If value = 2: Help to check the reset operation. Firstly, set p0972 = 2 and then read back. Secondly, set p0972 = 1 (it is possible that this request is possibly no longer acknowledged).
  • Page 691 Parameters 9.2 Parameter list r0989[0...299] List of existing parameters 10 / List avail par 10   Access level: 4 Calculated: - Data type: Unsigned16 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting:...
  • Page 692 Parameters 9.2 Parameter list r0999[0...99] List of modified parameters 10 / List chang par 10   Access level: 4 Calculated: - Data type: Unsigned16 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting:...
  • Page 693 Parameters 9.2 Parameter list   Fixed speed setpoint + analog setpoint   Fixed speed setpoint + fixed speed setpoint   Fixed speed setpoint + fieldbus   Fixed speed setpoint + analog setpoint 2   Fieldbus + no main setpoint   Fieldbus + motor potentiometer  ...
  • Page 694 Parameters 9.2 Parameter list p1003[0...n] CO: Fixed speed setpoint 3 / n_set_fixed 3   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: p2000 Dyn. index: DDS, p0180 Unit group: 3_1 Unit selection: p0505 Function diagram: 3010 Min: Max: Factory setting:...
  • Page 695 Parameters 9.2 Parameter list p1007[0...n] CO: Fixed speed setpoint 7 / n_set_fixed 7   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: p2000 Dyn. index: DDS, p0180 Unit group: 3_1 Unit selection: p0505 Function diagram: 3010 Min: Max: Factory setting:...
  • Page 696 Parameters 9.2 Parameter list p1011[0...n] CO: Fixed speed setpoint 11 / n_set_fixed 11   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: p2000 Dyn. index: DDS, p0180 Unit group: 3_1 Unit selection: p0505 Function diagram: 3010 Min: Max: Factory setting:...
  • Page 697 Parameters 9.2 Parameter list p1015[0...n] CO: Fixed speed setpoint 15 / n_set_fixed 15   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: p2000 Dyn. index: DDS, p0180 Unit group: 3_1 Unit selection: p0505 Function diagram: 3010 Min: Max: Factory setting:...
  • Page 698 Parameters 9.2 Parameter list Description: Sets the signal source for selecting the fixed speed setpoint. Dependency: Selects the required fixed speed setpoint using p1020 ... p1023. Displays the number of the actual fixed speed setpoint in r1197. Sets the values for the fixed speed setpoints 1 ... 15 using p1001 ... p1015. See also: p1020, p1022, p1023, r1197 Note If a fixed speed setpoint has not been selected (p1020 ...
  • Page 699 Parameters 9.2 Parameter list Dependency: Selects the required fixed speed setpoint using p1020 ... p1023. Displays the number of the actual fixed speed setpoint in r1197. Sets the values for the fixed speed setpoints 1 ... 15 using p1001 ... p1015. See also: p1070, r1197 Note If a fixed speed setpoint has not been selected (p1020 ...
  • Page 700 Parameters 9.2 Parameter list Note For bit 00: 0: The setpoint for the motorized potentiometer is not saved and after ON is entered using p1040. 1: The setpoint for the motorized potentiometer is saved after OFF and after ON set to the saved value. In order to save in a non-volatile fashion, bit 03 should be set to 1.
  • Page 701 Parameters 9.2 Parameter list p1037[0...n] Motorized potentiometer maximum speed / MotP n_max   Access level: 3 Calculated: Data type: FloatingPoint32 CALC_MOD_LIM_REF Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: 3_1 Unit selection: p0505 Function diagram: 3020 Min: Max: Factory setting:...
  • Page 702 Parameters 9.2 Parameter list p1041[0...n] BI: Motorized potentiometer manual/automatic / Mop manual/auto   Access level: 3 Calculated: - Data type: Unsigned32 / Binary Can be changed: T Scaling: - Dyn. index: CDS, p0170 Unit group: - Unit selection: - Function diagram: 3020 Min: Max: Factory setting:...
  • Page 703 Parameters 9.2 Parameter list r1045 CO: Mot. potentiometer speed setp. in front of ramp-fct. gen. / Mop n_set bef RFG   Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: p2000 Dyn. index: - Unit group: 3_1 Unit selection: p0505 Function diagram: 3020 Min:...
  • Page 704 Parameters 9.2 Parameter list p1051[0...n] CI: Speed limit RFG positive direction of rotation / n_limit RFG pos   Access level: 3 Calculated: - Data type: Unsigned32 / FloatingPoint32 Can be changed: T Scaling: p2000 Dyn. index: CDS, p0170 Unit group: - Unit selection: - Function diagram: 3050 Min:...
  • Page 705 Parameters 9.2 Parameter list NOTICE The drive is enabled for jogging using BI: p1055 or BI: p1056. The command "ON/OFF1" can be issued using BI: p0840 or using BI: p1055/p1056. Only the signal source that was used to switch on can also be used to switch off again. p1058[0...n] Jog 1 speed setpoint / Jog 1 n_set  ...
  • Page 706 Parameters 9.2 Parameter list p1071[0...n] CI: Main setpoint scaling / Main setp scal   Access level: 3 Calculated: - Data type: Unsigned32 / FloatingPoint32 Can be changed: T Scaling: PERCENT Dyn. index: CDS, p0170 Unit group: - Unit selection: - Function diagram: 3001, 3030 Min: Max: Factory setting:...
  • Page 707 Parameters 9.2 Parameter list r1078 CO: Total setpoint effective / Total setpoint eff   Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: p2000 Dyn. index: - Unit group: 3_1 Unit selection: p0505 Function diagram: 3030 Min: Max: Factory setting: - [rpm]...
  • Page 708 Parameters 9.2 Parameter list p1082[0...n] Maximum speed / n_max   Access level: 1 Calculated: CALC_MOD_ALL Data type: FloatingPoint32 Can be changed: C2(1), T Scaling: - Dyn. index: DDS, p0180 Unit group: 3_1 Unit selection: p0505 Function diagram: 3020, 3050, 3070 Min: Max: Factory setting: 0.000 [rpm]...
  • Page 709 Parameters 9.2 Parameter list NOTICE After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 = 0. Note The parameter applies for both motor directions. The parameter has a limiting effect and is the reference quantity for all ramp-up and ramp-down times (e.g.
  • Page 710 Parameters 9.2 Parameter list NOTICE A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. r1087 CO: Speed limit negative effective / n_limit neg eff   Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: p2000...
  • Page 711 Parameters 9.2 Parameter list p1093[0...n] Skip speed 3 / n_skip 3   Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: p2000 Dyn. index: DDS, p0180 Unit group: 3_1 Unit selection: p0505 Function diagram: 3050 Min: Max: Factory setting: 0.000 [rpm]...
  • Page 712 Parameters 9.2 Parameter list p1101[0...n] Skip speed bandwidth / n_skip bandwidth   Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: p2000 Dyn. index: DDS, p0180 Unit group: 3_1 Unit selection: p0505 Function diagram: 3050 Min: Max: Factory setting: 0.000 [rpm]...
  • Page 713 Parameters 9.2 Parameter list p1109[0...n] CI: Total setpoint / Total setp   Access level: 4 Calculated: - Data type: Unsigned32 / FloatingPoint32 Can be changed: T Scaling: p2000 Dyn. index: CDS, p0170 Unit group: - Unit selection: - Function diagram: 3030 Min: Max: Factory setting:...
  • Page 714 Parameters 9.2 Parameter list p1113[0...n] BI: Setpoint inversion / Setp inv   Access level: 3 Calculated: - Data type: Unsigned32 / Binary Can be changed: T Scaling: - Dyn. index: CDS, p0170 Unit group: - Unit selection: - Function diagram: 2441, 2442, 2505, 3040 Min: Max:...
  • Page 715 Parameters 9.2 Parameter list p1120[0...n] Ramp-function generator ramp-up time / RFG ramp-up time G120XA_USS (PM330) Access level: 1 Calculated: - Data type: FloatingPoint32 Can be changed: C2(1), T, U Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: 3070 Min: Max:...
  • Page 716 Parameters 9.2 Parameter list p1122[0...n] BI: Bypass ramp-function generator / Bypass RFG   Access level: 4 Calculated: - Data type: Unsigned32 / Binary Can be changed: T, U Scaling: - Dyn. index: CDS, p0170 Unit group: - Unit selection: - Function diagram: 2505 Min: Max: Factory setting:...
  • Page 717 Parameters 9.2 Parameter list p1130[0...n] Ramp-function generator initial rounding-off time / RFG t_start_round   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: 3070 Min: Max: Factory setting:...
  • Page 718 Parameters 9.2 Parameter list p1134[0...n] Ramp-function generator rounding-off type / RFG round-off type   Access level: 2 Calculated: - Data type: Integer16 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: 3070 Min: Max: Factory setting:...
  • Page 719 Parameters 9.2 Parameter list p1136[0...n] OFF3 initial rounding-off time / RFGOFF3 t_strt_rnd G120XA_USS (PM330) Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: 3070 Min: Max: Factory setting:...
  • Page 720 Parameters 9.2 Parameter list Description: Sets the signal source for the command "enable ramp-function generator/inhibit ramp-function generator". For the PROFIdrive profile, this command corresponds to control word 1 bit 4 (STW1.4). BI: p1140 = 0 signal: Inhibits the ramp-function generator (the ramp-function generator output is set to zero). BI: p1140 = 1 signal: Enable ramp-function generator.
  • Page 721 Parameters 9.2 Parameter list Note When the function module "position control" (r0108.3 = 1) is activated, this binector input is interconnected as follows as standard: BI: p1142 = 0 signal p1143[0...n] BI: Ramp-function generator, accept setting value / RFG accept set v  ...
  • Page 722 Parameters 9.2 Parameter list Recommendation: If at least one speed setpoint filter/velocity setpoint filter is activated (p1414), then the ramp-function generator tracking should be deactivated (p1145 = 0.0). When the speed setpoint filter is activated, the output value of the ramp- function generator can no longer be tracked (corrected) corresponding to the maximum possible drive acceleration.
  • Page 723 Parameters 9.2 Parameter list r1197 Fixed speed setpoint number actual / n_set_fixed No act   Access level: 4 Calculated: - Data type: Unsigned32 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 3010 Min: Max: Factory setting:...
  • Page 724 Parameters 9.2 Parameter list Note For bit 02: The bit is the result of the OR logic operation - bit 00 and bit 01. p1200[0...n] Flying restart operating mode / FlyRest op_mode   Access level: 2 Calculated: - Data type: Integer16 Can be changed: T, U Scaling: - Dyn.
  • Page 725 Parameters 9.2 Parameter list p1202[0...n] Flying restart search current / FlyRest I_srch   Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting:...
  • Page 726 Parameters 9.2 Parameter list r1204.0...13 CO/BO: Flying restart U/f control status / FlyRest Uf st   Access level: 4 Calculated: - Data type: Unsigned16 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting:...
  • Page 727 Parameters 9.2 Parameter list r1205.0...21 CO/BO: Flying restart vector control status / FlyRest vector st   Access level: 4 Calculated: - Data type: Unsigned32 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting:...
  • Page 728 Parameters 9.2 Parameter list   Frequency held   Search in the positive direction   Search Started   Current impressed   Search interrupted   Speed adaptation circuit deviation = 0   Speed control activated   Fast flying restart w/ voltage model for induction motor activ. Yes  ...
  • Page 729 Parameters 9.2 Parameter list Dependency: The automatic restart requires an active ON command (e.g., via a digital input). If, for p1210 > 1, there is no active ON command, then the automatic restart is interrupted. When using an Operator Panel in the LOCAL mode, then there is no automatic start. For p1210 = 14, 16, a manual acknowledgment is required for an automatic restart.
  • Page 730 Parameters 9.2 Parameter list Note A start attempt starts immediately when a fault occurs. The start attempt is considered to been completed if the motor was magnetized (r0056.4 = 1) and an additional delay time of 1 s has expired. As long as a fault is present, an acknowledge command is generated in the time intervals of p1212 / 2. When successfully acknowledged, the start counter is decremented.
  • Page 731 Parameters 9.2 Parameter list Note For index [0]: The monitoring time starts when the faults are detected. If the automatic acknowledgments are not successful, the monitoring time runs again. If, after the monitoring time has expired, the drive has still not successfully started again (flying restart and magnetizing of the motor must have been completed: r0056.4 = 1), then fault F07320 is output.
  • Page 732 Parameters 9.2 Parameter list Note For bit 00: State to display the single initialization after POWER ON. For bit 01: State in which the automatic restart function waits for faults (initial state). For bit 02: General display that a fault has been identified and that the restart or acknowledgment has been initiated. For bit 03: Displays the acknowledge command within the "acknowledge alarms"...
  • Page 733 Parameters 9.2 Parameter list Note Standstill is identified in the following cases: - the speed actual value falls below the speed threshold in p1226 and the time started after this in p1228 has expired. - the speed setpoint falls below the speed threshold in p1226 and the time started after this in p1227 has expired. The actual value sensing is subject to measuring noise.
  • Page 734 Parameters 9.2 Parameter list Description: Sets the signal source to activate DC braking. Dependency: See also: p1231, p1232, p1233, p1234, r1239 Note 1 signal: DC braking activated. 0 signal: DC braking deactivated. p1231[0...n] DC braking configuration / DCBRK config G120XA_USS (DC Access level: 2 Calculated: - Data type: Integer16...
  • Page 735 Parameters 9.2 Parameter list Description: Sets the braking current for DC braking. Dependency: See also: p1230, p1231, p1233, p1234, r1239, p1345, p1346 Note A change to the braking current becomes effective the next time that DC braking is switched on. The value for p1232 is specified as an rms value in the 3-phase system. The magnitude of the braking current is the same as that of an identical output current at frequency zero (see r0067, r0068, p0640).
  • Page 736 Parameters 9.2 Parameter list p1240[0...n] Vdc controller configuration (vector control) / Vdc ctr config vec   Access level: 3 Calculated: - Data type: Integer16 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: 6220, 6827 Min: Max:...
  • Page 737 Parameters 9.2 Parameter list p1243[0...n] Vdc_max controller dynamic factor / Vdc_max dyn_factor G120XA_USS Access level: 3 Calculated: CALC_MOD_CON Data type: FloatingPoint32 (Vdc_max) Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: 6220 Min: Max: Factory setting:...
  • Page 738 Parameters 9.2 Parameter list p1249[0...n] Vdc_max controller speed threshold / Vdc_max n_thresh   Access level: 4 Calculated: CALC_MOD_ALL Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: 3_1 Unit selection: p0505 Function diagram: - Min: Max: Factory setting:...
  • Page 739 Parameters 9.2 Parameter list p1252[0...n] Vdc controller rate time / Vdc_ctrl t_rate   Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: 6220 Min: Max: Factory setting:...
  • Page 740 Parameters 9.2 Parameter list p1257[0...n] Vdc_min controller speed threshold / Vdc_min n_thresh G120XA_USS Access level: 3 Calculated: CALC_MOD_ALL Data type: FloatingPoint32 (Vdc_min) Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: 3_1 Unit selection: p0505 Function diagram: - Min: Max: Factory setting:...
  • Page 741 Parameters 9.2 Parameter list Description: Control and feedback signals of the bypass switch. Bit array: Signal name 1 signal 0 signal   Command switch motor - power unit Close Open   Command switch motor - line supply Close Open   Feedback signal switch motor - power unit Closed Opened  ...
  • Page 742 Parameters 9.2 Parameter list p1265 Bypass speed threshold / Bypass n_thresh   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: p2000 Dyn. index: - Unit group: 3_1 Unit selection: p0505 Function diagram: - Min: Max: Factory setting: 0.00 [rpm] 210000.00 [rpm]...
  • Page 743 Parameters 9.2 Parameter list p1269[0...1] BI: Bypass switch feedback signal / Bypass FS   Access level: 3 Calculated: - Data type: Unsigned32 / Binary Can be changed: T, U Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting:...
  • Page 744 Parameters 9.2 Parameter list p1271[0...n] Flying restart maximum frequency for the inhibited direction / FlyRes f_max dir G120XA_USS (PM330) Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: - Min:...
  • Page 745 Parameters 9.2 Parameter list Note For high input voltages (p0210), the following settings can improve the degree of ruggedness of the Vdc_max controller: - set the input voltage as low as possible, and in so doing, avoid A07401 (p0210). - set the rounding times (p1130, p1136). - increase the ramp-down times (p1121).
  • Page 746 Parameters 9.2 Parameter list Note The Vdc_max controller is not switched back off until the DC link voltage falls below the threshold 0.95 * r1282 and the controller output is zero. p1283[0...n] Vdc_max controller dynamic factor (U/f) / Vdc_max dyn_factor G120XA_USS Access level: 3 Calculated: CALC_MOD_CON Data type: FloatingPoint32...
  • Page 747 Parameters 9.2 Parameter list p1287[0...n] Vdc_min controller dynamic factor (kinetic buffering) (U/f) / Vdc_min dyn_factor   Access level: 3 Calculated: CALC_MOD_CON Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: 6320, 6854 Min: Max:...
  • Page 748 Parameters 9.2 Parameter list   Automatic detection enabled p1295[0...n] Vdc_min controller time threshold (U/f) / Vdc_min t_thresh   Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: - Min: Max:...
  • Page 749 Parameters 9.2 Parameter list p1300[0...n] Open-loop/closed-loop control operating mode / Op/cl-lp ctrl_mode   Access level: 2 Calculated: - Data type: Integer16 Can be changed: C2(1), T Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: 6300, 6301, 6851, 8012 Min: Max:...
  • Page 750 Parameters 9.2 Parameter list Note For motors, type p0300 = 14, operation with U/f control is only recommended for diagnostic purposes. p1302[0...n] U/f control configuration / U/f config   Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: T Scaling: - Dyn.
  • Page 751 Parameters 9.2 Parameter list Description: Defines the voltage boost as a [%] referred to the rated motor current (p0305). The magnitude of the permanent voltage boost is reduced with increasing frequency so that at the rated motor frequency, the rated motor voltage is present. The magnitude of the boost in Volt at a frequency of zero is defined as follows: Voltage boost [V] = 1.732 x p0305 (rated motor current [A]) x r0395 (stator/primary section resistance [ohm]) x p1310 (permanent voltage boost [%]) / 100 %...
  • Page 752 Parameters 9.2 Parameter list Note The voltage boost when accelerating can improve the response to small, positive setpoint changes. Assigning priorities for the voltage boosts: refer to p1310 For field orientation (p1302 bit 4 = 1, not PM230, PM250, PM260), then p1311 together with p1310 and p1302.5 are mainly responsible for the quality of the drive response.
  • Page 753 Parameters 9.2 Parameter list p1333[0...n] U/f control FCC starting frequency / U/f FCC f_start   Access level: 3 Calculated: CALC_MOD_ALL Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: 6301 Min: Max: Factory setting:...
  • Page 754 Parameters 9.2 Parameter list p1335[0...n] Slip compensation scaling / Slip comp scal G120XA_USS (PM330) Access level: 3 Calculated: CALC_MOD_ALL Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: 6300, 6310 Min: Max: Factory setting:...
  • Page 755 Parameters 9.2 Parameter list Note The resonance damping function dampens active current oscillations that frequency occur under no-load conditions. The resonance damping is active in a range from approximately 6 % of the rated motor frequency (p0310). The shutoff frequency is determined by p1349. For the open-loop control modes p1300 = 5 and 6 (textile sectors), the resonance damping is internally disabled in order that the output frequency can be precisely set.
  • Page 756 Parameters 9.2 Parameter list Note When p1341 = 0, the current limiting controller influencing the frequency is deactivated and only the current limiting controller influencing the output voltage remains active (p1345, p1346). In the case of power units with regenerative feedback (PM250, PM260), current limitation control for a regenerative load is always implemented by influencing the frequency.
  • Page 757 Parameters 9.2 Parameter list r1348 CO: U/f control Eco factor actual value / U/f Eco fac act v   Access level: 4 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: PERCENT Dyn. index: - Unit group: - Unit selection: - Function diagram: 6300, 6301 Min: Max:...
  • Page 758 Parameters 9.2 Parameter list   Acceleration torque instantaneous in the I/f mode Note For bit 16: When the bit is set, the integral component of the speed controller is only held if it reaches the torque limit. For bit 19, 20: When this bit is set, speed overshoots when accelerating along the torque limit and for load surges are reduced.
  • Page 759 Parameters 9.2 Parameter list   Flux build-up control active 6722, 6723   Flux characteristic load-dependent 6725   Quick magnetizing 6722   Dynamic load-dependent flux boost 6790, 6823   Flux boost low speed   Efficiency optimization 2 active 6722, 6837 Note RESM: reluctance synchronous motor (synchronous reluctance motor) For bit 01: Initially, the flux is only established with a low rate of rise when magnetizing the induction motor.
  • Page 760 Parameters 9.2 Parameter list Note For bit 02: The current controller adaptation (p0391 ... p0393) is only calculated when the bit is set. For bits 10, 12: Only for closed-loop controlled reluctance motor: The gain of the d, q current controller is realized adaptively at the saturation model depending on the operating point.
  • Page 761 Parameters 9.2 Parameter list r1408.0...14 CO/BO: Status word current controller / ZSW I_ctrl   Access level: 4 Calculated: - Data type: Unsigned16 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 2530 Min: Max: Factory setting: Description:...
  • Page 762 Parameters 9.2 Parameter list p1452[0...n] Speed controller speed actual value smoothing time (sensorless) / n_C n_act T_s SL   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: 6020, 6040 Min:...
  • Page 763 Parameters 9.2 Parameter list Note If the upper transition point p1465 of the speed controller adaptation is set to lower values than the lower transition point p1464, then the controller below p1465 is adapted with p1461 or p1463. This means that an adaptation can be implemented for low speeds without having to change the controller parameters.
  • Page 764 Parameters 9.2 Parameter list p1472[0...n] Speed controller encoderless operation integral time / n_ctrl SL Tn   Access level: 2 Calculated: CALC_MOD_CON Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: 6040, 6050 Min: Max:...
  • Page 765 Parameters 9.2 Parameter list p1496[0...n] Acceleration precontrol scaling / a_prectrl scal G120XA_USS (PM330) Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: 6020, 6031 Min: Max: Factory setting:...
  • Page 766 Parameters 9.2 Parameter list Dependency: See also: p0341, p0342, p1496 p1520[0...n] CO: Torque limit upper / M_max upper   Access level: 2 Calculated: Data type: FloatingPoint32 CALC_MOD_LIM_REF Can be changed: T, U Scaling: p2003 Dyn. index: DDS, p0180 Unit group: 7_1 Unit selection: p0505 Function diagram: 6020, 6630 Min:...
  • Page 767 Parameters 9.2 Parameter list DANGER Negative values resulting from the signal source and scaling can cause the motor to accelerate in an uncontrolled manner. p1523[0...n] CI: Torque limit lower / M_max lower   Access level: 3 Calculated: - Data type: Unsigned32 / FloatingPoint32 Can be changed: T Scaling: p2003...
  • Page 768 Parameters 9.2 Parameter list r1526 CO: Torque limit upper without offset / M_max up w/o offs   Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: p2003 Dyn. index: - Unit group: 7_1 Unit selection: p0505 Function diagram: 6060, 6630, 6640 Min: Max:...
  • Page 769 Parameters 9.2 Parameter list p1530[0...n] Power limit motoring / P_max mot   Access level: 2 Calculated: Data type: FloatingPoint32 CALC_MOD_LIM_REF Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: 14_5 Unit selection: p0505 Function diagram: 6640 Min: Max: Factory setting: 0.00 [kW]...
  • Page 770 Parameters 9.2 Parameter list r1537[0...1] Current limit minimum torque-generating current / Isq_min   Access level: 4 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: p2002 Dyn. index: - Unit group: 6_2 Unit selection: p0505 Function diagram: 6640, 6710 Min: Max: Factory setting: - [Arms]...
  • Page 771 Parameters 9.2 Parameter list r1548[0...1] CO: Stall current limit torque-generating maximum / Isq_max stall   Access level: 4 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: p2002 Dyn. index: - Unit group: 6_2 Unit selection: p0505 Function diagram: - Min: Max: Factory setting:...
  • Page 772 Parameters 9.2 Parameter list Description: The following applies for a synchronous reluctance motor: Displays the transition value for the start of the evaluation of the optimum flux characteristic. The value is referred to the rated motor torque. Note The transition value corresponds with the lower limit of the flux setpoint (p1581). For a lower absolute torque setpoint, the flux setpoint remains at the lower limit (p1581).
  • Page 773 Parameters 9.2 Parameter list NOTICE A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. Note For p1570 > 100%, the flux setpoint increases as a function of the load from 100% (no-load operation) to the setting in p1570 (above rated motor torque), if p1580 >...
  • Page 774 Parameters 9.2 Parameter list Description: Sets a dynamic voltage reserve. Dependency: See also: p0500 Note In the field weakening range, it must be expected that the control dynamic performance is somewhat restricted due to the limited possibilities of controlling/adjusting the voltage. This can be improved by increasing the voltage reserve. Increasing the reserve reduces the steady-state maximum output voltage (r0071).
  • Page 775 Parameters 9.2 Parameter list p1580[0...n] Efficiency optimization / Efficiency opt   Access level: 3 Calculated: Data type: FloatingPoint32 CALC_MOD_LIM_REF Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: 6722 Min: Max: Factory setting: 0 [%] 100 [%]...
  • Page 776 Parameters 9.2 Parameter list p1584[0...n] Field weakening operation flux setpoint smoothing time / Field weak T_smth   Access level: 4 Calculated: CALC_MOD_REG Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: 6722 Min: Max:...
  • Page 777 Parameters 9.2 Parameter list r1593[0...1] CO: Field weakening controller / flux controller output / Field/Fl_ctrl outp   Access level: 4 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: p2002 Dyn. index: - Unit group: 6_2 Unit selection: p0505 Function diagram: 6724 Min: Max: Factory setting:...
  • Page 778 Parameters 9.2 Parameter list Description: Displays the effective flux setpoint. The value is referred to the rated motor flux. p1601[0...n] Current injection ramp time / I_inject t_ramp   Access level: 3 Calculated: CALC_MOD_REG Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn.
  • Page 779 Parameters 9.2 Parameter list r1614 EMF maximum / EMF max   Access level: 4 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: p2001 Dyn. index: - Unit group: 5_1 Unit selection: p0505 Function diagram: 6725 Min: Max: Factory setting: - [Vrms] - [Vrms] - [Vrms]...
  • Page 780 Parameters 9.2 Parameter list p1654[0...n] Curr. setpoint torque-gen. smoothing time field weakening range / Isq_s T_smth FW   Access level: 4 Calculated: CALC_MOD_ALL Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: 6710 Min: Max:...
  • Page 781 Parameters 9.2 Parameter list p1722[0...n] Current controller d axis integral time / I_ctrl d-axis Tn   Access level: 4 Calculated: CALC_MOD_CON Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: - Min: Max:...
  • Page 782 Parameters 9.2 Parameter list r1733[0...1] CO: Quadrature-axis voltage setpoint / Quad U set   Access level: 4 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: p2001 Dyn. index: - Unit group: 5_1 Unit selection: p0505 Function diagram: 6714, 6731 Min: Max: Factory setting:...
  • Page 783 Parameters 9.2 Parameter list Description: Minimum operating frequency for rugged operation. If the minimum value is greater than the lower changeover limit parameterized with p1755 * (1 - 2 * p1756), then the difference is displayed using p1749 * p1755. The parameter value cannot be changed. Dependency: See also: p1755, p1756 p1750[0...n]...
  • Page 784 If bit 2 = 1, then bit 3 is automatically set to 1. Manual de-selection is possible and may be sensible if the saturation characteristic (p1960) was not measured for third-party motors. Generally, for standard SIEMENS motors, the already pre-assigned (default value) saturation characteristic is adequate.
  • Page 785 If bit 2 = 1, then bit 3 is automatically set to 1. Manual de-selection is possible and may be sensible if the saturation characteristic (p1960) was not measured for third-party motors. Generally, for standard SIEMENS motors, the already pre-assigned (default value) saturation characteristic is adequate.
  • Page 786 Parameters 9.2 Parameter list   Speed controller output cannot be set to zero   Rs adapt waits   Motor operation   Stator frequency sign Positive Negative   Torque sign Motor mode Regenerative mode -   Operation with rugged model feedback Enabled Inhibited  ...
  • Page 787 Parameters 9.2 Parameter list Note The parameter value refers to p1755. Extremely small hystereses can have a negative impact on the stability in the changeover speed range, and very high hystereses in the standstill range. p1758[0...n] Motor model changeover delay time closed/open-loop control / MotMod t cl_op  ...
  • Page 788 Parameters 9.2 Parameter list p1769[0...n] Motor model changeover delay time closed-loop control / MotMod t cl_ctrl   Access level: 4 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: - Min: Max:...
  • Page 789 Parameters 9.2 Parameter list Note The value is pre-set during the rotating measurement. r1776[0...6] Motor model status signals / MotMod status sig   Access level: 4 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min:...
  • Page 790 Parameters 9.2 Parameter list p1780[0...n] Motor model adaptation configuration / MotMod adapt conf G120XA_USS (PM330) Access level: 3 Calculated: CALC_MOD_CON Data type: Unsigned16 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting:...
  • Page 791 Parameters 9.2 Parameter list p1786[0...n] Motor model Lh adaptation integral time / MotMod Lh Tn   Access level: 4 Calculated: CALC_MOD_CON Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: - Min: Max:...
  • Page 792 Parameters 9.2 Parameter list Description: Sets the drive converter switching frequency. This parameter is pre-set to twice the rated converter value when the drive is first commissioned. Dependency: Minimum pulse frequency: p1800 >= 12 * p1082 * r0313 / 60 See also: p0230 Note The maximum and minimum possible pulse frequency is also determined by the power unit being used (minimum pulse frequency: 2 kHz or 4 kHz).
  • Page 793 Parameters 9.2 Parameter list p1802[0...n] Modulator mode / Modulator mode G120XA_USS (PM330) Access level: 4 Calculated: Data type: Integer16 CALC_MOD_LIM_REF Can be changed: T Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting: Description: Sets the modulator mode.
  • Page 794 Parameters 9.2 Parameter list Note p1803 = 100% is the overcontrol limit for space vector modulation (for an ideal drive converter without any switching delay). p1806[0...n] Filter time constant Vdc correction / T_filt Vdc_corr   Access level: 3 Calculated: CALC_MOD_REG Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn.
  • Page 795 Parameters 9.2 Parameter list   Avg value filter for U_lim (only for Vdc_comp in modulator)   DC link voltage compensation in the current control NOTICE Bit 1 = 1 can only be set under a pulse inhibit and for r0192.14 = 1. Note For bit 00 = 0: Voltage limitation from the minimum of the DC link voltage (lower ripple in the output current, reduced output voltage).
  • Page 796 Parameters 9.2 Parameter list Description: Sets the tolerance time for line phase monitoring for blocksize power units. If a line phase fault is present for longer than this tolerance time, then a corresponding fault is output. Dependency: See also: F30011 NOTICE When operating with a failed line phase, depending on the active power, values higher than the default value can either immediately damage the power unit or damage it over the long term.
  • Page 797 Parameters 9.2 Parameter list p1829 Compensation valve lockout time phase V / Comp t_lock ph V G120XA_USS (PM330) Access level: 4 Calculated: CALC_MOD_ALL Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max:...
  • Page 798 Parameters 9.2 Parameter list   Gating unit mode bit 1   Gating unit mode bit 2   Brake state   Brake diagnostics   Armature short-circuit braking Active Not active   Gating unit state bit 0   Gating unit state bit 1  ...
  • Page 799 Parameters 9.2 Parameter list NOTICE p1900 = 3: This setting should only be selected if the motor data identification was already carried out at standstill. To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971). During the rotating measurement it is not possible to save the parameter (p0971). Note The motor and control parameters of the vector control are only optimally set when both measurements are carried out (initially at standstill, and then with the motor rotating).
  • Page 800 Parameters 9.2 Parameter list   Optimizing the speed controller (in rotating operation)   Motor data ident. and speed controller opt., switch to operation   Motor data identification (at standstill), switch to operation Dependency: See also: p1300, p1910, p1960 See also: A07980, A07981, F07983, F07984, F07985, F07986, F07988, F07990, A07991 NOTICE p1900 = 3: This setting should only be selected if the motor data identification was already carried out at standstill.
  • Page 801 Parameters 9.2 Parameter list p1901 Test pulse evaluation configuration / Test puls config G120XA_USS (PM330) Access level: 3 Calculated: CALC_MOD_ALL Data type: Unsigned32 Can be changed: T Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting:...
  • Page 802 Parameters 9.2 Parameter list p1909[0...n] Motor data identification control word / MotID STW   Access level: 3 Calculated: CALC_MOD_ALL Data type: Unsigned32 Can be changed: T Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting:...
  • Page 803 All motor data and the drive converter characteristics are identified and then transferred to the following parameters: p0350, p0354, p0356, p0357, p0358, p0360, p1825, p1828, p1829, p1830 After this, the control parameter p0340 = 3 is automatically calculated. p1910 = 20: Only for internal SIEMENS use. Value: Inhibited  ...
  • Page 804 All motor data and the drive converter characteristics are identified and then transferred to the following parameters: p0350, p0354, p0356, p0357, p0358, p0360, p1825, p1828, p1829, p1830 After this, the control parameter p0340 = 3 is automatically calculated. p1910 = 20: Only for internal SIEMENS use. Value: Inhibited  ...
  • Page 805 Parameters 9.2 Parameter list   Voltage vector input without filter   Rectangular voltage vector input without filter   Triangular voltage vector input without filter   Rectangular voltage vector input with filter   Triangular voltage vector input with filter   Enter voltage vector with DTC correction  ...
  • Page 806 Parameters 9.2 Parameter list Description: Displays the identified rotor time constant. Index: [0] = Phase U [1] = Phase V [2] = Phase W r1914[0...2] Identified total leakage inductance / L_total_leak ident   Access level: 4 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: - Dyn.
  • Page 807 Parameters 9.2 Parameter list r1927[0...2] Identified rotor resistance / R_rotor ident   Access level: 4 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting: - [ohm] - [ohm] - [ohm]...
  • Page 808 Parameters 9.2 Parameter list   Do not change the controller parameters during the measurement   Measurement shortened   After measurement direct transition into operation   Calculate speed actual value smoothing time Dependency: See also: F07988 Note The following parameters are influenced for the individual optimization steps: Bit 01: p0320, p0360, p0362 ...
  • Page 809 Parameters 9.2 Parameter list p1961 Saturation characteristic speed to determine / Sat_char n determ   Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting:...
  • Page 810 Parameters 9.2 Parameter list p1967 Speed_ctrl_opt dynamic factor / n_opt dyn_factor   Access level: 3 Calculated: CALC_MOD_ALL Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting: 1 [%] 400 [%]...
  • Page 811 Parameters 9.2 Parameter list Description: Displays the vibration frequencies determined by the vibration test. Index: [0] = Frequency low [1] = Frequency high Dependency: See also: p1959 See also: F07985 p1974 Speed_ctrl_opt saturation characteristic rotor flux maximum / n_opt rot_fl max  ...
  • Page 812 Parameters 9.2 Parameter list   Fine synchronization carried out   Coarse synchronization carried out   Commutation information available   Speed information available   Position information available   Zero mark passed Dependency: See also: p0325, p0329, p1980 Note The data of p1992 are updated in a 4 ms cycle. Fast changes of the encoder status word bits can be better investigated using p7830 and following.
  • Page 813 Parameters 9.2 Parameter list p2001 Reference voltage / Reference voltage   Access level: 3 Calculated: CALC_MOD_ALL Data type: FloatingPoint32 Can be changed: T Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting: 10 [Vrms] 100000 [Vrms] 1000 [Vrms]...
  • Page 814 Parameters 9.2 Parameter list p2003 Reference torque / M_ref   Access level: 3 Calculated: CALC_MOD_ALL Data type: FloatingPoint32 Can be changed: T Scaling: - Dyn. index: - Unit group: 7_2 Unit selection: p0505 Function diagram: - Min: Max: Factory setting: 0.01 [Nm] 20000000.00 [Nm] 1.00 [Nm] Description:...
  • Page 815 Parameters 9.2 Parameter list Description: Sets the reference quantity for temperature. All temperatures specified as relative value are referred to this reference quantity. The reference quantity corresponds to 100% or 4000 hex (word) or 4000 0000 hex (double word). p2010 Comm IF baud rate / Comm baud  ...
  • Page 816 Parameters 9.2 Parameter list r2019[0...7] Comm IF error statistics / Comm err   Access level: 4 Calculated: - Data type: Unsigned32 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting: Description: Displays the receive errors at the commissioning interface (USS, RS232).
  • Page 817 Parameters 9.2 Parameter list p2021 Field bus interface address / Field bus address   Access level: 2 Calculated: - Data type: Unsigned16 Can be changed: T Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 9310 Min: Max: Factory setting: Description:...
  • Page 818 Parameters 9.2 Parameter list   PKW 4 words   127: PKW variable Dependency: See also: p2030 Note The parameter is not influenced by setting the factory setting. p2024[0...2] Fieldbus interface times / Fieldbus times   Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn.
  • Page 819 Parameters 9.2 Parameter list Index: [0] = Device object instance number [1] = Maximum number of info frames [2] = Number of APDU retries [3] = Maximum master address [4] = Reserved Dependency: See also: p2030 p2026[0...75] Fieldbus interface BACnet COV increment / BACnet COV incr  ...
  • Page 820 Parameters 9.2 Parameter list Index: [0] = Analog Input 0 [1] = Analog Input 1 [2] = Reserved [3] = Reserved [4] = Analog Input 10 [5] = Analog Input 11 [6] = Reserved [7] = Reserved [8] = Analog Output 0 [9] = Analog Output 1 [10] = Analog Value 0 [11] = Analog Value 1...
  • Page 821 Parameters 9.2 Parameter list [52] = Analog Value 5101 [53] = Analog Value 5102 [54] = Analog Value 5103 [55] = Analog Value 5104 [56] = Analog Value 5105 [57] = Analog Value 5106 [58] = Analog Value 5107 [59] = Analog Value 5200 [60] = Analog Value 5201 [61] = Analog Value 5202 [62] = Analog Value 5203...
  • Page 822 Parameters 9.2 Parameter list Index: [0] = Number of error-free telegrams [1] = Number of rejected telegrams [2] = Number of framing errors [3] = Number of overrun errors [4] = Number of parity errors [5] = Number of starting character errors [6] = Number of checksum errors [7] = Number of length errors p2030...
  • Page 823 Parameters 9.2 Parameter list Bit array: Signal name 1 signal 0 signal   ON/OFF1   OC / OFF2   OC / OFF3   Enable operation   Enable ramp-function generator   Start ramp-function generator   Enable speed setpoint   Acknowledge fault   Jog bit 0 3030  ...
  • Page 824 Parameters 9.2 Parameter list r2050[0...11] CO: PROFIdrive PZD receive word / PZD recv word   Access level: 3 Calculated: - Data type: Integer16 Can be changed: - Scaling: 4000H Dyn. index: - Unit group: - Unit selection: - Function diagram: 2440, 2468, 9360 Min: Max:...
  • Page 825 Parameters 9.2 Parameter list r2053[0...16] PROFIdrive diagnostics send PZD word / Diag send word   Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 2450, 2470, 9370 Min: Max:...
  • Page 826 Parameters 9.2 Parameter list Dependency: See also: p2021 NOTICE The display is updated after switching on, and not cyclically. r2060[0...10] CO: PROFIdrive PZD receive double word / PZD recv DW   Access level: 3 Calculated: - Data type: Integer32 Can be changed: - Scaling: 4000H Dyn.
  • Page 827 Parameters 9.2 Parameter list Index: [0] = PZD 1 + 2 [1] = PZD 2 + 3 [2] = PZD 3 + 4 [3] = PZD 4 + 5 [4] = PZD 5 + 6 [5] = PZD 6 + 7 [6] = PZD 7 + 8 [7] = PZD 8 + 9 [8] = PZD 9 + 10...
  • Page 828 Parameters 9.2 Parameter list   Bit 6   Bit 7   Bit 8   Bit 9   Bit 10   Bit 11   Bit 12   Bit 13   Bit 14   Bit 15   Bit 16   Bit 17   Bit 18  ...
  • Page 829 Parameters 9.2 Parameter list Index: [0] = Bit 0 [1] = Bit 1 [2] = Bit 2 [3] = Bit 3 [4] = Bit 4 [5] = Bit 5 [6] = Bit 6 [7] = Bit 7 [8] = Bit 8 [9] = Bit 9 [10] = Bit 10 [11] = Bit 11...
  • Page 830 Parameters 9.2 Parameter list Description: Selects bits to be sent to the PROFIdrive controller. The individual bits are combined to form free status word 3. Index: [0] = Bit 0 [1] = Bit 1 [2] = Bit 2 [3] = Bit 3 [4] = Bit 4 [5] = Bit 5 [6] = Bit 6...
  • Page 831 Parameters 9.2 Parameter list p2084[0...15] BI: Binector-connector converter status word 5 / Bin/con ZSW5   Access level: 3 Calculated: - Data type: Unsigned32 / Binary Can be changed: T, U Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 2472 Min: Max:...
  • Page 832 Parameters 9.2 Parameter list   Bit 11 Inverted Not inverted   Bit 12 Inverted Not inverted   Bit 13 Inverted Not inverted   Bit 14 Inverted Not inverted   Bit 15 Inverted Not inverted Dependency: See also: p2080, p2081, p2082, p2083, r2089 r2089[0...4] CO: Send binector-connector converter status word / Bin/con ZSW send  ...
  • Page 833 Parameters 9.2 Parameter list   Bit 0   Bit 1   Bit 2   Bit 3   Bit 4   Bit 5   Bit 6   Bit 7   Bit 8   Bit 9   Bit 10   Bit 11   Bit 12  ...
  • Page 834 Parameters 9.2 Parameter list r2092.0...15 BO: PROFIdrive PZD3 receive bit-serial / PZD3 recv bitw   Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 2468, 9204, 9206 Min: Max:...
  • Page 835 Parameters 9.2 Parameter list   Bit 14   Bit 15 r2094.0...15 BO: Connector-binector converter binector output / Con/bin outp   Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 2468, 9360 Min: Max:...
  • Page 836 Parameters 9.2 Parameter list   Bit 10   Bit 11   Bit 12   Bit 13   Bit 14   Bit 15 Dependency: See also: p2099 p2098[0...1] Inverter connector-binector converter binector output / Con/bin outp inv   Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: T, U Scaling: -...
  • Page 837 Parameters 9.2 Parameter list Note From the signal source set via the connector input, the corresponding lower 16 bits are converted. p2099[0...1] together with r2094.0...15 and r2095.0...15 forms two connector-binector converters: Connector input p2099[0] to binector output in r2094.0...15 Connector input p2099[1] to binector output in r2095.0...15 p2100[0...19] Change fault response fault number / Chng resp F_no  ...
  • Page 838 Parameters 9.2 Parameter list Note Re-parameterization is also possible if a fault is present. The change only becomes effective after the fault has been resolved. The fault response can only be changed for faults with the appropriate identification. Example: F12345 and fault response = NONE (OFF1, OFF2) -->...
  • Page 839 Parameters 9.2 Parameter list Description: Sets the third signal source to acknowledge faults. Note A fault acknowledgment is triggered with a 0/1 signal. p2106[0...n] BI: External fault 1 / External fault 1   Access level: 3 Calculated: - Data type: Unsigned32 / Binary Can be changed: T, U Scaling: - Dyn.
  • Page 840 Parameters 9.2 Parameter list Description: Sets the signal source for external fault 3. External fault 3 is initiated by the following AND logic operation: - BI: p2108 negated - BI: p3111 - BI: p3112 negated Dependency: See also: p3110, p3111, p3112 See also: F07862 Note An external fault is triggered with a 1/0 signal.
  • Page 841 Parameters 9.2 Parameter list p2112[0...n] BI: External alarm 1 / External alarm 1   Access level: 3 Calculated: - Data type: Unsigned32 / Binary Can be changed: T, U Scaling: - Dyn. index: CDS, p0170 Unit group: - Unit selection: - Function diagram: 2546 Min: Max:...
  • Page 842 Parameters 9.2 Parameter list p2117[0...n] BI: External alarm 3 / External alarm 3 G120XA_USS (PM330) Access level: 3 Calculated: - Data type: Unsigned32 / Binary Can be changed: T, U Scaling: - Dyn. index: CDS, p0170 Unit group: - Unit selection: - Function diagram: 2546 Min: Max:...
  • Page 843 Parameters 9.2 Parameter list r2120 CO: Sum of fault and alarm buffer changes / Sum buffer changed   Access level: 4 Calculated: - Data type: Unsigned16 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 8065 Min: Max:...
  • Page 844 Parameters 9.2 Parameter list Note The buffer parameters are cyclically updated in the background (refer to status signal in r2139). The structure of the alarm buffer and the assignment of the indices is shown in r2122. r2124[0...63] Alarm value / Alarm value  ...
  • Page 845 Parameters 9.2 Parameter list p2127[0...19] Change acknowledge mode mode / Chng ackn mode   Access level: 3 Calculated: - Data type: Integer16 Can be changed: T, U Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 8050, 8075 Min: Max: Factory setting:...
  • Page 846 Parameters 9.2 Parameter list   Trigger signal p2128[7]   Trigger signal p2128[8]   Trigger signal p2128[9]   Trigger signal p2128[10]   Trigger signal p2128[11]   Trigger signal p2128[12]   Trigger signal p2128[13]   Trigger signal p2128[14]   Trigger signal p2128[15] Dependency: If the fault/alarm set in p2128[0...15] occurs, then the particular binector output r2129.0...15 is set.
  • Page 847 Parameters 9.2 Parameter list Note 0: No alarm present. r2133[0...63] Fault value for float values / Fault val float   Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 8060 Min: Max:...
  • Page 848 Parameters 9.2 Parameter list Note The buffer parameters are cyclically updated in the background (refer to status signal in r2139). r2138.7...15 CO/BO: Control word faults/alarms / STW fault/alarm   Access level: 2 Calculated: - Data type: Unsigned16 Can be changed: - Scaling: - Dyn.
  • Page 849 Parameters 9.2 Parameter list p2140[0...n] Hysteresis speed 2 / n_hysteresis 2   Access level: 3 Calculated: Data type: FloatingPoint32 CALC_MOD_LIM_REF Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: 3_1 Unit selection: p0505 Function diagram: 8010 Min: Max: Factory setting: 0.00 [rpm]...
  • Page 850 Parameters 9.2 Parameter list r2145[0...63] Alarm time received in days / t_alarm recv days   Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 8065 Min: Max: Factory setting:...
  • Page 851 Parameters 9.2 Parameter list   Enable alarm A07903 8011   Load monitoring only in the 1st quadrant 8013   n_act > p2155 own hysteresis 8010   Stall monitoring for encoderless speed control Dependency: See also: r2197 See also: A07903 Note For bit 00: Alarm A07903 is output when the bit is set with r2197.7 = 0 (n_set <>...
  • Page 852 Parameters 9.2 Parameter list Description: Sets the time constant of the PT1 element to smooth the speed / velocity actual value. The smoothed actual speed/velocity is compared with the threshold values and is only used for messages and signals. Dependency: See also: r2169 p2155[0...n] Speed threshold 2 / n_thresh val 2  ...
  • Page 853 Parameters 9.2 Parameter list Note For a negative speed limit (r1087) the hysteresis is effective below the limit value and for a positive speed limit (r1084) above the limit value. If significant overshoot occurs in the maximum speed range (e.g. due to load shedding), you are advised to increase the dynamic response of the speed controller (if possible).
  • Page 854 Parameters 9.2 Parameter list p2166[0...n] Off delay n_act = n_set / t_del_off n_i=n_so   Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: 8011 Min: Max: Factory setting:...
  • Page 855 Parameters 9.2 Parameter list p2170[0...n] Current threshold value / I_thres   Access level: 3 Calculated: Data type: FloatingPoint32 CALC_MOD_LIM_REF Can be changed: T, U Scaling: p2002 Dyn. index: DDS, p0180 Unit group: 6_2 Unit selection: p0505 Function diagram: 8022 Min: Max: Factory setting: 0.00 [Arms] 10000.00 [Arms]...
  • Page 856 Parameters 9.2 Parameter list Dependency: See also: p0500, p2177, r2198 See also: F07900 Note The following applies for sensorless vector control for induction motors: At low speeds in open-loop speed controlled operation (see p1755, p1756), a blocked motor cannot be detected. p2177[0...n] Motor blocked delay time / Mot lock t_del  ...
  • Page 857 Parameters 9.2 Parameter list Note Missing output load is signaled in the following cases: - the motor is not connected. - a phase failure has occurred. p2180[0...n] Output load detection delay time / Out_load det t_del   Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: T, U Scaling: -...
  • Page 858 Parameters 9.2 Parameter list Dependency: The following applies: p2182 < p2183 < p2184 See also: p2183, p2184, p2185, p2186 See also: A07926 Note In order that the load monitoring can reliably respond, the speed threshold p2182 should always be set lower than the minimum motor speed to be monitored.
  • Page 859 Parameters 9.2 Parameter list Note The upper envelope curve is defined by p2185, p2187 and p2189. p2186[0...n] Load monitoring torque threshold 1 lower / M_thresh 1 lower   Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn.
  • Page 860 Parameters 9.2 Parameter list Description: Sets the speed/torque envelope curve for load monitoring. Dependency: The following applies: p2189 > p2190 See also: p2184, p2190 See also: A07926 Note The upper envelope curve is defined by p2185, p2187 and p2189. p2190[0...n] Load monitoring torque threshold 3 lower / M_thresh 3 lower  ...
  • Page 861 Parameters 9.2 Parameter list Value: Monitoring switched out   Monitoring torque and load drop   Monitoring speed and load drop   Monitoring load drop   Monitoring pump and load failure   Monitoring fan and load failure Dependency: See also: p2182, p2183, p2184, p2185, p2186, p2187, p2188, p2189, p2190, p2192, r2198, p3230, p3231, p3232 See also: A07891, A07892, A07893, F07894, F07895, F07896, F07898, A07920, A07921, A07922, F07923, F07924, F07925, F07936 Note...
  • Page 862 The threshold value is set in p2172 and the delay time in p2173. For bit 11: The threshold value is set in p2179 and the delay time in p2180. For bit 13: Only for internal Siemens use. r2198.4...12 CO/BO: Status word monitoring 2 / ZSW monitor 2  ...
  • Page 863 Parameters 9.2 Parameter list Bit array: Signal name 1 signal 0 signal   |n_act| < speed threshold value 3 8010   f or n comparison value reached or exceeded 8010   Speed setpoint - actual value deviation in tolerance t_on 8011  ...
  • Page 864 Parameters 9.2 Parameter list p2203[0...n] CO: Technology controller fixed value 3 / Tec_ctr fix val 3   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: PERCENT Dyn. index: DDS, p0180 Unit group: 9_1 Unit selection: p0595 Function diagram: 7950, 7951 Min: Max:...
  • Page 865 Parameters 9.2 Parameter list p2207[0...n] CO: Technology controller fixed value 7 / Tec_ctr fix val 7   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: PERCENT Dyn. index: DDS, p0180 Unit group: 9_1 Unit selection: p0595 Function diagram: 7950 Min: Max:...
  • Page 866 Parameters 9.2 Parameter list p2211[0...n] CO: Technology controller fixed value 11 / Tec_ctr fix val 11   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: PERCENT Dyn. index: DDS, p0180 Unit group: 9_1 Unit selection: p0595 Function diagram: 7950 Min: Max:...
  • Page 867 Parameters 9.2 Parameter list p2215[0...n] CO: Technology controller fixed value 15 / Tec_ctr fix val 15   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: PERCENT Dyn. index: DDS, p0180 Unit group: 9_1 Unit selection: p0595 Function diagram: 7950 Min: Max:...
  • Page 868 Parameters 9.2 Parameter list p2223[0...n] BI: Technology controller fixed value selection bit 3 / Tec_ctrl sel bit 3   Access level: 3 Calculated: - Data type: Unsigned32 / Binary Can be changed: T Scaling: - Dyn. index: CDS, p0170 Unit group: - Unit selection: - Function diagram: 7950, 7951 Min:...
  • Page 869 Parameters 9.2 Parameter list   Ramp-function generator always active Dependency: See also: r2231, p2240 Note For bit 00: 0: The setpoint for the motorized potentiometer is not saved and after ON is entered using p2240. 1: The setpoint for the motorized potentiometer is saved and after ON is entered using r2231. In order to save in a non- volatile fashion, bit 03 should be set to 1.
  • Page 870 Parameters 9.2 Parameter list p2236[0...n] BI: Technology controller motorized potentiometer lower setpoint / Tec_ctrl mop lower   Access level: 3 Calculated: - Data type: Unsigned32 / Binary Can be changed: T Scaling: - Dyn. index: CDS, p0170 Unit group: - Unit selection: - Function diagram: 7954 Min: Max:...
  • Page 871 Parameters 9.2 Parameter list p2247[0...n] Technology controller motorized potentiometer ramp-up time / Tec_ctr mop t_r-up   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: 7954 Min: Max:...
  • Page 872 Parameters 9.2 Parameter list p2252 Technology controller configuration / Tec_ctrl config   Access level: 3 Calculated: CALC_MOD_ALL Data type: Unsigned16 Can be changed: T, U Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting: 0000 0000 0000 0000 bin Description:...
  • Page 873 Parameters 9.2 Parameter list Description: Sets the signal source for the setpoint 1 of the technology controller. Dependency: See also: p2254, p2255 p2254[0...n] CI: Technology controller setpoint 2 / Tec_ctrl setp 2   Access level: 3 Calculated: - Data type: Unsigned32 / FloatingPoint32 Can be changed: T, U Scaling: PERCENT...
  • Page 874 Parameters 9.2 Parameter list Dependency: See also: p2257 Note The ramp-down time is referred to 100 %. r2260 CO: Technology controller setpoint after ramp-function generator / Tec_ctr set aftRFG   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: PERCENT Dyn.
  • Page 875 Parameters 9.2 Parameter list p2265 Technology controller actual value filter time constant / Tec_ctrl act T   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 7958 Min: Max:...
  • Page 876 Parameters 9.2 Parameter list Note For 100%, the actual value is not changed. p2270 Technology controller actual value function / Tec_ctr ActVal fct   Access level: 3 Calculated: - Data type: Integer16 Can be changed: T, U Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 7958...
  • Page 877 Parameters 9.2 Parameter list r2273 CO: Technology controller system deviation / Tec_ctrl sys_dev   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: PERCENT Dyn. index: - Unit group: 9_1 Unit selection: p0595 Function diagram: 7958 Min: Max: Factory setting: - [%]...
  • Page 878 Parameters 9.2 Parameter list p2286[0...n] BI: Hold technology controller integrator / Tec_ctr integ hold   Access level: 3 Calculated: - Data type: Unsigned32 / Binary Can be changed: T Scaling: - Dyn. index: CDS, p0170 Unit group: - Unit selection: - Function diagram: 7958 Min: Max:...
  • Page 879 Parameters 9.2 Parameter list p2293 Technology controller ramp-up/ramp-down time / Tec_ctr t_RU/RD   Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 7958 Min: Max: Factory setting: 0.00 [s]...
  • Page 880 Parameters 9.2 Parameter list Note In order that the output of the technology controller does not exceed the maximum speed limit, its upper limit p2297 should be connected to the actual maximum speed r1084. p2298[0...n] CI: Technology controller minimum limit signal source / Tec_ctrl min_l s_s  ...
  • Page 881 Parameters 9.2 Parameter list p2306 Technology controller system deviation inversion / Tec_ctr SysDev inv   Access level: 3 Calculated: - Data type: Integer16 Can be changed: T Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 7958 Min: Max: Factory setting:...
  • Page 882 Parameters 9.2 Parameter list p2312 Technology controller Kp adaptation upper value / Kp adapt upper val   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 7959 Min: Max:...
  • Page 883 Parameters 9.2 Parameter list Dependency: See also: p2310, p2311, p2312, p2313, p2314, r2316 Note Kp adaptation is activated with p2252.7 = 1. r2316 CO: Technology controller, Kp adaptation output / Kp adapt outp   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: - Dyn.
  • Page 884 Parameters 9.2 Parameter list p2320 Technology controller Tn adaptation lower starting point / Tn adapt lower pt   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: PERCENT Dyn. index: - Unit group: - Unit selection: - Function diagram: 7959 Min: Max:...
  • Page 885 Parameters 9.2 Parameter list Dependency: The parameter has no effect for p2252 bit 5 = 1 (integrator hold deactivated). See also: r2273 Note Only p2251 = 0: If the output signal of the technology controller reaches a skip band in the speed setpoint channel, then the integral component of the controller is held, if at the same time, the system deviation is lower than the threshold value set here.
  • Page 886 Parameters 9.2 Parameter list r2349.0...13 CO/BO: Technology controller status word / Tec_ctrl status   Access level: 3 Calculated: - Data type: Unsigned32 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 7958 Min: Max: Factory setting: Description:...
  • Page 887 Parameters 9.2 Parameter list Note p2350 = 1 This is the Ziegler-Nichols standard tuning (ZN tuning). In this case, it should involve a response to a step. p2350 = 2 For this tuning, a low overshoot is obtained (O/S). However, it should be faster than option 1. p2350 = 3 For this tuning, a low or no overshoot is obtained.
  • Page 888 Parameters 9.2 Parameter list Note The technology controller must be activated (p2200) and configured (p2251 = 0) in order to use the function. Negative speed setpoints should be excluded. p2371 Closed-loop cascade control configuration / Csc_ctrl config   Access level: 3 Calculated: - Data type: Integer16 Can be changed: T...
  • Page 889 Parameters 9.2 Parameter list   Automatic replacement after absolute operating hours Note For p2372 = 0: Motor selection for switching-in/switching-out follows a fixed sequence and is dependent on the closed-loop cascade control configuration (p2371). For p2372 = 1: Motor selection for switching-in/switching-out is derived from the operating hours counter p2380. When switching-in, the motor with the least operating hours is connected.
  • Page 890 Parameters 9.2 Parameter list p2375 Closed-loop cascade control switch-out delay / Csc_ctrl t_out_del   Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: T, U Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting:...
  • Page 891 Parameters 9.2 Parameter list r2379.0...10 CO/BO: Closed-loop cascade control status word / Csc_ctrl ZSW   Access level: 3 Calculated: - Data type: Unsigned32 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting:...
  • Page 892 Parameters 9.2 Parameter list Description: Limit for the total operating time of external motors. The total operating time of an external motor increases every time it is switched in. p2383 Closed-loop cascade control switch-out sequence / Csc_ctr sw-out seq   Access level: 3 Calculated: - Data type: Integer16 Can be changed: T...
  • Page 893 Parameters 9.2 Parameter list Description: Delay time once the switch-out conditions have been met until the external motor is switched off. The resetting of the corresponding status bit (r2379) for controlling the contactors or the motor starter is delayed by this time, while the main motor ramps up to the switch-out speed (p2378). p2387 Closed-loop cascade control holding time switch-out speed / CscCtr t_hld n_out  ...
  • Page 894 Parameters 9.2 Parameter list p2392 Hibernation mode restart value with technology controller / Hib start w/ tec   Access level: 3 Calculated: Data type: FloatingPoint32 CALC_MOD_LIM_REF Can be changed: T, U Scaling: - Dyn. index: - Unit group: 9_1 Unit selection: p0595 Function diagram: 7038 Min: Max:...
  • Page 895 Parameters 9.2 Parameter list p2395[0...n] Hibernation mode boost speed / Hib mode n_boost   Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: p2000 Dyn. index: DDS, p0180 Unit group: 3_1 Unit selection: p0505 Function diagram: 7038 Min: Max: Factory setting:...
  • Page 896 Parameters 9.2 Parameter list p2398 Hibernation mode operating type / Hib mode op_type   Access level: 3 Calculated: - Data type: Integer16 Can be changed: T, U Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 7038 Min: Max: Factory setting:...
  • Page 897 Parameters 9.2 Parameter list p2900[0...n] CO: Fixed value 1 [%] / Fixed value 1 [%]   Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: PERCENT Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: 1021 Min: Max:...
  • Page 898 Parameters 9.2 Parameter list Dependency: See also: p2900, p2901, p2930 Note The signal sources can, for example, be used to interconnect scalings. p2930[0...n] CO: Fixed value M [Nm] / Fixed value M [Nm]   Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: p2003 Dyn.
  • Page 899 Parameters 9.2 Parameter list p3110 External fault 3 switch-on delay / Ext fault 3 t_on   Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: T, U Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 2546 Min: Max: Factory setting:...
  • Page 900 Parameters 9.2 Parameter list Dependency: See also: r0945, r0947, r0948, r0949, r2109, r2130, r2133, r2136, r3122 Note The buffer parameters are cyclically updated in the background (refer to status signal in r2139). The structure of the fault buffer and the assignment of the indices is shown in r0945. r3121[0...63] Component alarm / Comp alarm  ...
  • Page 901 Parameters 9.2 Parameter list Note The buffer parameters are cyclically updated in the background (refer to status signal in r2139). The structure of the fault buffer and the assignment of the indices is shown in r0945. For bits 20 ... 16: Bits 20, 19, 18, 17, 16 = 0, 0, 0, 0, 0 -->...
  • Page 902 Parameters 9.2 Parameter list Note The buffer parameters are cyclically updated in the background (refer to status signal in r2139). The structure of the alarm buffer and the assignment of the indices is shown in r2122. For bit 12, 11: These status bits are used for the classification of internal alarm classes and are intended for diagnostic purposes only on certain automation systems with integrated SINAMICS functionality.
  • Page 903 Parameters 9.2 Parameter list p3230[0...n] CI: Load monitoring speed actual value / Load monit n_act   Access level: 3 Calculated: - Data type: Unsigned32 / FloatingPoint32 Can be changed: T Scaling: p2000 Dyn. index: CDS, p0170 Unit group: - Unit selection: - Function diagram: 8012, 8013 Min: Max:...
  • Page 904 Parameters 9.2 Parameter list p3235 Phase failure signal motor monitoring time / Ph_fail t_monit   Access level: 4 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting:...
  • Page 905 Parameters 9.2 Parameter list p3320[0...n] Fluid flow machine power point 1 / Fluid_mach P1   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting:...
  • Page 906 Parameters 9.2 Parameter list Description: For the energy-saving display of a fluid-flow machine, a typical flow characteristic P = f(n) with 5 points along the characteristic is required. This parameter specifies the power (P) of point 2 as a [%]. Dependency: See also: r0041, p3320, p3321, p3323, p3324, p3325, p3326, p3327, p3328, p3329 Note The reference value for power and speed is the rated power/rated speed.
  • Page 907 Parameters 9.2 Parameter list p3326[0...n] Fluid flow machine power point 4 / Fluid_mach P4   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting:...
  • Page 908 Parameters 9.2 Parameter list Description: For the energy-saving display of a fluid-flow machine, a typical flow characteristic P = f(n) with 5 points along the characteristic is required. This parameter specifies the speed (n) of point 5 as a [%]. Dependency: See also: r0041, p3320, p3321, p3322, p3323, p3324, p3325, p3326, p3327, p3328 Note The reference value for power and speed is the rated power/rated speed.
  • Page 909 Parameters 9.2 Parameter list p3334 2/3 wire control selection / 2/3 wire select   Access level: 3 Calculated: - Data type: Integer16 Can be changed: T, U Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 2272, 2273 Min: Max: Factory setting:...
  • Page 910 Parameters 9.2 Parameter list Description: Sets the signal source for the limit switch minus. BI: p3343 = 1-signal: Limit switch is inactive. BI: p3343 = 0 signal: Limit switch is active. Dependency: See also: p3340, p3342, r3344 Note For p1113 = 0, the drive traverses with a negative speed setpoint towards the minus limit switch – or for p1113 = 1 with a positive speed setpoint.
  • Page 911 Parameters 9.2 Parameter list Dependency: The "DC link capacitor forming" function can only be executed when commissioning the power unit (p0010 = 2). The function is automatically deactivated (p3380 = 0) once commissioning has been exited (p0010 = 0). Procedure when forming: 1.
  • Page 912 Parameters 9.2 Parameter list Note For bit 00 = 1: The parameter for activation/duration has been set (p3380 > 0) - however, forming has still not been started (p0840 = 0 signal). For bit 01 = 1: The parameter for activation/duration has been set (p3380 > 0) - however, forming has still not been started (p0840 = 0/1 signal).
  • Page 913 Parameters 9.2 Parameter list Dependency: The compound braking current is only activated if the DC link voltage exceeds the threshold value in r1282. Compound braking does not operate in the following cases: - DC braking activated (p1230, r1239). - motor is still not magnetized (e.g. for flying restart). - vector control parameterized (p1300 >= 20).
  • Page 914 Parameters 9.2 Parameter list p3880 BI: ESM activation signal source / ESM act s_s   Access level: 3 Calculated: - Data type: Unsigned32 / Binary Can be changed: T, U Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 7033 Min: Max:...
  • Page 915 Parameters 9.2 Parameter list Note ESM: Essential Service Mode When the essential service mode is activated, the effective speed setpoint is displayed in r1114. For p3881 = 0: The last known setpoint value will be transmitted immediately when the essential service mode is activated. For p3881 = 6: n_act = 0: pulse suppression and switching on inhibited.
  • Page 916 Parameters 9.2 Parameter list p3884 CI: ESM setpoint technology controller / ESM setp tech_ctrl   Access level: 3 Calculated: - Data type: Unsigned32 / FloatingPoint32 Can be changed: T, U Scaling: PERCENT Dyn. index: - Unit group: - Unit selection: - Function diagram: 7033 Min: Max:...
  • Page 917 When calculating motor, open-loop and closed-loop control parameters (such as for p0340 = 1) parameters associated with a selected Siemens catalog motor are not overwritten. If a catalog motor has not been selected (p0300), then the following parameters are reset with p3900 > 0 in order to restore the situation that applied when commissioning the drive for the first time: induction motor: p0320, p0352, p0362 ...
  • Page 918 Parameters 9.2 Parameter list Bit array: Signal name 1 signal 0 signal   Motor/control parameters calculated (p0340 = 1, p3900 > 0) Yes   Motor data identification carried out at standstill (p1910 = 1) Yes   Rotating measurement carried out (p1960 = 1, 2)  ...
  • Page 919 Parameters 9.2 Parameter list   Measurement without control parameter calculation   After motID direct transition into operation   After MotID automatically save results   Estimate cable resistance   Calibrating the output voltage measurement   Only identify circle   Deactivate circle identification  ...
  • Page 920 Parameters 9.2 Parameter list   Wobble U_generation to determine dynamic leakage inductance   Wobble U_generation to determine magnetizing inductance Yes   Alternating U_generate to determine dead-time correction   Alternating U_generate to determine stator resistance   Alternating U_generate to determine rotor time constant  ...
  • Page 921 Parameters 9.2 Parameter list p3950 Service parameter / Serv par   Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: C1, T, U Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting: Description: For service personnel only.
  • Page 922   Parameter download using commissioning software   Reset Control Unit   100: Start initialization   101: Only for internal Siemens use   110: Instantiate Control Unit basis   111: Only for internal Siemens use   112: Only for internal Siemens use  ...
  • Page 923 Wait for fault acknowledge   325: Wait for input of drive type   350: Determine drive type   360: Only for internal Siemens use   370: Wait until p0010 is set to 0   380: Only for internal Siemens use   550: Call conversion functions for parameter  ...
  • Page 924 Parameters 9.2 Parameter list   DI 1 (X9.4, external fault) High   DI 2 (X9.5, Emergency Off category 0) High   DI 3 (X9.6, Emergency Off category 1) High Dependency: See also: r4023 Note DI: Digital Input r4023.0...3 CO/BO: PM330 digital inputs status inverted / PM330 DI stat inv G120XA_USS (PM330) Access level: 3 Calculated: - Data type: Unsigned32...
  • Page 925 Parameters 9.2 Parameter list Dependency: The setpoint for the input signals is specified using p4096. See also: p4096 Note This parameter is not saved when data is backed-up (p0971, p0977). DI: Digital Input p4096 PM330 digital inputs simulation mode setpoint / PM330 DI sim setp G120XA_USS (PM330) Access level: 3 Calculated: - Data type: Unsigned32...
  • Page 926 Parameters 9.2 Parameter list r5389.0...8 CO/BO: Mot_temp status word faults/alarms / Mot_temp ZSW F/A   Access level: 2 Calculated: - Data type: Unsigned16 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 8016 Min: Max: Factory setting:...
  • Page 927 Parameters 9.2 Parameter list Note The hysteresis is 2 K. p5391[0...n] Mot_temp_mod 1/3 fault threshold / F thresh   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: DDS, p0180 Unit group: 21_1 Unit selection: p0505 Function diagram: 8017 Min:...
  • Page 928 Extended copy protection is active   Basic copy protection is active   Trace and measuring functions for diagnostic purposes active Yes   Reserved Siemens Dependency: See also: p7761, p7765, p7766, p7767, p7768 SINAMICS G120XA USS converter Operating Instructions, 12/2024, FW V1.04, A5E44751205B AG...
  • Page 929 Parameters 9.2 Parameter list Note KHP: Know-How Protection For bit 00: Write protection can be activated/deactivated via p7761 on the Control Unit. For bit 01: The know-how protection can be activated by entering a password (p7766 ... p7768). For bit 02: If it has already been activated, know-how protection can be temporarily deactivated by entering the valid password in p7766.
  • Page 930 Parameters 9.2 Parameter list p7763 KHP OEM exception list number of indices for p7764 / KHP OEM qty p7764   Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: T, U Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min:...
  • Page 931 Parameters 9.2 Parameter list Note KHP: Know-How Protection For copy protection, the serial numbers of the memory card and/or Control Unit are checked. The memory card copy protection and preventing data to be traced are only effective when the know-how protection has been activated.
  • Page 932 Parameters 9.2 Parameter list p7768[0...29] KHP password confirmation / KHP passw confirm   Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: T, U Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting: Description:...
  • Page 933 Parameters 9.2 Parameter list   Error when importing, memory card not available   Error when importing, checksum error   Error when importing, no NVRAM data available   Error when importing NOTICE For value = 2, 3: These actions are only possible when pulses are inhibited. Note After the action has been successfully completed, the parameter is automatically set to zero.
  • Page 934 Parameters 9.2 Parameter list r7844[0...2] Memory card/device memory firmware version / Mem_crd/dev_mem FW   Access level: 2 Calculated: - Data type: Unsigned32 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting: Description:...
  • Page 935 Parameters 9.2 Parameter list p8400[0...2] RTC time / RTC time   Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: T, U Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting: Description: Sets and displays the time on the real-time clock in hours, minutes, and seconds.
  • Page 936 Parameters 9.2 Parameter list p8402[0...8] RTC daylight saving time setting / RTC DST   Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: T, U Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting:...
  • Page 937 Parameters 9.2 Parameter list Note The value is 0, if daylight saving time has not been defined using p8402. If it is presently daylight saving time according to what is defined in p8402, then the parameter indicates the time difference between daylight saving time and normal time (p8402[0]). r8404 RTC weekday / RTC weekday  ...
  • Page 938 Parameters 9.2 Parameter list Description: Sets the activation/deactivation of the parameters for timers DTC1, DTC2, DTC3. For p8409 = 0, the following applies: DTC1 parameters p8410, p8411, p8412 are inactive and can be set. Binector output r8413.0 = 0. DTC2 parameters p8420, p8421, p8422 are inactive and can be set. Binector output r8423.0 = 0. DTC3 parameters p8430, p8431, p8432 are inactive and can be set.
  • Page 939 Parameters 9.2 Parameter list Index: [0] = Hour (0 ... 23) [1] = Minute (0 ... 59) Dependency: See also: p8409, p8410, r8413 NOTICE This parameter can only be changed when p8409 = 0. Note DTC: Digital Time Clock (timer) RTC: Real-time clock p8412[0...1] RTC DTC1 off time / RTC DTC1 t_OFF  ...
  • Page 940 Parameters 9.2 Parameter list p8420[0...6] RTC DTC2 weekday of activation / RTC DTC2 day act   Access level: 3 Calculated: - Data type: Integer16 Can be changed: T Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting:...
  • Page 941 Parameters 9.2 Parameter list Description: Sets the switch off time in hours and minutes for time switch 2 (DTC2). BO: r8423 = 0 signal: The condition for the set weekday (p8420) and switch-off time has been fulfilled. Index: [0] = Hour (0 ... 23) [1] = Minute (0 ...
  • Page 942 Parameters 9.2 Parameter list Index: [0] = Monday [1] = Tuesday [2] = Wednesday [3] = Thursday [4] = Friday [5] = Saturday [6] = Sunday Dependency: See also: p8409, p8431, p8432, r8433 NOTICE This parameter can only be changed when p8409 = 0. Note DTC: Digital Time Clock (timer) RTC: Real-time clock...
  • Page 943 Parameters 9.2 Parameter list Note DTC: Digital Time Clock (timer) RTC: Real-time clock r8433.0...1 BO: RTC DTC3 output / RTC DTC3 output   Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min:...
  • Page 944 Parameters 9.2 Parameter list   Reserved r8541 CO: Speed setpoint from the IOP in the manual mode / n_set IOP   Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: p2000 Dyn. index: - Unit group: 3_1 Unit selection: p0505 Function diagram: - Min:...
  • Page 945 Parameters 9.2 Parameter list p8543 CI: Active speed setpoint in the BOP/IOP manual mode / N_act act OP   Access level: 3 Calculated: - Data type: Unsigned32 / FloatingPoint32 Can be changed: T Scaling: p2000 Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min:...
  • Page 946 Parameters 9.2 Parameter list r8571[0...39] Macro Binector Input (BI) / Macro BI   Access level: 4 Calculated: - Data type: Unsigned32 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting: Description: Displays the ACX file saved in the appropriate directory in the non-volatile memory.
  • Page 947 Parameters 9.2 Parameter list   Flash r/w internal Note A change only becomes effective after a POWER ON. The parameter is not influenced by setting the factory setting. p8999 USB functionality / USB Fct   Access level: 4 Calculated: - Data type: Integer16 Can be changed: T Scaling: - Dyn.
  • Page 948 For bit 02, 00: Bit 2/0 = 0/0: No memory card inserted. Bit 2/0 = 0/1: Memory card inserted, but not a SIEMENS memory card. Bit 2/0 = 1/0: Status not possible. Bit 2/0 = 1/1: SIEMENS memory card inserted.
  • Page 949 Unit selection: - Function diagram: - Min: Max: Factory setting: Description: Only for internal Siemens service purposes. Dependency: See also: r9406, r9407 Note All indices from r9406 to r9408 designate the same parameter. r9406[x] parameter number, parameter not accepted r9407[x] parameter index, parameter not accepted...
  • Page 950 Parameters 9.2 Parameter list Note The modified parameters that still need to be saved are internally listed in r9410 ... r9419. r9451[0...29] Units changeover adapted parameters / Unit_chngov par   Access level: 4 Calculated: - Data type: Unsigned32 Can be changed: - Scaling: - Dyn.
  • Page 951 Parameters 9.2 Parameter list r9486 BICO interconnections signal source search first index / BICO s_s srch Idx   Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max:...
  • Page 952 Parameters 9.2 Parameter list Index: [0] = System logbook stage (0: Not active) [1] = COM2/COM1 (0: COM2, 1: COM1) [2] = Activate file write (0: Not active) [3] = Display time stamp (0: Not displayed) [4...7] = Reserved [8] = System logbook file size (stages, each 10 kB) NOTICE Before switching off the Control Unit, ensure that the system logbook is switched out (p9930[0] = 0).
  • Page 953 Min: Max: Factory setting: Description: Diagnostics parameter to display additional information for internal software errors. Note Only for internal Siemens troubleshooting. p11000 BI: Free tec_ctrl 0 enable / Ftec0 enab   Access level: 2 Calculated: - Data type: Unsigned32 / Binary...
  • Page 954 Parameters 9.2 Parameter list   m³/s   ltr/min   m³/min   ltr/h   m³/h   kg/s   kg/min   kg/h   t/min             °F   gallon/s   inch³/s   gallon/min   inch³/min   gallon/h   inch³/h  ...
  • Page 955 Parameters 9.2 Parameter list p11027 Free tec_ctrl 0 unit reference quantity / Ftec0 unit ref   Access level: 1 Calculated: - Data type: FloatingPoint32 Can be changed: T Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting:...
  • Page 956 Parameters 9.2 Parameter list p11057 Free tec_ctrl 0 setpoint ramp-up time / Ftec0 setp t_r-up   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 7030 Min: Max: Factory setting:...
  • Page 957 Parameters 9.2 Parameter list Note The correct setting can be determined as follows: - inhibit free technology controller (p11200 = 0). - increase the motor speed and in so doing, measure the actual value signal (of the free technology controller). - if the actual value increases with increasing motor speed, then deactivate inversion. - if the actual value decreases with increasing motor speed, then activate inversion.
  • Page 958 Parameters 9.2 Parameter list p11071 Free tec_ctrl 0 actual value inversion / Ftec0 act v inv   Access level: 3 Calculated: - Data type: Integer16 Can be changed: T Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 7030 Min: Max: Factory setting:...
  • Page 959 Parameters 9.2 Parameter list p11085 Free tec_ctrl 0 integral time / Ftec0 Tn   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 7030 Min: Max: Factory setting:...
  • Page 960 Parameters 9.2 Parameter list r11094 CO: Free tec_ctrl 0 output signal / Ftec0 out_sig   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: PERCENT Dyn. index: - Unit group: - Unit selection: - Function diagram: 7030 Min: Max: Factory setting:...
  • Page 961 Parameters 9.2 Parameter list p11126 Free tec_ctrl 1 unit selection / Ftec1 unit sel   Access level: 1 Calculated: - Data type: Integer16 Can be changed: C2(5) Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 7030 Min: Max: Factory setting:...
  • Page 962 Parameters 9.2 Parameter list   ft wg   m wg   % r.h.   g/kg     kg/cm² Dependency: Only units of parameters with unit group 9_3 can be changed over using this parameter. See also: p11127 p11127 Free tec_ctrl 1 unit reference quantity / Ftec1 unit ref  ...
  • Page 963 Parameters 9.2 Parameter list p11153 CI: Free tec_ctrl 1 setpoint signal source / Ftec1 setp s_s   Access level: 2 Calculated: - Data type: Unsigned32 / FloatingPoint32 Can be changed: T, U Scaling: PERCENT Dyn. index: - Unit group: - Unit selection: - Function diagram: 7030 Min: Max:...
  • Page 964 Parameters 9.2 Parameter list   Inversion CAUTION If the actual value inversion is incorrectly selected, then the closed-loop control with the technology controller can become unstable and can oscillate! Note The correct setting can be determined as follows: - inhibit free technology controller (p11200 = 0). - increase the motor speed and in so doing, measure the actual value signal (of the free technology controller).
  • Page 965 Parameters 9.2 Parameter list p11171 Free tec_ctrl 1 actual value inversion / Ftec1 act v inv   Access level: 3 Calculated: - Data type: Integer16 Can be changed: T Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 7030 Min: Max: Factory setting:...
  • Page 966 Parameters 9.2 Parameter list p11185 Free tec_ctrl 1 integral time / Ftec1 Tn   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 7030 Min: Max: Factory setting:...
  • Page 967 Parameters 9.2 Parameter list r11194 CO: Free tec_ctrl 1 output signal / Ftec1 out_sig   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: PERCENT Dyn. index: - Unit group: - Unit selection: - Function diagram: 7030 Min: Max: Factory setting:...
  • Page 968 Parameters 9.2 Parameter list p11226 Free tec_ctrl 2 unit selection / Ftec2 unit sel   Access level: 1 Calculated: - Data type: Integer16 Can be changed: C2(5) Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 7030 Min: Max: Factory setting:...
  • Page 969 Parameters 9.2 Parameter list   ft wg   m wg   % r.h.   g/kg     kg/cm² Dependency: Only units of parameters with unit group 9_4 can be changed over using this parameter. See also: p11227 p11227 Free tec_ctrl 2 unit reference quantity / Ftec2 unit ref  ...
  • Page 970 Parameters 9.2 Parameter list p11253 CI: Free tec_ctrl 2 setpoint signal source / Ftec2 setp s_s   Access level: 2 Calculated: - Data type: Unsigned32 / FloatingPoint32 Can be changed: T, U Scaling: PERCENT Dyn. index: - Unit group: - Unit selection: - Function diagram: 7030 Min: Max:...
  • Page 971 Parameters 9.2 Parameter list   Inversion CAUTION If the actual value inversion is incorrectly selected, then the closed-loop control with the technology controller can become unstable and can oscillate! Note The correct setting can be determined as follows: - inhibit free technology controller (p11200 = 0). - increase the motor speed and in so doing, measure the actual value signal (of the free technology controller).
  • Page 972 Parameters 9.2 Parameter list p11271 Free tec_ctrl 2 actual value inversion / Ftec2 act v inv   Access level: 3 Calculated: - Data type: Integer16 Can be changed: T Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 7030 Min: Max: Factory setting:...
  • Page 973 Parameters 9.2 Parameter list p11285 Free tec_ctrl 2 integral time / Ftec2 Tn   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 7030 Min: Max: Factory setting:...
  • Page 974 Parameters 9.2 Parameter list r11294 CO: Free tec_ctrl 2 output signal / Ftec2 out_sig   Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: PERCENT Dyn. index: - Unit group: - Unit selection: - Function diagram: 7030 Min: Max: Factory setting:...
  • Page 975 Parameters 9.2 Parameter list Index: [0] = Runtime group 0 [1] = Runtime group 1 [2] = Runtime group 2 [3] = Runtime group 3 [4] = Runtime group 4 [5] = Runtime group 5 [6] = Runtime group 6 [7] = Runtime group 7 [8] = Runtime group 8 [9] = Runtime group 9 p20030[0...3]...
  • Page 976 Parameters 9.2 Parameter list Description: Setting parameter for the run sequence of instance AND 0 within the runtime group set in p20032. Note The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.
  • Page 977 Parameters 9.2 Parameter list p20038[0...3] BI: AND 2 inputs / AND 2 inputs   Access level: 3 Calculated: - Data type: Unsigned32 / Binary Can be changed: T Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 7210 Min: Max: Factory setting:...
  • Page 978 Parameters 9.2 Parameter list Description: Sets the signal source of input quantities I0, I1, I2, I3 of instance OR 0 of the OR function block. Index: [0] = Input I0 [1] = Input I1 [2] = Input I2 [3] = Input I3 r20047 BO: OR 0 output Q / OR 0 output Q  ...
  • Page 979 Parameters 9.2 Parameter list r20051 BO: OR 1 output Q / OR 1 output Q   Access level: 3 Calculated: - Data type: Unsigned32 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 7212 Min: Max: Factory setting:...
  • Page 980 Parameters 9.2 Parameter list Description: Display parameter for binary quantity Q = I0 | I1 | I2 | I3 of instance OR 2 of the OR function block. p20056 OR 2 runtime group / OR 2 RTG   Access level: 3 Calculated: - Data type: Integer16 Can be changed: T...
  • Page 981 Parameters 9.2 Parameter list p20064 XOR 0 runtime group / XOR 0 RTG   Access level: 3 Calculated: - Data type: Integer16 Can be changed: T Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 7214 Min: Max: Factory setting: 9999...
  • Page 982 Parameters 9.2 Parameter list Description: Setting parameter for the runtime group in which the instance XOR 1 of the XOR function block is to be called. Value: Runtime group 4   Runtime group 5   Runtime group 6   9999: Do not calculate p20069 XOR 1 run sequence / XOR 1 RunSeq  ...
  • Page 983 Parameters 9.2 Parameter list p20073 XOR 2 run sequence / XOR 2 RunSeq   Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: T Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 7214 Min: Max: Factory setting: 32000...
  • Page 984 Parameters 9.2 Parameter list p20082 BI: NOT 1 input I / NOT 1 input I   Access level: 3 Calculated: - Data type: Unsigned32 / Binary Can be changed: T Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 7216 Min: Max:...
  • Page 985 Parameters 9.2 Parameter list r20087 BO: NOT 2 inverted output / NOT 2 inv output   Access level: 3 Calculated: - Data type: Unsigned32 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 7216 Min: Max: Factory setting:...
  • Page 986 Parameters 9.2 Parameter list r20095 CO: ADD 0 output Y / ADD 0 output Y   Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: - Scaling: PERCENT Dyn. index: - Unit group: - Unit selection: - Function diagram: 7220 Min: Max: Factory setting:...
  • Page 987 Parameters 9.2 Parameter list Description: Display parameter for the output quantity Y = X0 + X1 + X2 + X3 of instance ADD 1 of the adder. p20100 ADD 1 runtime group / ADD 1 RTG   Access level: 3 Calculated: - Data type: Integer16 Can be changed: T Scaling: -...
  • Page 988 Parameters 9.2 Parameter list Description: Setting parameter for the runtime group in which instance SUB 0 of the subtractor is to be called. Value: Runtime group 5   Runtime group 6   9999: Do not calculate p20105 SUB 0 run sequence / SUB 0 RunSeq  ...
  • Page 989 Parameters 9.2 Parameter list p20109 SUB 1 run sequence / SUB 1 RunSeq   Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: T Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 7220 Min: Max: Factory setting: 32000...
  • Page 990 Parameters 9.2 Parameter list Description: Setting parameter for the run sequence of instance MUL 0 within the runtime group set in p20112. Note The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.
  • Page 991 Parameters 9.2 Parameter list p20118[0...1] CI: DIV 0 inputs / DIV 0 inputs   Access level: 3 Calculated: - Data type: Unsigned32 / FloatingPoint32 Can be changed: T Scaling: PERCENT Dyn. index: - Unit group: - Unit selection: - Function diagram: 7222 Min: Max: Factory setting:...
  • Page 992 Parameters 9.2 Parameter list Description: Setting parameter for the run sequence of instance DIV 0 within the runtime group set in p20121. Note The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.
  • Page 993 Parameters 9.2 Parameter list p20127 DIV 1 run sequence / DIV 1 RunSeq   Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: T Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 7222 Min: Max: Factory setting: 32000...
  • Page 994 Parameters 9.2 Parameter list p20142 MFP 0 run sequence / MFP 0 RunSeq   Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: T Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 7230 Min: Max: Factory setting: 32000...
  • Page 995 Parameters 9.2 Parameter list p20147 MFP 1 run sequence / MFP 1 RunSeq   Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: T Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 7230 Min: Max: Factory setting: 32000...
  • Page 996 Parameters 9.2 Parameter list p20162 PDE 0 run sequence / PDE 0 RunSeq   Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: T Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 7232 Min: Max: Factory setting: 32000...
  • Page 997 Parameters 9.2 Parameter list p20167 PDE 1 run sequence / PDE 1 RunSeq   Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: T Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 7232 Min: Max: Factory setting: 32000...
  • Page 998 Parameters 9.2 Parameter list p20172 PDF 0 run sequence / PDF 0 RunSeq   Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: T Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 7233 Min: Max: Factory setting: 32000...
  • Page 999 Parameters 9.2 Parameter list p20177 PDF 1 run sequence / PDF 1 RunSeq   Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: T Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 7233 Min: Max: Factory setting: 32000...
  • Page 1000 Parameters 9.2 Parameter list p20192 RSR 0 run sequence / RSR 0 RunSeq   Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: T Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 7240 Min: Max: Factory setting: 7999...
  • Page 1001 Parameters 9.2 Parameter list p20197 RSR 1 run sequence / RSR 1 RunSeq   Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: T Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 7240 Min: Max: Factory setting: 7999...
  • Page 1002 Parameters 9.2 Parameter list p20222 NSW 0 run sequence / NSW 0 RunSeq   Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: T Scaling: - Dyn. index: - Unit group: - Unit selection: - Function diagram: 7250 Min: Max: Factory setting: 32000...

Table of Contents