Download Print this page

Mounting Conditions; Storage Conditions - Panasonic EZAEG 3W Series Manual

Esd suppressor / high withstanding products

Advertisement

 Circuit design and circuit board design
■ To prevent a case where an excessively large load the suppressor cannot handle, such as surge larger than
the ESD energy, is applied to the suppressor, make sure to evaluate and confirm the operation of the suppressor
when the suppressor is incorporated in your product. Applying a voltage larger than the rated voltage to the
suppressor may impair its performance and reliability. Make sure to use the product with a voltage equal to or
lower than the rated voltage. The product warranty does not cover usage where an excessively large load, such
as a surge or pulse current, is applied to the suppressor.
■ Be careful that unusual stress caused by an excessive bend of the printed board is not applied to the resistor. Design the
circuit structure such that the resistor is not close to a perforated line for board splitting or on a line with sizable holes
bored on the board.
■ When a different component is mounted on the board where the resistor has been soldered, be careful that the board
does not bend excessively. If necessary, provide the board with backup pins (support pins) to keep it straight.
■ Avoid manual board splitting. Use a jig, etc., to break the board so that it does not bend excessively when split apart.

 Mounting conditions

■ When the product is used under mounting conditions departing from mounting conditions specified in our specification
sheet, the product may be exposed to unexpected stress to fail. Be careful to avoid such a case. When mounting the
suppressor (except a high tolerance dose ESD suppressor) on a printed board, set the suppressor's front and back
surfaces in the direction indicated by the tape. Make sure to evaluate and confirm the operation of the suppressor
incorporated in your product and determine whether the suppressor is usable as a component of the product.
■ Set soldering conditions for the resistor within the recommended soldering conditions specified by our company. Any time,
soldering condition departing from the specified soldering condition, such as a high peak temperature or a long heating
may impair the performance/reliability of the resistor. Note that the specified soldering conditions indicate conditions
under which degradation of the resistor characteristics does not occur but do not indicate conditions under which stable
soldering can be performed. Check and set individual conditions under which stable soldering can be performed.
■ Heat the resistor in advance so that a difference between the soldering temperature and the temperature of the resistor
surface is reduced to 100 ℃ or lower. When dipping the soldered resistor in a solvent, etc., to cool the resistor rapidly,
ensure that the temperature difference between the resistor and the solvent is 100 ℃ or lower during the dipping. 
■ When soldering the resistor using a soldering iron, apply hot air, etc., to the resistor to heat it sufficiently in advance and
then solder the resistor without bringing the soldering iron tip into contact with the product. If the temperature of the
soldering iron tip is high, finish the soldering work quickly (within 3 seconds when the temperature of the soldering iron
tip is 350 ℃ or lower). In the case of a fixed resistor with low resistance, the resistor may fail to offer the exactly intended
resistance value because of the variation in the solder volume, etc. Make sure to confirm the resistance value of the
resistor in the actual circuit configuration.
■ Soldering the resistor with too much solder or too little solder results in the poor reliability of the solder connection of the
resistor. Use the proper volume of solder in the soldering process. Sufficiently check for the volume of solder used.
■ Soldering with high bond strength or special property solder may affect the quality of the resistor. Do not use such solder.
■ Use rosin-based solder flux. When using highly active solder flux made mainly of halogen (chlorine, bromine, etc.), flux
residues may affect the performance and reliability of the resistor. Check the effects of flux residues before using the solder
flux. Do not use highly acidic flux, water-soluble flux, or flux containing fluoride ions. When solder flux sticks to the resistor
after the soldering process, the activation energy of the flux may corrode the resistor and cause it to fail. Prevent solder flux
from sticking to the resistor.

 Storage conditions

Keeping the product in the following environments or conditions may lead to degradation of its performance, solderability, etc.
Do not keep the product in the following environments.
(1) Stored in a place where the product is heavily exposed to sea breeze or a corrosive gas, such as Cl
or NO
.
X
(2) Stored in a place where the product is exposed to direct sunlight.
(3) Stored in a place where a temperature condition of 5 ℃ to 35 ℃ and a relative humidity condition of 45% to 85% cannot
be maintained.
(4) Kept in storage for more than one year from the delivery date (when the product is kept in conditions excluding any of
the environments (1) to (3)).
Arrow.com.
Downloaded from
Matters to Be Observed When Using This Product
, H
S, NH
, SO
,
2
2
3
2
30-Jun-23

Advertisement

loading

This manual is also suitable for:

Ezaeg3w11av