DANGERS, WARNINGS AND NOTES OF CAUTION THIS MANUAL IS SUPPLIED AS AN INTEGRAL AND ESSENTIAL PART OF THE PRODUCT AND MUST BE DELIVERED TO THE USER. INFORMATION INCLUDED IN THIS SECTION ARE DEDICATED BOTH TO THE USER AND TO PERSONNEL FOLLOWING PRO- DUCT INSTALLATION AND MAINTENANCE.
DIRECTIVES AND STANDARDS do not leave the equipment exposed to weather (rain, sun, etc.) unless expressly required to do so; Gas burners European directives: do not allow children or inexperienced persons to use equipment; - Directive 2009/142/EC - Gas Appliances; The unit input cable shall not be replaced by the user.
-EN 55014-1Electromagnetic compatibility - Requirements for household appliances, electric tools and similar apparatus. -UNI EN 676 (Gas Burners; -CEI EN 60335-1(Household and similar electrical appliances - Safety. Part 1: General requirements; - EN 50165 Electrical equipment of non-electric appliances for household and similar purposes.
Page 5
Type KPBY72 Model MH. PR. (1) BURNER TYPE KPBY70 - KPBY72 M - Natural gas N - Heavy oil, viscosity <= 50cSt (7° E) @ 50° C E - Heavy oil, viscosity <= 110cSt (15°E) @ 50° C (2) FUEL D - Heavy oil, viscosity <= 400cSt (50°...
PART I: SPECIFICATIONS 1.1 Technical specifications Burners are identified by burner type and model. Burner model identification is described as follows. BURNER TYPE KPBY70 KPBY72 Output min - max kW 270 - 970 290 - 1530 Fuel Natural gas - Heavy oil...
Data are referred to standard conditions: atmospheric pressure at 1013mbar, ambient temperature at 15°C. Performance Curves KPBY70 KPBY72 To get the input in kcal/h, multiply value in kW by 860. Data are referred to standard conditions: atmospheric pressure at 1013mbar, ambient temperature at 15°C NOTE: The performance curve is a diagram that represents the burner performance in the type approval phase or in the laboratory tests, but does not represent the regulation range of the machine.
Page 12
PART I: SPECIFICATIONS 1.5 Pressure in the Network / gas flow rate curves KPBY70 KPBY72 Caution: the gas rate value is quoted on the x-axis, the related network pressure is quoted on the y-axis (pressure value in the combustion chamber is not included). To know the minimum pressure at the gas train inlet, necessary to get the requested gas rate, add the pressure value in the combustion chamber to the value read on the y-axis.
Page 13
PART II: INSTALLATION PART II: INSTALLATION 2.0 MOUNTING AND CONNECTING THE BURNER ATTENTION! The burner must be installed in compliance with the regulations in force. In the case of oil feeding plants, please refer to the chapter “recommendations to design heavily oil feeding plants” 2.1 Matching the burner to the boiler The burners described in this manual have been tested with combustion chambers that comply with EN676 regulation and whose dimensions are described in the diagram .
Page 14
PART II: INSTALLATION Keys Burner Fixing nut Washer Sealing gasket Stud bolt Blast tube 2.3 Handling the burner ATTENTION! The lhandling operations must be carried out by specialised and trained personnel. If these opera- tions are not carried out correctly, the residual risk for the burner to overturn and fall down still persists. To move the burner, use means suitable to support its weight (see paragraph “Technical specifications”).
PART II: INSTALLATION 3.0 GAS TRAIN CONNECTIONS The diagrams show the components of the gas trai included in the delivery and which must be fitted by the installer.The diagrams are in compliance with the current laws. ATTENTION: BEFORE EXECUTING THE CONNECTIONS TO THE GAS PIPE NETWORK, BE SURE THAT THE MANUAL CUTOFF VALVES ARE CLOSED.
PART II: INSTALLATION 3.3 MULTIBLOC DUNGS MB-DLE 405..412 Mounting 1. Mount flange onto tube lines: use appropriate sealing agent (see Fig. 7); 2. insert MB-DLE: note position of O rings (see Fig. 7); 3. tighten screws A, B, C and D (Fig. 5 - Fig. 6), accordind to the mounting positions (Fig. 8); 4.
Page 17
PART II: INSTALLATION Caution: the SKP2 diaphragm D must be vertical (see Fig. 16). WARNING: removing the four screws BS causes the device to be unserviceable! SKP1. SKP2. 7631z05/0101 SIEMENS VGD..MOUNTING POSITIONS Fig. 14 Fig. 15 Fig. 13 (spring) (cap) Fig.
Page 18
PART II: INSTALLATION 4.0 OIL TRAIN CONNECTIONS The pump provided with the burner must be installed according to the hydraulic diagram. Kral KF-10 pumps Capacity: 500 l/h Power consumption: 0.37 kW Speed: 1500 rpm Max outlet pressure: 10bar Max inlet pressure: 2bar NPSH: 2 mWC For further details see the manifacturer documentation.
Page 19
PART II: INSTALLATION Fig. 17 - Kral Fig. 18 - Cucchi 4.3 Connecting the compressed air hoses To connect the compressed air supply, refer to the following pictures Flow governor with filter Oil heaters connections To connect the flexible oil hoses to the pump, proceed as follows, according to the pump provided: remove the closing nuts H (on the heater) and R (on the oil pressure governor) of the inlet and return connections;...
Page 20
PART II: INSTALLATION Hydraulic connections to the combustion head ATTENTION:do not reverse gas and oil connection! Gas (pilot) Compressed Air...
PART II: INSTALLATION Electrical connections Respect the basic safety rules. make sure of the connection to the earthing system. do not reverse the phase and neutral connections. fit a differential thermal magnet switch adequate for connection to the mains. ATTENTION: before executing the electrical connections, pay attention to turn the plant’s switch to OFF and be sure that the burner’s main switch is in 0 position (OFF) too.
Page 22
PART II: INSTALLATION 5.3 Connecting the oil heating resistors 2.4 - 4.5 kW 8 - 12 kW 400 V 230V 400 V 230V Fig. 20 Fig. 21 18 - 24 kW 400 V 230V Fig. 22...
Page 23
PART II: INSTALLATION 6.0 Recommendations to design heavy oil feeding plants This paragraph is intended to give some suggestions to make feeding plants for heavy oil burners. To get a regular burner operation, it is very important to design the supplying system properly. Here some suggestions will be mentioned to give a brief description. The term “heavy oil”...
7.0 HYDRAULIC DIAGRAMS Fig. 23 - Hydraulic diagram 3ID0024 BURNER 2SEE THE BURN- BURNER 1SEE THE BURNER P&ID ER P&ID HEATING MEDIUM INLET HEATING MEDIUM OUTLET PRESSURE GOV- ERNOR UNIT DAILY TANK UNIT OIL PUMPING UNIT HEATING MEDIUM INLET MAIN TANK INLET HEATING MEDIUM OUTLET...
Page 25
3ID0024 KEYS OIL TRAIN Main tank OIL PUMPING UNIT Manual valve Filter Pump coupled to electrical motor Safety valve One-way valve Manual valve Pressure gauge High pressure switch - PO MAX DAILY TANK Daily tank Heating device Electrical resistor Pressure gauge High pressure switch - PO MAX Low pressure switch - PO MIN Low thermostat - TCN...
Page 26
PART II: INSTALLATION 7.1 Pipe heating system Pipe heating system must be provided, that is a system to heat pipes and plant components to mantain the viscosity in the pumping lim- its. Higher the oil viscosity and lower the ambient temperature, more necessary the pipe heating system. 7.2 Inlet minimum pressure of the pump (both for supplying system and burner) A very low pressure leads to cavitation (signalled by its peculiar noise): the pump manifacturer declares the minimum value.
Page 28
PART II: INSTALLATION VISCOSITY vs TEMPERATURE DIAGRAM FOR COMBUSTIBLE OILS 1000 PUMPING LIMIT TEMPERATURE (°C) LIGHT OIL 1,3°E AT 20°C HEAVY OIL 2,4°E AT 50°C HEAVY OIL 4°E AT 50°C HEAVY OIL 7,5°E AT 50°C HEAVY OIL 10°E AT 50°C HEAVY OIL 13°E AT 50°C HEAVY OIL 22°E AT 50°C HEAVY OIL 50°C...
Page 29
PART II: INSTALLATION Indicative diagram showing the oil temperature at burner pump inlet vs. oil viscosity Example: if the oil has a 50°E @ 50°C viscosity, the oil temperature at the pump inlet should be 80°C (see diagram). OIL TEMPERATURE FOR PUMP FEEDING TEMPERATURE (°C) Fig.
PART III: OPERATION PART III: OPERATION LIMITATIONS OF USE: PLEASE REFER TO THE CHAPTER “WARNINGS” AT THE BEGINNING OF THIS MANUAL. 9.0 PRELIMINARY OPERATIONS Before starting up the burner, make sure that the return pipe to the tank is not obstructed. Any obstruction would cause the pump seal to break.
Page 31
PART III: OPERATION 9.2 Oil thermostat adjustment Progressive and fully modulanting oil burners are equipped with electronic multi-thermostat Danfoss MCX, whose operation is con- trolled by thyristor. (for details refer to the attached technical documentation) Fig. 27 - Danfoss MCX Fig.
Page 32
PART III: OPERATION 9.3 Oil Flow Rate Settings The light oil flow rate can be adjusted choosing a pneumatic nozzle that suits the boiler/utilisation output and setting the delivery and return pressure values according to the ones quoted on the following charts. FLUIDICS 12AG 70Kg/h Давление...
Page 33
PART III: OPERATION FLUIDICS 12AG 90Kg/h Давление воздуха/пара [бар] указано в начале кривых Топливо Расход воздуха/пара Давление топлива [бар]...
Page 34
PART III: OPERATION Nozzle - Pressure fuel flow diagram OIL PRESSURE OIL PRESSURE AFTER OIL AFTER METERING VALV VISCOSITY BURNER PUMP AT 50 °C °cSt (°E) °C < 50 (7) > 50 (7) < 110 (15) > 110 (15) < 400 (50) >...
Page 35
PART III: OPERATION 10.0 OPERATION ATTENTION: before starting the burner up, be sure that the manual cutoff valves are open and check that the pressure upstream the gas train complies the value quoted on paragraph “Technical specifications”. Be sure that the mains switch is closed. h min s High flame mode indicating light Low flame mode indicating light...
PART III: OPERATION 11.0 AIR FLOW AND FUEL ADJUSTMENT 11.1 Adjustments - brief description To change the burner setting during the testing in the plant, follow the next procedure. Adjust the air and gas flow rates at the maximum output (“high flame”) first, by means of the air damper and the adjusting cam respec- tively.
Page 37
PART III: OPERATION Key A Used to adjust the “air” actuator position (Air): While pressing the A key, the “air” actuator position can be changed by means of the + and - keys. Key F + A While pressing the two keys contemporarly, the code message will appear: by entering the proper password it is possible to access the Service mode.
PART III: OPERATION The display will show these data: Lock+unlock codes Flame Open valves Ignition transformers energised Fan motor energised Oil pre-heater energised Plant heat request Parametere setting mode Info mode Service mode Closing actuator Opening actuator Unit measure The display will show these data: 11.3 Setting menu The setting menu is divided into different blocks: Bloc.
Page 39
PART III: OPERATION 11.4 PHASES LIST During operation, the following program phases are shown. The meaning for each phase is quoted in the table below Phase Funzione Function Ph00 Fase blocco Lockout phase Ph01 Fase di sicurezza Safety phase Ph10 t10 = tempo raggiungimento posizione riposo t10 = home run Ph12...
PART III: OPERATION The burner and consequently the LMV2x.. are factory set; the air and fuel curves as set as well. 11.6 Info level To enter the Info level, proceed as follows: in any menu position, press keys + and - at the same time, then the program will start again: the display will show OFF. until the display will show InFo, Press the enter (InFo) key then il will show the first code (167) flashing, on the right side it will show the data entered.
Page 41
PART III: OPERATION The Info level shows some basic parameters as: Parameter Description Cubic meters of fule (resettable) Operating hours (resettable) Device operating hours Burners start-ups (resettable) Total number of start-ups Burner number (i.e. serial number) Software version Software date Device serial number Parameter set preassignment: Customer code Parameter set preassignment: Version...
PART III: OPERATION If a message like the one below is shown during operation, it means that the burner is locked out and the Errore code is shown (in the example “error code:4”); this message is alternating with another message Diagnostic code (in the example “diagnostic code:3”).
Page 43
PART III: OPERATION Parameter Description Flame intensity % output, if set = automatic operation Actuators position, 00=combustibile; 01= aria Lock-outs number 701..725 Lock-outs History (see chapter 23 in the LMV2x manual) the first parameter will be “954”: the percentage of flame is shown on the right. By pressinf + or - it is possible to scroll up/down the parameter list.
Page 44
PART III: OPERATION 11.8 Calibration of air pressure switch To calibrate the air pressure switch, proceed as follows: Remove the transparent plastic cap. Once air and fuel setting have been accomplished, startup the burner. During the pre-purge phase o the operation, turn slowly the adjusting ring nut VR in the clockwise direction (to increase the adju- sting pressure) until the burner lockout, then read the value on the pressure switch scale and set it to a value reduced by 15%.
PART III: OPERATION 11.12 Suntec TV Pressure governor Pressure adjustment Remove cap-nut 1 and the gasket 2, unscrew the lock nut 4. To increase pressure, twist adjusting screw 3 clockwise. To decrease the pressure, twist screw counterclockwise. Tight the lock nut 4, refit the gasket 2 and the cap nut 1.
Page 46
PART III: OPERATION Multibloc MB-DLE VS T(VR) The multibloc unit is a compact unit consisting of two valves, gas pressure switch, pres- sure stabilizer and gas filter. The valve is adjusted by means of the RP regulator after slackening the locking screw VB by a number of turns.
PART IV: MAINTENANCE PART IV: MAINTENANCE At least once a year carry out the maintenance operations listed below. In the case of seasonal servicing, it is recommended to carry out the maintenance at the end of each heating season; in the case of continuous operation the maintenance is carried out every 6 months.
Page 48
PART IV: MAINTENANCE 12.3 Removing the filter in the MULTIBLOC DUNGS MB-DLE 415 - 420 B01 1” 1/2 - 2” Check the filter at least once a year! Change the filter if the pressure difference between pressure connection 1 and 2 (Fig. 35-Fig. 36) Δp> 10 mbar. Change the filter if the pressure difference between pressure connection 1 and 2 (Fig.
Page 49
PART IV: MAINTENANCE 12.4 Replacing the spring in the gas valve group To replace the spring in the gas valve group,proceed as follows: Carefully twist the protection cap 1 and the O-ring 2. remove the “set value” spring 3 from housing 4. Replace spring 3.
Page 50
PART IV: MAINTENANCE 12.5 Electrodes Adjustment Important Note: Check the ignition and detection electrodes after removing/adjusting the combustion head. ATTENTION: avoid the ignition and detection electrodes to contact metallic parts (blast tube, head, etc.), other- wise the boiler’s operation would be compromised. Check the electrodes position after any intervention on the combustion head.
PART IV: MAINTENANCE 12.7 Checking the detection current To check the detection current follow the diagram on Fig. 39. If the signal is less than the value indicated, check the position of the detection electrode or detector, the electrical contacts and, if necessary, replace the electrode or the detector. Device Flame detector Minimum detection signal...
PART IV: MAINTENANCE 13.0 WIRING DIAGRAMS Refer to the attached wiring diagrams. WARNING 1 - Electrical supply 230V 50Hz 1 a.c./400V 50Hz 3N a.c. 2 - Do not reverse phase with neutral 3 - Ensure burner is properly earthed...
Page 56
C.I.B. UNIGAS S.p.A. Via L.Galvani, 9 - 35011 Campodarsego (PD) - ITALY Tel. +39 049 9200944 - Fax +39 049 9200945/9201269 web site: www.cibunigas.it - e-mail: cibunigas@cibunigas.it Note: specifications and data subject to change. Errors and omissions exceptd.
Page 57
AZL2x - LMV2x/3x Burner Management System Service manual 03/2023 M12916CD Rev. 3.4...
Page 58
INDEX MICROPROCESSOR CONTROLLED SYSTEM..........................6 User interface....................................6 Parameters level (heating engineer)............................... 8 Setting menu....................................9 Block 000: Internal Parameter ..............................10 Block 100: General information..............................10 Block 200: Burner control................................13 Block 400: Setting air/fuel ratio curves............................25 Block 500: Air/fuel ratio control ..............................26 Block 600: Actuators ..................................
DANGERS, WARNINGS AND NOTES OF CAUTION THIS MANUAL IS SUPPLIED AS AN INTEGRAL AND ESSENTIAL PART OF THE PRODUCT AND MUST BE DELIVERED TO THE USER. INFORMATION INCLUDED IN THIS SECTION ARE DEDICATED BOTH TO THE USER AND TO PERSONNEL FOLLOWING PRO- DUCT INSTALLATION AND MAINTENANCE.
Page 60
DIRECTIVES AND STANDARDS do not leave the equipment exposed to weather (rain, sun, etc.) unless expressly required to do so; Gas burners European directives: do not allow children or inexperienced persons to use equipment; - Directive 2009/142/EC - Gas Appliances; The unit input cable shall not be replaced by the user.
-EN 55014-1Electromagnetic compatibility - Requirements for household appliances, electric tools and similar apparatus. -UNI EN 676 (Gas Burners; -CEI EN 60335-1(Household and similar electrical appliances - Safety. Part 1: General requirements; - EN 50165 Electrical equipment of non-electric appliances for household and similar purposes.
Page 62
MICROPROCESSOR CONTROLLED SYSTEM The control system is made of the Siemens LMV central unit that performs all the burner control functions and of the Siemens AZL local programming unit that interfaces the system with the user. Keys Burner AZL2.. Air actuator Fuel actuator LMV2..
Page 63
The keys functions are the following: Key F Used to adjust the “fuel” actuator position (Fuel): : While pressing the F key, the “fuel” actuator position can be changed by means of the + and - keys. Key A Used to adjust the “air” actuator position (Air): While pressing the A key, the “air”...
Page 65
Setting menu The seeting menu is divided into different blocks: Bloc. Descrizione Description Password Internal parameters OEM / Service Informazioni generali General OEM / Service / Info Controllo bruciatore Burner control OEM / Service Controllo bruciatore (solo LMV26) Burner control (LMV26 only) OEM / Service Curve rapporto Ratio curves...
Page 66
Block 000: Internal Parameter Param. Descrizione Description Password Password livello assistenza (ingegnere del Password heating engineer (4 characters) calore) Password livello OEM (costruttore del brucia- Password OEM (5 characters) tore) Start backup / restore via AZL2.../ PC sof- tware (set parameter to 1) Index 0: Create backup Index 1: Execute restore Error dia- Start backup/restore via AZL2x/PC gnostics via negative values...
Page 67
Frequenza di rete Mains frequency 0 = 50 Hz 0 = 50 Hz Service / Info 1 = 60 Hz 1 = 60 Hz Luminosità display Display brightness Service / Info Tempo dopo il quale, se non viene premuto nessun tast il software esce dalla modalita Timeout for menu operation (default value = programmazione (valore fabbrica = 60min - 60min - range: 10 - 120 min)
Page 68
Numero totale di partenze (non azzerabile) Total number of startups Service / Info Volume combustibile (azzerabile da OEM) Fuel volume (resettable by OEM) Service / Info Fuel 1(secondo combustibile)Ore di eserci- Fuel 1: Operation hours resettable Service / Info zio (azzerabile da Service) Fuel 1 (secondo combustibile) Numero di Fuel 1: Number of startups resettable Service / Info...
Page 69
Block 200: Burner control Param. Descrizione Description Password Modalità funzionamento bruciatore ( rampa Burner operating mode (fuel train, modula- combustibile, modulante / multistadio, servo- ting / multistage, actuators, etc..) comandi, ecc.) __= non definito (cancellazione curve) __= undefined (delete curves) 1 = accensione diretta a gas (G mod) 1 = gas direct ignition (G mod) 2 = accensione tramite pilota gas con attacco...
Page 70
15 = gas rampa Gp1 modulante pneumatico 15 = Gp1 mod pneu without actuator senza servomotori (Gp1 mod pneu) 16 = Gp2 mod pneu without actuator 16 = gas rampa Gp2 modulante pneumatico 17 = Lo 2-stage without actuator senza servomotori (Gp2 mod pneu) 18 = Lo 3-stage without actuator 17 = olio LO 2 stadi senza servomotori 19 = G mod gas actuator only...
Page 71
Gas: sonda rilevazione fiamma attivo (valore Gas: active detector flame evaluation (default fabbrica = 1) value = 1) OEM / Service 0 = QRB../QRC.. 1 = ION / QRA.. Gas: Preventilazione (valore fabbrica = 1) Gas: Pre-purging (default value = 1) 1 = attivo 1 = active 0 = non attivo...
Page 72
Gas: Pressostato gas di minima (default = 1) Gas: Pressure switch-min input 0 = inattivo 0 = inactive 1 = pressostato gas di minima (a monte val- 1 = pressure switch-min (upstream of fuel vola V1) valve 1 (V1)) 2 = controllo perditavalvole via pressostato 2 = valve proving via pressure switch-min OEM / Service (montato tra le valvole V1 e V2)
Page 73
Gas: tempo pressione atmosferica controllo Gas: proving test time atmospheric pres- tenuta (valore fabbrica = 10s - range impo- sure (default value = 10s - range:0.2s - 60s) stazione:0.2s - 60s) Gas: tempo riempimento controllo tenuta Gas: proving test filling time (default value = (valore fabbrica = 3s - range imposta- 3s - range:0.2s - 10s) zione:0.2s - 10s)
Page 74
Olio: Intervallo 1 (valore fabbrica = 2s - Oil: Interval 1 (default value = 2s - OEM / Service range impostazione:0.2s - 60min) range:0.2s - 60min) Olio: tempo di sicurezza 2 (TSA2) (valore Oil: safety time 2 (TSA2) (default value = 3s fabbrica = 3s - range impostazione:0.2 - 10s) - range:0.2 - 10s) Olio: Intervallo 2 (valore fabbrica = 2s -...
Page 75
Block 300: Burner control (only with LMV26) Param. Descrizione Description Password Combustibile 1 : Modalità funzionamento bru- Fuel 1 : Burner operating mode (fuel train, ciatore ( rampa combustibile, modulante / modulating / multistage, actuators, etc..) multistadio, servocomandi, ecc.) __= non definito (cancellazione curve) __= undefined (delete curves) 1 = accensione diretta a gas (G mod) 1 = gas direct ignition (G mod)
Page 76
11 = olio 2 stadi con accensione tramite pilota 11 = LoGp 2-stage (LOGp 2-stage) 12 = Lo mod 2 fuel valves 12 = olio modulante con 2 valvole combusti- 13 = LoGp mod 2 fuel valves bile (LOmod 2 valvole) 14 = G mod pneu without actuator 13 = olio modulante con 2 valvole combusti- 15 = Gp1 mod pneu without actuator...
Page 77
Combustibile 1 - Gas: tempo di preaccen- Fuel 1 - Gas: Preignition time (default value = sione (valore fabbrica = 2s - range imposta- 2s - range: 0.2s - 60min) OEM / Service zione:0.2s - 60min) Combustibile 1 - Gas: tempo di sicurezza 1 Fuel 1 - Gas: Safety time 1 (TSA1) (default (TSA1) (valore fabbrica = 3s - range impo- value = 3s - range: 0.2 - 10s)
Page 78
Limite ripetizioni perdita di fiamma (valore Repetition limit loss of flame (default value= 2 fabbrica = 2 - range impostazione:1 - 2) - range:1 - 2) Fuel 1 - Gas: execution proving test (default Combustibile 1 - Gas: esecuzione controllo value= 2) tenuta (valore fabbrica = 2) 0 = no controllo tenuta...
Page 79
Fuel 1 - Oil: prepurging (default value = 1) Combustibile 1 - Olio: preventilazione (valore fabbrica = 1) 0 = deactivated 1 = attivo 1 = activated 0 = non attivo 0 = deactivated OEM / Service In ambito civile la norma EN267 rende obbli- WARNING: in the civil field, the prepurge is gatoria la preventilazione.
Page 80
Limite ripetizioni perdita di fiamma (valore Repetition limit value loss of flame (default fabbrica = 2 - range impostazione:1 - 2) value = 2 - range:1 - 2) Fuel 1 - Oil: time oil ignition (default value = Combustibile 1 - Olio: tempo iniezione olio (valore fabbr.
Page 81
Block 400: Setting air/fuel ratio curves Param. Descrizione Description Password Curve controllo servocomando combustibile Ratio control curve fuel actuator (F): it acces- (F): si accede alla lista dei punti da impostare ses to the parameter list of the points to be set OEM / Service (da P0 a P9) - consultare paragrafo “Imposta- (P0 to P9) - see paragrapf “Setting the curves”...
Page 82
Block 500: Air/fuel ratio control Param. Descrizione Description Password No-flame position fuel actuator Posizione servocomando combustibile in assenza di fiamma (no-flame) Indice 0 = posizione di sosta = 0° Index 0 = no-load position = 0° OEM / Service Indice 1 = posizione preventilazione = 0° Index 1 = prepurge position = 0°...
Page 83
Activation of VSD / PWM fan (PWM = Pulse- Width Modulation) Activation of VSD / PWM fan OEM / Service 0=deactived 1=actived (PWM = Pulse-Width Modulation) Parameter 544 Modulation Modulation Modulation Modulation Actuator Actuating speed param- Max. delta between the curve points eter 613 OEM / Service Actuator...
Page 84
Block 600: Actuators Param. Descrizione Description Password Impostazione punto di riferimento Selection of reference point Indice 0 = combustibile Index 0 = fuel Indice 1 = aria Index 1 = air 0 = chiuso (<0°) 0 = closed (<0°) 1 = aperto (>90°) 1 = open (>90°) Direzione rotazione del servocomando Actuator’s direction of rotation...
Page 85
Tipo di riferimento dei servocomandi index 0 = fuel (default = 0 (riferimento stan- dard) Type of referencing index 1 = air (default = 0 (riferimento stan- Index 0 = fuel dard) Index 1 = air 0 = standard 0 = standard 1 = fermo entro il raggio utile 1 = stop within usable range 2 = fermi interni (SQN1...)
Page 86
Configurazione uscita analogica % di carico Configuration of analog output (default value (valore fabbrica = 0) = 0) 0 = DC 0..10 V 0 = DC 0..10 V OEM / Service 1 = DC 2..10 V 1 = DC 2..10 V 2 = DC 0/2..10 V 2 = DC 0/2..10 V ATTENTION: as for SQM3x actuators, set the direction according to the acutator function.
Page 87
Block 700: Error history Param. Descrizione Description Password Storico errori: 701 - 725.01.codice Error history: 701 - 725.01.code Service / Info Storico errori: 701 - 725.02.codice diagnostico Error history: 701 - 725.02.diagnostic code ° Service / Info Storico errori: 701 - 725.03.classe errore Error history: 701 - 725.03.error class °...
Page 88
Block 900: Process data Param. Descrizione Description Password Potenza attuale (valore fabbrica = 0% - range Current output (default value = 0% - range = impostazione = 0-100%) 0-100%) Service / Info Indice 0 = combustibile Index 0 = fuel Indice 1 = aria Index 1 = air Posizione incrementale servocomandi (valore...
Page 89
Actuators references An incremental transducer is used to ensure position feedback. Referencing of the actuators must be performed after power-on. In addition, at the end of each shutdown in phase 10, the actuators are referenced to ensure that individual stepping errors, which could lead to shutdown, do not accumulate.
Page 90
COMMISSIONING THE BURNER The LMV2x complete programming must be performed on units that has never been set before or reset units (e.g. spare parts). The programming procedure is performed by setting the following main parameters: if LMV.. is a spare part, insert burner ID (parameter 113) at least 4 digit. type of fuel train (parameter “201”) air/fuel ratio curvepoints (Block “400”) maximum load percentage (parameter “546”)
Page 91
the types of fuel trains are the following: Param. Descrizione Description Password Modalità funzionamento bruciatore ( rampa Burner operating mode (fuel train, mod / multi- comb., mod. / multistadio, servocom., ecc.) stage, actuators, etc.) __= non definito (cancellazione curve)___= __= undefined (delete curves) 1 = accensione diretta a gas (G mod) 1 = gas direct ignition(G mod) 2 = accensione tramite pilota gas con attacco...
Page 92
Lo 3-stage In the example the Gmod gas train has been set (Configuration “1”). Choose the fuel train by pressing ENTER, then press “+” / “-”. Press ENTER to confirm: number “1” will appear on the right side of the display.
Page 93
CAUTION: at the first burner adjustment, it is recommended to set the maximum output P9 at the same value (or little higher) of the ignition point, in order to safely reach point P9 next (see next paragraph). By pressing “+” the display will show: The burner is ready to startup.
Warm setting Once pressed button “enter” and the chain thermostats open (X5-03 terminals), the LMV.. show Ph12.Then close the chain termostat and the unit performs the prepurge cycle (see “Phases List”) and stops at the ignition point P0 without ignition anyway. By pressing “+”, the burners lights abd the air/fuel ratio can be properly set in presence of flame.
P5, keep pressing “-” unitl “Calc” is displayed. The curve will be processed again downwards point P1. Fuel deviation between two following points: 25°max. 12 press “-” to go through the lower points and check the combustion values, if necessary change the points as described above. 13 By pressing ESC, at the end of the points adjusments, the parameter “546”...
Page 96
BURNER STARTUP WITH LMV2x ALREADY PROGRAMMED Once the LMV turns on, the AZL display will show The burners is basically factory set. The air/fuel ratio curve is set with the maximum output point P9 a little higher or equal to P0. To adjust the burner on the plant site, adjust the maximum output point to the flow rate values really requested.
Page 97
Set the air/fuel ratio curvepoints as described on chapter “Programming the LMV2x” Note: the other phases are Ph60 = operation (OP= in modulation) Ph62 = travelling to shutdown Ph70 = off but in prepurge after the burntime Ph72 = travelling to postpurging Ph74 = postpurge (countdown is displayed) Press ESC the parameter “546”...
Page 98
Reset / manual lockout The system can be manually locked by simultaneously pressing the ENTER (InFo) button and any other button on the AZL2..This function allows the user to stop the system from the operating level should an emergency occur. When making a reset, the following actions are carried out: Alarm relay and the fault display are off ...
Page 99
Entering the Parameter levels By means of a proper use of the keys, it is possible to enter the various level parameters, as shown in the following flow chart: The burner and consequently the LMV2x.. are factory set; the air and fuel curves as set as well.
Page 100
Info level To enter the Info level, proceed as follows: in any menu position, press keys + and - at the same time, then the program will start again: the display will show OFF. , until the display will show InFo, Press the enter (InFo) key then il will show the first code (167) flashing, on the right side it will show the data entered.
Page 101
10 Press InFo for more than three seconds or for more than three seconds orto return to the normal display. If a message like the one below is shown during operation, it means that the burner is locked out and the Errore code is shown (in the example “error code:4”); this message is alternating with another message Diagnostic code (in the example “diagnostic code:3”).
Page 102
Service level To enter the Service mode, press InFo until the display will show: The service level shows all the information about flame intensity, actuators position, number and lock codes: Parameter Description Flame intensity % output, if set = automatic operation Actuators position, 00=combustibile;...
Page 103
PHASES LIST Fase /Phase Funzione Function Ph00 Fase blocco Lockout phase Ph01 Fase di sicurezza Safety phase Ph10 t10 = tempo raggiungimento posizione riposo t10 = home run Ph12 Pausa Standby (stationary) t22 = tempo di salita ventilatore (motore ventilatore t22 = fan ramp up time (fan motor = ON, safety Ph22 = ON, valvola intercettazione di sicurezza = ON)
Page 104
BACKUP PARAMETER WITH AZL2x On the AZL2x you can save the configuration to download on another appliance LMV. To do this: access up, press F and A at the same time enter the password following the procedure on chapter “Programming LMV2x”. Press ENTER until the display will show: with the button go to the group 000 of the parameters and press...
Page 105
RESTORE PARAMETER FROM AZL2x TO LMV.. To copy the previously saved configuration on AZL2x proceed as follows: access up, press F and A at the same time enter the password following the procedure on chapter “Programming LMV2x”. Press ENTER until the display will show: To copy the configuration from AZL2x to LMV.
Page 128
C.I.B. UNIGAS S.p.A. Via L.Galvani, 9 - 35011 Campodarsego (PD) - ITALY Tel. +39 049 9200944 - Fax +39 049 9200945/9201269 web site: www.cibunigas.it - e-mail: cibunigas@cibunigas.it Note: Specifications and and data subject to change. Errors and omissions excepted.
Page 129
CIB UNIGAS 600V CONTROLLER USER’S MANUAL COD. M12925CA Rel 1.2 08/2014 SOFTWARE VERSION 1.0x code 80379 / Edition 01 - 06/2012 1 • INSTALLATION 2 • TECHNICAL SPECIFICATIONS Display 2x4 digit green, high display 10 and 7mm Keys 4 of mechanical type (Man/Aut, INC, DEC, F) •...
Page 130
3 • DESCRIPTION OF FACEPLATE Function indicators Indication of output states Indicates modes of operation OUT 1 (AL1); OUT 2 (OPEN); OUT 3 (CLOSED) MAN/AUTO = OFF (automatic control) ON (manual control) PV Display: Indication of process variable Error Indication: LO, HI, Sbr, Err PRE-HEATING = ON (running) LO= the value of process variable is <...
5 • “EASY” PROGRAMMING and CONFIGURATION S4 Jumper THE EASY CONFIGURATION (Pro=0...12) IS SUITABLE FOR (CPU) VERSIONS WITH AL1/OPEN/CLOSED LEVEL 1 MENU P.V. / S.V. Process variable P.V. / S.V. (PV display) Work Setpoint (SV display) or control output value with controller in manual Password Local Setpoint...
Page 132
• InFo Display Information display Software version 0 No Error Self diagnostic 1 Lo error code 2 Hi 3 ERR 4 SBR OUTPUT 2 OUTPUT 3 SERIAL COMMUNICATION 0 = None 0 = None 0 = None +8 error OUT2 card recognition 1 = Relay 1 = Relay +16 error OUT3 card recognition...
Page 133
• InP Input settings S, R range 0...1750°C; error < 0.2% f.s. (t > 300°C) / for other sp. r 0 default (remote setpoint present) Def. remote setpoint range; error < 0.5% f.s. error < 0.2% f.s. (t > -150°C) range 44...1800°C;...
Page 134
• Out Output settings Select a1. r reference signal for alarm1 AL.1.r AL.x.r Variable to be compared PV (process variable) AL.1.t AL.x.t Direct (high limit) Absolute or Normal 2/3 for a1. t Inverse (low limit) relative to Symmetrical alarm 1 active setpoint (window) direct...
Page 136
ld. 1 Function of LEDs Val. Function none MAN/AUTO controller ld. 2 HOLD Selftuning enabled Autotuning enabled ld. 3 Error present Softstart running Set point gradient running Pre-heating running + 16 LED flashes if active • Lin Custom linearization for main input Step 0 beginning Display limits s.
Page 137
7 • CONSENT FOR BURNER AL1 Obtain burner consent by configuring alarm 1 as inverse deviation with positive hysteresis Hy.P and negative hysteresis Hy.n 8 • PRE-HEATING FUNCTION Enable the pre-heating function by setting parameters GS.0, Ht.0, GS.1 other than zero. It consists of three phases that are activated sequentially at firing: - Ramp 0 phase Enabled by setting GS.0 >...
Page 138
9 • ADJUSTMENT WITH MOTORIZED VALVE In an adjustment process the adjustment valve has the function of varying fuel delivery (frequently corresponding to the thermal energy introduced into the process) in relation to the signal coming from the controller. For this purpose it is provided with an actuator able to modify its opening value, overcoming the resistances produced by the fluid passing inside it.
Valve control modes With the controller in manual, the setting of parameter At.y ≥ 8 allows direct control of the valve open and close commands through the keyboard Increments and Decrements on the front seats. V0 - for floating valve without potentiometer Model V0 have similar behaviour: every manoeuvre request greater than the minimum impulse t.Lo is sent to the actuator by means of the OPEN/CLOSE relays;...
11 • MANUAL TUNING A) Enter the setpoint at its working value. B) Set the proportional band at 0.1% (with on-off type setting). C) Switch to automatic and observe the behavior of the variable. It will be similar to that in the figure: Process D) The PID parameters are calculated s follows: Proportional band Variable...
Page 141
15 • ACCESSORIES • Interface for instrument configuration Kit for PC via the USB port (Windows environment) for GEFRAN instruments configuration: KIT PC USB / RS485 o TTL Lets you read or write all of the parameters • A single software for all models •...
Page 143
21/06/2012 rev. 0 Set-up for 600V RRR0-1-T73 regulator Set up for temperature probe Pt100 (ex Siemens QAE2120 130°C max.) The regulator comes out of the factory preset with the corresponding values of the Siemens RWF40.000 and RWF50.2x Verify wiring of the sensor Regulation of the set-point = 80 It can be modified by using arrows "up"...
A1.r … A1.t 3 (operating mode AL1 =inverse-relative-normal) … rL.1 2 (AL1) rL.2 18 (open) rL.3 19 (close) A.ty 9 (type of servocontrol command) Ac.t 12 (servocontrol running time: SQN72.4…/STA12..=12; SQM40.265=30) t_Lo t_Hi t.on t.oF dE.b 0,1 (dead zone in % of end scale) 99 then push and keep pushed F until visualization of Hrd …...
Page 145
Set up for temperature probe Pt100 for high temperature (350°C max.) Verify wiring of the sensor Regulation of the set-point = 80 It can be modified by using arrows "up" and "down". By pushing F you go to parameters: Hy.P 10 (hysteresis positive for output 1 terminals 21-22 (ex Q13-Q14) Hy.n -5 (hysteresis negative for output 1 terminals 21-22 (ex Q13-Q14)
Page 146
A1.r … A1.t 3 (mode AL1 =inverse-relative-normal) … rL.1 2 (AL1) rL.2 18 (open) rL.3 19 (close) A.ty 9 (type of servocontrol command) Ac.t 12 (servocontrol running time: SQN72.4…/STA12..=12; SQM40.265=30) t_Lo t_Hi t.on t.oF dE.b 0,1 (dead zone in % of end scale) 99 then push and keep pushed F until visualization of Hrd …...
Page 147
Set up for pressure transmitter 2 wires signal 4÷20mA With pressure transmitters first we need to enable their power supply: remove the part as shown below, then, on the CPU unit, move the bridge from Pt100 to +Vt IN/OUT cards Signal selection on terminal 3 Verify wiring of the sensor...
Page 149
Set -up for thermocouples type Verify wiring of the sensor Regulation of the set-point = 80 It can be modified by using arrows "up" and "down". By pushing F you go to parameters: Hy.P 10 (hysteresis positive for output 1 terminals 21-22 (ex Q13-Q14) Hy.n -5 (hysteresis negative for output 1 terminals 21-22 (ex Q13-Q14) Keep pushing F until you see PASS, release F and through the arrows set 99, push F and visualize Pro...
Page 150
A1.r … A1.t 3 (mode AL1 =inverse-relative-normal) … rL.1 2 (AL1) rL.2 18 (open) rL.3 19 (close) A.ty 9 (type of servocontrol command) Ac.t 12 (servocontrol running time: SQN72.4…/STA12..=12; SQM40.265=30) t_Lo t_Hi t.on t.oF dE.b 0,1 (dead zone in % of end scale) 99 then push and keep pushed F until visualization of Hrd …...
Page 153
RWF50.2x & RWF50.3x User manual M12922CB Rel.1.0 07/2012...
DEVICE INSTALLATION Install the device using the relevant tools as shown in the figure. To wire the device and sensors, follow the instructions on the burner wiring diagram.
FRONT PANEL NAVIGATION MENU Parameter level Basic display User Level - Opr SP1 or SP2 (editable) dSP readable and editable through bin1 = 2 InP1 or y (only display) Parameter Level - PArA HYS1 , HYS2 , HYS3 Pb1, dt, rt, db, tt Next parameter Main navigation...
Page 156
RWF5 is preset good for 90% of applications. However, you can set or edit parameters as follow: Set-point: set or modification: When the burner is in stand-by, (safety loop open, that is terminals 3-4/T1-T2 on the 7 pole plug open) push the Enter button: on the lower display (green) Opr appears;...
Page 157
Setting the kind of sensor to be connected to the device: push the Enter button: on the lower display (green) Opr appears. Using the up and down arrows find ConF. Push Enter to confirm. Now on the green display the group InP appears. Push Enter and InP1 is displaied. Enter to confirm. ...
Page 158
ConF > Cntr Parameter Value Description CtYP 1 = 3-position controller (open-stop-close only RWF50.2) controller type 2 = continuative action controller (only RWF50.3) CACt 1 = heating controller control action 0 = cooling controller least value of the set-point limitation prevents entry of values outside the defined set-point range -1999..0..+9999 range...
Page 159
ConF > OutP (parameter under group only for RWF50.3) Parameter Value Description FnCt 1 = analog input 1 doubling with possibility to convert tipo di controllo (depending on par SiGn) 4 = modulation controller SiGn physical output signal (terminals A+, A-) type of output signal 0 = 0÷20mA 1 = 4÷20mA...
Page 160
Manual control : in order to manual change the burner load, while firing keep pushing the ESC button for more than 5 s; on the lower green display Hand appears. using the UP and DOWN arrows, the load varies. ...
Electric connection : With 7 pins connector version With terminals version Matches terminals between RWF50.2 and RWF40.0x0...
Page 162
Parameters summarising for RWF50.2x: Conf Conf Navigation menù Inp1 Cntr diSP PArA Types of probe SEn1 OFF1 SCL1 SCH1 Unit dECP Pb. 1 dt HYS1 (*) HYS3 (*) SP1 (*) Siemens QAE2120… needless needless 80 350 (#) 80 °C Siemens QAM2120.. needless needless 80 350 (#)
Page 163
APPENDIX: PROBES CONNECTION To assure the utmost comfort, the control system needs reliable information, which can be obtained provided the sensors have been installed correctly. Sensors measure and transmit all variations encountered at their location. Measurement is taken based on design features (time constant) and according to specific operating conditions.With wiring run in raceways, the sheath (or pipe) containing the wires must be plugged at the sensor's terminal board so that currents of air cannot affect the sensor's measurements.
Page 164
Duct or pipe sensors Installing pressure sensors A - installation on ducts carrying fluids at max. temperature 80°C Installing temperature sensors For measuring outlet air: B - installation on ducts at temperature over 80°C and for refrigerants after delivery fan or C - installation on ducts at high temperatures: ...
Page 165
Immersion or strap-on sensors Immersion probes installation Sensors must be installed on the stretch of pipe in which fluid circulates all the time. The rigid stem (sensing element doing the measuring) must be inserted by at least 75mm and must face the direction of flow. Recommended locations: on a bend or on a straight stretch of pipe but tilted by 45°...
Page 166
Duct pressure switches and sensors Installing differential pressure probes for air Basic principles Measuring static pressure(i.e. pressure exerted by air on pipe walls) A - Control a filter (clogging) Measuring dinamic pressure B - Control a fan (upstream/downstream) Kg/m , specific weight of air m/s, air speed 9.81 m/s gravity acceleration...
M12927CA DISPLAY Y AND KEY onsent to the burner is rned off OUTP UT LEDs ON (o out1) - Consen nt to the burne ▲ - (o out2) Output i ncrease ▼ - (o out3) Output d decrease ● - (ou ut4) Modulato r is powered o perator Mode...
Page 172
M12927CA CONNECTIONS DIAGRAM Probe connection: • PT1000/NTC/PTC: between terminal 3 and 2 • PT 100: between terminal 3 and 2 with terminal 1 • Passive pressure probe 0/4-20 mA: between terminal 4 ( + ) e 1 ( - ) Note: out4 must be activated ( IO4F must be setted to ON ) •...
M12927CA SETPOINT AND HYSTERESIS CONFIGURATION (SP, AL1, HAL1 parameters) Push the button to enter into the setpoint configuration: SP setpoint value change: increase decrease 2480 Confirm / Next AL1 parameter value change: increase decrease Confirm / Next HAL1 HAL1 parameter value change: increase decrease Confirm / Next Back to the first parameter To return to normal mode, press the key for 3 seconds or wait the 10s timeout...
Page 174
M12927CA LIMITED ACCESS LEVEL Proceed as follows to change some parameters that are not visible in standard user mode: Press the key for Password = 20 3 seconds Access to parameter: Increase the displayed value Decrease the displayed value Confirm and go to next parameter Param Description...
M12927CA CONFIGURATION How to access configuration level The configuration parameters are collected in various groups. Every group defines all parameters related with a specific function (e.g.: control, alarms, output functions). Push the button for more than 5 seconds. The upper display will show PASS while the lower display will show 0.
Page 177
M12927CA Safety output value -100... 100 io4.F I/O4 function selection on = Out4 will be ever ON (used as a transmitter power supply) ,out4 = Uscita 4 (Used as digital output 4), dG2c = Digital input 2 for contact closure, dG2U = Digital input 2 driven by 12... 24 diF1 Digital input 1 function oFF = Not used,...
Page 178
M12927CA windows SE.br = Sensor Break LodE = Deviation low alarm (relative) HidE = Deviation high alarm (relative) LHdo = Relative band alarm in alarm out of the band LHdi = Relative band alarm in alarm inside the band Alarm 1 function 0...
Page 179
M12927CA AL3 Group - alarm 3 parameters Param Description Values Liv N° Default AL3t Alarm 3 type nonE = Alarm not used nonE LoAb = Absolute low alarm HiAb = Absolute high alarm LHAo = Windows alarm in alarm outside the windows LHAI = Windows alarm in alarm inside the windows...
Page 180
M12927CA SELF Self tuning enabling no = The instrument does not perform the self- tuning YES = The instrument is performing the self- tuning Proportional band 1... 9999 (E.U.) page 7 Integral time 0 (oFF) ... 9999 (s) page 7 Derivative time 0 (oFF) ...
Page 181
M12927CA AAc = Alarm reset ASi = Alarm acknowledge chSP = Sequential set point selection St.by = Stand by mode. The first press puts the instrument in stand by mode while a second one puts the instrument in Auto mode. Str.t = Timer run/hold/reset P.run = Program run P.rES = Program reset...
Page 182
M12927CA con Group - Consumption parameters Param Description Values N° Default Co.tY Count type oFF = Not used 1 = Instantaneous power (kW) 2 = Power consumption (kW/h) 3 = Energy used during program execution. This measure starts from zero when a program runs end stops at the end of the program.
M12927CA OPERATIVE MODES When the instrument is powered, it starts immediately to work according to the parameters values loaded in its memory. The instrument behaviour and its performance are governed by the value of the stored parameters. At power ON the instrument can start in one of the following mode depending on its configuration: Automatic Mode In Automatic mode the instrument drives automatically the control output according to the parameter value set and the set point/measured value.
M12927CA Direct set point modification This function allows to modify rapidly the set point value selected by [83] A.SP (selection of the active Set point) or to the set point of the segment group (of the programmer) currently in progress. Push button.
M12927CA ERROR MESSAGES The upper display shows the OVER-RANGE and UNDERRANGE conditions with the following indications: Over-range: Under-range The sensor break will be signalled as an out of range: Note: When an over-range or an under-range is detected, the alarms operate as in presence of the maximum or the minimum measurable value respectively.
Page 186
MANUALE USER SUPPORT MULTI-THERMOSTAT MCX06C MCX06C is a multi-thermostat with four 100k NTC inputs. It can control up to 4 temperatures showing them (not more than 2 at the same time) on a couple of displays. It is used to check and adjust oil heater temperatures. it works as follows: as soon as the burner control gives the GO to the digital 1 input (terminals DI1-COM), the adjustment program runs (the relevant LED is ON).
Page 188
(tCI - Pb2 probe only for mechanical atomizing burners) Menu : To enter the menu below, keep pushing ENTER for more than 3 s. Menu code Sub-menu code Function Notes Probes values You can see in sequence the 4 probe values (UP and DOWN keys): the probe code is on display A (Pb1,..., Pb4) and the probe value is on display B (not fitted or out...
Page 189
submenu CnF - configuration parameters group : Visibility Password Modbus Menu Parameter Description Additional description Default U.M. condition level index CONFIGURATION Analog Input 1 This parameter enables or disables the Probe 1 Presence probe Calibration Probe 1 Don't modify it -20,0 20,0 °C...
Page 190
Visibility Modbus Menu Parameter Description Additional description Default U.M. condition Level index Autotuning Output temperature hysteresis Don't modify it 50,0 °C Startup number Don't modify it Measurement cycles number Don't modify it Max. differential command Don't modify it exit 0,01 10,00 10,00 Differential reduction exit...
Page 191
Submenu REG – regulation parameters group : Visibility Modbus Menu Parameter Description Additional description Default U.M. condition Level index REGULATION Probe 1 Set-point Probe 1 Don't modify it (Tank resistor) -50,0 200,0 °C Probe 1 - Low Temperature Alarm Don't modify it Threshold -50,0 200,0...
Page 192
Visibility Modbus Menu Parameter Description Additional description Default U.M. condition Level index Overshooting for Integral action Don't modify it (Oil tank exit) 1000 Derivative action enabling Don't modify it (Oil tank exit) Filtering factor for derivative action Don't modify it (Oil tank exit) Duty cicle PWM for output DO3 Don't modify it...
Page 193
Alarms & Warning: When the red triangle on the top left lights, one or more alarms are activated. When the red key on the left lights, the output N05-C5 is active and the relay KTRS switches the resistors OFF. Check the reason, correct the failure and, as soon as the temperature is lower than trS, reset it through ALA/rES . In order to show active alarms and warnings, select the relevant menu through ALA/Act.and, using the UP and DOWN buttons, scroll the lines.
Need help?
Do you have a question about the KPBY70 and is the answer not in the manual?
Questions and answers