Download Print this page
ABB ACS480 Quick Installation And Start-Up Manual

ABB ACS480 Quick Installation And Start-Up Manual

Advertisement

Quick Links

ABB GENERAL PURPOSE DRIVES
ACS480 drives
Quick installation and start-up guide
Safety instructions
WARNING! Obey these instructions. If you ignore them, injury or death,
or damage to the equipment can occur. If you are not a qualified
electrical professional, do not do electrical installation or maintenance
work.
Do not do work on the drive, motor cable, motor, or control cables when the
drive is connected to the input power. Before you start the work, isolate the
drive from all dangerous voltage sources and make sure that it is safe to
start the work. Always wait for 5 minutes after disconnecting the input
power to let the intermediate circuit capacitors discharge.
Do not do work on the drive when a rotating permanent magnet motor is
connected to it. A rotating permanent magnet motor energizes the drive,
including its input and output terminals.
1. Unpack the delivery
Keep the drive in its package until you are ready to install it. After unpacking,
protect the drive from dust, debris and moisture.
Make sure that these items are included:
drive
assistant control panel
options, if ordered
RIIO-01 I/O & EIA-485 module. Note: If a fieldbus adapter is ordered, it
replaces the RIIO-01 module of the standard delivery.
mounting template (frames R3 and R4 only)
installation accessories (cable clamps, etc.)
multilingual warning sticker sheet (residual voltage warning)
safety instructions
quick installation and start-up guide
hardware and firmware manuals, if ordered.
Make sure that there are no signs of damage to the items.
2. Reform the capacitors
If the drive has not been powered up for a year or more, you must reform the DC
link capacitors. The manufacturing date is on the type designation label. Refer
Capacitor reforming instructions
to
(3BFE64059629
3. Select the cables and fuses
Select the power cables. Obey the local regulations.
Input power cable: ABB recommends to use symmetrical shielded cable
(VFD cable) for the best EMC performance.
Motor cable: Use symmetrical shielded cable (VFD cable) for the best EMC
performance. Symmetrical shielded cable also reduces bearing currents,
wear, and stress on motor insulation.
Power cable types: In IEC installations, use copper or aluminum cables (if
permitted). In UL installations, use only copper cables.
Current rating: max. load current.
Voltage rating: min. 600 V AC.
Temperature rating: In IEC installations, select a cable rated for at least
70 °C (158 °F) maximum permissible temperature of conductor in
continuous use. In UL installations, select a cable rated for at least 75 °C
(167 °F).
Size: Refer to
Fuses and typical power cable sizes
sizes and to
Terminal data for the power cables
sizes.
Select the control cables. Use double-shielded twisted-pair cable for analog
signals. Use double-shielded or single-shielded cable for the digital, relay and
I/O signals. Do not run 24 V and 115/230 V signals in the same cable.
Protect the drive and input power cable with the correct fuses. Refer to
Fuses and typical power cable sizes
.
4. Examine the installation area
The drive is intended for cabinet installation and has a degree of protection of
IP20 / UL open type.
Examine the site where you will install the drive. Make sure that:
The installation site is sufficiently ventilated and hot air does not recirculate.
There is sufficient free space around the drive for cooling, maintenance, and
operation. For the minimum free space requirements, refer to
requirements
.
The ambient conditions meet the requirements. Refer to
conditions
.
The installation surface is as close to vertical as possible and strong enough
Dimensions and weights
to support the weight of the drive. Refer to
The installation surface, floor and materials near the drive are not flammable.
There are no sources of strong magnetic fields, such as high-current single-
core conductors or contactor coils near the drive. A strong magnetic field
can cause interference in the operation of the drive.
5. Install the drive
You can install the drive with screws, or to a DIN rail (top hat type, width × height
= 35 mm × 7.5 mm [1.4 in × 0.3 in]).
Install R0 drives vertically. R0 drives do not have a cooling fan.
You can install drives with frame size R1...R4 tilted by a maximum of
90 degrees, from vertical to fully horizontal orientation.
Do not install the drive upside down.
You can install several drives side by side.
To install the drive with screws
1. Make marks onto the surface for the
mounting holes. Refer to
weights
. Use the included mounting
template for frames R3 and R4.
2. Drill the holes for the mounting screws. If
necessary, install suitable plugs or
anchors into the holes.
3. Install the mounting screws into the
holes. Leave a gap between the screw
head and installation surface.
4. Put the drive onto the mounting screws.
5. Tighten the mounting screws.
To install the drive to a DIN rail
1. Move the locking part to the left. If
necessary, use a flat-head screwdriver.
2. Push and hold the locking button down.
3. Put the top tabs of the drive onto the top
edge of the DIN rail.
4. Put the drive against the bottom edge of
the DIN rail.
5. Release the locking button.
6. Move the locking part to the right.
7. Make sure that the drive is correctly
installed.
To remove the drive, open the locking part
and lift the drive from the DIN rail.
6. Measure the insulation resistance
Drive: Do not do voltage tolerance or insulation resistance tests on the drive,
because this can cause damage to the drive.
Input power cable: Before you connect the input power cable, measure the
insulation of the input power cable. Obey the local regulations.
Motor and motor cable:
1. Make sure that the motor cable is connected to the motor and disconnected
from the drive output terminals T1/U, T2/V and T3/W.
2. Use a voltage of 1000 V DC to measure the
insulation resistance between each phase
conductor and the protective earth
conductor. The insulation resistance of an
ABB motor must be more than 100 Mohm (at
25 °C [77 °F]). For the insulation resistance of
other motors, refer to the manufacturer's
documentation. Moisture in the motor
decreases the insulation resistance. If you
think that there is moisture in the motor, dry the motor and do the
measurement again.
7. Make sure that the drive is compatible with the
grounding system
You can connect all drive types to a symmetrically grounded TN-S system
(center-grounded wye). The drive is delivered with the EMC and VAR screws
installed. The material of the screws (plastic or metal) depends on the product
variant. The table shows when to remove the metal EMC screw (disconnect the
internal EMC filter) or metal VAR screw (disconnect the varistor circuit).
Screw
Factory default
label
screw material
EMC
Metal
1)
Plastic
VAR
Metal
Plastic
1) UL (NEC) types have a plastic EMC screw.
2) Can install the metal screw (included in the drive delivery) to connect the internal EMC filter.
8. Connect the power cables
Connection diagram (shielded cables)
[English]).
ACS480
L1
PE
3
2
for the typical cable
for the maximum cable
L1
PE
(L)
1. Disconnecting device
2. Two protective earth (ground) conductors. Drive safety standard
IEC/EN 61800-5-1 requires two PE conductors, if the cross-sectional area of
the PE conductor is less than 10 mm
use the cable shield in addition to the fourth conductor.
3. Use a separate grounding cable or a cable with a separate PE conductor for
the line side, if the conductivity of the fourth conductor or shield does not
meet the requirements for the PE conductor.
4. Use a separate grounding cable for the motor side, if the conductivity of the
shield is not sufficient, or if there is no symmetrically constructed PE
conductor in the cable.
5. 360-degree grounding of the cable shield is required for the motor cable and
Free space
brake resistor cable (if used). It is also recommended for the input power
cable.
Ambient
6. Brake resistor and resistor cable (optional).
Connection procedure (shielded cables)
.
For the tightening torques, refer to
1. Loosen the screw on the front cover.
Then lift the front cover up.
2. Attach the residual voltage warning
sticker in the local language to the drive.
3. Strip the motor cable.
4. Ground the motor cable shield under the
grounding clamp.
5. Twist the motor cable shield into a
bundle, mark it and connect it to the
grounding terminal.
Dimensions and
W
ohm
U1-PE, V1-PE, W1-PE
Grounding systems
Symmetrically
Corner-grounded
IT systems
grounded TN-S
delta, midpoint-
(ungrounded or
systems (center-
grounded delta and
high-resistance
grounded wye)
TT systems
grounded)
Do not remove
Remove
2)
Do not remove
Do not remove
Do not remove
Do not remove
Do not remove
Do not remove
Do not remove
Do not remove
R+
T1/
T2/
L2
L3
R-
UDC-
UDC+
U
V
5
6
V1
U1
W1
M
3
1
L2
L3
(N)
2
2
Cu or 16 mm
Al. For example, you can
Terminal data for the power cables
6. Connect the phase conductors of the
motor cable to terminals T1/U, T2/V and
T3/W.
7. If used, connect the brake resistor cable
to terminals R- and UDC+. Use a shielded
cable and ground the shield under the
grounding clamp.
8. Make sure that the R- and UDC+ terminal
screws are tightened. Do this step also if
you do not connect cables to the
terminals.
9. Strip the input power cable.
10. If the input power cable has a shield,
ground the shield under the grounding
clamp. Then twist the shield into a
bundle, mark it and connect it to the
grounding terminal.
11. Connect the PE conductor of the input
power cable to the grounding terminal. If necessary, use a second PE
conductor.
12. In 3-phase drives, connect the phase conductors of the input power cable to
terminals L1, L2 and L3. In 1-phase drives, connect the phase and neutral
conductors to terminals L1 and L2.
13. Mechanically attach the cables on the outside of the drive.
9. Install the communication module
To install the communication module (I/O
module or fieldbus module):
1. Pull out the locking tab of the
communication module.
2. Align the communication module
contacts with the contacts on the drive.
Carefully push the module into position.
3. Push in the locking tab of the
communication module.
4. Tighten the locking screw to fully attach
and electrically ground the
communication module.
10. Connect the control cables
Do the connections according to the application macro that you select. The ABB
standard macro is the default macro. Keep the signal wire pairs twisted as near
to the terminals as possible to prevent inductive coupling. The tightening
torque for the terminal connections is 0.5 ... 0.6 N·m (4.4 ... 5.3 lbf·in).
U1
1. Strip a part of the outer shield of the
M
V1
control cable for grounding.
3~
W1
2. Use a cable tie to ground the outer shield
PE
to the grounding tab.
3. Strip the control cable conductors.
4. Connect the conductors to the correct
control terminals.
5. Connect the shields of the twisted pairs
and grounding wires to the SCR terminal.
6. Mechanically attach the control cables on
the outside of the drive.
Default I/O connections (ABB standard macro)
Terminal
Description
Reference voltage and analog I/O
1 ... 10 kohm
1
SCR
Signal cable shield (screen)
2
AI1
Output freq./speed reference: 0 ... 10 V
3
AGND Analog input circuit common
4
+10 V Reference voltage 10 V DC
5
AI2
Not configured
6
AGND Analog input circuit common
7
AO1
Output frequency: 0 ... 20 mA
Remove
8
AO2
Output current: 0 ... 20 mA
9
AGND Analog output circuit common
Remove
Max. 500 ohm
Aux. voltage output and programmable digital inputs
10
+24 V Aux. voltage output +24 V DC, max. 250 mA
11
DGND Aux. voltage output common
12
DCOM Digital input common for all
13
DI1
Stop (0)/Start (1)
14
DI2
Forward (0)/Reverse (1)
15
DI3
Constant frequency/speed selection
16
DI4
Constant frequency/speed selection
17
DI5
Ramp set 1 (0)/Ramp set 2 (1)
T3/
18
DI6
Not configured
W
Relay outputs
19
RO1C
20
RO1A
21
RO1B
22
RO2C
23
RO2A
24
RO2B
4
25
RO3C
26
RO3A
27
RO3B
Safe torque off
34
SGND Safe torque off (STO). Both circuits must be closed for the
drive to start. The drawing shows the simplified
35
IN1
PE
connection of a safety circuit through safety contacts. If
36
IN2
STO is not used, leave the factory-installed jumpers in
37
OUT1
place. See also section
1) × = on base unit, empty = on RIIO-01 I/O extension module
Embedded fieldbus connection
You can connect the drive to an EIA-485 serial communication link through the
embedded fieldbus interface on the RIIO-01 module. The embedded fieldbus
interface supports the Modbus RTU protocol.
To configure Modbus RTU communication with the embedded fieldbus:
1. Connect the fieldbus cables and the necessary I/O signals.
2. Use the termination switch to set the correct termination settings.
3. Power up the drive and set the necessary parameters.
A connection example is shown below.
3)
-
G
R
+
.
Automation
Drive
controller
Termination OFF
1)
Termination ON
1) The devices at the ends of the fieldbus must have termination set to ON. All other devices
must have termination set to OFF (1).
2) Attach the cable shields together at each drive, but do not connect them to the drive.
Connect the shields only to the grounding terminal in the automation controller.
3) Connect the signal ground (DGND) conductor to the signal ground reference terminal in
the automation controller. If the automation controller does not have a signal ground
reference terminal, you can connect the signal ground to the cable shields through a
100 ohm resistor, preferably near the controller.
1
2
3
4
1)
Ready run
250 V AC / 30 V DC
2 A
Running
250 V AC / 30 V DC
2 A
Fault (-1)
250 V AC / 30 V DC
2 A
Safe torque off (STO)
.
2)
ON
ON
ON
1
1
1
Drive
Drive
1)
Termination OFF
Termination ON

Advertisement

loading

Summary of Contents for ABB ACS480

  • Page 1 Motor and motor cable: 1. Make sure that the motor cable is connected to the motor and disconnected Do the connections according to the application macro that you select. The ABB WARNING! Obey these instructions. If you ignore them, injury or death, from the drive output terminals T1/U, T2/V and T3/W.
  • Page 2 The STO function has a redundant architecture, that is, both channels must be Name Value 1) 230 V drives not available at the time of publication. For availability, contact ABB. used in the safety function implementation. The safety data given is calculated 20.01...