Page 2
Every effort has been made to ensure that the material herein is complete and accurate. However, the manufacturer is not responsible for any mistakes in printing or faulty instructions contained in this book. Notification of any errors or misprints will be received with appreciation. For further information regarding a particular installation, operation or maintenance of equipment, contact the manufacturer or your local representative or distributor.
1 GENERAL This document specifies the ASCII serial communications protocol used to transfer data between a master computer station and the PM172EH. The document provides the complete information necessary to develop a third-party communications software capable of communication with the Series PM172EH instruments. All messages within the ASCII communications protocol are designed to consist only of printable characters.
2 ASCII FRAMING 2.1 ASCII Message Frame The following specifies the ASCII message frame: Field No. Contents SYNC Message Slave Message Message Check sum Trailer length address type body (CRLF) Length, char 0 to 246 SYNC Synchronization character: one character '!' (ASCII 33), used for starting synchronization. Message length The length of the message including only number of bytes in fields #2, #3, #4 and #5.
3 PROTOCOL IMPLEMENTATION 3.1 ASCII Specific and Direct Requests The ASCII protocol implements two different types of messages to transfer data between a master application and the instrument: specific requests and direct read/write requests. Specific ASCII requests use different formats for accessing different data locations. The message body differs depending on the request type.
within the following 65535 logs. If a record is missing because of a communication problem, the read sequence for the log can be restored from the record with the desired sequence number. Accessing Log Files Each log file has a separate file read pointer which always points to the current file record that will be read next, and a separate register window which gives access to the record pointed to by this pointer.
4 SPECIFIC ASCII REQUESTS 4.1 Basic Data Table 4-1 Read Request Message type (ASCII) ‘0’ Message body (decimal) Request - no body Response Field Offset Length Parameter Unit Range Voltage L1/L12 V/kV 0 to Vmax Voltage L2/L21 V/kV 0 to Vmax Voltage L3/L31 V/kV 0 to Vmax...
Page 10
Direct wiring (PT Ratio = 1): Vmax (690 V input option) = 828.0 V Vmax (120 V input option) = 144.0 V Pmax = (Imax × Vmax × 3) [kW x 0.001] if wiring mode is 4LN3 or 3LN3 Pmax = (Imax × Vmax × 2) [kW x 0.001] if wiring mode is 4LL3, 3OP2, 3DIR2, 3OP3 or 3LL3 Wiring via PTs (PT Ratio >...
4.2 Basic Setup Table 4-2 Read Request Message type (ASCII) ‘1’ Message body (decimal) Request Field Offset Length Parameter Range Parameter identifier see Table 4-4 Response Field Offset Length Parameter Range Parameter identifier see Table 4-4 Not used permanently set to 00.0 Parameter value see Table 4-4 Table 4-3 Write Request...
4.3 Reset/Clear Functions These operations can be also performed by using the direct write requests instead of the specific request ‘4’ (see Section 5.11). Table 4-6 Write Request Message type (ASCII) ‘4’ Message body (hexadecimal) Request/Response Field Offset Length Parameter Range Reset function see Table 4-8...
4.5 Firmware Version Number Table 4-10 Read Request Message type (ASCII) ‘9’ Message body (decimal) Request - no body Response Field Offset Length Parameter Range Firmware version 400-499 Firmware build number 01-99 Available in F/W Version 4.93.2 or later. 4.6 Instrument Status Table 4-11 Read Request Message type (ASCII) ‘?’...
Table 4-15 Setpoints Status Description Setpoint # 1 status Setpoint # 2 status Setpoint # 3 status Setpoint # 4 status Setpoint # 5 status Setpoint # 6 status Setpoint # 7 status Setpoint # 8 status Setpoint # 9 status Setpoint # 10 status Setpoint # 11 status Setpoint # 12 status...
The number of logged records in data log #4 The number of logged records in data log #5 The number of logged records in data log #6 The number of logged records in data log #7 The number of logged records in data log #8 Not used The number of logged records in waveform log #1 The number of logged records in waveform log #2...
4.9 Analog Expander Channel Allocation Table 4-21 Read Request Message type (ASCII) ‘C’ Message body (hexadecimal) Request Field Offset Length Parameter Range Analog channel number 0-15 = channel #1-#16 Response Field Offset Length Parameter Range Analog channel number 0-15 = channel #1-#16 Output parameter point ID see Table 4-23 Zero scale (0/4 mA)
Parameter Point Length Unit Scale range Average total values Total kW 0x1400 0.001kW/1kW -Pmax to Pmax Total kvar 0x1401 0.001kvar/1kvar -Pmax to Pmax Total kVA 0x1402 0.001kVA/1kVA 0 to Pmax Total PF 0x1403 0.001 -999 to 1000 Total PF Lag 0x1404 0.001 -999 to 1000...
Writing to these locations is ignored. No error will occur. NOTES All digital inputs that were not allocated as pulse inputs will be automatically configured as status inputs. A digital input allocated for the external demand synchronization pulse or time synchronization pulse will be automatically configured as a pulse input.
Table 4-31 Write Request Message type (ASCII) ‘g’ Message body (hexadecimal) Request/Response Field Offset Length Parameter Range Pulse output ID 0-1 (see Table 4-32) Output parameter ID see Table 4-33 For energy pulsing = 0-9999 number of unit-hours per pulse, otherwise - set to 0 Table 4-32 Pulse Outputs Pulsing output ID...
Table 4-36 Write Request Message type (ASCII) ‘j’ Message body (hexadecimal) Request/Response Field Offset Length Parameter Range Pulse counter ID 0-3 (see Table 4-37) Digital input ID 0-8 (see Table 4-38) Scale factor - number of units per pulse 1-9999 Table 4-37 Pulse Counters Counter ID Description...
This request allows you to allocate a memory partition for logging and to specify the partition size and type. Before allocating a partition, it is recommended to check the available memory by issuing request "@". Table 4-42 shows the record size for each partition.
Page 22
Table 4-44 Write Request Message type (ASCII) ‘l’ Message body (hexadecimal) Request Field Offset Length Parameter Range Data log number 0-7 = log #1-#8 The number of parameters in the record 1-16 Log parameter #1 ID see Table 5-7 Log parameter #2 ID see Table 5-7 Log parameter #3 ID see Table 5-7...
4.17 TOU Registers Allocation Table 4-45 Read Request Message type (ASCII) ‘P’ Message body (hexadecimal) Request Field Offset Length Parameter Range TOU system register ID 0-10 (see Table 4-47) Response Field Offset Length Parameter Range TOU system register ID 0-10 (see Table 4-47) Register input ID see Tables 4-48, 4-49 For a pulse input = number of unit-hours...
Table 4-49 TOU Maximum Demand Registers Inputs Register input Input ID None Maximum kW import sliding window demand Maximum kW export sliding window demand Maximum kvar import sliding window demand Maximum kvar export sliding window demand Maximum kVA sliding window demand 4.18 TOU Daily Profiles Table 4-50 Read Request Message type (ASCII)
4.19 TOU Calendars Table 4-52 Read Request Message type (ASCII) ‘R’ Message body (hexadecimal) Request Field Offset Length Parameter Range Annual calendar number Calendar month 1-12 Response Field Offset Length Parameter Range Annual calendar number Calendar month 1-12 1st month day profile 0-15 2nd month day profile 0-15...
Table 4-55 Write Request Message type (ASCII) ‘u’ Message body (hexadecimal) Request/Response Field Offset Length Parameter Range Annual calendar number Calendar year 0-99 This request allows you to associate a specific year with one of the two TOU system annual calendars. 4.21 Real Time Clock Table 4-56 Read Request Message type (ASCII)
5 DIRECT READ/WRITE REQUESTS 5.1 General This chapter describes the instrument data locations (registers) that are addressed directly using register indexes. These registers can be accessed by using universal direct read/write requests instead of specific ASCII requests, which use different formats for accessing different data locations. Data (register) indexes are given in a 4-digit hexadecimal format.
5.1.2 Variable-Size Direct Read/Write Table 5-3 Read Request Message type (ASCII) ‘X’ Message body (hexadecimal) Request Field Offset Type Parameter Range UINT16 Start point (register) ID to read 0x0000 - 0xFFFF UINT8 The number of contiguous data items to 1-61 (0x01-0x3D) read Response Field...
Page 29
Table 5-5 User Assignable Registers Register Register contents Type Range 0x8000 Assigned register #0 0x8001 Assigned register #1 … 0x8077 Assigned register #119 depends on the mapped register Table 5-6 User Assignable Register Map Register Register contents Type Range 0x8100 Mapped address for register 0x8000 UINT16 0x0000 - 0xFFFF...
5.2 Extended Data Registers Table 5-7 Extended Data Table Parameter Point Type Unit Range 1 None None 0x0000 UINT16 Event flags Event flags (bitmap) 0x0300 UINT16 see Table 4-13 Status inputs Status inputs (bitmap) 0x0600 UINT16 see Table 4-14 Relays Relay status (bitmap) 0x0800 UINT16...
Page 31
Parameter Point Type Unit Range 1 Average values per phase Voltage L1/L12 0x1100 UINT32 0.1V/1V 0 to Vmax Voltage L2/L23 0x1101 UINT32 0.1V/1V 0 to Vmax Voltage L3/L31 0x1102 UINT32 0.1V/1V 0 to Vmax Current L1 0x1103 UINT32 0.01A 0 to Imax Current L2 0x1104 UINT32...
Page 32
Parameter Point Type Unit Range 1 Accumulated kVA demand 0x1611 UINT32 0.001kVA/1kVA 0 to Pmax Predicted sliding window kW import 0x1612 UINT32 0.001kW/1kW 0 to Pmax demand Predicted sliding window kvar import 0x1613 UINT32 0.001kvar/1kvar 0 to Pmax demand Predicted sliding window kVA demand 0x1614 UINT32 0.001kVA/1kVA...
Page 33
Parameter Point Type Unit Range 1 L1 current harmonics Harmonic H01 0x1C00 UINT16 0.01% 0 to 10000 Harmonic H02 0x1C01 UINT16 0.01% 0 to 10000 Harmonic H40 0x1C3E UINT16 0.01% 0 to 10000 L2 current harmonics Harmonic H01 0x1D00 UINT16 0.01% 0 to 10000 Harmonic H02...
Page 34
Parameter Point Type Unit Range 1 Minimum real-time total values (M) Total kW 0x2D00 INT32 0.001kW/1kW -Pmax to Pmax Total kvar 0x2D01 INT32 0.001kvar/1kvar -Pmax to Pmax Total kVA 0x2D02 UINT32 0.001kVA/1kVA 0 to Pmax Total PF 0x2D03 UINT16 0.001 0 to 1000 Minimum real-time auxiliary values (M) Reserved...
Page 35
Parameter Point Type Unit Range 1 TOU energy register #2 Tariff #1 register 0x3E00 UINT32 0 to 10 9 -1 Tariff #2 register 0x3E01 UINT32 0 to 10 9 -1 Tariff #16 register 0x3E0F UINT32 0 to 10 9 -1 TOU energy register #3 Tariff #1 register 0x3F00...
Parameter Register Type Range The number of pre-event cycles 0x860A UINT16 1 to 8 for the waveform log #1 Nominal frequency 0x860B UINT16 50, 60 Hz Maximum demand load current 0x860C UINT16 0 to 10000 A (0 = CT primary current) Reserved 0x8609 UINT16...
Page 40
value is checked for compatibility with the other setpoint parameters; if the new value does not conform to these, the request will be rejected. Operate and release limits for the trigger parameters and their ranges are indicated in Table 5-13. Limits indicated as N/A are read as zeros.
Page 41
Trigger parameter Trigger ID Unit Range Time/Date parameters Day of week 0x0B02 1-7 (1= Sun, 7=Sat) Year 0x0B03 0 to 99 Month 0x0B04 1 to 12 Day of month 0x0B05 1 to 31 Hour 0x0B06 0 to 23 Minutes 0x0B07 0 to 59 Seconds 0x0B08...
Page 42
Trigger parameter Trigger ID Unit Range High sliding window kvar import demand 0x160A 0.001kvar/1kvar 0 to Pmax High sliding window kVA demand 0x160B 0.001kVA/1kVA 0 to Pmax High accumulated kW import demand 0x160F 0.001kW/1kW 0 to Pmax High accumulated kvar import demand 0x1610 0.001kvar/1kvar 0 to Pmax...
Table 5-18 Instrument Options Options register Description Options1 120V option 690V option Zeros Analog output 0/4-20 mA Analog output 0-1 mA Analog output ±1 mA Relays option Digital inputs option Setup is secured by a password (see Section 3.4) ASCII compatibility mode is enabled (see Table 5-10) Analog expander output ±1 mA Options 2 Number of relays - 1...
Action Register Type Range Restore waveform log #2 read pointer 0xA00E UINT16 5.12 Memory Allocation Status Registers Table 5-24 Log Memory Status Registers Parameter Register Type Range Total memory size, Bytes 0xA0F0 UINT32 0 to 524288 Free memory size, Bytes 0xA0F1 UINT32 0 to 524288...
Table 5-27 Memory Partition Status/Control Window Registers Parameter Offset Type Range Log partition status UINT16 Bit-mapped register: bit 0 = 0 - non-wrap partition = 1 - wrap-around partition bit 4 = 1 - TOU monthly profile partition bit 5 = 1 - TOU daily profile partition bit 9 = 1 - reading after the end of file: the read pointer has rolled over the end of a log file, that is the file is being re-read from the beginning.
Page 49
automatically restored to the beginning of the log file so that the next read request will return the first (oldest) event. To point to an arbitrary record, use the log partition status/control registers A100h-A107h (see Section 5.13). Table 5-28 Event Log Windows Locations Event log window Registers (see Table 5-29) Event log window #1...
Page 50
Table 5-31 Data Location Codes Location code Description Data keeping memory Factory setup Access setup Basic setup Communications setup Real-time clock Digital inputs allocation Pulse counters allocation Analog output setup Analog expander setup Timers setup Display options Event/alarm setpoints Pulsing setpoints User assignable register map Data log setup Memory partitions setup...
5.15 Data Log Registers These registers allow you to circularly read consequent records from the event log file. Each data log file is accessed via a separate register window. Reading from either register window always returns the next logged record from the corresponding data log. All registers within one window must be read at once using a single request.
Page 52
Table 5-34 Data Log Read Window Registers Parameter Offset Type Range Status indication UINT16 Bit-mapped register: bit 0 = 1 - the end record is being read (the end of a log file reached) bit 1 = 1 - reading after the end of file: the read pointer has rolled over the end of a log file, i.e., the file is being re-read from the beginning.
5.16 Waveform Capture/Log Registers Table 5-35 Waveform Header Windows Waveform header window Registers (see Tables 5-36 - 5-37) Real-time waveform capture channel V L1/L12 0xCE00-0xCE0D Real-time waveform capture channel V L2/L23 0xCE0E-0xCE1B Real-time waveform capture channel V L3 0xCE1C-0xCE29 Real-time waveform capture channel I L1 0xCE2A-0xCE37 Real-time waveform capture channel I L2 0xCE38-0xCE45...
Page 54
Registers at offsets +0,+1, +4 to +6, and +11 are applicable only for waveform log records. For real-time waveforms these are read as zeros. Timestamp is given in local time in a UNIX-style time format: it represents the number of seconds since midnight (00:00:00), January 1, 1970.
file, the file pointer rolls over to the beginning of the file and the first (oldest) record is returned with bit 1 in the status indication register being set to 1. 5.17 Min/Max Log Registers These registers allow you to read time-stamped Min/Max log records using direct read requests. Table 5-38 Min/Max Log Registers Parameter Register...
Page 56
Parameter Register Type Unit 2 Range 1 Maximum real-time values per phase Max. Voltage L1/L12 6 0xB200 UINT32 0.1V/1V 0 to Vmax Timestamp 0xB201 UINT32 Max. Voltage L2/L23 6 0xB202 UINT32 0.1V/1V 0 to Vmax Timestamp 0xB203 UINT32 Max. Voltage L3/L31 6 0xB204 UINT32 0.1V/1V...
NOTES 1. All digital inputs that were not allocated as pulse inputs will be automatically configured as status inputs. 2. A digital input allocated for the external demand synchronization pulse or time synchronization pulse will be automatically configured as a pulse input. Table 5-40 Digital Inputs Allocation Mask Bit number Description...
Need help?
Do you have a question about the PM172EH series and is the answer not in the manual?
Questions and answers