Satec PM172EH series Reference Manual

Satec PM172EH series Reference Manual

Powermeters, ascii communications protocol
Hide thumbs Also See for PM172EH series:

Advertisement

SERIES PM172EH POWERMETERS
COMMUNICATIONS
ASCII Communications Protocol
REFERENCE GUIDE

Advertisement

Table of Contents
loading
Need help?

Need help?

Do you have a question about the PM172EH series and is the answer not in the manual?

Questions and answers

Subscribe to Our Youtube Channel

Summary of Contents for Satec PM172EH series

  • Page 1 SERIES PM172EH POWERMETERS COMMUNICATIONS ASCII Communications Protocol REFERENCE GUIDE...
  • Page 2 Every effort has been made to ensure that the material herein is complete and accurate. However, the manufacturer is not responsible for any mistakes in printing or faulty instructions contained in this book. Notification of any errors or misprints will be received with appreciation. For further information regarding a particular installation, operation or maintenance of equipment, contact the manufacturer or your local representative or distributor.
  • Page 3: Table Of Contents

    Table of Contents 1 GENERAL 4 2 ASCII FRAMING ..........................5 2.1 ASCII Message Frame ............................5 2.2 Exception Responses ............................6 3 PROTOCOL IMPLEMENTATION......................7 3.1 ASCII Specific and Direct Requests ........................7 3.2 Data Formats..............................7 3.3 Configuring and Accessing Log Files ........................7 3.4 Password Protection............................8 4 SPECIFIC ASCII REQUESTS ......................9 4.1 Basic Data .................................9 4.2 Basic Setup ..............................11...
  • Page 4: General

    1 GENERAL This document specifies the ASCII serial communications protocol used to transfer data between a master computer station and the PM172EH. The document provides the complete information necessary to develop a third-party communications software capable of communication with the Series PM172EH instruments. All messages within the ASCII communications protocol are designed to consist only of printable characters.
  • Page 5: Ascii Framing

    2 ASCII FRAMING 2.1 ASCII Message Frame The following specifies the ASCII message frame: Field No. Contents SYNC Message Slave Message Message Check sum Trailer length address type body (CRLF) Length, char 0 to 246 SYNC Synchronization character: one character '!' (ASCII 33), used for starting synchronization. Message length The length of the message including only number of bytes in fields #2, #3, #4 and #5.
  • Page 6: Exception Responses

    Message type Description Char ASCII Hex Write analog expander channel allocation Read digital input allocation Write digital input allocation Read timer setup Write timer setup Read pulsing setpoint Write pulsing setpoint Set/clear event flag Read pulse counter setup Write pulse counter setup Read memory partition setup Write memory partition setup Read data log setup...
  • Page 7: Protocol Implementation

    3 PROTOCOL IMPLEMENTATION 3.1 ASCII Specific and Direct Requests The ASCII protocol implements two different types of messages to transfer data between a master application and the instrument: specific requests and direct read/write requests. Specific ASCII requests use different formats for accessing different data locations. The message body differs depending on the request type.
  • Page 8: Password Protection

    within the following 65535 logs. If a record is missing because of a communication problem, the read sequence for the log can be restored from the record with the desired sequence number. Accessing Log Files Each log file has a separate file read pointer which always points to the current file record that will be read next, and a separate register window which gives access to the record pointed to by this pointer.
  • Page 9: Specific Ascii Requests

    4 SPECIFIC ASCII REQUESTS 4.1 Basic Data Table 4-1 Read Request Message type (ASCII) ‘0’ Message body (decimal) Request - no body Response Field Offset Length Parameter Unit Range Voltage L1/L12 V/kV 0 to Vmax Voltage L2/L21 V/kV 0 to Vmax Voltage L3/L31 V/kV 0 to Vmax...
  • Page 10 Direct wiring (PT Ratio = 1): Vmax (690 V input option) = 828.0 V Vmax (120 V input option) = 144.0 V Pmax = (Imax × Vmax × 3) [kW x 0.001] if wiring mode is 4LN3 or 3LN3 Pmax = (Imax × Vmax × 2) [kW x 0.001] if wiring mode is 4LL3, 3OP2, 3DIR2, 3OP3 or 3LL3 Wiring via PTs (PT Ratio >...
  • Page 11: Basic Setup

    4.2 Basic Setup Table 4-2 Read Request Message type (ASCII) ‘1’ Message body (decimal) Request Field Offset Length Parameter Range Parameter identifier see Table 4-4 Response Field Offset Length Parameter Range Parameter identifier see Table 4-4 Not used permanently set to 00.0 Parameter value see Table 4-4 Table 4-3 Write Request...
  • Page 12: Reset/Clear Functions

    4.3 Reset/Clear Functions These operations can be also performed by using the direct write requests instead of the specific request ‘4’ (see Section 5.11). Table 4-6 Write Request Message type (ASCII) ‘4’ Message body (hexadecimal) Request/Response Field Offset Length Parameter Range Reset function see Table 4-8...
  • Page 13: Firmware Version Number

    4.5 Firmware Version Number Table 4-10 Read Request Message type (ASCII) ‘9’ Message body (decimal) Request - no body Response Field Offset Length Parameter Range Firmware version 400-499 Firmware build number 01-99 Available in F/W Version 4.93.2 or later. 4.6 Instrument Status Table 4-11 Read Request Message type (ASCII) ‘?’...
  • Page 14: Log Memory Status

    Table 4-15 Setpoints Status Description Setpoint # 1 status Setpoint # 2 status Setpoint # 3 status Setpoint # 4 status Setpoint # 5 status Setpoint # 6 status Setpoint # 7 status Setpoint # 8 status Setpoint # 9 status Setpoint # 10 status Setpoint # 11 status Setpoint # 12 status...
  • Page 15: Analog Output Allocation

    The number of logged records in data log #4 The number of logged records in data log #5 The number of logged records in data log #6 The number of logged records in data log #7 The number of logged records in data log #8 Not used The number of logged records in waveform log #1 The number of logged records in waveform log #2...
  • Page 16: Analog Expander Channel Allocation

    4.9 Analog Expander Channel Allocation Table 4-21 Read Request Message type (ASCII) ‘C’ Message body (hexadecimal) Request Field Offset Length Parameter Range Analog channel number 0-15 = channel #1-#16 Response Field Offset Length Parameter Range Analog channel number 0-15 = channel #1-#16 Output parameter point ID see Table 4-23 Zero scale (0/4 mA)
  • Page 17: Digital Inputs Allocation

    Parameter Point Length Unit Scale range Average total values Total kW 0x1400 0.001kW/1kW -Pmax to Pmax Total kvar 0x1401 0.001kvar/1kvar -Pmax to Pmax Total kVA 0x1402 0.001kVA/1kVA 0 to Pmax Total PF 0x1403 0.001 -999 to 1000 Total PF Lag 0x1404 0.001 -999 to 1000...
  • Page 18: Timer Setup

    Writing to these locations is ignored. No error will occur. NOTES All digital inputs that were not allocated as pulse inputs will be automatically configured as status inputs. A digital input allocated for the external demand synchronization pulse or time synchronization pulse will be automatically configured as a pulse input.
  • Page 19: User Event Flags Control

    Table 4-31 Write Request Message type (ASCII) ‘g’ Message body (hexadecimal) Request/Response Field Offset Length Parameter Range Pulse output ID 0-1 (see Table 4-32) Output parameter ID see Table 4-33 For energy pulsing = 0-9999 number of unit-hours per pulse, otherwise - set to 0 Table 4-32 Pulse Outputs Pulsing output ID...
  • Page 20: Log Memory Partition Setup

    Table 4-36 Write Request Message type (ASCII) ‘j’ Message body (hexadecimal) Request/Response Field Offset Length Parameter Range Pulse counter ID 0-3 (see Table 4-37) Digital input ID 0-8 (see Table 4-38) Scale factor - number of units per pulse 1-9999 Table 4-37 Pulse Counters Counter ID Description...
  • Page 21: Data Log Setup

    This request allows you to allocate a memory partition for logging and to specify the partition size and type. Before allocating a partition, it is recommended to check the available memory by issuing request "@". Table 4-42 shows the record size for each partition.
  • Page 22 Table 4-44 Write Request Message type (ASCII) ‘l’ Message body (hexadecimal) Request Field Offset Length Parameter Range Data log number 0-7 = log #1-#8 The number of parameters in the record 1-16 Log parameter #1 ID see Table 5-7 Log parameter #2 ID see Table 5-7 Log parameter #3 ID see Table 5-7...
  • Page 23: Tou Registers Allocation

    4.17 TOU Registers Allocation Table 4-45 Read Request Message type (ASCII) ‘P’ Message body (hexadecimal) Request Field Offset Length Parameter Range TOU system register ID 0-10 (see Table 4-47) Response Field Offset Length Parameter Range TOU system register ID 0-10 (see Table 4-47) Register input ID see Tables 4-48, 4-49 For a pulse input = number of unit-hours...
  • Page 24: Tou Daily Profiles

    Table 4-49 TOU Maximum Demand Registers Inputs Register input Input ID None Maximum kW import sliding window demand Maximum kW export sliding window demand Maximum kvar import sliding window demand Maximum kvar export sliding window demand Maximum kVA sliding window demand 4.18 TOU Daily Profiles Table 4-50 Read Request Message type (ASCII)
  • Page 25: Tou Calendars

    4.19 TOU Calendars Table 4-52 Read Request Message type (ASCII) ‘R’ Message body (hexadecimal) Request Field Offset Length Parameter Range Annual calendar number Calendar month 1-12 Response Field Offset Length Parameter Range Annual calendar number Calendar month 1-12 1st month day profile 0-15 2nd month day profile 0-15...
  • Page 26: Real Time Clock

    Table 4-55 Write Request Message type (ASCII) ‘u’ Message body (hexadecimal) Request/Response Field Offset Length Parameter Range Annual calendar number Calendar year 0-99 This request allows you to associate a specific year with one of the two TOU system annual calendars. 4.21 Real Time Clock Table 4-56 Read Request Message type (ASCII)
  • Page 27: Direct Read/Write Requests

    5 DIRECT READ/WRITE REQUESTS 5.1 General This chapter describes the instrument data locations (registers) that are addressed directly using register indexes. These registers can be accessed by using universal direct read/write requests instead of specific ASCII requests, which use different formats for accessing different data locations. Data (register) indexes are given in a 4-digit hexadecimal format.
  • Page 28: Variable-Size Direct Read/Write

    5.1.2 Variable-Size Direct Read/Write Table 5-3 Read Request Message type (ASCII) ‘X’ Message body (hexadecimal) Request Field Offset Type Parameter Range UINT16 Start point (register) ID to read 0x0000 - 0xFFFF UINT8 The number of contiguous data items to 1-61 (0x01-0x3D) read Response Field...
  • Page 29 Table 5-5 User Assignable Registers Register Register contents Type Range 0x8000 Assigned register #0 0x8001 Assigned register #1 … 0x8077 Assigned register #119 depends on the mapped register Table 5-6 User Assignable Register Map Register Register contents Type Range 0x8100 Mapped address for register 0x8000 UINT16 0x0000 - 0xFFFF...
  • Page 30: Extended Data Registers

    5.2 Extended Data Registers Table 5-7 Extended Data Table Parameter Point Type Unit Range 1 None None 0x0000 UINT16 Event flags Event flags (bitmap) 0x0300 UINT16 see Table 4-13 Status inputs Status inputs (bitmap) 0x0600 UINT16 see Table 4-14 Relays Relay status (bitmap) 0x0800 UINT16...
  • Page 31 Parameter Point Type Unit Range 1 Average values per phase Voltage L1/L12 0x1100 UINT32 0.1V/1V 0 to Vmax Voltage L2/L23 0x1101 UINT32 0.1V/1V 0 to Vmax Voltage L3/L31 0x1102 UINT32 0.1V/1V 0 to Vmax Current L1 0x1103 UINT32 0.01A 0 to Imax Current L2 0x1104 UINT32...
  • Page 32 Parameter Point Type Unit Range 1 Accumulated kVA demand 0x1611 UINT32 0.001kVA/1kVA 0 to Pmax Predicted sliding window kW import 0x1612 UINT32 0.001kW/1kW 0 to Pmax demand Predicted sliding window kvar import 0x1613 UINT32 0.001kvar/1kvar 0 to Pmax demand Predicted sliding window kVA demand 0x1614 UINT32 0.001kVA/1kVA...
  • Page 33 Parameter Point Type Unit Range 1 L1 current harmonics Harmonic H01 0x1C00 UINT16 0.01% 0 to 10000 Harmonic H02 0x1C01 UINT16 0.01% 0 to 10000 Harmonic H40 0x1C3E UINT16 0.01% 0 to 10000 L2 current harmonics Harmonic H01 0x1D00 UINT16 0.01% 0 to 10000 Harmonic H02...
  • Page 34 Parameter Point Type Unit Range 1 Minimum real-time total values (M) Total kW 0x2D00 INT32 0.001kW/1kW -Pmax to Pmax Total kvar 0x2D01 INT32 0.001kvar/1kvar -Pmax to Pmax Total kVA 0x2D02 UINT32 0.001kVA/1kVA 0 to Pmax Total PF 0x2D03 UINT16 0.001 0 to 1000 Minimum real-time auxiliary values (M) Reserved...
  • Page 35 Parameter Point Type Unit Range 1 TOU energy register #2 Tariff #1 register 0x3E00 UINT32 0 to 10 9 -1 Tariff #2 register 0x3E01 UINT32 0 to 10 9 -1 Tariff #16 register 0x3E0F UINT32 0 to 10 9 -1 TOU energy register #3 Tariff #1 register 0x3F00...
  • Page 36: Basic Setup Registers

    Parameter Point Type Unit Range 1 Harmonic H40 angle 0x6427 INT16 0.1 degree -1800 to 1800 L3 voltage harmonic angles Harmonic H01 angle 0x6400 INT16 0.1 degree -1800 to 1800 Harmonic H02 angle 0x6401 INT16 0.1 degree -1800 to 1800 Harmonic H40 angle 0x6427 INT16...
  • Page 37: User Selectable Options Setup

    Parameter Register Type Range The number of pre-event cycles 0x860A UINT16 1 to 8 for the waveform log #1 Nominal frequency 0x860B UINT16 50, 60 Hz Maximum demand load current 0x860C UINT16 0 to 10000 A (0 = CT primary current) Reserved 0x8609 UINT16...
  • Page 38: Communications Setup

    5.5 Communications Setup Table 5-10 Communications Setup Registers Comm. Parameter Register Type Range Port Communication protocol UINT16 Port #1 8500h 0 = ASCII 1 = Modbus RTU 3 = DNP3.0 Interface 8501h UINT16 0 = RS-232 1 = RS-422 2 = RS-485 Address 8502h UINT16...
  • Page 39: Alarm/Event Setpoints

    5.6 Alarm/Event Setpoints Table 5-11 Setpoint Setup Locations Setpoint number Registers Setpoint #1 8A00h-8A19h Setpoint #2 8A1Ah-8A33h Setpoint #3 8A34h-8A4Dh Setpoint #4 8A4Eh-8A67h Setpoint #5 8A68h-8A81h Setpoint #6 8A82h-8A96h Setpoint #7 8A9Ch-8AB5h Setpoint #8 8AB6h-8ACFh Setpoint #9 8AD0h-8AE9h Setpoint #10 8AEAh-8B03h Setpoint #11 8B04h-8B1Dh...
  • Page 40 value is checked for compatibility with the other setpoint parameters; if the new value does not conform to these, the request will be rejected. Operate and release limits for the trigger parameters and their ranges are indicated in Table 5-13. Limits indicated as N/A are read as zeros.
  • Page 41 Trigger parameter Trigger ID Unit Range Time/Date parameters Day of week 0x0B02 1-7 (1= Sun, 7=Sat) Year 0x0B03 0 to 99 Month 0x0B04 1 to 12 Day of month 0x0B05 1 to 31 Hour 0x0B06 0 to 23 Minutes 0x0B07 0 to 59 Seconds 0x0B08...
  • Page 42 Trigger parameter Trigger ID Unit Range High sliding window kvar import demand 0x160A 0.001kvar/1kvar 0 to Pmax High sliding window kVA demand 0x160B 0.001kVA/1kVA 0 to Pmax High accumulated kW import demand 0x160F 0.001kW/1kW 0 to Pmax High accumulated kvar import demand 0x1610 0.001kvar/1kvar 0 to Pmax...
  • Page 43: Relay Operation Control Registers

    Action Increment counter #3 0x4002 Increment counter #4 0x4003 Clear counter #1 0x4200 Clear counter #2 0x4201 Clear counter #3 0x4202 Clear counter #4 0x4203 Clear all counters 0x6400 Reset total energy 0x6000 Reset all total maximum demands 0x6100 Reset power maximum demands 0x6101 Reset volt/ampere maximum demands 0x6102...
  • Page 44: Extended Status Registers

    Table 5-18 Instrument Options Options register Description Options1 120V option 690V option Zeros Analog output 0/4-20 mA Analog output 0-1 mA Analog output ±1 mA Relays option Digital inputs option Setup is secured by a password (see Section 3.4) ASCII compatibility mode is enabled (see Table 5-10) Analog expander output ±1 mA Options 2 Number of relays - 1...
  • Page 45: Reset/Clear Registers

    Table 5-21 Setpoint Alarm Status Description Alarm #1 Alarm #2 Alarm #3 Alarm #4 Alarm #5 Alarm #6 Alarm #7 Alarm #8 Alarm #9 Alarm #10 Alarm #11 Alarm #12 Alarm #13 Alarm #14 Alarm #15 Alarm #16 Bit meaning: 1 = setpoint has been operated Table 5-22 Self-check Alarm Status Description Reserved...
  • Page 46: Memory Allocation Status Registers

    Action Register Type Range Restore waveform log #2 read pointer 0xA00E UINT16 5.12 Memory Allocation Status Registers Table 5-24 Log Memory Status Registers Parameter Register Type Range Total memory size, Bytes 0xA0F0 UINT32 0 to 524288 Free memory size, Bytes 0xA0F1 UINT32 0 to 524288...
  • Page 47: Memory Partition Status/Control Registers

    5.13 Memory Partition Status/Control Registers Table 5-26 Memory Partition Status/Control Register Locations Memory Partition Registers Event log 0xA100-0xA107 Data log #1 0xA108-0xA10F Data log #2 0xA110-0xA117 Data log #3 0xA118-0xA11F Data log #4 0xA120-0xA127 Data log #5 0xA128-0xA12F Data log #6 0xA130-0xA137 Data log #7 0xA138-0xA13F...
  • Page 48: Event Log Registers

    Table 5-27 Memory Partition Status/Control Window Registers Parameter Offset Type Range Log partition status UINT16 Bit-mapped register: bit 0 = 0 - non-wrap partition = 1 - wrap-around partition bit 4 = 1 - TOU monthly profile partition bit 5 = 1 - TOU daily profile partition bit 9 = 1 - reading after the end of file: the read pointer has rolled over the end of a log file, that is the file is being re-read from the beginning.
  • Page 49 automatically restored to the beginning of the log file so that the next read request will return the first (oldest) event. To point to an arbitrary record, use the log partition status/control registers A100h-A107h (see Section 5.13). Table 5-28 Event Log Windows Locations Event log window Registers (see Table 5-29) Event log window #1...
  • Page 50 Table 5-31 Data Location Codes Location code Description Data keeping memory Factory setup Access setup Basic setup Communications setup Real-time clock Digital inputs allocation Pulse counters allocation Analog output setup Analog expander setup Timers setup Display options Event/alarm setpoints Pulsing setpoints User assignable register map Data log setup Memory partitions setup...
  • Page 51: Data Log Registers

    5.15 Data Log Registers These registers allow you to circularly read consequent records from the event log file. Each data log file is accessed via a separate register window. Reading from either register window always returns the next logged record from the corresponding data log. All registers within one window must be read at once using a single request.
  • Page 52 Table 5-34 Data Log Read Window Registers Parameter Offset Type Range Status indication UINT16 Bit-mapped register: bit 0 = 1 - the end record is being read (the end of a log file reached) bit 1 = 1 - reading after the end of file: the read pointer has rolled over the end of a log file, i.e., the file is being re-read from the beginning.
  • Page 53: Waveform Capture/Log Registers

    5.16 Waveform Capture/Log Registers Table 5-35 Waveform Header Windows Waveform header window Registers (see Tables 5-36 - 5-37) Real-time waveform capture channel V L1/L12 0xCE00-0xCE0D Real-time waveform capture channel V L2/L23 0xCE0E-0xCE1B Real-time waveform capture channel V L3 0xCE1C-0xCE29 Real-time waveform capture channel I L1 0xCE2A-0xCE37 Real-time waveform capture channel I L2 0xCE38-0xCE45...
  • Page 54 Registers at offsets +0,+1, +4 to +6, and +11 are applicable only for waveform log records. For real-time waveforms these are read as zeros. Timestamp is given in local time in a UNIX-style time format: it represents the number of seconds since midnight (00:00:00), January 1, 1970.
  • Page 55: Min/Max Log Registers

    file, the file pointer rolls over to the beginning of the file and the first (oldest) record is returned with bit 1 in the status indication register being set to 1. 5.17 Min/Max Log Registers These registers allow you to read time-stamped Min/Max log records using direct read requests. Table 5-38 Min/Max Log Registers Parameter Register...
  • Page 56 Parameter Register Type Unit 2 Range 1 Maximum real-time values per phase Max. Voltage L1/L12 6 0xB200 UINT32 0.1V/1V 0 to Vmax Timestamp 0xB201 UINT32 Max. Voltage L2/L23 6 0xB202 UINT32 0.1V/1V 0 to Vmax Timestamp 0xB203 UINT32 Max. Voltage L3/L31 6 0xB204 UINT32 0.1V/1V...
  • Page 57: Digital Inputs Allocation Registers

    Parameter Register Type Unit 2 Range 1 Timestamp 0xB389 UINT32 Max. ampere demand L3 0xB38A UINT32 0.01A 0 to Imax Timestamp 0xB38B UINT32 Reserved 0xB38C-0xB391 Max. sliding window kW import demand 0xB392 UINT32 0.001kW/1kW 0 to Pmax Timestamp 0xB393 UINT32 Reserved 0xB394-0xB395 UINT32...
  • Page 58: Time Zone Information Registers

    NOTES 1. All digital inputs that were not allocated as pulse inputs will be automatically configured as status inputs. 2. A digital input allocated for the external demand synchronization pulse or time synchronization pulse will be automatically configured as a pulse input. Table 5-40 Digital Inputs Allocation Mask Bit number Description...
  • Page 59 NOTES...

Table of Contents